1
|
Wang F, Zhang S, Sun F, Chen W, Liu C, Dong H, Cui B, Li L, Sun C, Du W, Liu B, Fan W, Deng J, Schmitt CA, Wang X, Du J. Anti-angiogenesis and anti-immunosuppression gene therapy through targeting COUP-TFII in an in situ glioblastoma mouse model. Cancer Gene Ther 2024; 31:1135-1150. [PMID: 38926596 DOI: 10.1038/s41417-024-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain cancer; angiogenesis and immunosuppression exacerbate GBM progression. COUP-TFII demonstrates pro-angiogenesis activity; however, its role in glioma progression remains unclear. This study revealed that COUP-TFII promotes angiogenesis in gliomas by inducing transdifferentiation of glioma cells into endothelial-like cells. Mechanistic investigation suggested that COUP-TFII as a transcription factor exerts its function via binding to the promoter of TXNIP. Interestingly, COUP-TFII knockdown attenuated tumorigenesis and tumor progression in an immunocompetent mouse model but promoted tumor progression in an immuno-deficient mouse model. As an explanation, repression of COUP-TFII induces cellular senescence and activates immune surveillance in glioma cells in vitro and in vivo. In addition, we used heparin-polyethyleneimine (HPEI) nanoparticles to deliver COUP-TFII shRNA, which regulated tumor angiogenesis and immunosuppression in an in situ GBM mouse model. This study provides a novel strategy and potential therapeutic targets to treat GBM.
Collapse
Affiliation(s)
- Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
- Medical Integration and Practice Center, Qilu Hospital of Shandong University, Shandong University, 250100, Jinan, PR China
| | - Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
- Department of Gynecology, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Lingyu Li
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Chunlong Sun
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, 256600, Binzhou, PR China
| | - Wen Du
- College of Biological and Environmental Engineering, Shandong University of Aeronautics, 256600, Binzhou, PR China
| | - Bin Liu
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Wanfeng Fan
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Jiong Deng
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China
| | - Clemens A Schmitt
- Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Department of Hematology and Oncology, Kepler University Hospital, Krankenhausstraße 9, 4020, Linz, Austria
- Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner Site, Berlin, Germany
| | - Xiuwen Wang
- Medical Integration and Practice Center, Qilu Hospital of Shandong University, Shandong University, 250100, Jinan, PR China.
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, 256600, Binzhou, PR China.
- Department of Gynecology, Binzhou Medical University Hospital, 256600, Binzhou, PR China.
| |
Collapse
|
2
|
Qin W, Li S, Cheng Z, Xue W, Tian M, Mou F, Guo H, Shao S, Liu B. Astragaloside IV attenuates sunitinib-associated cardiotoxicity by inhibiting COUP-TFII. Heliyon 2024; 10:e24779. [PMID: 38314260 PMCID: PMC10837548 DOI: 10.1016/j.heliyon.2024.e24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Sunitinib (SU) is widely used to treat solid tumors but it can be cardiotoxic and often leads to drug withdrawn or discontinuation. Astragaloside IV (ASIV) is the essential active component of the Chinese herb Astragalus membranaceus which shows potential cardioprotective effects. Herein, we investigated the effect of ASIV on SU-associated cardiotoxicity and its mechanisms. We showed that ASIV significantly ameliorated SU-induced myocardial injury in mice, as evidenced by an improvement in left ventricular ejection fraction (EF) and a decrease in blood pressure and serum concentration of myocardial injury markers. ASIV attenuated SU-induced myocardial inflammatory infiltration and fibrotic lesions. In addition, ASIV suppressed SU-induced myocardial oxidative stress and apoptosis both in vitro and in vivo. Furthermore, SU increased COUP-TFII expression both in mRNA and protein levels in mice myocardial tissue, primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cell lines, and this effect was rescued by ASIV. Knockdown of COUP-TFII reduced the oxidative stress and apoptosis induced by SU in NRCMs and H9c2 cell lines. However, the overexpression of COUP-TFII blocked the protective effects of ASIV on SU-treated cardiomyocytes. Thus, our results demonstrated that ASIV ameliorated SU-indued cardiotoxicity by inhibiting COUP-TFII, suggesting that ASIV might be a potential therapeutic strategy for the prevention of SU-associated cardiotoxicity.
Collapse
Affiliation(s)
- Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mingyue Tian
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fangfang Mou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
3
|
Varshney R, Das S, Trahan GD, Farriester JW, Mullen GP, Kyere-Davies G, Presby DM, Houck JA, Webb PG, Dzieciatkowska M, Jones KL, Rodeheffer MS, Friedman JE, MacLean PS, Rudolph MC. Neonatal intake of Omega-3 fatty acids enhances lipid oxidation in adipocyte precursors. iScience 2023; 26:105750. [PMID: 36590177 PMCID: PMC9800552 DOI: 10.1016/j.isci.2022.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Establishing metabolic programming begins during fetal and postnatal development, and early-life lipid exposures play a critical role during neonatal adipogenesis. We define how neonatal consumption of a low omega-6 to -3 fatty acid ratio (n6/n3 FA ratio) establishes FA oxidation in adipocyte precursor cells (APCs) before they become adipocytes. In vivo, APCs isolated from mouse pups exposed to the low n6/n3 FA ratio had superior FA oxidation capacity, elevated beige adipocyte mRNAs Ppargc1α, Ucp2, and Runx1, and increased nuclear receptor NR2F2 protein. In vitro, APC treatment with NR2F2 ligand-induced beige adipocyte mRNAs and increased mitochondrial potential but not mass. Single-cell RNA-sequencing analysis revealed low n6/n3 FA ratio yielded more mitochondrial-high APCs and linked APC NR2F2 levels with beige adipocyte signatures and FA oxidation. Establishing beige adipogenesis is of clinical relevance, because fat depots with energetically active, smaller, and more numerous adipocytes improve metabolism and delay metabolic dysfunction.
Collapse
Affiliation(s)
- Rohan Varshney
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Snehasis Das
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - G. Devon Trahan
- Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob W. Farriester
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gertrude Kyere-Davies
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David M. Presby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Julie A. Houck
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Patricia G. Webb
- Department of Reproductive Science, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Kenneth L. Jones
- Department of Cell Biology and Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthew S. Rodeheffer
- Department of Molecular, Cellular and Developmental Biology, Department of Comparative Medicine, Yale University, New Haven, CT, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Paul S. MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center and Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
4
|
COUP-TFII in Kidneys, from Embryos to Sick Adults. Diagnostics (Basel) 2022; 12:diagnostics12051181. [PMID: 35626336 PMCID: PMC9139597 DOI: 10.3390/diagnostics12051181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) is an orphan nuclear hormone receptor of unknown ligands. This molecule has two interesting features: (1) it is a developmental gene, and (2) it is a potential hormone receptor. Here, we describe the possible roles of COUP-TFII in the organogenesis of the kidneys and protection from adult renal diseases, primarily in mouse models. COUP-TFII is highly expressed in embryos, including primordial kidneys, and is essential for the formation of metanephric mesenchyme and the survival of renal precursor cells. Although the expression levels of COUP-TFII are low and its functions are unknown in healthy adults, it serves as a reno-protectant molecule against acute kidney injury. These are good examples of how developmental genes exhibit novel functions in the etiology of adult diseases. We also discuss the ongoing research on the roles of COUP-TFII in podocyte development and diabetic kidney disease. In addition, the identification of potential ligands suggests that COUP-TFII might be a novel therapeutic target for renal diseases in the future.
Collapse
|
5
|
Role of Nuclear Receptors in Controlling Erythropoiesis. Int J Mol Sci 2022; 23:ijms23052800. [PMID: 35269942 PMCID: PMC8911257 DOI: 10.3390/ijms23052800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear receptors (NRs), are a wide family of ligand-regulated transcription factors sharing a common modular structure composed by an N-terminal domain and a ligand-binding domain connected by a short hinge linker to a DNA-binding domain. NRs are involved in many physiological processes, including metabolism, reproduction and development. Most of them respond to small lipophilic ligands, such as steroids, retinoids, and phospholipids, which act as conformational switches. Some NRs are still "orphan" and the search for their ligands is still ongoing. Upon DNA binding, NRs can act both as transcriptional activators or repressors of their target genes. Theoretically, the possibility to modulate NRs activity with small molecules makes them ideal therapeutic targets, although the complexity of their signaling makes drug design challenging. In this review, we discuss the role of NRs in erythropoiesis, in both homeostatic and stress conditions. This knowledge is important in view of modulating red blood cells production in disease conditions, such as anemias, and for the expansion of erythroid cells in culture for research purposes and for reaching the long-term goal of cultured blood for transfusion.
Collapse
|
6
|
Wang T, Wang Z, de Fabritus L, Tao J, Saied EM, Lee HJ, Ramazanov BR, Jackson B, Burkhardt D, Parker M, Gleinich AS, Wang Z, Seo DE, Zhou T, Xu S, Alecu I, Azadi P, Arenz C, Hornemann T, Krishnaswamy S, van de Pavert SA, Kaech SM, Ivanova NB, Santori FR. 1-deoxysphingolipids bind to COUP-TF to modulate lymphatic and cardiac cell development. Dev Cell 2021; 56:3128-3145.e15. [PMID: 34762852 PMCID: PMC8628544 DOI: 10.1016/j.devcel.2021.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Identification of physiological modulators of nuclear hormone receptor (NHR) activity is paramount for understanding the link between metabolism and transcriptional networks that orchestrate development and cellular physiology. Using libraries of metabolic enzymes alongside their substrates and products, we identify 1-deoxysphingosines as modulators of the activity of NR2F1 and 2 (COUP-TFs), which are orphan NHRs that are critical for development of the nervous system, heart, veins, and lymphatic vessels. We show that these non-canonical alanine-based sphingolipids bind to the NR2F1/2 ligand-binding domains (LBDs) and modulate their transcriptional activity in cell-based assays at physiological concentrations. Furthermore, inhibition of sphingolipid biosynthesis phenocopies NR2F1/2 deficiency in endothelium and cardiomyocytes, and increases in 1-deoxysphingosine levels activate NR2F1/2-dependent differentiation programs. Our findings suggest that 1-deoxysphingosines are physiological regulators of NR2F1/2-mediated transcription.
Collapse
Affiliation(s)
- Ting Wang
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA; Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, Shandong 266071, China; Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lauriane de Fabritus
- Aix-Marseille Universite, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex 9, France
| | - Jinglian Tao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China; Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Essa M Saied
- Institut für Chemie, Humboldt Universität zu Berlin, Berlin 12489, Germany; Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ho-Joon Lee
- Department of Genetics, Yale University, New Haven, CT 06520, USA; Center for Genome Analysis, Yale University, New Haven, CT 06510, USA
| | - Bulat R Ramazanov
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Benjamin Jackson
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Daniel Burkhardt
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | - Mikhail Parker
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Anne S Gleinich
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Zhirui Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Dong Eun Seo
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ting Zhou
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Shihao Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Christoph Arenz
- Institut für Chemie, Humboldt Universität zu Berlin, Berlin 12489, Germany
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University and University Hospital of Zurich, Zurich 8091, Switzerland
| | | | - Serge A van de Pavert
- Aix-Marseille Universite, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex 9, France
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Natalia B Ivanova
- Center for Molecular Medicine, Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | - Fabio R Santori
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
NR2F2 plays a major role in insulin-induced epithelial-mesenchymal transition in breast cancer cells. BMC Cancer 2020; 20:626. [PMID: 32631390 PMCID: PMC7336611 DOI: 10.1186/s12885-020-07107-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background The failure of treatment for breast cancer usually results from distant metastasis in which the epithelial-mesenchymal transition (EMT) plays a critical role. Hyperinsulinemia, the hallmark of Type 2 diabetes mellitus (T2DM), has been regarded as a key risk factor for the progression of breast cancer. Nuclear receptor subfamily 2, group F, member 2 (NR2F2) has been implicated in the development of breast cancer, however its contribution to insulin-induced EMT in breast cancer remains unclear. Methods Overexpression and knockdown of NR2F2 were used in two breast cancer cell lines, MCF-7 and MDA-MB-231 to investigate potential mechanisms by which NR2F2 leads to insulin-mediated EMT. To elucidate the effects of insulin and signaling events following NR2F2 overexpression and knockdown, Cells’ invasion and migration capacity and changes of NR2F2, E-cadherin, N-cadherin and vimentin were investigated by real-time RT-PCR and western blot. Results Insulin stimulation of these cells increased NR2F2 expression levels and promoted cell invasion and migration accompanied by alterations in EMT-related molecular markers. Overexpression of NR2F2 and NR2F2 knockdown demonstrated that NR2F2 expression was positively correlated with cell invasion, migration and the expression of N-cadherin and vimentin. In contrast, NR2F2 had an inverse correlation with E-cadherin expression. In MDA-MB-231, both insulin-induced cell invasion and migration and EMT-related marker alteration were abolished by NR2F2 knockdown. Conclusions These results suggest that NR2F2 plays a critical role in insulin-mediated breast cancer cell invasion, migration through its effect on EMT.
Collapse
|
8
|
Mucke HA. Patent highlights October-November 2019. Pharm Pat Anal 2020; 9:33-40. [PMID: 32301373 DOI: 10.4155/ppa-2020-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
9
|
Wang L, Cheng CM, Qin J, Xu M, Kao CY, Shi J, You E, Gong W, Rosa LP, Chase P, Scampavia L, Madoux F, Spicer T, Hodder P, Xu HE, Tsai SY, Tsai MJ. Small-molecule inhibitor targeting orphan nuclear receptor COUP-TFII for prostate cancer treatment. SCIENCE ADVANCES 2020; 6:eaaz8031. [PMID: 32494682 PMCID: PMC7190335 DOI: 10.1126/sciadv.aaz8031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The orphan nuclear receptor COUP-TFII is expressed at a low level in adult tissues, but its expression is increased and shown to promote progression of multiple diseases, including prostate cancer, heart failure, and muscular dystrophy. Suppression of COUP-TFII slows disease progression, making it an intriguing therapeutic target. Here, we identified a potent and specific COUP-TFII inhibitor through high-throughput screening. The inhibitor specifically suppressed COUP-TFII activity to regulate its target genes. Mechanistically, the inhibitor directly bound to the COUP-TFII ligand-binding domain and disrupted COUP-TFII interaction with transcription regulators, including FOXA1, thus repressing COUP-TFII activity on target gene regulation. Through blocking COUP-TFII's oncogenic activity in prostate cancer, the inhibitor efficiently exerted a potent antitumor effect in xenograft mouse models and patient-derived xenograft models. Our study identified a potent and specific COUP-TFII inhibitor that may be useful for the treatment of prostate cancer and possibly other diseases.
Collapse
Affiliation(s)
- Leiming Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chiang-Min Cheng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Mafei Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chung-Yang Kao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingjing Shi
- CAS Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Erli You
- CAS Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wanchun Gong
- CAS Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Laura Pedro Rosa
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Peter Chase
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Louis Scampavia
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Franck Madoux
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Timothy Spicer
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - Peter Hodder
- Scripps Research, Molecular Screening Center, Jupiter, FL 33458, USA
| | - H. Eric Xu
- CAS Key Laboratory of Receptor Research, VARI-SIMM Center, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sophia Y. Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Polvani S, Pepe S, Milani S, Galli A. COUP-TFII in Health and Disease. Cells 2019; 9:E101. [PMID: 31906104 PMCID: PMC7016888 DOI: 10.3390/cells9010101] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors (NRs) belong to a vast family of evolutionary conserved proteins acting as ligand-activated transcription factors. Functionally, NRs are essential in embryogenesis and organogenesis and in adulthood they are involved in almost every physiological and pathological process. Our knowledge of NRs action has greatly improved in recent years, demonstrating that both their expression and activity are tightly regulated by a network of signaling pathways, miRNA and reciprocal interactions. The Chicken Ovalbumin Upstream Promoter Transcription Factor II (COUP-TFII, NR2F2) is a NR classified as an orphan due to the lack of a known natural ligand. Although its expression peaks during development, and then decreases considerably, in adult tissues, COUP-TFII is an important regulator of differentiation and it is variably implicated in tissues homeostasis. As such, alterations of its expression or its transcriptional activity have been studied and linked to a spectrum of diseases in organs and tissues of different origins. Indeed, an altered COUP-TFII expression and activity may cause infertility, abnormality in the vascular system and metabolic diseases like diabetes. Moreover, COUP-TFII is actively investigated in cancer research but its role in tumor progression is yet to be fully understood. In this review, we summarize the current understanding of COUP-TFII in healthy and pathological conditions, proposing an updated and critical view of the many functions of this NR.
Collapse
Affiliation(s)
- Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
- Department of Experimental and Clinical Medicine, University of Florence, largo Brambilla 50, 50139 Firenze, Italy
| | - Sara Pepe
- Istituto per la Ricerca, la Prevenzione e la rete Oncologica (ISPRO), viale Pieraccini 6, 50139 Firenze, Italy;
- Department of Medical Biotechnologies, University of Siena, via M. Bracci 16, 53100 Siena, Italy
| | - Stefano Milani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Gastroenterology Unit, University of Florence, viale Pieraccini 6, 50139 Firenze, Italy; (S.P.); (S.M.)
| |
Collapse
|
11
|
Development of novel silanol-based human pregnane X receptor (PXR) agonists with improved receptor selectivity. Bioorg Med Chem 2018; 26:4493-4501. [PMID: 30077610 DOI: 10.1016/j.bmc.2018.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 11/21/2022]
Abstract
Pregnane X receptor (PXR) is a ligand-dependent transcription factor that is considered to be a potential therapeutic target for multiple diseases. Herein, we report the development and structure-activity relationship studies of a new series of hPXR agonists. Focusing on our recently developed silanol-sulfonamide scaffold, we developed the potent hPXR agonist 28, which shows good selectivity over hLXRα and β, hFXR, and hRORα and γ. Examination of the structure-activity relationship suggested a possible strategy to manipulate the selectivity. Docking simulation indicated the presence of an additional binding cavity and polar contacts in the ligand-binding pocket of hPXR. This information should be helpful for the future development of more potent and selective hPXR ligands.
Collapse
|
12
|
Firmin FF, Oger F, Gheeraert C, Dubois-Chevalier J, Vercoutter-Edouart AS, Alzaid F, Mazuy C, Dehondt H, Alexandre J, Derudas B, Dhalluin Q, Ploton M, Berthier A, Woitrain E, Lefebvre T, Venteclef N, Pattou F, Staels B, Eeckhoute J, Lefebvre P. The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARγ. Sci Rep 2017; 7:14087. [PMID: 29075020 PMCID: PMC5658386 DOI: 10.1038/s41598-017-14570-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 02/03/2023] Open
Abstract
Adipocyte differentiation and function relies on a network of transcription factors, which is disrupted in obesity-associated low grade, chronic inflammation leading to adipose tissue dysfunction. In this context, there is a need for a thorough understanding of the transcriptional regulatory network involved in adipose tissue pathophysiology. Recent advances in the functional annotation of the genome has highlighted the role of non-coding RNAs in cellular differentiation processes in coordination with transcription factors. Using an unbiased genome-wide approach, we identified and characterized a novel long intergenic non-coding RNA (lincRNA) strongly induced during adipocyte differentiation. This lincRNA favors adipocyte differentiation and coactivates the master adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARγ) through interaction with the paraspeckle component and hnRNP-like RNA binding protein 14 (RBM14/NCoAA), and was therefore called PPARγ-activator RBM14-associated lncRNA (Paral1). Paral1 expression is restricted to adipocytes and decreased in humans with increasing body mass index. A decreased expression was also observed in diet-induced or genetic mouse models of obesity and this down-regulation was mimicked in vitro by TNF treatment. In conclusion, we have identified a novel component of the adipogenic transcriptional regulatory network defining the lincRNA Paral1 as an obesity-sensitive regulator of adipocyte differentiation and function.
Collapse
Affiliation(s)
- François F Firmin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Frederik Oger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Julie Dubois-Chevalier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Anne-Sophie Vercoutter-Edouart
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, Univ, Lille, Villeneuve d'Ascq, F-59650, France
| | - Fawaz Alzaid
- INSERM UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, F-75006, France
| | - Claire Mazuy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Hélène Dehondt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jeremy Alexandre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Quentin Dhalluin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Maheul Ploton
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eloise Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Tony Lefebvre
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, Univ, Lille, Villeneuve d'Ascq, F-59650, France
| | - Nicolas Venteclef
- INSERM UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, F-75006, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, U1190- EGID, F-59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|
13
|
Novotný JP, Chughtai AA, Kostrouchová M, Kostrouchová V, Kostrouch D, Kaššák F, Kaňa R, Schierwater B, Kostrouchová M, Kostrouch Z. Trichoplax adhaerens reveals a network of nuclear receptors sensitive to 9- cis-retinoic acid at the base of metazoan evolution. PeerJ 2017; 5:e3789. [PMID: 28975052 PMCID: PMC5624297 DOI: 10.7717/peerj.3789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
Trichoplax adhaerens, the only known species of Placozoa is likely to be closely related to an early metazoan that preceded branching of Cnidaria and Bilateria. This animal species is surprisingly well adapted to free life in the World Ocean inhabiting tidal costal zones of oceans and seas with warm to moderate temperatures and shallow waters. The genome of T. adhaerens (sp. Grell) includes four nuclear receptors, namely orthologue of RXR (NR2B), HNF4 (NR2A), COUP-TF (NR2F) and ERR (NR3B) that show a high degree of similarity with human orthologues. In the case of RXR, the sequence identity to human RXR alpha reaches 81% in the DNA binding domain and 70% in the ligand binding domain. We show that T. adhaerens RXR (TaRXR) binds 9-cis retinoic acid (9-cis-RA) with high affinity, as well as high specificity and that exposure of T. adhaerens to 9-cis-RA regulates the expression of the putative T. adhaerens orthologue of vertebrate L-malate-NADP+ oxidoreductase (EC 1.1.1.40) which in vertebrates is regulated by a heterodimer of RXR and thyroid hormone receptor. Treatment by 9-cis-RA alters the relative expression profile of T. adhaerens nuclear receptors, suggesting the existence of natural ligands. Keeping with this, algal food composition has a profound effect on T. adhaerens growth and appearance. We show that nanomolar concentrations of 9-cis-RA interfere with T. adhaerens growth response to specific algal food and causes growth arrest. Our results uncover an endocrine-like network of nuclear receptors sensitive to 9-cis-RA in T. adhaerens and support the existence of a ligand-sensitive network of nuclear receptors at the base of metazoan evolution.
Collapse
Affiliation(s)
- Jan Philipp Novotný
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Medicine V., University of Heidelberg, Heidelberg, Germany
| | - Ahmed Ali Chughtai
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Markéta Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - David Kostrouch
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Filip Kaššák
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Laboratory of Photosynthesis, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Bernd Schierwater
- Institute for Animal Ecology and Cell Biology, University of Veterinary Medicine, Hannover, Germany.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Marta Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Zdenek Kostrouch
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
14
|
Wang J, Hua L, Chen J, Zhang J, Bai X, Gao B, Li C, Shi Z, Sheng W, Gao Y, Xing B. Identification and characterization of long non-coding RNAs in subcutaneous adipose tissue from castrated and intact full-sib pair Huainan male pigs. BMC Genomics 2017; 18:542. [PMID: 28724410 PMCID: PMC5518130 DOI: 10.1186/s12864-017-3907-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) regulate adipose tissue metabolism, however, their function on testosterone deficiency related obesity in humans is less understood. For this research, intact and castrated male pigs are the best model animal because of their similar proportional organ sizes, cardiovascular systems and metabolic features. Results We identified lncRNAs in subcutaneous adipose tissue by deep RNA-sequencing using the intact and castrated Huainan male pigs. The results showed that castration reduced serum testosterone but increased body fatness-related traits (serum triglyceride levels, backfat thickness, intramuscular fat content, and adipocyte size). Meanwhile, 343 lncRNAs from subcutaneous adipose tissue were identified, including 223 intergenic lncRNAs (lincRNAs), 68 anti-sense lncRNAs, and 52 intronic lncRNAs. It was predicted that there were 416 recognition sites for C/EBPα in the 303 lncRNA promoter region, and 13 adipogenesis-promoting miRNAs and five adipogenesis-depressing miRNAs target these lncRNAs. Eighteen lncRNAs, including nine up- and nine down-regulated had more than 2-fold differential expression between the castrated and intact male pigs (q-value < 0.05). Functional analysis indicated that these 18 lncRNAs and their target genes were involved in fatty acid, insulin, and the adipocytokine signaling pathway. We further analyzed the features of a conserved mouse lncRNA gene ENSMUST00000189966 and found it mainly expressed in the cell nucleus and target the Nuclear Receptor Subfamily 2 Group F Member 2 (NR2F2) gene. In 3 T3-L1 cells, differentiation down-regulated their expression, but dihydrotestosterone (DHT) significantly up-regulated their expression in a concentration-dependent manner (P < 0.05). Conclusions These results suggested that lncRNAs and their target genes might participated in the castration-induced fat deposition and provide a new therapeutic target for combatting testosterone deficiency-related obesity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3907-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Liushuai Hua
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Junfeng Chen
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Jiaqing Zhang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Xianxiao Bai
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Binwen Gao
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Congjun Li
- United States Department of Agriculture-Agricultural Research Service, Bovine Functional Genomics Laboratory, Beltsville, MD, 20705, USA
| | - Zhihai Shi
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Weidong Sheng
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China
| | - Yuan Gao
- Xinxian Bureau of Animal Husbandry, Xinxian, 465550, Beijing, People's Republic of China
| | - Baosong Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|