1
|
Collados Rodríguez M, Maillard P, Journeaux A, Komarova AV, Najburg V, David RYS, Helynck O, Guo M, Zhong J, Baize S, Tangy F, Jacob Y, Munier-Lehmann H, Meurs EF. Novel Antiviral Molecules against Ebola Virus Infection. Int J Mol Sci 2023; 24:14791. [PMID: 37834238 PMCID: PMC10573436 DOI: 10.3390/ijms241914791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Infection with Ebola virus (EBOV) is responsible for hemorrhagic fever in humans with a high mortality rate. Combined efforts of prevention and therapeutic intervention are required to tackle highly variable RNA viruses, whose infections often lead to outbreaks. Here, we have screened the 2P2I3D chemical library using a nanoluciferase-based protein complementation assay (NPCA) and isolated two compounds that disrupt the interaction of the EBOV protein fragment VP35IID with the N-terminus of the dsRNA-binding proteins PKR and PACT, involved in IFN response and/or intrinsic immunity, respectively. The two compounds inhibited EBOV infection in cell culture as well as infection by measles virus (MV) independently of IFN induction. Consequently, we propose that the compounds are antiviral by restoring intrinsic immunity driven by PACT. Given that PACT is highly conserved across mammals, our data support further testing of the compounds in other species, as well as against other negative-sense RNA viruses.
Collapse
Affiliation(s)
- Mila Collados Rodríguez
- School of Infection & Immunity (SII), College of Medical, Veterinary and Life Sciences (MVLS), Sir Michael Stoker Building, MRC-University of Glasgow Centre for Virus Research (CVR), Glasgow G61 1QH, UK
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| | - Patrick Maillard
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| | - Alexandra Journeaux
- Unit of Biology of Emerging Viral Infections, Institut Pasteur, 69007 Lyon, France; (A.J.); (S.B.)
| | - Anastassia V. Komarova
- Interactomics, RNA and Immunity Laboratory, Institut Pasteur, 75015 Paris, France;
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Raul-Yusef Sanchez David
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Blizard Institute—Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, CNRS, UMR 3523, Institut Pasteur, Université de Paris, 75015 Paris, France; (O.H.); (H.M.-L.)
| | - Mingzhe Guo
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200023, China; (M.G.); (J.Z.)
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Viral Hepatitis, Shanghai Institute of Immunity and Infection, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai 200023, China; (M.G.); (J.Z.)
| | - Sylvain Baize
- Unit of Biology of Emerging Viral Infections, Institut Pasteur, 69007 Lyon, France; (A.J.); (S.B.)
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, 75015 Paris, France; (V.N.); (R.-Y.S.D.); (F.T.)
- Université Paris Cité, 75013 Paris, France;
| | - Yves Jacob
- Université Paris Cité, 75013 Paris, France;
- Unité Génétique Moléculaire des Virus à ARN, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, CNRS, UMR 3523, Institut Pasteur, Université de Paris, 75015 Paris, France; (O.H.); (H.M.-L.)
| | - Eliane F. Meurs
- Unité Hépacivirus et Immunité Innée, CNRS, UMR 3569, Département de Virologie, Institut Pasteur, 75015 Paris, France; (P.M.); (E.F.M.)
| |
Collapse
|
2
|
Hoffer L, Garcia M, Leblanc R, Feracci M, Betzi S, Ben Yaala K, Daulat AM, Zimmermann P, Roche P, Barral K, Morelli X. Discovery of a PDZ Domain Inhibitor Targeting the Syndecan/Syntenin Protein-Protein Interaction: A Semi-Automated "Hit Identification-to-Optimization" Approach. J Med Chem 2023; 66:4633-4658. [PMID: 36939673 DOI: 10.1021/acs.jmedchem.2c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
The rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target. Herein, we describe the creation of a "best-in-class" sub-micromolar small molecule inhibitor for the second PDZ domain of syntenin validated in cancer cell assays. Key to the success of our DOTS approach was the integration of protein conformational sampling during hit identification stage and the synthetic feasibility ranking of the designed compounds throughout the optimization process. This approach can be broadly applied to other protein targets with known 3D structures to rapidly identify and optimize compounds as chemical probes and therapeutic candidates.
Collapse
Affiliation(s)
- Laurent Hoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Manon Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Raphael Leblanc
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Mikael Feracci
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Khaoula Ben Yaala
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Avais M Daulat
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Philippe Roche
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Karine Barral
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, Marseille 13009, France
| |
Collapse
|
3
|
Ikeda K, Maezawa Y, Yonezawa T, Shimizu Y, Tashiro T, Kanai S, Sugaya N, Masuda Y, Inoue N, Niimi T, Masuya K, Mizuguchi K, Furuya T, Osawa M. DLiP-PPI library: An integrated chemical database of small-to-medium-sized molecules targeting protein-protein interactions. Front Chem 2023; 10:1090643. [PMID: 36700083 PMCID: PMC9868583 DOI: 10.3389/fchem.2022.1090643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions (PPIs) are recognized as important targets in drug discovery. The characteristics of molecules that inhibit PPIs differ from those of small-molecule compounds. We developed a novel chemical library database system (DLiP) to design PPI inhibitors. A total of 32,647 PPI-related compounds are registered in the DLiP. It contains 15,214 newly synthesized compounds, with molecular weight ranging from 450 to 650, and 17,433 active and inactive compounds registered by extracting and integrating known compound data related to 105 PPI targets from public databases and published literature. Our analysis revealed that the compounds in this database contain unique chemical structures and have physicochemical properties suitable for binding to the protein-protein interface. In addition, advanced functions have been integrated with the web interface, which allows users to search for potential PPI inhibitor compounds based on types of protein-protein interfaces, filter results by drug-likeness indicators important for PPI targeting such as rule-of-4, and display known active and inactive compounds for each PPI target. The DLiP aids the search for new candidate molecules for PPI drug discovery and is available online (https://skb-insilico.com/dlip).
Collapse
Affiliation(s)
- Kazuyoshi Ikeda
- HPC—and AI-driven Drug Development Platform Division, Center for Computational Science, Yokohama, Kanagawa, Japan,Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan,*Correspondence: Kazuyoshi Ikeda,
| | | | - Tomoki Yonezawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Yugo Shimizu
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan
| | | | | | | | | | - Naoko Inoue
- PeptiDream Inc., Chiyoda-Ku, Kanagawa, Japan
| | | | | | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan,Institute for Protein Research, Osaka University, Osaka, Japan
| | | | - Masanori Osawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, Tokyo, Japan
| |
Collapse
|
4
|
Olivet J, Maseko SB, Volkov AN, Salehi-Ashtiani K, Das K, Calderwood MA, Twizere JC, Gorgulla C. A systematic approach to identify host targets and rapidly deliver broad-spectrum antivirals. Mol Ther 2022; 30:1797-1800. [PMID: 35231394 PMCID: PMC8884476 DOI: 10.1016/j.ymthe.2022.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Julien Olivet
- Structural Biology Unit, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research and Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven (KU Leuven), Leuven, Belgium; Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, Liège, Belgium
| | - Sibusiso B Maseko
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, Liège, Belgium
| | - Alexander N Volkov
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium; Jean Jeener NMR Centre, Free University of Brussels (VUB), Brussels, Belgium
| | | | - Kalyan Das
- Structural Biology Unit, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research and Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven (KU Leuven), Leuven, Belgium
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute (DFCI), Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, Liège, Belgium; Division of Science and Math, New York University Abu Dhabi, Abu Dhabi, UAE; TERRA Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro Bio-tech, University of Liège, Gembloux, Belgium.
| | - Christoph Gorgulla
- Department of Cancer Biology, Dana-Farber Cancer Institute (DFCI), Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School (HMS), Boston, MA, USA; Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Structure and Sequence Requirements for RNA Capping at the Venezuelan Equine Encephalitis Virus RNA 5' End. J Virol 2021; 95:e0077721. [PMID: 34011549 DOI: 10.1128/jvi.00777-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a reemerging arthropod-borne virus causing encephalitis in humans and domesticated animals. VEEV possesses a positive single-stranded RNA genome capped at its 5' end. The capping process is performed by the nonstructural protein nsP1, which bears methyl and guanylyltransferase activities. The capping reaction starts with the methylation of GTP. The generated m7GTP is complexed to the enzyme to form an m7GMP-nsP1 covalent intermediate. The m7GMP is then transferred onto the 5'-diphosphate end of the viral RNA. Here, we explore the specificities of the acceptor substrate in terms of length, RNA secondary structure, and/or sequence. Any diphosphate nucleosides but GDP can serve as acceptors of the m7GMP to yield m7GpppA, m7GpppC, or m7GpppU. We show that capping is more efficient on small RNA molecules, whereas RNAs longer than 130 nucleotides are barely capped by the enzyme. The structure and sequence of the short, conserved stem-loop, downstream to the cap, is an essential regulatory element for the capping process. IMPORTANCE The emergence, reemergence, and expansion of alphaviruses (genus of the family Togaviridae) are a serious public health and epizootic threat. Venezuelan equine encephalitis virus (VEEV) causes encephalitis in human and domesticated animals, with a mortality rate reaching 80% in horses. To date, no efficient vaccine or safe antivirals are available for human use. VEEV nonstructural protein 1 (nsP1) is the viral capping enzyme characteristic of the Alphavirus genus. nsP1 catalyzes methyltransferase and guanylyltransferase reactions, representing a good therapeutic target. In the present report, we provide insights into the molecular features and specificities of the cap acceptor substrate for the guanylylation reaction.
Collapse
|
6
|
Exploring the chemical space of protein-protein interaction inhibitors through machine learning. Sci Rep 2021; 11:13369. [PMID: 34183730 PMCID: PMC8238997 DOI: 10.1038/s41598-021-92825-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Although protein-protein interactions (PPIs) have emerged as the basis of potential new therapeutic approaches, targeting intracellular PPIs with small molecule inhibitors is conventionally considered highly challenging. Driven by increasing research efforts, success rates have increased significantly in recent years. In this study, we analyze the physicochemical properties of 9351 non-redundant inhibitors present in the iPPI-DB and TIMBAL databases to define a computational model for active compounds acting against PPI targets. Principle component analysis (PCA) and k-means clustering were used to identify plausible PPI targets in regions of interest in the active group in the chemical space between active and inactive iPPI compounds. Notably, the uniquely defined active group exhibited distinct differences in activity compared with other active compounds. These results demonstrate that active compounds with regions of interest in the chemical space may be expected to provide insights into potential PPI inhibitors for particular protein targets.
Collapse
|
7
|
Garcia M, Hoffer L, Leblanc R, Benmansour F, Feracci M, Derviaux C, Egea-Jimenez AL, Roche P, Zimmermann P, Morelli X, Barral K. Fragment-based drug design targeting syntenin PDZ2 domain involved in exosomal release and tumour spread. Eur J Med Chem 2021; 223:113601. [PMID: 34153575 DOI: 10.1016/j.ejmech.2021.113601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022]
Abstract
Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 μM and 47 μM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.
Collapse
Affiliation(s)
- Manon Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Laurent Hoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Raphaël Leblanc
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Fatiha Benmansour
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Mikael Feracci
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Carine Derviaux
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Antonio Luis Egea-Jimenez
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Philippe Roche
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Pascale Zimmermann
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France; Department of Human Genetics, K. U. Leuven, B-3000, Leuven, Belgium
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Karine Barral
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France.
| |
Collapse
|
8
|
Kunig VBK, Potowski M, Klika Škopić M, Brunschweiger A. Scanning Protein Surfaces with DNA-Encoded Libraries. ChemMedChem 2021; 16:1048-1062. [PMID: 33295694 PMCID: PMC8048995 DOI: 10.1002/cmdc.202000869] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Indexed: 12/17/2022]
Abstract
Understanding the ligandability of a target protein, defined as the capability of a protein to bind drug-like compounds on any site, can give important stimuli to drug-development projects. For instance, inhibition of protein-protein interactions usually depends on the identification of protein surface binders. DNA-encoded chemical libraries (DELs) allow scanning of protein surfaces with large chemical space. Encoded library selection screens uncovered several protein-protein interaction inhibitors and compounds binding to the surface of G protein-coupled receptors (GPCRs) and kinases. The protein surface-binding chemotypes from DELs are predominantly chemically modified and cyclized peptides, and functional small-molecule peptidomimetics. Peptoid libraries and structural peptidomimetics have been less studied in the DEL field, hinting at hitherto less populated chemical space and suggesting alternative library designs. Roughly a third of bioactive molecules evolved from smaller, target-focused libraries. They showcase the potential of encoded libraries to identify more potent molecules from weak, for example, fragment-like, starting points.
Collapse
Affiliation(s)
- Verena B. K. Kunig
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Marco Potowski
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Mateja Klika Škopić
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| | - Andreas Brunschweiger
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Straße 644227DortmundGermany
| |
Collapse
|
9
|
Identification of novel inhibitors of Keap1/Nrf2 by a promising method combining protein-protein interaction-oriented library and machine learning. Sci Rep 2021; 11:7420. [PMID: 33795749 PMCID: PMC8016952 DOI: 10.1038/s41598-021-86616-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 11/14/2022] Open
Abstract
Protein–protein interactions (PPIs) are prospective but challenging targets for drug discovery, because screening using traditional small-molecule libraries often fails to identify hits. Recently, we developed a PPI-oriented library comprising 12,593 small-to-medium-sized newly synthesized molecules. This study validates a promising combined method using PPI-oriented library and ligand-based virtual screening (LBVS) to discover novel PPI inhibitory compounds for Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2). We performed LBVS with two random forest models against our PPI library and the following time-resolved fluorescence resonance energy transfer (TR-FRET) assays of 620 compounds identified 15 specific hit compounds. The high hit rates for the entire PPI library (estimated 0.56–1.3%) and the LBVS (maximum 5.4%) compared to a conventional screening library showed the utility of the library and the efficiency of LBVS. All the hit compounds possessed novel structures with Tanimoto similarity ≤ 0.26 to known Keap1/Nrf2 inhibitors and aqueous solubility (AlogP < 5). Reasonable binding modes were predicted using 3D alignment of five hit compounds and a Keap1/Nrf2 peptide crystal structure. Our results represent a new, efficient method combining the PPI library and LBVS to identify novel PPI inhibitory ligands with expanded chemical space.
Collapse
|
10
|
Leblanc R, Kashyap R, Barral K, Egea-Jimenez AL, Kovalskyy D, Feracci M, Garcia M, Derviaux C, Betzi S, Ghossoub R, Platonov M, Roche P, Morelli X, Hoffer L, Zimmermann P. Pharmacological inhibition of syntenin PDZ2 domain impairs breast cancer cell activities and exosome loading with syndecan and EpCAM cargo. J Extracell Vesicles 2020; 10:e12039. [PMID: 33343836 PMCID: PMC7737769 DOI: 10.1002/jev2.12039] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes support cell-to-cell communication in physiology and disease, including cancer. We currently lack tools, such as small chemicals, capable of modifying exosome composition and activity in a specific manner. Building on our previous understanding of how syntenin, and its PDZ partner syndecan (SDC), impact on exosome composition we optimized a small chemical compound targeting the PDZ2 domain of syntenin. In vitro , in tests on MCF-7 breast carcinoma cells, this compound is non-toxic and impairs cell proliferation, migration and primary sphere formation. It does not affect the size or the number of secreted particles, yet it decreases the amounts of exosomal syntenin, ALIX and SDC4 while leaving other exosomal markers unaffected. Interestingly, it also blocks the sorting of EpCAM, a bona fide target used for carcinoma exosome immunocapture. Our study highlights the first characterization of a small pharmacological inhibitor of the syntenin-exosomal pathway, of potential interest for exosome research and oncology.
Collapse
Affiliation(s)
- R Leblanc
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - R Kashyap
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - K Barral
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - A L Egea-Jimenez
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - D Kovalskyy
- Enamine Ltd. Kyiv Ukraine.,Taras Shevchenko National University of Kyiv Kyiv Ukraine
| | - M Feracci
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - M Garcia
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - C Derviaux
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - S Betzi
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - R Ghossoub
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - M Platonov
- Enamine Ltd. Kyiv Ukraine.,Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine Kyiv Ukraine
| | - P Roche
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - X Morelli
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - L Hoffer
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - Pascale Zimmermann
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France.,Department of Human Genetics K. U. Leuven Leuven Belgium
| |
Collapse
|
11
|
Zhang DW, Yan HL, Xu XS, Xu L, Yin ZH, Chang S, Luo H. The selenium-containing drug ebselen potently disrupts LEDGF/p75-HIV-1 integrase interaction by targeting LEDGF/p75. J Enzyme Inhib Med Chem 2020; 35:906-912. [PMID: 32228103 PMCID: PMC7170385 DOI: 10.1080/14756366.2020.1743282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lens-epithelium-derived growth-factor (LEDGF/p75)-binding site on HIV-1 integrase (IN), is an attractive target for antiviral chemotherapy. Small-molecule compounds binding to this site are referred as LEDGF-IN inhibitors (LEDGINs). In this study, compound libraries were screened to identify new inhibitors of LEDGF/p75-IN interaction. Ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a reported anti-HIV-1 agent, was identified as a moderate micromolar inhibitor of LEDGF/p75-IN interaction. Ebselen inhibited the interaction by binding to LEDGF/p75 and the ability of ebselen to inhibit the interaction could be reversed by dithiothreitol (DTT). BLI experiment showed that ebselen probably formed selenium-sulphur bonds with reduced thiols in LEDGF/p75. To the best of our knowledge, we showed for the first time that small-molecule compound, ebselen inhibited LEDGF/p75-IN interaction by directly binding to LEDGF/p75. The compound discovered here could be used as probe compounds to design and develop new disrupter of LEDGF/p75-IN interaction.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Hao-Li Yan
- Center for Food and Drug Evaluation & Inspection of Henan, Zhengzhou, China
| | - Xiao-Shuang Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Zhi-Hui Yin
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Heng Luo
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
12
|
Santini BL, Zacharias M. Rapid in silico Design of Potential Cyclic Peptide Binders Targeting Protein-Protein Interfaces. Front Chem 2020; 8:573259. [PMID: 33134275 PMCID: PMC7578414 DOI: 10.3389/fchem.2020.573259] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
Rational design of specific inhibitors of protein-protein interactions is desirable for drug design to control cellular signal transduction but also for studying protein-protein interaction networks. We have developed a rapid computational approach to rationally design cyclic peptides that potentially bind at desired regions of the interface of protein-protein complexes. The methodology is based on comparing the protein backbone structure of short peptide segments (epitopes) at the protein-protein interface with a collection of cyclic peptide backbone structures. A cyclic peptide that matches the backbone structure of the segment is used as a template for a binder by adapting the amino acid side chains to the side chains found in the target complex. For a small library of cyclic peptides with known high resolution structures we found for the majority (~82%) of 154 protein-protein complexes at least one very well fitting match for a cyclic peptide template to a protein-protein interface segment. The majority of the constructed protein-cyclic peptide complexes was very stable during Molecular Dynamics simulations and showed an interaction energy score that was typically more favorable compared to interaction scores of typical peptide-protein complexes. Our cPEPmatch approach could be a promising approach for rapid suggestion of cyclic peptide binders that could be tested experimentally and further improved by chemical modification.
Collapse
Affiliation(s)
- Brianda L Santini
- Physics Department T38, Technical University of Munich, Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, Garching, Germany
| |
Collapse
|
13
|
Singh N, Chaput L, Villoutreix BO. Fast Rescoring Protocols to Improve the Performance of Structure-Based Virtual Screening Performed on Protein-Protein Interfaces. J Chem Inf Model 2020; 60:3910-3934. [PMID: 32786511 DOI: 10.1021/acs.jcim.0c00545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein-protein interactions (PPIs) are attractive targets for drug design because of their essential role in numerous cellular processes and disease pathways. However, in general, PPIs display exposed binding pockets at the interface, and as such, have been largely unexploited for therapeutic interventions with low-molecular weight compounds. Here, we used docking and various rescoring strategies in an attempt to recover PPI inhibitors from a set of active and inactive molecules for 11 targets collected in ChEMBL and PubChem. Our focus is on the screening power of the various developed protocols and on using fast approaches so as to be able to apply such a strategy to the screening of ultralarge libraries in the future. First, we docked compounds into each target using the fast "pscreen" mode of the structure-based virtual screening (VS) package Surflex. Subsequently, the docking poses were postprocessed to derive a set of 3D topological descriptors: (i) shape similarity and (ii) interaction fingerprint similarity with a co-crystallized inhibitor, (iii) solvent-accessible surface area, and (iv) extent of deviation from the geometric center of a reference inhibitor. The derivatized descriptors, together with descriptor-scaled scoring functions, were utilized to investigate possible impacts on VS performance metrics. Moreover, four standalone scoring functions, RF-Score-VS (machine-learning), DLIGAND2 (knowledge-based), Vinardo (empirical), and X-SCORE (empirical), were employed to rescore the PPI compounds. Collectively, the results indicate that the topological scoring algorithms could be valuable both at a global level, with up to 79% increase in areas under the receiver operating characteristic curve for some targets, and in early stages, with up to a 4-fold increase in enrichment factors at 1% of the screened collections. Outstandingly, DLIGAND2 emerged as the best scoring function on this data set, outperforming all rescoring techniques in terms of VS metrics. The described methodology could help in the rational design of small-molecule PPI inhibitors and has direct applications in many therapeutic areas, including cancer, CNS, and infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Natesh Singh
- Université de Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Ludovic Chaput
- Université de Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Bruno O Villoutreix
- Université de Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000 Lille, France
| |
Collapse
|
14
|
Mutations on VEEV nsP1 relate RNA capping efficiency to ribavirin susceptibility. Antiviral Res 2020; 182:104883. [PMID: 32750467 DOI: 10.1016/j.antiviral.2020.104883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 11/22/2022]
Abstract
Alphaviruses are arthropod-borne viruses of public health concern. To date no efficient vaccine nor antivirals are available for safe human use. During viral replication the nonstructural protein 1 (nsP1) catalyzes capping of genomic and subgenomic RNAs. The capping reaction is unique to the Alphavirus genus. The whole three-step process follows a particular order: (i) transfer of a methyl group from S-adenosyl methionine (SAM) onto a GTP forming m7GTP; (ii) guanylylation of the enzyme to form a m7GMP-nsP1adduct; (iii) transfer of m7GMP onto 5'-diphosphate RNA to yield capped RNA. Specificities of these reactions designate nsP1 as a promising target for antiviral drug development. In the current study we performed a mutational analysis on two nsP1 positions associated with Sindbis virus (SINV) ribavirin resistance in the Venezuelan equine encephalitis virus (VEEV) context through reverse genetics correlated to enzyme assays using purified recombinant VEEV nsP1 proteins. The results demonstrate that the targeted positions are strongly associated to the regulation of the capping reaction by increasing the affinity between GTP and nsP1. Data also show that in VEEV the S21A substitution, naturally occurring in Chikungunya virus (CHIKV), is a hallmark of ribavirin susceptibility. These findings uncover the specific mechanistic contributions of these residues to nsp1-mediated methyl-transfer and guanylylation reactions.
Collapse
|
15
|
Wei W, Cherukupalli S, Jing L, Liu X, Zhan P. Fsp 3: A new parameter for drug-likeness. Drug Discov Today 2020; 25:1839-1845. [PMID: 32712310 DOI: 10.1016/j.drudis.2020.07.017] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/26/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
The drug-likeness of a compound is a key factor during the initial phases of drug discovery. It can be defined as the similarity between compounds and drugs. Here, we collate research related to the fraction of sp3 carbon atoms (Fsp3), including related high-throughput screening (HTS) cases, structural modifications based on Fsp3, and strategies to improve it. We also introduce new synthetic methods for spirocyclic scaffolds. It is likely that the reasonable rigidity of spirocyclic scaffolds will provide a new generation of drug candidates.
Collapse
Affiliation(s)
- Wenxiu Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
16
|
Bosc N, Muller C, Hoffer L, Lagorce D, Bourg S, Derviaux C, Gourdel ME, Rain JC, Miller TW, Villoutreix BO, Miteva MA, Bonnet P, Morelli X, Sperandio O, Roche P. Fr-PPIChem: An Academic Compound Library Dedicated to Protein-Protein Interactions. ACS Chem Biol 2020; 15:1566-1574. [PMID: 32320205 PMCID: PMC7399473 DOI: 10.1021/acschembio.0c00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein-protein interactions (PPIs) mediate nearly every cellular process and represent attractive targets for modulating disease states but are challenging to target with small molecules. Despite this, several PPI inhibitors (iPPIs) have entered clinical trials, and a growing number of PPIs have become validated drug targets. However, high-throughput screening efforts still endure low hit rates mainly because of the use of unsuitable screening libraries. Here, we describe the collective effort of a French consortium to build, select, and store in plates a unique chemical library dedicated to the inhibition of PPIs. Using two independent predictive models and two updated databases of experimentally confirmed PPI inhibitors developed by members of the consortium, we built models based on different training sets, molecular descriptors, and machine learning methods. Independent statistical models were used to select putative PPI inhibitors from large commercial compound collections showing great complementarity. Medicinal chemistry filters were applied to remove undesirable structures from this set (such as PAINS, frequent hitters, and toxic compounds) and to improve drug likeness. The remaining compounds were subjected to a clustering procedure to reduce the final size of the library while maintaining its chemical diversity. In practice, the library showed a 46-fold activity rate enhancement when compared to a non-iPPI-enriched diversity library in high-throughput screening against the CD47-SIRPα PPI. The Fr-PPIChem library is plated in 384-well plates and will be distributed on demand to the scientific community as a powerful tool for discovering new chemical probes and early hits for the development of potential therapeutic drugs.
Collapse
Affiliation(s)
- Nicolas Bosc
- Inserm U973 MTi, 25 rue Hélène Brion 75013 Paris
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR3528, 28 rue du Dr Roux 75015 Paris
| | - Christophe Muller
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Laurent Hoffer
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, 13009 Marseille, France
| | - David Lagorce
- Université de Paris, INSERM US14, Plateforme Maladies Rares - Orphanet, 75014 Paris, France
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR CNRS 7311, BP 6759, 45067 Orléans. France
| | - Carine Derviaux
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Marie-Edith Gourdel
- Hybrigenics Services SAS, 1 rue Pierre Fontaine, 91000 Evry Courcouronnes, France
| | - Jean-Christophe Rain
- Hybrigenics Services SAS, 1 rue Pierre Fontaine, 91000 Evry Courcouronnes, France
| | - Thomas W. Miller
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Bruno O. Villoutreix
- Université de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Maria A. Miteva
- Inserm U1268 MCTR, CNRS UMR 8038 CiTCoM – Univ. De Paris, Faculté de Pharmacie de Paris, 75006 Paris, France
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR CNRS 7311, BP 6759, 45067 Orléans. France
| | - Xavier Morelli
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, 13009 Marseille, France
| | - Olivier Sperandio
- Inserm U973 MTi, 25 rue Hélène Brion 75013 Paris
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR3528, 28 rue du Dr Roux 75015 Paris
| | - Philippe Roche
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, 13009 Marseille, France
| |
Collapse
|
17
|
Götte K, Chines S, Brunschweiger A. Reaction development for DNA-encoded library technology: From evolution to revolution? Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151889] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Senarisoy M, Barette C, Lacroix F, De Bonis S, Stelter M, Hans F, Kleman JP, Fauvarque MO, Timmins J. Förster Resonance Energy Transfer Based Biosensor for Targeting the hNTH1-YB1 Interface as a Potential Anticancer Drug Target. ACS Chem Biol 2020; 15:990-1003. [PMID: 32125823 DOI: 10.1021/acschembio.9b01023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Y-box binding protein 1 (YB1) is an established metastatic marker: high expression and nuclear localization of YB1 correlate with tumor aggressiveness, drug resistance, and poor patient survival in various tumors. In the nucleus, YB1 interacts with and regulates the activities of several nuclear proteins, including the DNA glycosylase, human endonuclease III (hNTH1). In the present study, we used Förster resonance energy transfer (FRET) and AlphaLISA technologies to further characterize this interaction and define the minimal regions of hNTH1 and YB1 required for complex formation. This work led us to design an original and cost-effective FRET-based biosensor for the rapid in vitro high-throughput screening for potential inhibitors of the hNTH1-YB1 complex. Two pilot screens were carried out, allowing the selection of several promising compounds exhibiting IC50 values in the low micromolar range. Interestingly, two of these compounds bind to YB1 and sensitize drug-resistant breast tumor cells to the chemotherapeutic agent, cisplatin. Taken together, these findings demonstrate that the hNTH1-YB1 interface is a druggable target for the development of new therapeutic strategies for the treatment of drug-resistant tumors. Moreover, beyond this study, the simple design of our biosensor defines an innovative and efficient strategy for the screening of inhibitors of therapeutically relevant protein-protein interfaces.
Collapse
Affiliation(s)
- Muge Senarisoy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, INSERM, BGE, F-38000 Grenoble, France
| | | | | | - Meike Stelter
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Fabienne Hans
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| |
Collapse
|
19
|
Ngo TD, Plé S, Thomas A, Barette C, Fortuné A, Bouzidi Y, Fauvarque MO, Pereira de Freitas R, Francisco Hilário F, Attrée I, Wong YS, Faudry E. Chimeric Protein-Protein Interface Inhibitors Allow Efficient Inhibition of Type III Secretion Machinery and Pseudomonas aeruginosa Virulence. ACS Infect Dis 2019; 5:1843-1854. [PMID: 31525902 DOI: 10.1021/acsinfecdis.9b00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen naturally resistant to many common antibiotics and acquires new resistance traits at an alarming pace. Targeting the bacterial virulence factors by an antivirulence strategy, therefore, represents a promising alternative approach besides antibiotic therapy. The Type III secretion system (T3SS) of P. aeruginosa is one of its main virulence factors. It consists of more than 20 proteins building a complex syringe-like machinery enabling the injection of toxin into host cells. Previous works showed that disrupting interactions between components of this machinery efficiently lowers the bacterial virulence. Using automated target-based screening of commercial and in-house libraries of small molecules, we identified compounds inhibiting the protein-protein interaction between PscE and PscG, the two cognate chaperones of the needle subunit PscF of P. aeruginosa T3SS. Two hits were selected and assembled using Split/Mix/Click chemistry to build larger hybrid analogues. Their efficacy and toxicity were evaluated using phenotypic analysis including automated microscopy and image analysis. Two nontoxic hybrid leads specifically inhibited the T3SS and reduced the ex vivo cytotoxicity of bacteria and their virulence in Galleria mellonella.
Collapse
Affiliation(s)
- Tuan-Dung Ngo
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| | - Sophie Plé
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| | - Aline Thomas
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Caroline Barette
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, Genetics & Chemogenomics, 17 avenue des Martyrs, Grenoble 38054, France
| | - Antoine Fortuné
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Younes Bouzidi
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Marie-Odile Fauvarque
- Univ. Grenoble Alpes, CEA, Inserm, IRIG, BGE, Genetics & Chemogenomics, 17 avenue des Martyrs, Grenoble 38054, France
| | - Rossimiriam Pereira de Freitas
- Universidade Federal de Minas Gerais, Departamento de Química, UFMG, Av Pres Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Flaviane Francisco Hilário
- Universidade Federal de Ouro Preto, Departamento de Química, ICEB, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Ina Attrée
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| | - Yung-Sing Wong
- Univ. Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire,
UMR 5063, ICMG FR 2607, 470 rue de la chimie, Grenoble 38000, France
| | - Eric Faudry
- Univ. Grenoble Alpes, CEA, INSERM, CNRS, Bacterial Pathogenesis and Cellular Responses, UMR 1036/ERL 5261, 17 avenue des Martyrs, Grenoble 38054, France
| |
Collapse
|
20
|
Da Silva F, Bret G, Teixeira L, Gonzalez CF, Rognan D. Exhaustive Repertoire of Druggable Cavities at Protein-Protein Interfaces of Known Three-Dimensional Structure. J Med Chem 2019; 62:9732-9742. [PMID: 31603323 DOI: 10.1021/acs.jmedchem.9b01184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions (PPIs) offer the unique opportunity to tailor ligands aimed at specifically stabilizing or disrupting the corresponding interfaces and providing a safer alternative to conventional ligands targeting monomeric macromolecules. Selecting biologically relevant protein-protein interfaces for either stabilization or disruption by small molecules is usually biology-driven on a case-by-case basis and does not follow a structural rationale that could be applied to an entire interactome. We herewith provide a first step to the latter goal by using a fully automated and structure-based workflow, applicable to any PPI of known three-dimensional (3D) structure, to identify and prioritize druggable cavities at and nearby PPIs of pharmacological interest. When applied to the entire Protein Data Bank, 164 514 druggable cavities were identified and classified in four groups (interfacial, rim, allosteric, orthosteric) according to their properties and spatial locations. Systematic comparison of PPI cavities with pockets deduced from druggable protein-ligand complexes shows almost no overlap in property space, suggesting that even the most druggable PPI cavities are unlikely to be addressed with conventional drug-like compound libraries. The archive is freely accessible at http://drugdesign.unistra.fr/ppiome .
Collapse
Affiliation(s)
- Franck Da Silva
- Laboratoire d'Innovation Thérapeutique , UMR 7200 CNRS-Université de Strasbourg , 67400 Illkirch , France
| | - Guillaume Bret
- Laboratoire d'Innovation Thérapeutique , UMR 7200 CNRS-Université de Strasbourg , 67400 Illkirch , France
| | - Leandro Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32610-3610 , United States
| | - Claudio F Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32610-3610 , United States
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique , UMR 7200 CNRS-Université de Strasbourg , 67400 Illkirch , France
| |
Collapse
|
21
|
Miller TW, Amason JD, Garcin ED, Lamy L, Dranchak PK, Macarthur R, Braisted J, Rubin JS, Burgess TL, Farrell CL, Roberts DD, Inglese J. Quantitative high-throughput screening assays for the discovery and development of SIRPα-CD47 interaction inhibitors. PLoS One 2019; 14:e0218897. [PMID: 31276567 PMCID: PMC6611588 DOI: 10.1371/journal.pone.0218897] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
CD47 is an immune checkpoint molecule that downregulates key aspects of both the innate and adaptive anti-tumor immune response via its counter receptor SIRPα, and it is expressed at high levels in a wide variety of tumor types. This has led to the development of biologics that inhibit SIRPα engagement including humanized CD47 antibodies and a soluble SIRPα decoy receptor that are currently undergoing clinical trials. Unfortunately, toxicological issues, including anemia related to on-target mechanisms, are barriers to their clinical advancement. Another potential issue with large biologics that bind CD47 is perturbation of CD47 signaling through its high-affinity interaction with the matricellular protein thrombospondin-1 (TSP1). One approach to avoid these shortcomings is to identify and develop small molecule molecular probes and pretherapeutic agents that would (1) selectively target SIRPα or TSP1 interactions with CD47, (2) provide a route to optimize pharmacokinetics, reduce on-target toxicity and maximize tissue penetration, and (3) allow more flexible routes of administration. As the first step toward this goal, we report the development of an automated quantitative high-throughput screening (qHTS) assay platform capable of screening large diverse drug-like chemical libraries to discover novel small molecules that inhibit CD47-SIRPα interaction. Using time-resolved Förster resonance energy transfer (TR-FRET) and bead-based luminescent oxygen channeling assay formats (AlphaScreen), we developed biochemical assays, optimized their performance, and individually tested them in small-molecule library screening. Based on performance and low false positive rate, the LANCE TR-FRET assay was employed in a ~90,000 compound library qHTS, while the AlphaScreen oxygen channeling assay served as a cross-validation orthogonal assay for follow-up characterization. With this multi-assay strategy, we successfully eliminated compounds that interfered with the assays and identified five compounds that inhibit the CD47-SIRPα interaction; these compounds will be further characterized and later disclosed. Importantly, our results validate the large library qHTS for antagonists of CD47-SIRPα interaction and suggest broad applicability of this approach to screen chemical libraries for other protein-protein interaction modulators.
Collapse
Affiliation(s)
- Thomas W. Miller
- Paradigm Shift Therapeutics LLC, Rockville, Maryland, United States of America
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua D. Amason
- Paradigm Shift Therapeutics LLC, Rockville, Maryland, United States of America
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elsa D. Garcin
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Catonsville, Maryland, United States of America
| | - Laurence Lamy
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Patricia K. Dranchak
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ryan Macarthur
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - John Braisted
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jeffrey S. Rubin
- Paradigm Shift Therapeutics LLC, Rockville, Maryland, United States of America
| | - Teresa L. Burgess
- Paradigm Shift Therapeutics LLC, Rockville, Maryland, United States of America
| | | | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James Inglese
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
22
|
Diharce J, Cueto M, Beltramo M, Aucagne V, Bonnet P. In Silico Peptide Ligation: Iterative Residue Docking and Linking as a New Approach to Predict Protein-Peptide Interactions. Molecules 2019; 24:E1351. [PMID: 30959812 PMCID: PMC6480567 DOI: 10.3390/molecules24071351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/16/2022] Open
Abstract
Peptide⁻protein interactions are corner-stones of living functions involved in essential mechanisms, such as cell signaling. Given the difficulty of obtaining direct experimental structural biology data, prediction of those interactions is of crucial interest for the rational development of new drugs, notably to fight diseases, such as cancer or Alzheimer's disease. Because of the high flexibility of natural unconstrained linear peptides, prediction of their binding mode in a protein cavity remains challenging. Several theoretical approaches have been developed in the last decade to address this issue. Nevertheless, improvements are needed, such as the conformation prediction of peptide side-chains, which are dependent on peptide length and flexibility. Here, we present a novel in silico method, Iterative Residue Docking and Linking (IRDL), to efficiently predict peptide⁻protein interactions. In order to reduce the conformational space, this innovative method splits peptides into several short segments. Then, it uses the performance of intramolecular covalent docking to rebuild, sequentially, the complete peptide in the active site of its protein target. Once the peptide is constructed, a rescoring step is applied in order to correctly rank all IRDL solutions. Applied on a set of 11 crystallized peptide⁻protein complexes, the IRDL method shows promising results, since it is able to retrieve experimental binding conformations with a Root Mean Square Deviation (RMSD) below 2 Å in the top five ranked solutions. For some complexes, IRDL method outperforms two other docking protocols evaluated in this study. Hence, IRDL is a new tool that could be used in drug design projects to predict peptide⁻protein interactions.
Collapse
Affiliation(s)
- Julien Diharce
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans CEDEX 2, France.
| | - Mickaël Cueto
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans CEDEX 2, France.
| | - Massimiliano Beltramo
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Universitéde Tours; IFCE), F-37380 Nouzilly, France.
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans cedex 2, France.
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), UMR CNRS-Université d'Orléans 7311, Université d'Orléans BP 6759, 45067, Orléans CEDEX 2, France.
| |
Collapse
|
23
|
Taechalertpaisarn J, Lyu RL, Arancillo M, Lin CM, Jiang Z, Perez LM, Ioerger TR, Burgess K. Design criteria for minimalist mimics of protein-protein interface segments. Org Biomol Chem 2019; 17:908-915. [PMID: 30629068 DOI: 10.1039/c8ob02901f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small molecules that can interrupt or inhibit protein-protein interactions (PPIs) are valuable as probes in chemical biology and medicinal chemistry, but they are also notoriously difficult to develop. Design of non-peptidic small molecules that mimic amino acid side-chain interactions in PPIs ("minimalist mimics") is seen as a way to fast track discovery of PPI inhibitors. However, there has been little comment on general design criteria for minimalist mimics, even though such guidelines could steer construction of libraries to screen against multiple PPI targets. We hypothesized insight into general design criteria for minimalist mimics could be gained by comparing preferred conformations of typical minimalist mimic designs against side-chain orientations on a huge number of PPI interfaces. That thought led to this work which features nine minimalist mimic designs: one from the literature, and eight new "hypothetical" ones conceived by us. Simulated preferred conformers of these were systematically aligned with >240 000 PPI interfaces from the Protein Data Bank. Conclusions from those analyses did indeed reveal various design considerations that are discussed here. Surprisingly, this study also showed one of the minimalist mimic designs aligned on PPI interface segments more than 15 times more frequently than any other in the series (according to uniform standards described herein); reasons for this are also discussed.
Collapse
Affiliation(s)
- Jaru Taechalertpaisarn
- Department of Chemistry and Laboratory For Molecular Simulation, Texas A & M University, Box 30012, College Station, TX 77842-3012, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Duffy F, Maheshwari N, Buchete NV, Shields D. Computational Opportunities and Challenges in Finding Cyclic Peptide Modulators of Protein-Protein Interactions. Methods Mol Biol 2019; 2001:73-95. [PMID: 31134568 DOI: 10.1007/978-1-4939-9504-2_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Peptide cyclization can improve stability, conformational constraint, and compactness. However, apart from beta-turn structures, which are well incorporated into cyclic peptides (CPs), many primary peptide structures and functions are markedly altered by cyclization. Accordingly, to mimic linear peptide interfaces with cyclic peptides, it can be beneficial to screen combinatorial cyclic peptide libraries. Computational methods have been developed to screen CPs, but face a number of challenges. Here, we review methods to develop in silico computational libraries, and the potential for screening naturally occurring libraries of CPs. The simplest and most rapid computational pharmacophore methods that estimate peptide three-dimensional structures to be screened versus targets are relatively easy to implement, and while the constraint on structure imposed by cyclization makes them more effective than the same approaches with linear peptides, there are a large number of limiting assumptions. In contrast, full molecular dynamics simulations of cyclic peptide structures not only are costly to implement, but also require careful attention to interpretation, so that not only is the computation time rate limiting, but the interpretation time is also rate limiting due to the analysis of the typically complex underlying conformational space of CPs. A challenge for the field of computational cyclic peptide screening is to bridge this gap effectively. Natural compound libraries of short cyclic peptides, and short cyclized regions of proteins, encoded in the genomes of many organisms present a potential treasure trove of novel functionality which may be screened via combined computational and experimental screening approaches.
Collapse
Affiliation(s)
- Fergal Duffy
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Nikunj Maheshwari
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | - Denis Shields
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
25
|
Bojadzic D, Buchwald P. Toward Small-Molecule Inhibition of Protein-Protein Interactions: General Aspects and Recent Progress in Targeting Costimulatory and Coinhibitory (Immune Checkpoint) Interactions. Curr Top Med Chem 2018; 18:674-699. [PMID: 29848279 PMCID: PMC6067980 DOI: 10.2174/1568026618666180531092503] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 02/06/2023]
Abstract
Protein-Protein Interactions (PPIs) that are part of the costimulatory and coinhibitory (immune checkpoint) signaling are critical for adequate T cell response and are important therapeutic targets for immunomodulation. Biologics targeting them have already achieved considerable clinical success in the treatment of autoimmune diseases or transplant recipients (e.g., abatacept, belatacept, and belimumab) as well as cancer (e.g., ipilimumab, nivolumab, pembrolizumab, atezolizumab, durvalumab, and avelumab). In view of such progress, there have been only relatively limited efforts toward developing small-molecule PPI inhibitors (SMPPIIs) targeting these cosignaling interactions, possibly because they, as all other PPIs, are difficult to target by small molecules and were not considered druggable. Nevertheless, substantial progress has been achieved during the last decade. SMPPIIs proving the feasibility of such approaches have been identified through various strategies for a number of cosignaling interactions including CD40-CD40L, OX40-OX40L, BAFFR-BAFF, CD80-CD28, and PD-1-PD-L1s. Here, after an overview of the general aspects and challenges of SMPPII-focused drug discovery, we review them briefly together with relevant structural, immune-signaling, physicochemical, and medicinal chemistry aspects. While so far only a few of these SMPPIIs have shown activity in animal models (DRI-C21045 for CD40-D40L, KR33426 for BAFFR-BAFF) or reached clinical development (RhuDex for CD80-CD28, CA-170 for PD-1-PD-L1), there is proof-of-principle evidence for the feasibility of such approaches in immunomodulation. They can result in products that are easier to develop/ manufacture and are less likely to be immunogenic or encounter postmarket safety events than corresponding biologics, and, contrary to them, can even become orally bioavailable.
Collapse
Affiliation(s)
- Damir Bojadzic
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
26
|
Ouyang L, Zhang L, Liu J, Fu L, Yao D, Zhao Y, Zhang S, Wang G, He G, Liu B. Discovery of a Small-Molecule Bromodomain-Containing Protein 4 (BRD4) Inhibitor That Induces AMP-Activated Protein Kinase-Modulated Autophagy-Associated Cell Death in Breast Cancer. J Med Chem 2017; 60:9990-10012. [PMID: 29172540 DOI: 10.1021/acs.jmedchem.7b00275] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Upon the basis of The Cancer Genome Atlas (TCGA) data set, we identified that several autophagy-related proteins such as AMP-activated protein kinase (AMPK) were remarkably downregulated in breast cancer. Combined with coimmunoprecipitation assay, we demonstrated that BRD4 might interact with AMPK. After analyses of the pharmacophore and WPF interaction optimization, we designed a small-molecule inhibitor of BRD4, 9f (FL-411) which was validated by cocrystal structure with BD1 of BRD4. Subsequently, 9f was discovered to induce ATG5-dependent autophagy-associated cell death (ACD) by blocking BRD4-AMPK interaction and thus activating AMPK-mTOR-ULK1-modulated autophagic pathway in breast cancer cells. Interestingly, the iTRAQ-based proteomics analyses revealed that 9f induced ACD pathways involved in HMGB1, VDAC1/2, and eEF2. Moreover, 9f displayed a therapeutic potential on both breast cancer xenograft mouse and zebrafish models. Together, these results demonstrate that a novel small-molecule inhibitor of BRD4 induces BRD4-AMPK-modulated ACD in breast cancer, which may provide a candidate drug for future cancer therapy.
Collapse
Affiliation(s)
- Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Lan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Leilei Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Dahong Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Yuqian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University , Chengdu 610041, China
| |
Collapse
|
27
|
Jin X, Lee K, Kim NH, Kim HS, Yook JI, Choi J, No KT. Natural products used as a chemical library for protein-protein interaction targeted drug discovery. J Mol Graph Model 2017; 79:46-58. [PMID: 29136547 DOI: 10.1016/j.jmgm.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/01/2022]
Abstract
Protein-protein interactions (PPIs), which are essential for cellular processes, have been recognized as attractive therapeutic targets. Therefore, the construction of a PPI-focused chemical library is an inevitable necessity for future drug discovery. Natural products have been used as traditional medicines to treat human diseases for millennia; in addition, their molecular scaffolds have been used in diverse approved drugs and drug candidates. The recent discovery of the ability of natural products to inhibit PPIs led us to use natural products as a chemical library for PPI-targeted drug discovery. In this study, we collected natural products (NPDB) from non-commercial and in-house databases to analyze their similarities to small-molecule PPI inhibitors (iPPIs) and FDA-approved drugs by using eight molecular descriptors. Then, we evaluated the distribution of NPDB and iPPIs in the chemical space, represented by the molecular fingerprint and molecular scaffolds, to identify the promising scaffolds, which could interfere with PPIs. To investigate the ability of natural products to inhibit PPI targets, molecular docking was used. Then, we predicted a set of high-potency natural products by using the iPPI-likeness score based on a docking score-weighted model. These selected natural products showed high binding affinities to the PPI target, namely XIAP, which were validated in an in vitro experiment. In addition, the natural products with novel scaffolds might provide a promising starting point for further medicinal chemistry developments. Overall, our study shows the potency of natural products in targeting PPIs, which might help in the design of a PPI-focused chemical library for future drug discovery.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kyungro Lee
- Bioinformatics & Molecular Design Research Center (BMDRC), Yonsei University, Seoul 03722, Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Jiwon Choi
- Bioinformatics & Molecular Design Research Center (BMDRC), Yonsei University, Seoul 03722, Korea.
| | - Kyoung Tai No
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea; Bioinformatics & Molecular Design Research Center (BMDRC), Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
28
|
Aouadi W, Eydoux C, Coutard B, Martin B, Debart F, Vasseur JJ, Contreras JM, Morice C, Quérat G, Jung ML, Canard B, Guillemot JC, Decroly E. Toward the identification of viral cap-methyltransferase inhibitors by fluorescence screening assay. Antiviral Res 2017; 144:330-339. [PMID: 28676301 PMCID: PMC7113892 DOI: 10.1016/j.antiviral.2017.06.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022]
Abstract
Two highly pathogenic human coronaviruses associated with severe respiratory syndromes emerged since the beginning of the century. The severe acute respiratory syndrome SARS-coronavirus (CoV) spread first in southern China in 2003 with about 8000 infected cases in few months. Then in 2012, the Middle East respiratory syndrome (MERS-CoV) emerged from the Arabian Peninsula giving a still on-going epidemic associated to a high fatality rate. CoVs are thus considered a major health threat. This is especially true as no vaccine nor specific therapeutic are available against either SARS- or MERS-CoV. Therefore, new drugs need to be identified in order to develop antiviral treatments limiting CoV replication. In this study, we focus on the nsp14 protein, which plays a key role in virus replication as it methylates the RNA cap structure at the N7 position of the guanine. We developed a high-throughput N7-MTase assay based on Homogenous Time Resolved Fluorescence (HTRF®) and screened chemical libraries (2000 compounds) on the SARS-CoV nsp14. 20 compounds inhibiting the SARS-CoV nsp14 were further evaluated by IC50 determination and their specificity was assessed toward flavivirus- and human cap N7-MTases. Our results reveal three classes of compounds: 1) molecules inhibiting several MTases as well as the dengue virus polymerase activity unspecifically, 2) pan MTases inhibitors targeting both viral and cellular MTases, and 3) inhibitors targeting one viral MTase more specifically showing however activity against the human cap N7-MTase. These compounds provide a first basis towards the development of more specific inhibitors of viral methyltransferases.
Collapse
Affiliation(s)
- Wahiba Aouadi
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Cécilia Eydoux
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Bruno Coutard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Baptiste Martin
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Françoise Debart
- IBMM, CNRS, Université Montpellier, ENSCM, Campus Triolet, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Jean Jacques Vasseur
- IBMM, CNRS, Université Montpellier, ENSCM, Campus Triolet, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | | | | | - Gilles Quérat
- UMR "Emergence des Pathologies Virales" (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP), Marseille, France
| | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France.
| |
Collapse
|