1
|
Tang L, Zhang J, Oumata N, Mignet N, Sollogoub M, Zhang Y. Sialyl Lewis X (sLe x):Biological functions, synthetic methods and therapeutic implications. Eur J Med Chem 2025; 287:117315. [PMID: 39919437 DOI: 10.1016/j.ejmech.2025.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
Carbohydrates are shown to be crucial to several biological processes. They are essential mediators of cell-cell recognition processes. Among them, Sialyl Lewis X (sLex) is a very significant structure in the human body. It is a critical tetrasaccharide that plays a pivotal role in various biological processes, including cell adhesion, immune response, and cancer metastasis. Known as the blood group antigen, sLex is also referred to as cluster of differentiation 15s (CD15s) or stage-specific embryonic antigen 1 (SSEA-1). sLex is not only a prominent blood group antigen, but also involved in the attraction of sperm to the egg during fertilization, prominently displayed at the terminus of glycolipids on the cell surface. By describing the synthetic methods and biological functions of sLex, this review underscores the importance of sLex in both fundamental and applied sciences and its potential to impact clinical practice.
Collapse
Affiliation(s)
- Leyu Tang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Nassima Oumata
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
2
|
Chen Y, Jiang H, Hao T, Zhang N, Li M, Wang X, Wang X, Wei W, Zhao J. Fluorogenic Reactions in Chemical Biology: Seeing Chemistry in Cells. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:590-619. [PMID: 39474135 PMCID: PMC11504613 DOI: 10.1021/cbmi.3c00029] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/05/2025]
Abstract
Among the recent development of click chemistry and bioorthogonal chemistry, fluorogenic reactions occupy a unique place in that fluorescence is generated from nonfluorescent reactants, thereby rendering them highly useful and convenient in no-wash live-cell imaging. This topic was extensively reviewed in 2010 by Wang et al. (Chem. Soc. Rev.2010, 39, 1233-1239) and in 2014 by Lin et al. (Curr. Opin. Chem. Biol.2014, 21, 89-95). This review presents a comprehensive and up-to-date overview on the fluorogenic reactions in the past decade. The reactions are classified into four major categories on the basis of the mechanisms of fluorescence generation. Representative examples of each type are discussed briefly in terms of structure, mechanism, and advantages. We describe the latest applications of fluorogenic reactions in chemical biology. In the end, future opportunities and challenges in this field are tentatively proposed.
Collapse
Affiliation(s)
- Yanyan Chen
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Jiang
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tingting Hao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mingyu Li
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingyun Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiuxiu Wang
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Wei
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
García-Alija M, van Moer B, Sastre DE, Azzam T, Du JJ, Trastoy B, Callewaert N, Sundberg EJ, Guerin ME. Modulating antibody effector functions by Fc glycoengineering. Biotechnol Adv 2023; 67:108201. [PMID: 37336296 PMCID: PMC11027751 DOI: 10.1016/j.biotechadv.2023.108201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Antibody based drugs, including IgG monoclonal antibodies, are an expanding class of therapeutics widely employed to treat cancer, autoimmune and infectious diseases. IgG antibodies have a conserved N-glycosylation site at Asn297 that bears complex type N-glycans which, along with other less conserved N- and O-glycosylation sites, fine-tune effector functions, complement activation, and half-life of antibodies. Fucosylation, galactosylation, sialylation, bisection and mannosylation all generate glycoforms that interact in a specific manner with different cellular antibody receptors and are linked to a distinct functional profile. Antibodies, including those employed in clinical settings, are generated with a mixture of glycoforms attached to them, which has an impact on their efficacy, stability and effector functions. It is therefore of great interest to produce antibodies containing only tailored glycoforms with specific effects associated with them. To this end, several antibody engineering strategies have been developed, including the usage of engineered mammalian cell lines, in vitro and in vivo glycoengineering.
Collapse
Affiliation(s)
- Mikel García-Alija
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain
| | - Berre van Moer
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium
| | - Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia, 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, VIB, Zwijnaarde, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent (Zwijnaarde), Belgium.
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Health Research Institute, Barakaldo, Bizkaia 48903, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
4
|
Wang P, Liu X, Yu J, Meng Z, Lv Z, Shang C, Geng Q, Wang D, Xue D, Li L. Fucosyltransferases Regulated by Fusobacterium Nucleatum and Act as Novel Biomarkers in Colon Adenocarcinoma. J Inflamm Res 2023; 16:747-768. [PMID: 36852302 PMCID: PMC9960735 DOI: 10.2147/jir.s396484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Purpose Colon adenocarcinoma (COAD) is one of the leading causes of cancer-associated mortality worldwide. Fucosyltransferases (FUTs) are associated with numerous cancers. We aimed to investigate the functions of FUTs in COAD. Patients and Methods Transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to analyze the expression and clinical relevance of FUTs in COAD. Real Time Quantitative PCR (RT-qPCR), Western blot, immunohistochemistry and ELISA were used to detect the relative RNA and protein expression levels. Colitis-associated cancer mice treated with Fusobacterium nucleatum were used to illustrate the effects of Fusobacterium nucleatum on FUTs and COAD. Luciferase reporting assay was used to investigate the binding of miRNA to mRNA. Results TCGA and GEO datasets showed abnormal expression of FUTs in COAD at transcript level. RT-qPCR, Western blot and immunohistochemistry showed increased expression of FUT1, POFUT1 and POFUT2 in COAD. COAD patients with a high expression of FUT1, FUT11, FUT13 (POFUT2) had a worse prognosis, while patients with a high expression of FUT2, FUT3, FUT6 had a better prognosis. FUT1 and POFUT2 could independently predict the prognosis of COAD patients. Functional analysis by CancerSEA database showed that FUT3, FUT6, FUT8, FUT12 (POFUT1) and FUT13 are associated with differentiation, apoptosis, invasion, quiescence, and hypoxia. FUTs are associated with the tumor microenvironment of COAD. FUT1 regulated by miR-939-3p inhibit the expression of MUC2. Fusobacterium nucleatum may affect the expression of FUTs by affecting their transcription factors and miRNA levels. Moreover, Fusobacterium nucleatum promotes COAD progression through the miR-939-3p/FUT1/MUC2 axis. Conclusion Fucosyltransferases play an important role and may be the mediator of Fusobacterium nucleatum promoting COAD progression.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xuxu Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jingjing Yu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ziang Meng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Zhenyi Lv
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ce Shang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Qi Geng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Dawei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Correspondence: Dawei Wang, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, 150001, People’s Republic of China, Tel/Fax +86 451 85555776, Email
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Long Li
- Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, Shanghai, People’s Republic of China,Long Li, Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People’s Hospital, Tenth People’s Hospital of Tongji University, 301 Yanchang Middle Road, Shanghai, 200072, People’s Republic of China, Tel/Fax +86 21 66307011, Email
| |
Collapse
|
5
|
Guo Y, Raev S, Kick MK, Raque M, Saif LJ, Vlasova AN. Rotavirus C Replication in Porcine Intestinal Enteroids Reveals Roles for Cellular Cholesterol and Sialic Acids. Viruses 2022; 14:v14081825. [PMID: 36016447 PMCID: PMC9416568 DOI: 10.3390/v14081825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Rotaviruses (RVs) are a significant cause of severe diarrheal illness in infants and young animals, including pigs. Group C rotavirus (RVC) is an emerging pathogen increasingly reported in pigs and humans worldwide, and is currently recognized as the major cause of gastroenteritis in neonatal piglets that results in substantial economic losses to the pork industry. However, little is known about RVC pathogenesis due to the lack of a robust cell culture system, with the exception of the RVC Cowden strain. Here, we evaluated the permissiveness of porcine crypt-derived 3D and 2D intestinal enteroid (PIE) culture systems for RVC infection. Differentiated 3D and 2D PIEs were infected with porcine RVC (PRVC) Cowden G1P[1], PRVC104 G3P[18], and PRVC143 G6P[5] virulent strains, and the virus replication was measured by qRT-PCR. Our results demonstrated that all RVC strains replicated in 2D-PIEs poorly, while 3D-PIEs supported a higher level of replication, suggesting that RVC selectively infects terminally differentiated enterocytes, which were less abundant in the 2D vs. 3D PIE cultures. While cellular receptors for RVC are unknown, target cell surface carbohydrates, including histo-blood-group antigens (HBGAs) and sialic acids (SAs), are believed to play a role in cell attachment/entry. The evaluation of the selective binding of RVCs to different HBGAs revealed that PRVC Cowden G1P[1] replicated to the highest titers in the HBGA-A PIEs, while PRVC104 or PRVC143 achieved the highest titers in the HBGA-H PIEs. Further, contrasting outcomes were observed following sialidase treatment (resulting in terminal SA removal), which significantly enhanced Cowden and RVC143 replication, but inhibited the growth of PRVC104. These observations suggest that different RVC strains may recognize terminal (PRVC104) as well as internal (Cowden and RVC143) SAs on gangliosides. Finally, several cell culture additives, such as diethylaminoethyl (DEAE)-dextran, cholesterol, and bile extract, were tested to establish if they could enhance RVC replication. We observed that only DEAE-dextran significantly enhanced RVC attachment, but it had no effect on RVC replication. Additionally, the depletion of cellular cholesterol by MβCD inhibited Cowden replication, while the restoration of the cellular cholesterol partially reversed the MβCD effects. These results suggest that cellular cholesterol plays an important role in the replication of the PRVC strain tested. Overall, our study has established a novel robust and physiologically relevant system to investigate RVC pathogenesis. We also generated novel, experimentally derived evidence regarding the role of host glycans, DEAE, and cholesterol in RVC replication, which is critical for the development of control strategies.
Collapse
Affiliation(s)
- Yusheng Guo
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Sergei Raev
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Maryssa K. Kick
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Molly Raque
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Linda J. Saif
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA
- Correspondence:
| |
Collapse
|
6
|
Glycoengineering of Therapeutic Antibodies with Small Molecule Inhibitors. Antibodies (Basel) 2021; 10:antib10040044. [PMID: 34842612 PMCID: PMC8628514 DOI: 10.3390/antib10040044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the cornerstones of modern medicine, across an increasing range of therapeutic areas. All therapeutic mAbs are glycoproteins, i.e., their polypeptide chain is decorated with glycans, oligosaccharides of extraordinary structural diversity. The presence, absence, and composition of these glycans can have a profound effect on the pharmacodynamic and pharmacokinetic profile of individual mAbs. Approaches for the glycoengineering of therapeutic mAbs—the manipulation and optimisation of mAb glycan structures—are therefore of great interest from a technological, therapeutic, and regulatory perspective. In this review, we provide a brief introduction to the effects of glycosylation on the biological and pharmacological functions of the five classes of immunoglobulins (IgG, IgE, IgA, IgM and IgD) that form the backbone of all current clinical and experimental mAbs, including an overview of common mAb expression systems. We review selected examples for the use of small molecule inhibitors of glycan biosynthesis for mAb glycoengineering, we discuss the potential advantages and challenges of this approach, and we outline potential future applications. The main aim of the review is to showcase the expanding chemical toolbox that is becoming available for mAb glycoengineering to the biology and biotechnology community.
Collapse
|
7
|
Infection of porcine small intestinal enteroids with human and pig rotavirus A strains reveals contrasting roles for histo-blood group antigens and terminal sialic acids. PLoS Pathog 2021; 17:e1009237. [PMID: 33513201 PMCID: PMC7846020 DOI: 10.1371/journal.ppat.1009237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/15/2020] [Indexed: 01/19/2023] Open
Abstract
Rotaviruses (RVs) are a leading cause of acute viral gastroenteritis in young children and livestock worldwide. Growing evidence suggests that host cellular glycans, such as histo-blood group antigens (HBGAs) and sialic acids (SA), are recognized by the RV surface protein VP4. However, a mechanistic understanding of these interactions and their effects on RV infection and pathogenesis is lacking. Here, we established a porcine crypt-derived 3Dintestinalenteroids (PIEs) culture system which contains all intestinal epithelial cells identified in vivo and represents a unique physiologically functional model to study RV-glycan interactions in vitro. PIEs expressing different HBGAs (A+, H+, and A+/H+) were established and isolation, propagation, differentiation and RV infection conditions were optimized. Differentiated PIEs were infected with human RV (HRV) G1P[8] Wa, porcine RV (PRV) G9P[13], PRV Gottfried G4P[6] or PRV OSU G5P[7] virulent and attenuated strains and virus replication was measured by qRT-PCR. Our results indicated that virulent HRV G1P[8] Wa replicated to the highest titers in A+ PIEs, while a distinct trend was observed for PRV G9P[13] or G5P[7] with highest titers in H+ PIEs. Attenuated Wa and Gottfried strains replicated poorly in PIEs while the replication of attenuated G9P[13] and OSU strains in PIEs was relatively efficient. However, the replication of all 4 attenuate strains was less affected by the PIE HBGA phenotypes. HBGA synthesis inhibitor 2-F-Peracetyl-Fucose (2F) treatment demonstrated that HBGAs are essential for G1P[8] Wa replication; however, they may only serve as a cofactor for PRVs G9P[13] and OSU G5P[7]. Interestingly, contrasting outcomes were observed following sialidase treatment which significantly enhanced G9P[13] replication, but inhibited the growth of G5P[7]. These observations suggest that some additional receptors recognized by G9P[13] become unmasked after removal of terminal SA. Overall, our results confirm that differential HBGAs-RV and SA-RV interactions determine replication efficacy of virulent group A RVs in PIEs. Consequently, targeting individual glycans for development of therapeutics may not yield uniform results for various RV strains. Cell surface glycans, including histo-blood group antigens (HBGA) and sialic acids (SAs), have been shown to serve as receptors/attachment factors for many pathogens including RVs. However, how those glycans affect RV replication remains largely unknown due the lack of reliable in vitro models. To solve this problem, we established a 3D porcine intestinal enteroid (PIE) model that recapitulates the complex intestinal morphology better than conventional cell lines. By utilizing PIEs expressing different types of HBGAs, we found that several RV strains including Wa G1P[8], OSU G5P[7] and G9P[13] show preference for certain HBGA types. Interestingly, only Wa replication was reduced when HBGAs synthesis was inhibited, while that of OSU and G9P[13] was only marginally affected, which indicates that they may utilize alternative attachment factors for infection. Sialidase treatment strongly inhibited the growth of OSU, while G9P[13] replication was significantly enhanced. These findings suggest that SAs play contrasting roles in the infection of PRV OSU and G9P[13] strains. Overall, our studies demonstrate that PIEs can serve as a model to study pathogen-glycan interactions and suggest that genetically distinct RVs have evolved diverse mechanisms of cell attachment and/or entry.
Collapse
|
8
|
Martin KC, Tricomi J, Corzana F, García-García A, Ceballos-Laita L, Hicks T, Monaco S, Angulo J, Hurtado-Guerrero R, Richichi B, Sackstein R. Fucosyltransferase-specific inhibition via next generation of fucose mimetics. Chem Commun (Camb) 2021; 57:1145-1148. [PMID: 33411866 DOI: 10.1039/d0cc04847j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to custom-modify cell surface glycans holds great promise for treatment of a variety of diseases. We propose a glycomimetic of l-fucose that markedly inhibits the creation of sLeX by FTVI and FTVII, but has no effect on creation of LeX by FTIX. Our findings thus indicate that selective suppression of sLex display can be achieved, and STD-NMR studies surprisingly reveal that the mimetic does not compete with GDP-fucose at the enzymatic binding site.
Collapse
Affiliation(s)
- Kyle C Martin
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA. and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and Program of Excellence in Glycoscience, Harvard Medical School, Boston, MA 02115, USA
| | - Jacopo Tricomi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Ana García-García
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
| | - Laura Ceballos-Laita
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
| | - Thomas Hicks
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ, Norwich, UK and Departamento de Química Orgánica, Universidad de Sevilla, C/Prof. García González, 1, 41012 Sevilla, Spain and Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain and Fundación ARAID, 50018, Zaragoza, Spain and Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I + D, Zaragoza, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy.
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA. and Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA and Program of Excellence in Glycoscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Yin X, Li J, Chen S, Wu Y, She Z, Liu L, Wang Y, Gao Z. An Economical High-Throughput "FP-Tag" Assay for Screening Glycosyltransferase Inhibitors*. Chembiochem 2021; 22:1391-1395. [PMID: 33259119 DOI: 10.1002/cbic.202000746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/29/2020] [Indexed: 11/10/2022]
Abstract
O-GlcNAc transferase (OGT) is involved in many cellular processes, and selective OGT inhibitors are valuable tools to investigate O-GlcNAcylation functions, and could potentially lead to therapeutics. However, high-throughput OGT assays that are suitable for large-scale HTS and can identify inhibitors targeting both acceptor, donor sites, and allosteric binding-sites are still lacking. Here, we report the development of a high-throughput "FP-Tag" OGT assay with bovine serum albumin (BSA) as a low-cost and superior "FP-Tag". With this assay, 2-methyleurotinone was identified as a low-micromolar OGT inhibitor. This type of assay with BSA as "FP-Tag" would find more applications with other glycosyltransferases.
Collapse
Affiliation(s)
- Xinjian Yin
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China
| | - Jiaxin Li
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China
| | - Senhua Chen
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China
| | - Yuping Wu
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, 519275, Guangzhou, P. R. China
| | - Lan Liu
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519080, Zhuhai, P. R. China
| | - Yue Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd No. 38, 100191, Beijing, P. R. China
| | - Zhizeng Gao
- School of Marine Science, Sun Yat-sen University, 519080, Zhuhai, P. R. China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519080, Zhuhai, P. R. China
| |
Collapse
|
10
|
Soroko M, Kwan DH. Enzymatic Synthesis of a Fluorogenic Reporter Substrate and the Development of a High-Throughput Assay for Fucosyltransferase VIII Provide a Toolkit to Probe and Inhibit Core Fucosylation. Biochemistry 2020; 59:2100-2110. [PMID: 32441090 DOI: 10.1021/acs.biochem.0c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maxim Soroko
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| | - David H. Kwan
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
- Department of Biology, Centre for Applied Synthetic Biology, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
11
|
Targeting Glycosylation: A New Road for Cancer Drug Discovery. Trends Cancer 2020; 6:757-766. [PMID: 32381431 DOI: 10.1016/j.trecan.2020.04.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
Cancer is a deadly disease that encompasses numerous cellular modifications. Among them, alterations in glycosylation are a proven reliable hallmark of cancer, with most biomarkers used in the clinic detecting cancer-associated glycans. Despite their clear potential as therapy targets, glycans have been overlooked in drug discovery strategies. The complexity associated with the glycosylation process, and lack of specific methodologies to study it, have long hampered progress. However, recent advances in new methodologies, such as glycoengineering of cells and high-throughput screening (HTS), have opened new avenues of discovery. We envision that glycan-based targeting has the potential to start a new era of cancer therapy. In this article, we discuss the promise of cancer-associated glycosylation for the discovery of effective cancer drugs.
Collapse
|
12
|
Alteen MG, Gros C, Meek RW, Cardoso DA, Busmann JA, Sangouard G, Deen MC, Tan H, Shen DL, Russell CC, Davies GJ, Robinson PJ, McCluskey A, Vocadlo DJ. A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient High‐Throughput Screening: Application to
O
‐GlcNAc Transferase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthew G. Alteen
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Christina Gros
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Richard W. Meek
- York Structural Biology Laboratory Department of Chemistry University of York York YO10 5DD UK
| | - David A. Cardoso
- Children's Medical Research Institute The University of Sydney Sydney NSW 2145 Australia
| | - Jil A. Busmann
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Gontran Sangouard
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Matthew C. Deen
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Hong‐Yee Tan
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - David L. Shen
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Cecilia C. Russell
- Chemistry, School of Environmental and Life Sciences The University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - Gideon J. Davies
- York Structural Biology Laboratory Department of Chemistry University of York York YO10 5DD UK
| | - Phillip J. Robinson
- Children's Medical Research Institute The University of Sydney Sydney NSW 2145 Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences The University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - David J. Vocadlo
- Department of Chemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| |
Collapse
|
13
|
Alteen MG, Gros C, Meek RW, Cardoso DA, Busmann JA, Sangouard G, Deen MC, Tan H, Shen DL, Russell CC, Davies GJ, Robinson PJ, McCluskey A, Vocadlo DJ. A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient High‐Throughput Screening: Application toO‐GlcNAc Transferase. Angew Chem Int Ed Engl 2020; 59:9601-9609. [DOI: 10.1002/anie.202000621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Matthew G. Alteen
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Christina Gros
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Richard W. Meek
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of York York YO10 5DD UK
| | - David A. Cardoso
- Children's Medical Research InstituteThe University of Sydney Sydney NSW 2145 Australia
| | - Jil A. Busmann
- Department of Molecular Biology and BiochemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Gontran Sangouard
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Matthew C. Deen
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Hong‐Yee Tan
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - David L. Shen
- Department of Molecular Biology and BiochemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| | - Cecilia C. Russell
- Chemistry, School of Environmental and Life SciencesThe University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - Gideon J. Davies
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of York York YO10 5DD UK
| | - Phillip J. Robinson
- Children's Medical Research InstituteThe University of Sydney Sydney NSW 2145 Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life SciencesThe University of Newcastle University Drive Callaghan NSW 2308 Australia
| | - David J. Vocadlo
- Department of ChemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
- Department of Molecular Biology and BiochemistrySimon Fraser University Burnaby BC V5A 1S6 Canada
| |
Collapse
|
14
|
Tsao KK, Lee AC, Racine KÉ, Keillor JW. Site-Specific Fluorogenic Protein Labelling Agent for Bioconjugation. Biomolecules 2020; 10:E369. [PMID: 32121143 PMCID: PMC7175205 DOI: 10.3390/biom10030369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/29/2023] Open
Abstract
Many clinically relevant therapeutic agents are formed from the conjugation of small molecules to biomolecules through conjugating linkers. In this study, two novel conjugating linkers were prepared, comprising a central coumarin core, functionalized with a dimaleimide moiety at one end and a terminal alkyne at the other. In our first design, we developed a protein labelling method that site-specifically introduces an alkyne functional group to a dicysteine target peptide tag that was genetically fused to a protein of interest. This method allows for the subsequent attachment of azide-functionalized cargo in the facile synthesis of novel protein-cargo conjugates. However, the fluorogenic aspect of the reaction between the linker and the target peptide was less than we desired. To address this shortcoming, a second linker reagent was prepared. This new design also allowed for the site-specific introduction of an alkyne functional group onto the target peptide, but in a highly fluorogenic and rapid manner. The site-specific addition of an alkyne group to a protein of interest was thus monitored in situ by fluorescence increase, prior to the attachment of azide-functionalized cargo. Finally, we also demonstrated that the cargo can also be attached first, in an azide/alkyne cycloaddition reaction, prior to fluorogenic conjugation with the target peptide-fused protein.
Collapse
Affiliation(s)
| | | | | | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.K.T.); (A.C.L.); (K.É.R.)
| |
Collapse
|
15
|
Chao L, Jongkees S. High-Throughput Approaches in Carbohydrate-Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019; 58:12750-12760. [PMID: 30913359 PMCID: PMC6771893 DOI: 10.1002/anie.201900055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Indexed: 01/13/2023]
Abstract
Carbohydrates are attached and removed in living systems through the action of carbohydrate-active enzymes such as glycosyl transferases and glycoside hydrolases. The molecules resulting from these enzymes have many important roles in organisms, such as cellular communication, structural support, and energy metabolism. In general, each carbohydrate transformation requires a separate catalyst, and so these enzyme families are extremely diverse. To make this diversity manageable, high-throughput approaches look at many enzymes at once. Similarly, high-throughput approaches can be a powerful way of finding inhibitors that can be used to tune the reactivity of these enzymes, either in an industrial, a laboratory, or a medicinal setting. In this review, we provide an overview of how these enzymes and inhibitors can be sought using techniques such as high-throughput natural product and combinatorial library screening, phage and mRNA display of (glyco)peptides, fluorescence-activated cell sorting, and metagenomics.
Collapse
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 993581AGUtrechtThe Netherlands
| |
Collapse
|
16
|
Chao L, Jongkees S. High‐Throughput Approaches in Carbohydrate‐Active Enzymology: Glycosidase and Glycosyl Transferase Inhibitors, Evolution, and Discovery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lemeng Chao
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| | - Seino Jongkees
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences Utrecht University Universiteitsweg 99 3581AG Utrecht The Netherlands
| |
Collapse
|
17
|
Leclerc LMY, Soffer G, Kwan DH, Shih SCC. A fucosyltransferase inhibition assay using image-analysis and digital microfluidics. BIOMICROFLUIDICS 2019; 13:034106. [PMID: 31123538 PMCID: PMC6510662 DOI: 10.1063/1.5088517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
Sialyl-LewisX and LewisX are cell-surface glycans that influence cell-cell adhesion behaviors. These glycans are assembled by α(1,3)-fucosyltransferase enzymes. Their increased expression plays a role in inflammatory disease, viral and microbial infections, and cancer. Efficient screens for specific glycan modifications such as those catalyzed by fucosyltransferases are tended toward costly materials and large instrumentation. We demonstrate for the first time a fucosylation inhibition assay on a digital microfluidic system with the integration of image-based techniques. Specifically, we report a novel lab-on-a-chip approach to perform a fluorescence-based inhibition assay for the fucosylation of a labeled synthetic disaccharide, 4-methylumbelliferyl β-N-acetyllactosaminide. As a proof-of-concept, guanosine 5'-diphosphate has been used to inhibit Helicobacter pylori α(1,3)-fucosyltransferase. An electrode shape (termed "skewed wave") is designed to minimize electrode density and improve droplet movement compared to conventional square-based electrodes. The device is used to generate a 10 000-fold serial dilution of the inhibitor and to perform fucosylation reactions in aqueous droplets surrounded by an oil shell. Using an image-based method of calculating dilutions, referred to as "pixel count," inhibition curves along with IC50 values are obtained on-device. We propose the combination of integrating image analysis and digital microfluidics is suitable for automating a wide range of enzymatic assays.
Collapse
Affiliation(s)
| | | | | | - Steve C. C. Shih
- Author to whom correspondence should be addressed:. Tel.: +1-(514)-848-2424x7579
| |
Collapse
|