1
|
Huang P, Wang L, Heng BC, Haririan I, Cai Q, Ge Z. Property-Tailoring Chemical Modifications of Hyaluronic Acid for Regenerative Medicine Applications. Acta Biomater 2025:S1742-7061(25)00420-9. [PMID: 40490241 DOI: 10.1016/j.actbio.2025.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 05/19/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
Hyaluronic acid (HA) as well as HA-based materials are widely applied in regenerative medicine due to their good biocompatibility, bioactivity and amenability to chemical modifications. Although the reactive sites and associated reaction types of HA have been summarized previously to guide chemical modification and synthesis of HA-based materials, the relationship between chemical modifications and HA-based material properties has not yet been discussed. In this review, the key properties of HA-based materials required for regenerative medicine in various tissues and organs including skin, bone, cartilage, heart and cornea are summarized and various chemical modification strategies aimed at achieving these properties are discussed. Versatile HA-based materials can be tailored through crosslinking and conjugation, as well as regulating the internal bonding types and degrees of modification. We also provide a comparative analysis of commonly used HA-based materials modification methods and discuss their practical advantages, limitations, and the current status of clinical translation. Even with significant progress already achieved, there is still a long way to go in precisely fine-tuning chemical modifications, balancing functionality and practicality, as well as in understanding their interactions with the diverse array of cells and tissues in vivo. This review bridges tissue-specific property demands with chemical design strategies. We believe that this demand-driven framework provides a practical and accessible guide for researchers intending to design HA-based materials with targeted regenerative capabilities. STATEMENT OF SIGNIFICANCE: This review critically examines hyaluronic acid (HA) and HA-based materials in regenerative medicine applications, focusing on the key properties required for applications in specific tissues such as skin, bone, cartilage, heart, and cornea, as well as the associated chemical modification strategies. While design strategies for HA-based materials have been studied in the past, the relationship between chemical modifications and the resulting material properties remains under-explored. This review thus addresses this gap by systematically categorizing various chemical modification strategies that have been tailored to different material property requirements, providing a comparative analysis of commonly used chemical modification methods, and discussing current clinical challenges and future directions of HA-based materials. By linking material properties to chemical modification strategies, this review thus provides a comprehensive guide for researchers and offers valuable insights for advancing the applications of HA-based materials in regenerative medicine.
Collapse
Affiliation(s)
- Peiling Huang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Li Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Ismaeil Haririan
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zigang Ge
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China; Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
| |
Collapse
|
2
|
López-Corrales M, Izquierdo-García E, Bosch M, Das T, Llebaria A, Josa-Culleré L, Marchán V. Exploring the Phototherapeutic Applications of Mitochondria-Targeted COUPY Photocages of Antitumor Drugs. J Med Chem 2025; 68:9741-9754. [PMID: 40293412 DOI: 10.1021/acs.jmedchem.5c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Photocleavable protecting groups hold great promise in photopharmacology to control the release of bioactive molecules from their caged precursors within specific subcellular compartments. Herein, we describe a series of photocages based on a COUPY scaffold, incorporating chlorambucil (CLB) and 4-phenylbutyric acid (4-PBA) as bioactive payloads that can be efficiently activated with visible light. Confocal microscopy confirmed the preferential accumulation of CLB and 4-PBA N-hexyl COUPY photocages in the mitochondria, which exhibited a remarkable phototoxicity against cancer cells upon green-yellow light irradiation, with IC50 values in the nanomolar range. This effect was attributed to a synergistic mechanism involving the photorelease of the bioactive payloads and the intrinsic photogeneration of Type I and Type II ROS by the COUPY scaffold within mitochondria. Thus, COUPY-caged derivatives of CLB and 4-PBA underscore the potential of COUPY-caging groups as a versatile platform to develop innovative light-activated agents operating simultaneously through photodynamic therapy and photoactivated chemotherapy.
Collapse
Affiliation(s)
- Marta López-Corrales
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Eduardo Izquierdo-García
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Manel Bosch
- Unitat de Microscòpia Òptica Avançada, Centres Científics i Tecnològics (CCiTUB), Universitat de Barcelona (UB), Av. Diagonal 643, E-08028 Barcelona, Spain
| | - Tapas Das
- Department of Chemistry, National Institute of Technology Jamshedpur, Jamshedpur, Jharkhand 831014, India
| | - Amadeu Llebaria
- MCS, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Laia Josa-Culleré
- MCS, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona (UB), and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
3
|
Charbgoo F, Ishaqat A, Chen J, Wiertz F, Kuzmanović A, Bartneck M, Kiessling F, Herrmann A. Remote Control of Eukaryotic Gene Expression by a Modular Ultrasound-Responsive RNA Toolkit. Angew Chem Int Ed Engl 2025:e202421803. [PMID: 40342262 DOI: 10.1002/anie.202421803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/09/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Achieving remote control of biological processes remains a significant challenge in genetics. Although ultrasound has been employed to remotely regulate biological functions by targeting mechanosensitive ion channels, existing systems are constrained by the limited responsiveness of specific channels to specific ultrasound frequencies and their applicability to only a few cell types. Sonogenetics has shown promise for promoter control, thereby regulating gene transcription in eukaryotes. Here, we introduce a new modular toolkit for regulating gene expression using ultrasound-responsive RNA carriers capable of releasing small molecule modulators in response to a broad spectrum of ultrasound frequencies. The cells contain engineered mRNA structures encoding riboswitches or aptazymes, which respond specifically to these small molecule modulators finally controlling downstream protein expression by biocompatible ultrasound. This toolkit is versatile, functioning across various eukaryotic systems-from yeast to mammalian cells-and offers control over gene expression by regulating mRNA translation. We demonstrated that this sonogenetic toolkit robustly modulates gene expression, achieving up to a six-fold downregulation of protein levels in response to ultrasound stimulation. By expanding the application of sonogenetics across eukaryotes, this RNA-based toolkit might provide a promising platform for remotely controlling protein function in specific tissues through on-demand ultrasound activation in the future.
Collapse
Affiliation(s)
- Fahimeh Charbgoo
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Aman Ishaqat
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Pharmacology and Toxicology, TU Munich, Munich, Germany
| | - Junlin Chen
- Institute for Experimental Molecular Imaging, Uniklinik Aachen, RWTH Aachen University, Aachen, Germany
| | - Fabian Wiertz
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| | | | - Matthias Bartneck
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
- Department of Medicine III, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik Aachen, RWTH Aachen University, Aachen, Germany
- Center for Biohybrid Medical Systems (CMBS), RWTH Aachen University, Aachen, Germany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
4
|
Liu Y, Wang T, Wang W. Photopharmacology and photoresponsive drug delivery. Chem Soc Rev 2025. [PMID: 40309857 DOI: 10.1039/d5cs00125k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Light serves as an excellent external stimulus due to its high spatial and temporal resolution. The use of light to regulate biological processes has evolved into a vibrant field over the past decade. Employing light on chemical substances such as bioactive molecules and drug delivery systems offers a promising therapeutic approach to achieve precise control over biological processes. In this review, we provide an overview of the advancements in optochemical technologies for controlling bioactive molecules (photopharmacology) and drug delivery systems (photoresponsive drug delivery), with an emphasis on their relationship and biomedical applications. Gaining a deeper understanding of the underlying mechanisms and emerging research will facilitate the development of optochemically controlled bioactive molecules and photoresponsive drug delivery systems, further enhancing light technologies in biomedical applications.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Tianyi Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Montoto D, Deus-Lorenzo U, Tomás-Gamasa M, Mascareñas JL, Mato M. Red-shifted photoredox generation and trapping of alkyl radicals towards bioorthogonality. Org Biomol Chem 2025. [PMID: 40264276 DOI: 10.1039/d5ob00476d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The photocatalytic generation and trapping of alkyl radicals is a powerful synthetic tool in organic chemistry, but it remains underexplored in biological settings. Here, we present two photoredox systems that leverage green- or red-light irradiation for the activation and subsequent Giese coupling of redox-active alkyl phthalimide esters. Besides utilizing mild low-energy light sources, these reactions operate with biocompatible BnNAH or NADH as electron donor. Notably, they display compatibility with air, water and biologically relevant conditions, including cell-culture media or even cell lysates. This work marks a significant step towards integrating synthetic alkyl-radical chemistry into biological settings.
Collapse
Affiliation(s)
- David Montoto
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Uxía Deus-Lorenzo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Mauro Mato
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Yadav AK, Kushwaha R, Mandal AA, Mandal A, Banerjee S. Intracellular Photocatalytic NADH/NAD(P)H Oxidation for Cancer Drug Development. J Am Chem Soc 2025; 147:7161-7181. [PMID: 39980079 DOI: 10.1021/jacs.4c18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Photocatalytic cancer therapy (PCT) has emerged as a cutting-edge anticancer mechanism of action, harnessing light energy to mediate the catalytic oxidation of intracellular substrates. PCT is of significant current importance due to its potential to address the limitations of conventional chemotherapy, particularly drug resistance and side effects. This approach offers a noninvasive, targeted cancer treatment option by utilizing metal-based photocatalysts to induce redox and metabolic disorders within cancer cells. The photocatalysts disrupt the cancer cell metabolism by converting NADH/NAD(P)H to NAD+/NAD(P)+ via catalytic photoredox processes, altering intracellular NAD+/NADH or NAD(P)+/NAD(P)H ratios, which are crucial for cellular metabolism. Ir(III), Ru(II), Re(I), and Os(II) photocatalysts demonstrated promising PCT efficacy. Despite these developments, gaps remain in the literature for translating this new anticancer mechanism into clinical trials. This Perspective critically examines the developments in this research area and provides future directions for designing efficient photocatalysts for PCT.
Collapse
Affiliation(s)
- Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
7
|
Ma Y, Persi L, Yan S, Lee SS, Baumgartner M, Yamakoshi Y. Conditionally Activated ROS Generation by MMP2/9-Specific C 60-Based Fluorescence Probes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2403307. [PMID: 39887624 DOI: 10.1002/smll.202403307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/28/2024] [Indexed: 02/01/2025]
Abstract
A C60-coumarin conjugate, covalently connected via a matrix metalloproteinase (MMP2/9)-cleavable peptide linker (Pro-Leu-Gly-Val-Arg-Gly), is developed as a probe for both imaging and photodynamic treatment of MMP2/9-expressing malignant cells. In the synthesized probe, the coumarin fluorescence is completely suppressed intramolecularly by the C60 moiety, while an intensive fluorescence increase is observed in the presence of MMP2/9 dependent on cleavage of the peptide linker. The specificity of the probe to detect MMP2 is confirmed by control experiments resulting in no emission 1) with a control probe bearing a shuffled peptide (Val-Arg-Leu-Gly-Pro-Gly) or 2) in the presence of an MMP2 inhibitor (1,10-phenantheoline). The probe is added to three types of tumor cell lines with different MMP2/9-expression levels to perform in vitro cellular imaging. MMP2/9 is successfully detected by the probe in DAOY cells with the highest expression level of MMP2/9. Upon cleavage of the probe by MMP2/9, photoinduced 1O2 generation is much enhanced, resulting in the MMP-dependent induction of higher photocytotoxicity of the probe in DAOY compared to HCT116 with much lower expression. The results suggest that the probe can serve as (I) a fluorescent reporter for MMP2/9 and (II) a photosensitizer for selective photodynamic treatment of malignant cells with MMP2/9 overexpression.
Collapse
Affiliation(s)
- Yue Ma
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich, 8093, Switzerland
| | - Lorenzo Persi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich, 8093, Switzerland
| | - Shen Yan
- University Children's Hospital Zürich, Children's Research Center, August-Forel-Strasse 51, Zürich, 8008, Switzerland
| | - Sung Sik Lee
- ScopeM, ETH Zürich, Otto-Stern-Weg 3, Zürich, 8093, Switzerland
| | - Martin Baumgartner
- University Children's Hospital Zürich, Children's Research Center, August-Forel-Strasse 51, Zürich, 8008, Switzerland
| | - Yoko Yamakoshi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, Zürich, 8093, Switzerland
| |
Collapse
|
8
|
Wu D, Sun X, Chen X. Chemo-optogenetic Dimerization Dissects Complex Biological Processes. SMALL METHODS 2025:e2401271. [PMID: 39815164 DOI: 10.1002/smtd.202401271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Light offers superior control in terms of high temporal precision, high spatial precision, and non-invasiveness for the regulation of cellular functions. In recent years, chemical biologists have adopted chemo-optogenetic dimerization approaches, such as photo-triggered chemical inducers of dimerization (pCIDs), as a general tool for spatiotemporal regulation of cellular functions. Traditional chemo-optogenetic dimerization triggers either a single ON or a single OFF of cellular activity. However, more sophisticated approaches are introduced in recent years. These include the ability to turn ON and OFF using different wavelengths of light, tools enabling multi-layer control of cellular activities, and nanobody-tethered photodimerizers. These advancements not only shed light on the study of ubiquitously existing multi-functional proteins but also create new opportunities for investigating complex cellular activity networks.
Collapse
Affiliation(s)
- Donglian Wu
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaofeng Sun
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xi Chen
- Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
9
|
Suzuki H, Doura T, Matsuba Y, Matsuoka Y, Araya T, Asada H, Iwata S, Kiyonaka S. Photoresponsive Adenosine Derivatives for the Optical Control of Adenosine A 2A Receptors in Living Cells. ACS Chem Biol 2024; 19:2494-2501. [PMID: 39527802 DOI: 10.1021/acschembio.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The use of photoresponsive ligands to optically control proteins of interest, known as photopharmacology, is a powerful technique for elucidating cellular function in living cells and animals with a high spatiotemporal resolution. The adenosine A2A receptor (A2AR) is a G protein-coupled receptor that is expressed in various tissues; its dysregulation is implicated in severe diseases such as insomnia and Parkinson's disease. A detailed elucidation of the physiological function of A2AR is, therefore, highly desirable. In the present study, we developed two photoswitchable ligands, photoAd(blue) and photoAd(vio), that target A2AR. Using photoAd(vio), we successfully demonstrated the selective activation of A2AR in living cells by violet-light irradiation with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Harufumi Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tomohiro Doura
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuya Matsuba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuma Matsuoka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Tsuyoshi Araya
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, Kobe, Hyogo 679-5148, Japan
| | - Shigeki Kiyonaka
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Research Institute for Quantum and Chemical Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
10
|
Ruiz-Soriano A, Lamelza L, Pizzamiglio E, Just-Baringo X. Synthesis of Tetra- ortho-Methoxylated Azobenzene Photoswitches via Sequential Catalytic C-H Activation and Methoxylation. J Org Chem 2024; 89:17141-17146. [PMID: 39513681 PMCID: PMC11629381 DOI: 10.1021/acs.joc.4c01554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/17/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Functionalized tetra-ortho-methoxyazobenzenes have been prepared in a two-step approach based on palladium-catalyzed C-H ortho bromination of azobenzenes, followed by copper-catalyzed methoxylation. The method has shown a broad tolerance to different functional groups that could not be incorporated by previous strategies. With this two-step transition metal-catalyzed strategy, we achieved overall yields that range from good to excellent and enable the exploitation of these highly coveted photoswitches. The superior robustness of this scaffold for solid phase peptide synthesis (SPPS) applications when compared to its chlorinated counterpart has been demonstrated after extensive treatments with piperidine while bound to a RinkAmide ChemMatrix resin, showcasing their potential for use in the synthesis of red-light-operated peptides.
Collapse
Affiliation(s)
- Albert Ruiz-Soriano
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lara Lamelza
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Elena Pizzamiglio
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Xavier Just-Baringo
- Laboratori de Química
Orgànica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Wu C, Sun X, Liu L, Cheng L. A Live-Cell Epigenome Manipulation by Photo-Stimuli-Responsive Histone Methyltransferase Inhibitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404608. [PMID: 39250325 PMCID: PMC11538670 DOI: 10.1002/advs.202404608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Post-translational modifications on the histone H3 tail regulate chromatin structure, impact epigenetics, and hence the gene expressions. Current chemical modulation tools, such as unnatural amino acid incorporation, protein splicing, and sortase-based editing, have allowed for the modification of histones with various PTMs in cellular contexts, but are not applicable for editing native chromatin. The use of small organic molecules to manipulate histone-modifying enzymes alters endogenous histone PTMs but lacks precise temporal and spatial control. To date, there has been no achievement in modulating histone methylation in living cells with spatiotemporal resolution. In this study, a new method is presented for temporally manipulating histone dimethylation H3K9me2 using a photo-responsive inhibitor that specifically targets the methyltransferase G9a on demand. The photo-caged molecule is stable under physiological conditions and cellular environments, but rapidly activated upon exposure to light, releasing the bioactive component that can immediately inhibit the catalytic ability of the G9a in vitro. Besides, this masked compound could also efficiently reactivate the inhibition of methyltransferase activity in living cells, subsequently suppress H3K9me2, a mark that regulates various chromatin functions. Therefore, the chemical system will be a valuable tool for manipulating the epigenome for therapeutic purposes and furthering the understanding of epigenetic mechanisms.
Collapse
Affiliation(s)
- Chuan‐Shuo Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xin Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS)CAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Elemento‐Organic ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
12
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
13
|
Chen Y. Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules 2024; 29:4523. [PMID: 39407453 PMCID: PMC11477607 DOI: 10.3390/molecules29194523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Photoregulation of biomolecules has become crucial tools in chemical biology, because light enables access under mild conditions and with delicate spatiotemporal control. The control of enzyme activity in a reversible way is a challenge. To achieve it, a facile approach is to use photoswitchable inhibitors. This review highlights recent progress in photoswitchable inhibitors based on azobenzenes units. The progress suggests that the incorporation of an azobenzene unit to a known inhibitor is an effective method for preparing a photoswitchable inhibitor, and with these photoswitchable inhibitors, the activity of enzymes can be regulated by optical control, which is valuable in both basic science and therapeutic applications.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Qin B, Fu SJ, Xu XF, Yang JJ, Wang Y, Wang LN, Huang BX, Zhong J, Wu WY, Lu HA, Law BYK, Wang N, Wong IN, Wong VKW. Far-infrared radiation and its therapeutic parameters: A superior alternative for future regenerative medicine? Pharmacol Res 2024; 208:107349. [PMID: 39151679 DOI: 10.1016/j.phrs.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
In future regenerative medicine, far-infrared radiation (FIR) may be an essential component of optical therapy. Many studies have confirmed or validated the efficacy and safety of FIR in various diseases, benefiting from new insights into FIR mechanisms and the excellent performance of many applications. However, the lack of consensus on the biological effects and therapeutic parameters of FIR limits its practical applications in the clinic. In this review, the definition, characteristics, and underlying principles of the FIR are systematically illustrated. We outline the therapeutic parameters of FIR, including the wavelength range, power density, irradiation time, and distance. In addition, the biological effects, potential molecular mechanisms, and preclinical and clinical applications of FIR are discussed. Furthermore, the future development and applications of FIR are described in this review. By applying optimal therapeutic parameters, FIR can influence various cells, animal models, and patients, eliciting diverse underlying mechanisms and offering therapeutic potential for many diseases. FIR could represent a superior alternative with broad prospects for application in future regenerative medicine.
Collapse
Affiliation(s)
- Bo Qin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Shi-Jie Fu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Xiong-Fei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Jiu-Jie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao; Department of Breast, Thyroid and Vascular Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646600, China
| | - Lin-Na Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Bai-Xiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Wan-Yu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Heng-Ao Lu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao
| | - Nick Wang
- New Age Technology (Asia) Limited, TML Tower, 3 Hoi Shing Road, Tsuen Wan, Hong Kong
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau, Macao.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao.
| |
Collapse
|
15
|
Delattre V, Goual N, Retailleau P, Marinetti A, Voituriez A. Synthesis of Halogenated Dibenzo[1,2,6]triazonines and Late-Stage Functionalization of the Triazonine Ring. J Org Chem 2024; 89:10939-10945. [PMID: 39037737 DOI: 10.1021/acs.joc.4c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Dibenzotriazonine represent a new class of nine-membered cyclic azobenzenes with a nitrogen atom embedded in the bridging chain. To enable future applications of this photoactive backbone, we propose in this study the synthesis of mono- and dihalogenated triazonines, that allow the late-stage introduction of different functionalized aryl groups and heteroatoms (N, O, and P) via palladium-catalyzed reactions. Indeed, different diphenylphosphoryl-triazonines were synthesized with functional groups such as aniline or phenol. Bis(diphenylphosphoryl)phenyl mono- and bis-carbamate-triazonines were also isolated in good yields.
Collapse
Affiliation(s)
- Vincent Delattre
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Nawel Goual
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette 91198, France
| |
Collapse
|
16
|
Cholasseri R, De S. Deciphering the shape selective conformational equilibrium of E- and Z-locked azobenzene-tetraethylammonium ion in regulating photo-switchable K +-ion channel blocking. Phys Chem Chem Phys 2024; 26:19161-19175. [PMID: 38973424 DOI: 10.1039/d4cp01604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The search for photo-switchable optopharmacological agents that can block ion channels has been a prevalent area owing to its prime advantages of reversibility and specificity over the traditional blockers. However, the quest for a higher blocking ability shown by a less stable photo-isomer to perfectly suit the requirement of the optopharmacological agents is still ongoing. To date, only a marginal improvement in terms of blocking ability is observed by the less stable E-isomer of para-substituted locked azobenzene with TEA (LAB-TEA) for the K+-ion channel. Thus, rationalization of the limitation for achieving high activity by the E-isomer is rather essential to aid the improvement of the efficiency of photoswitchable blocker drugs. Herein, we report a molecular-level analysis on the mechanism of blocking by E- and Z-LAB-TEA with the bacterial KcsA K+-ion channel using Molecular Dynamics (MD) simulation and Quantum Mechanical (QM) calculations. The positively charged TEA fragment engages in stronger electrostatic interactions, while the neutral LAB fragment engages in weaker dispersive interactions. The binding free energy calculated by Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) for E-LAB-TEA (-22.3 kcal mol-1) shows less thermodynamic preference for binding with K+-ion channels than Z-LAB-TEA (-21.6 kcal mol-1) corroborating the experimental observation. The correlation between the structure and the binding ability of E- and Z-isomers of LAB-TEA indicates that the channel gate is narrow and acts as a bottleneck for the entry of the binder molecule inside the large cavity. Upon irradiation, the Z-isomer converts into a less stable but long and planar E-isomer (ΔE of photoisomerism = 7.0 kcal mol-1, at SA2-CASPT2(6,4)/6-31+G(d)//CASSCF(6,4)/6-31+G(d)), which is structurally more suitable to fit into the narrow channel gate rather than the curved and non-planar Z-LAB-TEA. Thus, a reduction in the ionic current is observed owing to the preferential entry and subsequent blocking by E-LAB-TEA. Discontinuing the irradiation leads to conversion to the Z-isomer, the curved nature of which hinders its spontaneous release outside the cavity, thereby contributing only a small increase in the ionic current.
Collapse
Affiliation(s)
- Rinsha Cholasseri
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673 601, India
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut University P. O, Malappuram, Kerala, 673 635, India.
| |
Collapse
|
17
|
Park J, Gao L. Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2024; 30:101147. [PMID: 39086551 PMCID: PMC11290093 DOI: 10.1016/j.cossms.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool offering molecular specific insights into samples through the measurement of fluorescence decay time, with promising applications in diverse research fields. However, to acquire two-dimensional lifetime images, conventional FLIM relies on extensive scanning in both the spatial and temporal domain, resulting in much slower acquisition rates compared to intensity-based approaches. This problem is further magnified in three-dimensional imaging, as it necessitates additional scanning along the depth axis. Recent advancements have aimed to enhance the speed and three-dimensional imaging capabilities of FLIM. This review explores the progress made in addressing these challenges and discusses potential directions for future developments in FLIM instrumentation.
Collapse
Affiliation(s)
- Jongchan Park
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
18
|
Li H, Wang J, Jiao L, Hao E. BODIPY-based photocages: rational design and their biomedical application. Chem Commun (Camb) 2024; 60:5770-5789. [PMID: 38752310 DOI: 10.1039/d4cc01412j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Photocages, also known as photoactivated protective groups (PPGs), have been utilized to achieve controlled release of target molecules in a non-invasive and spatiotemporal manner. In the past decade, BODIPY fluorophores, a well-established class of fluorescent dyes, have emerged as a novel type of photoactivated protective group capable of efficiently releasing cargo species upon irradiation. This is due to their exceptional properties, including high molar absorption coefficients, resistance to photochemical and thermal degradation, multiple modification sites, favorable uncaging quantum yields, and highly adjustable spectral properties. Compared to traditional photocages that mainly absorb UV light, BODIPY-based photocages that absorb visible/near-infrared (Vis/NIR) light offer advantages such as deeper tissue penetration and reduced bio-autofluorescence, making them highly suitable for various biomedical applications. Consequently, different types of photoactivated protective groups based on the BODIPY skeleton have been established. This highlight provides a comprehensive overview of the strategies employed to construct BODIPY photocages by substituting leaving groups at different positions within the BODIPY fluorophore, including the meso-methyl position, boron position, 2,6-position, and 3,5-position. Furthermore, the application of these BODIPY photocages in biomedical fields, such as fluorescence imaging and controlled release of active species, is discussed.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Jun Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Department of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, 230601, China.
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
19
|
Philip AM, Krogh ME, Laursen BW. Robust Red-Absorbing Donor-Acceptor Stenhouse Adduct Photoswitches. Chemistry 2024; 30:e202400621. [PMID: 38536207 DOI: 10.1002/chem.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 04/25/2024]
Abstract
Donor-Acceptor Stenhouse Adduct (DASA), a class of push-pull negative photochrome, has received large interest lately owing to its versatile synthesis, modularity and excellent photoswitching in solutions. From a technological perspective, it is imperative for this class of photoswitches to work robustly in solid state, e. g. thin films. We feature a molecular framework for the optimized design of DASAs by introducing a new thioindoline donor (D3) and assessing its performance against known 2nd generation indoline-based donors. The systematic structure-function investigations suggest that to achieve robust reversible photoswitching, a ground state with low charge separation is desired. DASAs with stronger electron donors and a larger charge separation in the ground state result in a low population of the photothermalstationary state (PTSS) and reduced photostability. The DASA with thioindoline donor (D3A3) seems to be a special case among the donor series as it causes a red shift (ca. 15 nm), however with less polarization of the ground state and marginally better photostability as compared to the unsubstituted 2-methyl indoline (D1A3). We also emphasize the consideration of the key additional factors that can modulate the red-light photoswitching properties of DASA chromophores in polymer thin films, which might not be dominant in homogenous solution state.
Collapse
Affiliation(s)
- Abbey M Philip
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Marie E Krogh
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Bo W Laursen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
20
|
Chen H, Tang Z, Yang Y, Hao Y, Chen W. Recent Advances in Photoswitchable Fluorescent and Colorimetric Probes. Molecules 2024; 29:2521. [PMID: 38893396 PMCID: PMC11173890 DOI: 10.3390/molecules29112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, significant advancements have been made in the research of photoswitchable probes. These probes undergo reversible structural and electronic changes upon light exposure, thus exhibiting vast potential in molecular detection, biological imaging, material science, and information storage. Through precisely engineered molecular structures, the photoswitchable probes can toggle between "on" and "off" states at specific wavelengths, enabling highly sensitive and selective detection of targeted analytes. This review systematically presents photoswitchable fluorescent and colorimetric probes built on various molecular photoswitches, primarily focusing on the types involving photoswitching in their detection and/or signal response processes. It begins with an analysis of various molecular photoswitches, including their photophysical properties, photoisomerization and photochromic mechanisms, and fundamental design concepts for constructing photoswitchable probes. The article then elaborates on the applications of these probes in detecting diverse targets, including cations, anions, small molecules, and biomacromolecules. Finally, it offers perspectives on the current state and future development of photoswitchable probes. This review aims to provide a clear introduction for researchers in the field and guidance for the design and application of new, efficient fluorescent and colorimetric probes.
Collapse
Affiliation(s)
- Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yewen Yang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (H.C.); (Y.Y.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|
21
|
Zheng Y, Gao M, Wijtmans M, Vischer HF, Leurs R. Synthesis and Pharmacological Characterization of New Photocaged Agonists for Histamine H 3 and H 4 Receptors. Pharmaceuticals (Basel) 2024; 17:536. [PMID: 38675496 PMCID: PMC11053687 DOI: 10.3390/ph17040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The modulation of biological processes with light-sensitive chemical probes promises precise temporal and spatial control. Yet, the design and synthesis of suitable probes is a challenge for medicinal chemists. This article introduces a photocaging strategy designed to modulate the pharmacology of histamine H3 receptors (H3R) and H4 receptors (H4R). Employing the photoremovable group BODIPY as the caging entity for two agonist scaffolds-immepip and 4-methylhistamine-for H3R and H4R, respectively, we synthesized two BODIPY-caged compounds, 5 (VUF25657) and 6 (VUF25678), demonstrating 10-100-fold reduction in affinity for their respective receptors. Notably, the caged H3R agonist, VUF25657, exhibits approximately a 100-fold reduction in functional activity. The photo-uncaging of VUF25657 at 560 nm resulted in the release of immepip, thereby restoring binding affinity and potency in functional assays. This approach presents a promising method to achieve optical control of H3R receptor pharmacology.
Collapse
Affiliation(s)
| | | | | | | | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (Y.Z.); (M.G.); (M.W.); (H.F.V.)
| |
Collapse
|
22
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024; 67:4322-4345. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
23
|
Russo M, Janeková H, Meier D, Generali M, Štacko P. Light in a Heartbeat: Bond Scission by a Single Photon above 800 nm. J Am Chem Soc 2024; 146:8417-8424. [PMID: 38499198 PMCID: PMC10979397 DOI: 10.1021/jacs.3c14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Photocages enable scientists to take full control over the activity of molecules using light as a biocompatible stimulus. Their emerging applications in photoactivated therapies call for efficient uncaging in the near-infrared (NIR) window, which represents a fundamental challenge. Here, we report synthetically accessible cyanine photocages that liberate alcohol, phenol, amine, and thiol payloads upon irradiation with NIR light up to 820 nm in aqueous media. The photocages display a unique chameleon-like behavior and operate via two distinct uncaging mechanisms: photooxidation and heterolytic bond cleavage. The latter process constitutes the first example of a direct bond scission by a single photon ever observed in cyanine dyes or at wavelengths exceeding 800 nm. Modulation of the beating rates of human cardiomyocytes that we achieved by light-actuated release of adrenergic agonist etilefrine at submicromolar concentrations and low NIR light doses (∼12 J cm-2) highlights the potential of these photocages in biology and medicine.
Collapse
Affiliation(s)
- Marina Russo
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Hana Janeková
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Debora Meier
- Institute
for Regenerative Medicine (IREM), University
of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Melanie Generali
- Institute
for Regenerative Medicine (IREM), University
of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Peter Štacko
- Department
of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
24
|
Zhang Y, Deng J, Tian H, Qi H, Xiong T, Lin S, Dong Y, Luo L, Wu D, Zhang K, Ji M, Du T, Sheng L, Chen X, Xu H. Design, Synthesis, and Bioevaluation of Novel Reversibly Photoswitchable PI3K Inhibitors Based on Phenylazopyridine Derivatives toward Light-Controlled Cancer Treatment. J Med Chem 2024; 67:3504-3519. [PMID: 38377311 DOI: 10.1021/acs.jmedchem.3c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Photopharmacology is an emerging approach for achieving light-controlled drug activity. Herein, we design and synthesize a novel series of photoswitchable PI3K inhibitors by replacing a sulfonamide moiety with an azo group in a 4-methylquinazoline-based scaffold. Through structure-activity relationship studies, compound 6g is identified to be effectively switched between its trans- and cis-configuration under irradiation with proper wavelengths. Molecular docking studies show the cis-isomer of 6g is favorable to bind to the PI3K target, supporting compound 6g in the PSS365 (cis-isomer enriched) was more potent than that in the PSSdark (trans-isomer dominated) in PI3K enzymatic assay, cell antiproliferative assay, Western blotting analysis on PI3K downstream effectors, cell cycle analysis, colony formation assay, and wound-healing assay. Relative to the cis-isomer, the trans-isomer is more metabolically stable and shows good pharmacokinetic properties in mice. Moreover, compound 6g inhibits tumor growth in nude mice and a zebrafish HGC-27 xenograft model.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jialing Deng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Haixiang Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tianning Xiong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yi Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Lijun Luo
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tingting Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- CAMS Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|
25
|
Bozzi ÍAO, Machado LA, Diogo EBT, Delolo FG, Barros LOF, Graça GAP, Araujo MH, Martins FT, Pedrosa LF, da Luz LC, Moraes ES, Rodembusch FS, Guimarães JSF, Oliveira AG, Röttger SH, Werz DB, Souza CP, Fantuzzi F, Han J, Marder TB, Braunschweig H, da Silva Júnior EN. Electrochemical Diselenation of BODIPY Fluorophores for Bioimaging Applications and Sensitization of 1 O 2. Chemistry 2024; 30:e202303883. [PMID: 38085637 DOI: 10.1002/chem.202303883] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/19/2024]
Abstract
We report a rapid, efficient, and scope-extensive approach for the late-stage electrochemical diselenation of BODIPYs. Photophysical analyses reveal red-shifted absorption - corroborated by TD-DFT and DLPNO-STEOM-CCSD computations - and color-tunable emission with large Stokes shifts in the selenium-containing derivatives compared to their precursors. In addition, due to the presence of the heavy Se atoms, competitive ISC generates triplet states which sensitize 1 O2 and display phosphorescence in PMMA films at RT and in a frozen glass matrix at 77 K. Importantly, the selenium-containing BODIPYs demonstrate the ability to selectively stain lipid droplets, exhibiting distinct fluorescence in both green and red channels. This work highlights the potential of electrochemistry as an efficient method for synthesizing unique emission-tunable fluorophores with broad-ranging applications in bioimaging and related fields.
Collapse
Affiliation(s)
- Ícaro A O Bozzi
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luana A Machado
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Emilay B T Diogo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Fábio G Delolo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiza O F Barros
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela A P Graça
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Maria H Araujo
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe T Martins
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, Brazil
| | - Leandro F Pedrosa
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Fluminense, Volta Redonda, RJ, 27213-145, Brazil
| | - Lilian C da Luz
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
| | - Emmanuel S Moraes
- Universidade Estadual de Campinas (Unicamp), Cidade Universitária, 13083970 -, Campinas, SP, Brazil
| | - Fabiano S Rodembusch
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, RS, Brazil
| | - João S F Guimarães
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André G Oliveira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sebastian H Röttger
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg (Breisgau), Germany
| | - Daniel B Werz
- DFG Cluster of Excellence livMatS @FIT and Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstraße 21, 79104, Freiburg (Breisgau), Germany
| | - Cauê P Souza
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of Kent, Park Wood Rd, Canterbury, CT2 7NH, United Kingdom
| | - Jianhua Han
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eufrânio N da Silva Júnior
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
26
|
Köttner L, Ciekalski E, Dube H. Peri-Anthracenethioindigo: A Scaffold for Efficient All-Red-Light and Near-Infrared Molecular Photoswitching. Angew Chem Int Ed Engl 2023; 62:e202312955. [PMID: 37806956 DOI: 10.1002/anie.202312955] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Molecular photoswitching with red light is greatly desired to evade photodamage and achieve specific photoresponses. In virtually all reported cases however, only one switching direction uses red light while for the reverse switching, UV or visible light is needed. All-red-light photoswitching brings with it the clear advantage of pushing photoswitching to the limit of the low-energy spectrum, but no viable system is available currently. Here we report on peri-anthracenethioindigo (PAT) as molecular scaffold for highly efficient all-red-light photoswitching with an outstanding performance and property profile. The PAT photoswitch provides near-infrared (NIR) absorption up to 850 nm, large negative photochromism with more than 140 nm maxima shifts and changes color from green to blue upon irradiation with two shades of red light. Thermal stability of the metastable Z isomer is high with a corresponding half-life of days at 20 °C. Application in red-light responsive polymers undergoing pronounced and reversible green to blue color changes demonstrate spatially resolved photoswitching. The PAT photoswitch thus offers unique responsiveness to very low energy light together with predictable and large geometrical changes within a rigid molecular scaffold. We expect a plethora of applications for PAT in the near future, e.g. in materials, molecular machines or biological context.
Collapse
Affiliation(s)
- Laura Köttner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Elias Ciekalski
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
27
|
Orłowska K, Łuczak K, Krajewski P, Santiago JV, Rybicka-Jasińska K, Gryko D. Unlocking the reactivity of diazo compounds in red light with the use of photochemical tools. Chem Commun (Camb) 2023. [PMID: 37997166 DOI: 10.1039/d3cc05174a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Structurally diversified diazoalkanes can be activated under red light irradiation relying on direct photolysis, photosensitization or photoredox catalysis.
Collapse
Affiliation(s)
- Katarzyna Orłowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - Klaudia Łuczak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - Piotr Krajewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | - João V Santiago
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 01-224, Warsaw, Poland.
| |
Collapse
|
28
|
Fu Q, Shen S, Sun P, Gu Z, Bai Y, Wang X, Liu Z. Bioorthogonal chemistry for prodrug activation in vivo. Chem Soc Rev 2023; 52:7737-7772. [PMID: 37905601 DOI: 10.1039/d2cs00889k] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Prodrugs have emerged as a major strategy for addressing clinical challenges by improving drug pharmacokinetics, reducing toxicity, and enhancing treatment efficacy. The emergence of new bioorthogonal chemistry has greatly facilitated the development of prodrug strategies, enabling their activation through chemical and physical stimuli. This "on-demand" activation using bioorthogonal chemistry has revolutionized the research and development of prodrugs. Consequently, prodrug activation has garnered significant attention and emerged as an exciting field of translational research. This review summarizes the latest advancements in prodrug activation by utilizing bioorthogonal chemistry and mainly focuses on the activation of small-molecule prodrugs and antibody-drug conjugates. In addition, this review also discusses the opportunities and challenges of translating these advancements into clinical practice.
Collapse
Affiliation(s)
- Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
| | - Siyong Shen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Pengwei Sun
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhi Gu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yifei Bai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xianglin Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Changping Laboratory, Beijing 102206, China
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
29
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
30
|
Sarabando SN, Palmeira A, Sousa ME, Faustino MAF, Monteiro CJP. Photomodulation Approaches to Overcome Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:682. [PMID: 37242465 PMCID: PMC10221556 DOI: 10.3390/ph16050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Photopharmacology is an approach that aims to be an alternative to classical chemotherapy. Herein, the different classes of photoswitches and photocleavage compounds and their biological applications are described. Proteolysis targeting chimeras (PROTACs) containing azobenzene moieties (PHOTACs) and photocleavable protecting groups (photocaged PROTACs) are also mentioned. Furthermore, porphyrins are referenced as successful photoactive compounds in a clinical context, such as in the photodynamic therapy of tumours as well as preventing antimicrobial resistance, namely in bacteria. Porphyrins combining photoswitches and photocleavage systems are highlighted, taking advantage of both photopharmacology and photodynamic action. Finally, porphyrins with antibacterial activity are described, taking advantage of the synergistic effect of photodynamic treatment and antibiotic therapy to overcome bacterial resistance.
Collapse
Affiliation(s)
- Sofia N. Sarabando
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemical Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.N.S.); (A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, 4450-208 Porto, Portugal
| | | | - Carlos J. P. Monteiro
- LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal;
| |
Collapse
|
31
|
Rosenberger JE, Xie Y, Fang Y, Lyu X, Trout WS, Dmitrenko O, Fox JM. Ligand-Directed Photocatalysts and Far-Red Light Enable Catalytic Bioorthogonal Uncaging inside Live Cells. J Am Chem Soc 2023; 145:6067-6078. [PMID: 36881718 PMCID: PMC10589873 DOI: 10.1021/jacs.2c10655] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Described are ligand-directed catalysts for live-cell, photocatalytic activation of bioorthogonal chemistry. Catalytic groups are localized via a tethered ligand either to DNA or to tubulin, and red light (660 nm) photocatalysis is used to initiate a cascade of DHTz oxidation, intramolecular Diels-Alder reaction, and elimination to release phenolic compounds. Silarhodamine (SiR) dyes, more conventionally used as biological fluorophores, serve as photocatalysts that have high cytocompatibility and produce minimal singlet oxygen. Commercially available conjugates of Hoechst dye (SiR-H) and docetaxel (SiR-T) are used to localize SiR to the nucleus and microtubules, respectively. Computation was used to assist the design of a new class of redox-activated photocage to release either phenol or n-CA4, a microtubule-destabilizing agent. In model studies, uncaging is complete within 5 min using only 2 μM SiR and 40 μM photocage. In situ spectroscopic studies support a mechanism involving rapid intramolecular Diels-Alder reaction and a rate-determining elimination step. In cellular studies, this uncaging process is successful at low concentrations of both the photocage (25 nM) and the SiR-H dye (500 nM). Uncaging n-CA4 causes microtubule depolymerization and an accompanying reduction in cell area. Control studies demonstrate that SiR-H catalyzes uncaging inside the cell, and not in the extracellular environment. With SiR-T, the same dye serves as a photocatalyst and the fluorescent reporter for microtubule depolymerization, and with confocal microscopy, it was possible to visualize microtubule depolymerization in real time as the result of photocatalytic uncaging in live cells.
Collapse
Affiliation(s)
- Julia E. Rosenberger
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Xinyi Lyu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - William S. Trout
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
32
|
Egyed A, Németh K, Molnár TÁ, Kállay M, Kele P, Bojtár M. Turning Red without Feeling Embarrassed─Xanthenium-Based Photocages for Red-Light-Activated Phototherapeutics. J Am Chem Soc 2023; 145:4026-4034. [PMID: 36752773 PMCID: PMC9951246 DOI: 10.1021/jacs.2c11499] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 02/09/2023]
Abstract
Herein, we present high-yielding, concise access to a set of xanthenium-derived, water-soluble, low-molecular-weight photocages allowing light-controlled cargo release in the green to red region. Very importantly, these new photocages allow installation of various payloads through ester, carbamate, or carbonate linkages even at the last stage of the synthesis. Payloads were uncaged with high efficiency upon green, orange, or red light irradiation, leading to the release of carboxylic acids, phenols, and amines. The near-ideal properties of a carboxanthenium derivative were further evaluated in the context of light-controlled drug release using a camptothecin-derived chemotherapeutic drug, SN38. Notably, the caged drug showed orders of magnitude lower efficiency in cellulo, which was reinstated after red light irradiation. The presented photocages offer properties that facilitate the translation of photoactivated chemotherapy toward clinical applications.
Collapse
Affiliation(s)
- Alexandra Egyed
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány 1/a., H-1117 Budapest, Hungary
| | - Krisztina Németh
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Tibor Á. Molnár
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Péter Kele
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Márton Bojtár
- Chemical
Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| |
Collapse
|
33
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
34
|
Xiong H, Xu Y, Kim B, Rha H, Zhang B, Li M, Yang GF, Kim JS. Photo-controllable biochemistry: Exploiting the photocages in phototherapeutic window. Chem 2022. [DOI: 10.1016/j.chempr.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
35
|
Feng Z, Ducos B, Scerbo P, Aujard I, Jullien L, Bensimon D. The Development and Application of Opto-Chemical Tools in the Zebrafish. Molecules 2022; 27:6231. [PMID: 36234767 PMCID: PMC9572478 DOI: 10.3390/molecules27196231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
The zebrafish is one of the most widely adopted animal models in both basic and translational research. This popularity of the zebrafish results from several advantages such as a high degree of similarity to the human genome, the ease of genetic and chemical perturbations, external fertilization with high fecundity, transparent and fast-developing embryos, and relatively low cost-effective maintenance. In particular, body translucency is a unique feature of zebrafish that is not adequately obtained with other vertebrate organisms. The animal's distinctive optical clarity and small size therefore make it a successful model for optical modulation and observation. Furthermore, the convenience of microinjection and high embryonic permeability readily allow for efficient delivery of large and small molecules into live animals. Finally, the numerous number of siblings obtained from a single pair of animals offers large replicates and improved statistical analysis of the results. In this review, we describe the development of opto-chemical tools based on various strategies that control biological activities with unprecedented spatiotemporal resolution. We also discuss the reported applications of these tools in zebrafish and highlight the current challenges and future possibilities of opto-chemical approaches, particularly at the single cell level.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Bertrand Ducos
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- High Throughput qPCR Core Facility, Ecole Normale Supérieure, Paris Sciences Letters University, 46 Rue d’Ulm, 75005 Paris, France
| | - Pierluigi Scerbo
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Isabelle Aujard
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - Ludovic Jullien
- Laboratoire PASTEUR, Département de Chimie, Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
| | - David Bensimon
- Laboratoire de Physique de l’Ecole Normale Supérieure, Paris Sciences Letters University, Sorbonne Université, Université de Paris, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Castagna R, Maleeva G, Pirovano D, Matera C, Gorostiza P. Donor-Acceptor Stenhouse Adduct Displaying Reversible Photoswitching in Water and Neuronal Activity. J Am Chem Soc 2022; 144:15595-15602. [PMID: 35976640 DOI: 10.1021/jacs.2c04920] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interest in the photochromism and functional applications of donor-acceptor Stenhouse adducts (DASAs) soared in recent years owing to their outstanding advantages and flexible design. However, their low solubility and irreversible conversion in aqueous solutions hampered exploring DASAs for biology and medicine. It is notably unknown whether the barbiturate electron acceptor group retains the pharmacological activity of drugs such as phenobarbital, which targets γ-aminobutyric acid (GABA)-type A receptors (GABAARs) in the brain. Here, we have developed the model compound DASA-barbital based on a scaffold of red-switching second-generation DASAs, and we demonstrate that it is active in GABAARs and alters the neuronal firing rate in a physiological medium at neutral pH. DASA-barbital can also be reversibly photoswitched in acidic aqueous solutions using cyclodextrin, an approved ingredient of drug formulations. These findings clarify the path toward the biological applications of DASAs and to exploit the versatility displayed in polymers and materials science.
Collapse
Affiliation(s)
- Rossella Castagna
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.,CIBER, Madrid 282029, Spain
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Deborah Pirovano
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.,CIBER, Madrid 282029, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.,CIBER, Madrid 282029, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
37
|
Zeng K, Han L, Chen Y. Endogenous Proteins Modulation in Live Cells with Small Molecules and Light. Chembiochem 2022; 23:e202200244. [PMID: 35822393 DOI: 10.1002/cbic.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Indexed: 11/05/2022]
Abstract
The protein modulation by light illumination enables the biological role investigation in high spatiotemporal precision. Compared to genetic methods, the small molecules approach is uniquely suited for modulating endogenous proteins. The endogenous protein modulation in live cells with small molecules and light has recently advanced on three distinctive frontiers: i) the infrared-light-induced or localized decaging of small molecules by photolysis, ii) the visible-light-induced photocatalytic releasing of small molecules, and iii) the small-molecule-ligand-directed caging for photo-modulation of proteins. Together, these methods provide powerful chemical biology tool kits for spatiotemporal modulation of endogenous proteins with potential therapeutic applications. This Concept aims to inspire organic chemists and chemical biologists to delve into this burgeoning endogenous protein modulation field for new biological discoveries.
Collapse
Affiliation(s)
- Kaixing Zeng
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Lili Han
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Yiyun Chen
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, BNPC, 345 Lingling Road, 200032, Shanghai, CHINA
| |
Collapse
|
38
|
Alachouzos G, Schulte AM, Mondal A, Szymanski W, Feringa BL. Computational Design, Synthesis, and Photochemistry of Cy7-PPG, an Efficient NIR-Activated Photolabile Protecting Group for Therapeutic Applications. Angew Chem Int Ed Engl 2022; 61:e202201308. [PMID: 35181979 PMCID: PMC9311213 DOI: 10.1002/anie.202201308] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Photolabile Protecting Groups (PPGs) are molecular tools used, for example, in photopharmacology for the activation of drugs with light, enabling spatiotemporal control over their potency. Yet, red-shifting of PPG activation wavelengths into the NIR range, which penetrates the deepest in tissue, has often yielded inefficient or insoluble molecules, hindering the use of PPGs in the clinic. To solve this problem, we report herein a novel concept in PPG design, by transforming clinically-applied NIR-dyes with suitable molecular orbital configurations into new NIR-PPGs using computational approaches. Using this method, we demonstrate how Cy7, a class of NIR dyes possessing ideal properties (NIR-absorption, high molecular absorptivity, excellent aqueous solubility) can be successfully converted into Cy7-PPG. We report a facile synthesis towards Cy7-PPG from accessible precursors and confirm its excellent properties as the most redshifted oxygen-independent NIR-PPG to date (λmax =746 nm).
Collapse
Affiliation(s)
- Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for ChemistryFaculty for Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Albert M. Schulte
- Centre for Systems Chemistry, Stratingh Institute for ChemistryFaculty for Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Anirban Mondal
- Centre for Systems Chemistry, Stratingh Institute for ChemistryFaculty for Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Wiktor Szymanski
- Department of RadiologyMedical Imaging CenterUniversity Medical Center GroningenUniversity of GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Ben L. Feringa
- Centre for Systems Chemistry, Stratingh Institute for ChemistryFaculty for Science and EngineeringUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
39
|
Long MJC, Assari M, Aye Y. Hiding in Plain Sight: The Issue of Hidden Variables. ACS Chem Biol 2022; 17:1285-1292. [PMID: 35603432 DOI: 10.1021/acschembio.2c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we discuss "hidden variables", which are typically introduced during an experiment as a consequence of the application of two independent variables together to create a stimulus. With increased sophistication in modern chemical biology tools and related precision interrogation techniques, hidden variables have become integral to many chemical biologists' routine experiments. For instance, they can appear in the use of light-activatable chemical probes (e.g., μMap, T-REX), or stimulus-induced enzyme activation (e.g., APEX). Unfortunately, control experiments assess only how independent variables affect measured outcomes and not the multiple differences between the two independent variables and the twain. We outline ways to account for potential hidden variables in experimental design and data interpretation as a means to aid developers of new methods, particularly those involving light-driven techniques, chemical activation, or biorthogonal chemistries, to better incorporate well-controlled procedures.
Collapse
Affiliation(s)
- Marcus J. C. Long
- NCCR Chemical Biology and University of Geneva, 1211 Geneva, Switzerland
- University of Lausanne (UNIL), 1110 Epalinges, Switzerland
| | - Mahdi Assari
- Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- NCCR Chemical Biology and University of Geneva, 1211 Geneva, Switzerland
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
- NCCR Chemical Biology and University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
40
|
Kodura D, Rodrigues LL, Walden SL, Goldmann AS, Frisch H, Barner-Kowollik C. Orange-Light-Induced Photochemistry Gated by pH and Confined Environments. J Am Chem Soc 2022; 144:6343-6348. [PMID: 35364816 DOI: 10.1021/jacs.2c00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a new photochemically active compound, i.e., pyridinepyrene (PyPy), entailing a pH-active moiety that effects a significant halochromic shift into orange-light (λ = 590 nm) activatable photoreactivity while concomitantly exerting control over its reaction pathways. With blue light (λ = 450 nm) in neutral to basic pH, a [2 + 2] photocycloaddition can be triggered to form a cyclobutene ring in a reversible fashion. If the pH is decreased to acidic conditions, resulting in a halochromic absorption shift, photocycloaddition on the small-molecule level is blocked due to repulsive interactions and exclusive trans-cis isomerization is observed. Through implementation of PyPy into the confined environment of a single-chain nanoparticle (SCNP) design, one can overcome the repulsive forces and exploit the halochromic shift for orange light (λ = 590 nm)-induced cycloaddition and formation of macromolecular three-dimensional (3D) architectures.
Collapse
Affiliation(s)
- Daniel Kodura
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Leona L Rodrigues
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Anja S Goldmann
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
41
|
Alachouzos G, Schulte AM, Mondal A, Szymanski W, Feringa BL. Computational Design, Synthesis, and Photochemistry of Cy7PPG, an Efficient NIR‐Activated Photolabile Protecting Group for Therapeutic Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Georgios Alachouzos
- Groningen University Faculty of Mathematics and Natural Sciences: Rijksuniversiteit Groningen Faculty of Science and Engineering Stratingh Institute for Chemistry NETHERLANDS
| | - Albert M. Schulte
- Groningen University Faculty of Mathematics and Natural Sciences: Rijksuniversiteit Groningen Faculty of Science and Engineering Stratingh Institute for Chemistry NETHERLANDS
| | - Anirban Mondal
- Groningen University Faculty of Mathematics and Natural Sciences: Rijksuniversiteit Groningen Faculty of Science and Engineering Stratingh Institute for Chemistry NETHERLANDS
| | - Wiktor Szymanski
- University Medical Centre Groningen: Universitair Medisch Centrum Groningen Department of Radiology NETHERLANDS
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
42
|
Cheng B, Wan Y, Tang Q, Du Y, Xu F, Huang Z, Qin W, Chen X. A Photocaged Azidosugar for
Light‐Controlled
Metabolic Labeling of
Cell‐Surface
Sialoglycans. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bo Cheng
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yi Wan
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Qi Tang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yifei Du
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Feiyang Xu
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Zhimin Huang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Wei Qin
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Xing Chen
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
- Peking‐Tsinghua Center for Life Sciences Peking University Beijing 100871 China
- Synthetic and Functional Biomolecules Center Peking University Beijing 100871 China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education Peking University Beijing 100871 China
| |
Collapse
|
43
|
Mukadum F, Nguyen Q, Adrion DM, Appleby G, Chen R, Dang H, Chang R, Garnett R, Lopez SA. Efficient Discovery of Visible Light-Activated Azoarene Photoswitches with Long Half-Lives Using Active Search. J Chem Inf Model 2021; 61:5524-5534. [PMID: 34752100 DOI: 10.1021/acs.jcim.1c00954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photoswitches are molecules that undergo a reversible, structural isomerization after exposure to certain wavelengths of light. The dynamic control offered by molecular photoswitches is favorable for materials chemistry, photopharmacology, and catalysis applications. Ideal photoswitches absorb visible light and have long-lived metastable isomers. We used high-throughput virtual screening to predict the absorption maxima (λmax) of the E-isomer and half-life (t1/2) of the Z-isomer. However, computing the photophysical and kinetic stabilities with density functional theory of each entry of a virtual molecular library containing thousands or millions of molecules is prohibitively time-consuming. We applied active search, a machine-learning technique, to intelligently search a chemical search space of 255 991 photoswitches based on 29 known azoarenes and their derivatives. We iteratively trained the active search algorithm on whether a candidate absorbed visible light (λmax > 450 nm). Active search was found to triple the discovery rate compared to random search. Further, we projected 1962 photoswitches to 2D using the Uniform Manifold Approximation and Projection algorithm and found that λmax depends on the core, which is tunable by substituents. We then incorporated a second stage of screening to predict the stabilities of the Z-isomers for the top candidates of each core. We identified four ideal photoswitches that concurrently satisfy the following criteria: λmax > 450 nm and t1/2 > 2 h.These candidates had λmax and t1/2 range from 465 to 531 nm and hours to days, respectively.
Collapse
Affiliation(s)
- Fatemah Mukadum
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Quan Nguyen
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Gabriel Appleby
- Department of Computer Science, Tufts University, Medford, Massachusetts 02155, United States
| | - Rui Chen
- Department of Computer Science, Tufts University, Medford, Massachusetts 02155, United States
| | - Haley Dang
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Remco Chang
- Department of Computer Science, Tufts University, Medford, Massachusetts 02155, United States
| | - Roman Garnett
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|