1
|
Hammond HR, Chaudhari P, Bunnell A, Nefzi K, Chen C, Zhao P, Eans SO, Masood SR, Dooley CT, Liu-Chen LY, McLaughlin JP, Nefzi A. Peripherally Restricted Fused Heterocyclic Peptidomimetic Multifunctional Opioid Agonists as Novel, Potent Analgesics. ACS Med Chem Lett 2025; 16:388-396. [PMID: 40104791 PMCID: PMC11912268 DOI: 10.1021/acsmedchemlett.4c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Heterocyclic peptidomimetics are constrained compounds that mimic the biological efficacy of peptides while offering increased stability. We have previously generated a diazaheterocyclic peripherally selective, mixed-opioid agonist peptidomimetic that produced synergistic antinociception with decreased side effects. Working from two earlier templates, we report here the synthesis of 15 new diazaheterocyclic analogues. In vitro screening with radioligand competition binding assays and [35S]GTPγS assays demonstrated variable affinity for and activity at μ (MOR), δ (DOR), and κ (KOR) opioid receptors across the series, with three (2663-48, 2638-28 and 2638-33) displaying good affinity for DOR and/or KOR. All three compounds produced dose-dependent, opioid-receptor mediated antinociception in the mouse 55 °C warm-water tail-withdrawal and acetic-acid writhing assay, although a ratio of ED50 values in these assays suggested poor BBB penetration by 2638-33; results confirmed by testing with naloxone-methiodide. The data suggest these diazaheterocyclic mixed-activity, peripherally restricted opioid receptor agonists may hold potential as new, safer analgesics.
Collapse
Affiliation(s)
- Haylee R Hammond
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Prakash Chaudhari
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Center for Translational Science, Port Saint Lucie, Florida 34987, United States
| | - Ashley Bunnell
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Center for Translational Science, Port Saint Lucie, Florida 34987, United States
| | - Khadija Nefzi
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chongguang Chen
- Center for Substance Abuse Research and Biochemical Pharmacology Core, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Eighth Floor, Philadelphia, Pennsylvania 19140, United States
| | - Pingwei Zhao
- Center for Substance Abuse Research and Biochemical Pharmacology Core, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Eighth Floor, Philadelphia, Pennsylvania 19140, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Sabrina R Masood
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Colette T Dooley
- Technical Writer-Editor-Reviewer, Vero Beach, Florida 32960United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research and Biochemical Pharmacology Core, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Eighth Floor, Philadelphia, Pennsylvania 19140, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Adel Nefzi
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Center for Translational Science, Port Saint Lucie, Florida 34987, United States
- Department of Chemistry and Biochemistry, the School of Integrated Science and Humanity, College of Arts, Sciences & Education. Florida International University, 11200 S.W. Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
2
|
Havel V, Kruegel AC, Bechand B, McIntosh S, Stallings L, Hodges A, Wulf MG, Nelson M, Hunkele A, Ansonoff M, Pintar JE, Hwu C, Ople RS, Abi-Gerges N, Zaidi SA, Katritch V, Yang M, Javitch JA, Majumdar S, Hemby SE, Sames D. Oxa-Iboga alkaloids lack cardiac risk and disrupt opioid use in animal models. Nat Commun 2024; 15:8118. [PMID: 39304653 PMCID: PMC11415492 DOI: 10.1038/s41467-024-51856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Ibogaine and its main metabolite noribogaine provide important molecular prototypes for markedly different treatment of substance use disorders and co-morbid mental health illnesses. However, these compounds present a cardiac safety risk and a highly complex molecular mechanism. We introduce a class of iboga alkaloids - termed oxa-iboga - defined as benzofuran-containing iboga analogs and created via structural editing of the iboga skeleton. The oxa-iboga compounds lack the proarrhythmic adverse effects of ibogaine and noribogaine in primary human cardiomyocytes and show superior efficacy in animal models of opioid use disorder in male rats. They act as potent kappa opioid receptor agonists in vitro and in vivo, but exhibit atypical behavioral features compared to standard kappa opioid agonists. Oxa-noribogaine induces long-lasting suppression of morphine, heroin, and fentanyl intake after a single dose or a short treatment regimen, reversal of persistent opioid-induced hyperalgesia, and suppression of opioid drug seeking in rodent relapse models. As such, oxa-iboga compounds represent mechanistically distinct iboga analogs with therapeutic potential.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Ibogaine/analogs & derivatives
- Ibogaine/pharmacology
- Ibogaine/therapeutic use
- Rats
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Opioid-Related Disorders/drug therapy
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Rats, Sprague-Dawley
- Disease Models, Animal
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/genetics
- Alkaloids/pharmacology
- Hyperalgesia/chemically induced
- Hyperalgesia/drug therapy
Collapse
Affiliation(s)
- Václav Havel
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Andrew C Kruegel
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Benjamin Bechand
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Scot McIntosh
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Leia Stallings
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Alana Hodges
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Madalee G Wulf
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Mel Nelson
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Amanda Hunkele
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Michael Ansonoff
- Department of Neuroscience and Cell Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - John E Pintar
- Department of Neuroscience and Cell Biology, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Christopher Hwu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Rohini S Ople
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, 63110, USA
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Najah Abi-Gerges
- AnaBios Corporation, 1155 Island Ave, Suite 200, San Diego, CA, 92101, USA
| | - Saheem A Zaidi
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Chemistry, Bridge Institute, Michelson Center for Convergent Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mu Yang
- Mouse Neurobehavioral Core facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jonathan A Javitch
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Susruta Majumdar
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, 63110, USA
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Scott E Hemby
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
- The Zuckerman Mind Brain Behavior Institute at Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Ople R, Ramos-Gonzalez N, Li Q, Sobecks BL, Aydin D, Powers AS, Faouzi A, Polacco BJ, Bernhard SM, Appourchaux K, Sribhashyam S, Eans SO, Tsai BA, Dror RO, Varga BR, Wang H, Hüttenhain R, McLaughlin JP, Majumdar S. Signaling Modulation Mediated by Ligand Water Interactions with the Sodium Site at μOR. ACS CENTRAL SCIENCE 2024; 10:1490-1503. [PMID: 39220695 PMCID: PMC11363324 DOI: 10.1021/acscentsci.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
The mu opioid receptor (μOR) is a target for clinically used analgesics. However, adverse effects, such as respiratory depression and physical dependence, necessitate the development of alternative treatments. Recently we reported a novel strategy to design functionally selective opioids by targeting the sodium binding allosteric site in μOR with a supraspinally active analgesic named C6guano. Presently, to improve systemic activity of this ligand, we used structure-based design, identifying a new ligand named RO76 where the flexible alkyl linker and polar guanidine guano group is swapped with a benzyl alcohol, and the sodium site is targeted indirectly through waters. A cryoEM structure of RO76 bound to the μOR-Gi complex confirmed that RO76 interacts with the sodium site residues through a water molecule, unlike C6guano which engages the sodium site directly. Signaling assays coupled with APEX based proximity labeling show binding in the sodium pocket modulates receptor efficacy and trafficking. In mice, RO76 was systemically active in tail withdrawal assays and showed reduced liabilities compared to those of morphine. In summary, we show that targeting water molecules in the sodium binding pocket may be an avenue to modulate signaling properties of opioids, and which may potentially be extended to other G-protein coupled receptors where this site is conserved.
Collapse
Affiliation(s)
- Rohini
S. Ople
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Nokomis Ramos-Gonzalez
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Qiongyu Li
- Department
of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Briana L. Sobecks
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Deniz Aydin
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Alexander S. Powers
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Abdelfattah Faouzi
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Benjamin J. Polacco
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Sarah M. Bernhard
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kevin Appourchaux
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sashrik Sribhashyam
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shainnel O. Eans
- Department
of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United
States
| | - Bowen A. Tsai
- Department
of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United
States
| | - Ron O. Dror
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Balazs R. Varga
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Haoqing Wang
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ruth Hüttenhain
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jay P. McLaughlin
- Department
of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United
States
| | - Susruta Majumdar
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
4
|
Kajino K, Tokuda A, Saitoh T. Morphinan Evolution: The Impact of Advances in Biochemistry and Molecular Biology. J Biochem 2024; 175:337-355. [PMID: 38382631 DOI: 10.1093/jb/mvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Morphinan-based opioids, derived from natural alkaloids like morphine, codeine and thebaine, have long been pivotal in managing severe pain. However, their clinical utility is marred by significant side effects and high addiction potential. This review traces the evolution of the morphinan scaffold in light of advancements in biochemistry and molecular biology, which have expanded our understanding of opioid receptor pharmacology. We explore the development of semi-synthetic and synthetic morphinans, their receptor selectivity and the emergence of biased agonism as a strategy to dissociate analgesic properties from undesirable effects. By examining the molecular intricacies of opioid receptors and their signaling pathways, we highlight how receptor-type selectivity and signaling bias have informed the design of novel analgesics. This synthesis of historical and contemporary perspectives provides an overview of the morphinan landscape, underscoring the ongoing efforts to mitigate the problems facing opioids through smarter drug design. We also highlight that most morphinan derivatives show a preference for the G protein pathway, although detailed experimental comparisons are still necessary. This fact underscores the utility of the morphinan skeleton in future opioid drug discovery.
Collapse
Affiliation(s)
- Keita Kajino
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Akihisa Tokuda
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
5
|
Muratspahić E, Deibler K, Han J, Tomašević N, Jadhav KB, Olivé-Marti AL, Hochrainer N, Hellinger R, Koehbach J, Fay JF, Rahman MH, Hegazy L, Craven TW, Varga BR, Bhardwaj G, Appourchaux K, Majumdar S, Muttenthaler M, Hosseinzadeh P, Craik DJ, Spetea M, Che T, Baker D, Gruber CW. Design and structural validation of peptide-drug conjugate ligands of the kappa-opioid receptor. Nat Commun 2023; 14:8064. [PMID: 38052802 PMCID: PMC10698194 DOI: 10.1038/s41467-023-43718-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Despite the increasing number of GPCR structures and recent advances in peptide design, the development of efficient technologies allowing rational design of high-affinity peptide ligands for single GPCRs remains an unmet challenge. Here, we develop a computational approach for designing conjugates of lariat-shaped macrocyclized peptides and a small molecule opioid ligand. We demonstrate its feasibility by discovering chemical scaffolds for the kappa-opioid receptor (KOR) with desired pharmacological activities. The designed De Novo Cyclic Peptide (DNCP)-β-naloxamine (NalA) exhibit in vitro potent mixed KOR agonism/mu-opioid receptor (MOR) antagonism, nanomolar binding affinity, selectivity, and efficacy bias at KOR. Proof-of-concept in vivo efficacy studies demonstrate that DNCP-β-NalA(1) induces a potent KOR-mediated antinociception in male mice. The high-resolution cryo-EM structure (2.6 Å) of the DNCP-β-NalA-KOR-Gi1 complex and molecular dynamics simulations are harnessed to validate the computational design model. This reveals a network of residues in ECL2/3 and TM6/7 controlling the intrinsic efficacy of KOR. In general, our computational de novo platform overcomes extensive lead optimization encountered in ultra-large library docking and virtual small molecule screening campaigns and offers innovation for GPCR ligand discovery. This may drive the development of next-generation therapeutics for medical applications such as pain conditions.
Collapse
Affiliation(s)
- Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Kristine Deibler
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Novo Nordisk Research Center Seattle, Novo Nordisk A/S, 530 Fairview Ave N #5000, Seattle, WA, 97403, USA
| | - Jianming Han
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Kirtikumar B Jadhav
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Aina-Leonor Olivé-Marti
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Nadine Hochrainer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Faculty for Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jonathan F Fay
- Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Mohammad Homaidur Rahman
- Department of Pharmaceutical and Administrative Sciences, Saint Louis College of Pharmacy, University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, 63110, USA
| | - Lamees Hegazy
- Department of Pharmaceutical and Administrative Sciences, Saint Louis College of Pharmacy, University of Health Sciences & Pharmacy in St. Louis, St. Louis, MO, 63110, USA
| | - Timothy W Craven
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Balazs R Varga
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gaurav Bhardwaj
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Parisa Hosseinzadeh
- Department of Bioengineering, Knight Campus, University of Oregon, Eugene, OR, 97403, USA
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, WA, 98195, USA.
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
6
|
Ramos-Gonzalez N, Paul B, Majumdar S. IUPHAR themed review: Opioid efficacy, bias, and selectivity. Pharmacol Res 2023; 197:106961. [PMID: 37844653 DOI: 10.1016/j.phrs.2023.106961] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Drugs acting at the opioid receptor family are clinically used to treat chronic and acute pain, though they represent the second line of treatment behind GABA analogs, antidepressants and SSRI's. Within the opioid family mu and kappa opioid receptor are commonly targeted. However, activation of the mu opioid receptor has side effects of constipation, tolerance, dependence, euphoria, and respiratory depression; activation of the kappa opioid receptor leads to dysphoria and sedation. The side effects of mu opioid receptor activation have led to mu receptor drugs being widely abused with great overdose risk. For these reasons, newer safer opioid analgesics are in high demand. For many years a focus within the opioid field was finding drugs that activated the G protein pathway at mu opioid receptor, without activating the β-arrestin pathway, known as biased agonism. Recent advances have shown that this may not be the way forward to develop safer analgesics at mu opioid receptor, though there is still some promise at the kappa opioid receptor. Here we discuss recent novel approaches to develop safer opioid drugs including efficacy vs bias and fine-tuning receptor activation by targeting sub-pockets in the orthosteric site, we explore recent works on the structural basis of bias, and we put forward the suggestion that Gα subtype selectivity may be an exciting new area of interest.
Collapse
Affiliation(s)
- Nokomis Ramos-Gonzalez
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Barnali Paul
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA
| | - Susruta Majumdar
- Department of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, Saint Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Karaki F, Takamori T, Kawakami K, Sakurai S, Hidaka K, Ishii K, Oki T, Sato N, Atsumi N, Ashizawa K, Taguchi A, Ura A, Naruse T, Hirayama S, Nonaka M, Miyano K, Uezono Y, Fujii H. Discovery of 7-Azanorbornane-Based Dual Agonists for the Delta and Kappa Opioid Receptors through an In Situ Screening Protocol. Molecules 2023; 28:6925. [PMID: 37836768 PMCID: PMC10574725 DOI: 10.3390/molecules28196925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
In medicinal chemistry, the copper-catalyzed click reaction is used to prepare ligand candidates. This reaction is so clean that the bioactivities of the products can be determined without purification. Despite the advantages of this in situ screening protocol, the applicability of this method for transmembrane proteins has not been validated due to the incompatibility with copper catalysts. To address this point, we performed ligand screening for the µ, δ, and κ opioid receptors using this protocol. As we had previously reported the 7-azanorbornane skeleton as a privileged scaffold for the G protein-coupled receptors, we performed the click reactions between various 7-substituted 2-ethynyl-7-azanorbornanes and azides. Screening assays were performed without purification using the CellKeyTM system, and the putative hit compounds were re-synthesized and re-evaluated. Although the "hit" compounds for the µ and the δ receptors were totally inactive after purifications, three of the four "hits" for the κ receptor were true agonists for this receptor and also showed activities for the δ receptor. Although false positive/negative results exist as in other screening projects for soluble proteins, this in situ method is effective in identifying novel ligands for transmembrane proteins.
Collapse
Affiliation(s)
- Fumika Karaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Taro Takamori
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Koumei Kawakami
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Sae Sakurai
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kyoko Hidaka
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kei Ishii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoya Oki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Noriko Sato
- Analytical Unit for Organic Chemistry, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nao Atsumi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Karin Ashizawa
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Ai Taguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Asuka Ura
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Toko Naruse
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miki Nonaka
- Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kanako Miyano
- Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
8
|
Zarin MKZ, Dehaen W, Salehi P, Asl AAB. Synthesis and Modification of Morphine and Codeine, Leading to Diverse Libraries with Improved Pain Relief Properties. Pharmaceutics 2023; 15:1779. [PMID: 37376226 DOI: 10.3390/pharmaceutics15061779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Morphine and codeine, two of the most common opioids, are widely used in the clinic for different types of pain. Morphine is one of the most potent agonists for the μ-opioid receptor, leading to the strongest analgesic effect. However, due to their association with serious side effects such as respiratory depression, constriction, euphoria, and addiction, it is necessary for derivatives of morphine and codeine to be developed to overcome such drawbacks. The development of analgesics based on the opiate structure that can be safe, orally active, and non-addictive is one of the important fields in medicinal chemistry. Over the years, morphine and codeine have undergone many structural changes. The biological investigation of semi-synthetic derivatives of both morphine and codeine, especially morphine, shows that studies on these structures are still significant for the development of potent opioid antagonists and agonists. In this review, we summarize several decade-long attempts to synthesize new analogues of morphine and codeine. Our summary placed a focus on synthetic derivatives derived from ring A (positions 1, 2, and 3), ring C (position 6), and N-17 moiety.
Collapse
Affiliation(s)
- Mona Kamelan Zargar Zarin
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Peyman Salehi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| | - Amir Ata Bahmani Asl
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| |
Collapse
|
9
|
Varga B, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics-A review of old and upcoming targets. Br J Pharmacol 2023; 180:975-993. [PMID: 34826881 PMCID: PMC9133275 DOI: 10.1111/bph.15760] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the μ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the μ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Balazs Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
10
|
Li M, Stevens DL, Arriaga M, Townsend EA, Mendez RE, Blajkevch NA, Selley DE, Banks ML, Negus SS, Dewey WL, Zhang Y. Characterization of a Potential KOR/DOR Dual Agonist with No Apparent Abuse Liability via a Complementary Structure-Activity Relationship Study on Nalfurafine Analogues. ACS Chem Neurosci 2022; 13:3608-3628. [PMID: 36449691 PMCID: PMC10243363 DOI: 10.1021/acschemneuro.2c00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Discovery of analgesics void of abuse liability is critical to battle the opioid crisis in the United States. Among many strategies to achieve this goal, targeting more than one opioid receptor seems promising to minimize this unwanted side effect while achieving a reasonable therapeutic profile. In the process of understanding the structure-activity relationship of nalfurafine, we identified a potential analgesic agent, NMF, as a dual kappa opioid receptor/delta opioid receptor agonist with minimum abuse liability. Further characterizations, including primary in vitro ADMET studies (hERG toxicity, plasma protein binding, permeability, and hepatic metabolism), and in vivo pharmacodynamic and toxicity profiling (time course, abuse liability, tolerance, withdrawal, respiratory depression, body weight, and locomotor activity) further confirmed NMF as a promising drug candidate for future development.
Collapse
Affiliation(s)
- Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - David L. Stevens
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Michelle Arriaga
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - E. Andrew Townsend
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Rolando E. Mendez
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Nadejda A. Blajkevch
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - William L. Dewey
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
11
|
Khan MIH, Sawyer BJ, Akins NS, Le HV. A systematic review on the kappa opioid receptor and its ligands: New directions for the treatment of pain, anxiety, depression, and drug abuse. Eur J Med Chem 2022; 243:114785. [PMID: 36179400 DOI: 10.1016/j.ejmech.2022.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
Kappa opioid receptor (KOR) is a member of the opioid receptor system, the G protein-coupled receptors that are expressed throughout the peripheral and central nervous systems and play crucial roles in the modulation of antinociception and a variety of behavioral states like anxiety, depression, and drug abuse. KOR agonists are known to produce potent analgesic effects and have been used clinically for the treatment of pain, while KOR antagonists have shown efficacy in the treatment of anxiety and depression. This review summarizes the history, design strategy, discovery, and development of KOR ligands. KOR agonists are classified as non-biased, G protein-biased, and β-arrestin recruitment-biased, according to their degrees of bias. The mechanisms and associated effects of the G protein signaling pathway and β-arrestin recruitment signaling pathway are also discussed. Meanwhile, KOR antagonists are classified as long-acting and short-acting, based on their half-lives. In addition, we have special sections for mixed KOR agonists and selective peripheral KOR agonists. The mechanisms of action and pharmacokinetic, pharmacodynamic, and behavioral studies for each of these categories are also discussed in this review.
Collapse
Affiliation(s)
- Md Imdadul H Khan
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Benjamin J Sawyer
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Nicholas S Akins
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Hoang V Le
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
12
|
Paul B, Sribhashyam S, Majumdar S. Opioid signaling and design of analgesics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 195:153-176. [PMID: 36707153 PMCID: PMC10325139 DOI: 10.1016/bs.pmbts.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Clinical treatment of acute to severe pain relies on the use of opioids. While their potency is significant, there are considerable side effects that can negatively affect patients. Their rise in usage has correlated with the current opioid epidemic in the United States, which has led to more than 70,000 deaths per year (Volkow and Blanco, 2021). Opioid-related drug development aims to make target compounds that show strong potency but with diminished side effects. Research into pharmaceuticals that could act as potential alternatives to current pains medications has relied on mechanistic insights of opioid receptors, a class of G-protein coupled receptors (GPCRs), and biased agonism, a common phenomenon among pharmaceutical compounds where downstream effects can be altered at the same receptor via different agonists. Opioids function typically by binding to an active site on the extracellular portion of opioid receptors. Once activated, the opioid receptor initiates a G-protein signaling pathway and/or the β-arrestin2 pathway. The proposed concept for the development of safe analgesics around mu and kappa opioid receptor subtypes has focused on not recruiting β-arrestin2 (biased agonism) and/or having low efficacy at the receptor (partial agonism). By altering chemical motifs on a common scaffold, chemists can take advantage of biased agonism as well as create compounds with low intrinsic efficacy for the desired treatments. This review will focus on ligands with bias profile, signaling aspects of the receptor and probe into the structural basis of receptor that leads to bias and/or partial agonism.
Collapse
Affiliation(s)
- Barnali Paul
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Sashrik Sribhashyam
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
13
|
Cai T, Abbu KA, Liu Y, Xie L. DeepREAL: A Deep Learning Powered Multi-scale Modeling Framework for Predicting Out-of-distribution Ligand-induced GPCR Activity. Bioinformatics 2022; 38:2561-2570. [PMID: 35274689 PMCID: PMC9048666 DOI: 10.1093/bioinformatics/btac154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Motivation Drug discovery has witnessed intensive exploration of predictive modeling of drug–target physical interactions over two decades. However, a critical knowledge gap needs to be filled for correlating drug–target interactions with clinical outcomes: predicting genome-wide receptor activities or function selectivity, especially agonist versus antagonist, induced by novel chemicals. Two major obstacles compound the difficulty on this task: known data of receptor activity is far too scarce to train a robust model in light of genome-scale applications, and real-world applications need to deploy a model on data from various shifted distributions. Results To address these challenges, we have developed an end-to-end deep learning framework, DeepREAL, for multi-scale modeling of genome-wide ligand-induced receptor activities. DeepREAL utilizes self-supervised learning on tens of millions of protein sequences and pre-trained binary interaction classification to solve the data distribution shift and data scarcity problems. Extensive benchmark studies on G-protein coupled receptors (GPCRs), which simulate real-world scenarios, demonstrate that DeepREAL achieves state-of-the-art performances in out-of-distribution settings. DeepREAL can be extended to other gene families beyond GPCRs. Availability and implementation All data used are downloaded from Pfam (Mistry et al., 2020), GLASS (Chan et al., 2015) and IUPHAR/BPS and the data from reference (Sakamuru et al., 2021). Readers are directed to their official website for original data. Code is available on GitHub https://github.com/XieResearchGroup/DeepREAL. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tian Cai
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, 10016, USA
| | - Kyra Alyssa Abbu
- Department of Computer Science, Hunter College, The City University of New York, New York, 10065, USA
| | - Yang Liu
- Department of Computer Science, Hunter College, The City University of New York, New York, 10065, USA
| | - Lei Xie
- Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, 10016, USA.,Department of Computer Science, Hunter College, The City University of New York, New York, 10065, USA.,Helen and Robert Appel Alzheimer's Disease Research Institute,Feil Family Brain & Mind Research Institute,Weill Cornell Medicine,Cornell University, New York, 10021, USA
| |
Collapse
|
14
|
Puls K, Schmidhammer H, Wolber G, Spetea M. Mechanistic Characterization of the Pharmacological Profile of HS-731, a Peripherally Acting Opioid Analgesic, at the µ-, δ-, κ-Opioid and Nociceptin Receptors. Molecules 2022; 27:919. [PMID: 35164182 PMCID: PMC8840597 DOI: 10.3390/molecules27030919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Accumulated preclinical and clinical data show that peripheral restricted opioids provide pain relief with reduced side effects. The peripherally acting opioid analgesic HS-731 is a potent dual μ-/δ-opioid receptor (MOR/DOR) full agonist, and a weak, partial agonist at the κ-opioid receptor (KOR). However, its binding mode at the opioid receptors remains elusive. Here, we present a comprehensive in silico evaluation of HS-731 binding at all opioid receptors. We provide insights into dynamic interaction patterns explaining the different binding and activity of HS-731 on the opioid receptors. For this purpose, we conducted docking, performed molecular dynamics (MD) simulations and generated dynamic pharmacophores (dynophores). Our results highlight two residues important for HS-731 recognition at the classical opioid receptors (MOR, DOR and KOR), particular the conserved residue 5.39 (K) and the non-conserved residue 6.58 (MOR: K, DOR: W and KOR: E). Furthermore, we assume a salt bridge between the transmembrane helices (TM) 5 and 6 via K2275.39 and E2976.58 to be responsible for the partial agonism of HS-731 at the KOR. Additionally, we experimentally demonstrated the absence of affinity of HS-731 to the nociceptin/orphanin FQ peptide (NOP) receptor. We consider the morphinan phenol Y1303.33 responsible for this affinity lack. Y1303.33 points deep into the NOP receptor binding pocket preventing HS-731 binding to the orthosteric binding pocket. These findings provide significant structural insights into HS-731 interaction pattern with the opioid receptors that are important for understanding the pharmacology of this peripheral opioid analgesic.
Collapse
Affiliation(s)
- Kristina Puls
- Department of Pharmaceutical Chemistry, Institute of Pharmcy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| | - Gerhard Wolber
- Department of Pharmaceutical Chemistry, Institute of Pharmcy, Freie Universität Berlin, Königin-Luise-Str. 2+4, D-14195 Berlin, Germany;
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria;
| |
Collapse
|
15
|
Uenohara Y, Tsumura S, Hirayama S, Higashi E, Watanabe Y, Gouda H, Nagase H, Fujii H. Morphinan derivatives with an oxabicyclo[3.2.1]octane structure as dual agonists toward δ and κ opioid receptors. Bioorg Med Chem 2022; 53:116552. [PMID: 34894610 DOI: 10.1016/j.bmc.2021.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
The κ opioid receptor (KOR) is one of the promising targets to develop analgesics lacking morphine like side effects. To seek a novel KOR agonist we designed 6-amide derivatives with an oxabicyclo[3.2.1]octane structure based on a proposed active conformation of a selective KOR agonist nalfurafine. All the synthesized compounds strongly bound to the KOR and some compound showed KOR selectivities. 6R-Amides were more potent and efficacious KOR agonists than the corresponding 6S-isomers. However, most 6-amide derivatives were partial KOR agonist. Conformational analyses of 6R- and 6S-amide derivatives and nalfurafine well accounted for the difference of KOR agonistic activities between two diastereomers. Surprisingly, the tested N-H amides were full δ opioid receptor (DOR) agonists. Among the tested compounds 7a with benzamide moiety was the most potent dual DOR/KOR agonist. On the other hand, 6S-phenylacetamide 8b was potent full DOR agonist with less efficacious agonist activity for the μ receptor and KOR. 6-Amide derivatives with an oxabicyclo[3.2.1]octane structure were expected to be a promising fundamental skeleton for the dual DOR/KOR agonists and/or selective DOR agonists.
Collapse
Affiliation(s)
- Yuka Uenohara
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Saori Tsumura
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eika Higashi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yurie Watanabe
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
16
|
Chakraborty S, Uprety R, Slocum ST, Irie T, Le Rouzic V, Li X, Wilson LL, Scouller B, Alder AF, Kruegel AC, Ansonoff M, Varadi A, Eans SO, Hunkele A, Allaoa A, Kalra S, Xu J, Pan YX, Pintar J, Kivell BM, Pasternak GW, Cameron MD, McLaughlin JP, Sames D, Majumdar S. Oxidative Metabolism as a Modulator of Kratom's Biological Actions. J Med Chem 2021; 64:16553-16572. [PMID: 34783240 DOI: 10.1021/acs.jmedchem.1c01111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The leaves of Mitragyna speciosa (kratom), a plant native to Southeast Asia, are increasingly used as a pain reliever and for attenuation of opioid withdrawal symptoms. Using the tools of natural products chemistry, chemical synthesis, and pharmacology, we provide a detailed in vitro and in vivo pharmacological characterization of the alkaloids in kratom. We report that metabolism of kratom's major alkaloid, mitragynine, in mice leads to formation of (a) a potent mu opioid receptor agonist antinociceptive agent, 7-hydroxymitragynine, through a CYP3A-mediated pathway, which exhibits reinforcing properties, inhibition of gastrointestinal (GI) transit and reduced hyperlocomotion, (b) a multifunctional mu agonist/delta-kappa antagonist, mitragynine pseudoindoxyl, through a CYP3A-mediated skeletal rearrangement, displaying reduced hyperlocomotion, inhibition of GI transit and reinforcing properties, and (c) a potentially toxic metabolite, 3-dehydromitragynine, through a non-CYP oxidation pathway. Our results indicate that the oxidative metabolism of the mitragynine template beyond 7-hydroxymitragynine may have implications in its overall pharmacology in vivo.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Takeshi Irie
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Valerie Le Rouzic
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Xiaohai Li
- Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Lisa L Wilson
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, United States
| | - Brittany Scouller
- Centre for Biodiscovery, School of Biological Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Amy F Alder
- Centre for Biodiscovery, School of Biological Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew C Kruegel
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Michael Ansonoff
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-8021, United States
| | - Andras Varadi
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, United States
| | - Amanda Hunkele
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Abdullah Allaoa
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Sanjay Kalra
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Jin Xu
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - John Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-8021, United States
| | - Bronwyn M Kivell
- Centre for Biodiscovery, School of Biological Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Michael D Cameron
- Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
17
|
Gutridge AM, Chakraborty S, Varga BR, Rhoda ES, French AR, Blaine AT, Royer QH, Cui H, Yuan J, Cassell RJ, Szabó M, Majumdar S, van Rijn RM. Evaluation of Kratom Opioid Derivatives as Potential Treatment Option for Alcohol Use Disorder. Front Pharmacol 2021; 12:764885. [PMID: 34803709 PMCID: PMC8596301 DOI: 10.3389/fphar.2021.764885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose:Mitragyna speciosa extract and kratom alkaloids decrease alcohol consumption in mice at least in part through actions at the δ-opioid receptor (δOR). However, the most potent opioidergic kratom alkaloid, 7-hydroxymitragynine, exhibits rewarding properties and hyperlocomotion presumably due to preferred affinity for the mu opioid receptor (µOR). We hypothesized that opioidergic kratom alkaloids like paynantheine and speciogynine with reduced µOR potency could provide a starting point for developing opioids with an improved therapeutic window to treat alcohol use disorder. Experimental Approach: We characterized paynantheine, speciociliatine, and four novel kratom-derived analogs for their ability to bind and activate δOR, µOR, and κOR. Select opioids were assessed in behavioral assays in male C57BL/6N WT and δOR knockout mice. Key Results: Paynantheine (10 mg∙kg−1, i.p.) produced aversion in a limited conditioned place preference (CPP) paradigm but did not produce CPP with additional conditioning sessions. Paynantheine did not produce robust antinociception but did block morphine-induced antinociception and hyperlocomotion. Yet, at 10 and 30 mg∙kg−1 doses (i.p.), paynantheine did not counteract morphine CPP. 7-hydroxypaynantheine and 7-hydroxyspeciogynine displayed potency at δOR but limited µOR potency relative to 7-hydroxymitragynine in vitro, and dose-dependently decreased voluntary alcohol consumption in WT but not δOR in KO mice. 7-hydroxyspeciogynine has a maximally tolerated dose of at least 10 mg∙kg−1 (s.c.) at which it did not produce significant CPP neither alter general locomotion nor induce noticeable seizures. Conclusion and Implications: Derivatizing kratom alkaloids with the goal of enhancing δOR potency and reducing off-target effects could provide a pathway to develop novel lead compounds to treat alcohol use disorder with an improved therapeutic window.
Collapse
Affiliation(s)
- Anna M Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Soumen Chakraborty
- Center for Clinical Pharmacology, University of Heath Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, United States
| | - Balazs R Varga
- Center for Clinical Pharmacology, University of Heath Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, United States
| | - Elizabeth S Rhoda
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Alexander R French
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
| | - Arryn T Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Quinten H Royer
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Haoyue Cui
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Jinling Yuan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States
| | | | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Heath Sciences and Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, MO, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States
| |
Collapse
|
18
|
Chakraborty S, Uprety R, Daibani AE, Rouzic VL, Hunkele A, Appourchaux K, Eans SO, Nuthikattu N, Jilakara R, Thammavong L, Pasternak GW, Pan YX, McLaughlin JP, Che T, Majumdar S. Kratom Alkaloids as Probes for Opioid Receptor Function: Pharmacological Characterization of Minor Indole and Oxindole Alkaloids from Kratom. ACS Chem Neurosci 2021; 12:2661-2678. [PMID: 34213886 PMCID: PMC8328003 DOI: 10.1021/acschemneuro.1c00149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dry leaves of kratom (mitragyna speciosa) are anecdotally consumed as pain relievers and antidotes against opioid withdrawal and alcohol use disorders. There are at least 54 alkaloids in kratom; however, investigations to date have focused around mitragynine, 7-hydroxy mitragynine (7OH), and mitragynine pseudoindoxyl (MP). Herein, we probe a few minor indole and oxindole based alkaloids, reporting the receptor affinity, G-protein activity, and βarrestin-2 signaling of corynantheidine, corynoxine, corynoxine B, mitraciliatine, and isopaynantheine at mouse and human opioid receptors. We identify corynantheidine as a mu opioid receptor (MOR) partial agonist, whereas its oxindole derivative corynoxine was an MOR full agonist. Similarly, another alkaloid mitraciliatine was found to be an MOR partial agonist, while isopaynantheine was a KOR agonist which showed reduced βarrestin-2 recruitment. Corynantheidine, corynoxine, and mitraciliatine showed MOR dependent antinociception in mice, but mitraciliatine and corynoxine displayed attenuated respiratory depression and hyperlocomotion compared to the prototypic MOR agonist morphine in vivo when administered supraspinally. Isopaynantheine on the other hand was identified as the first kratom derived KOR agonist in vivo. While these minor alkaloids are unlikely to play the majority role in the biological actions of kratom, they represent excellent starting points for further diversification as well as distinct efficacy and signaling profiles with which to probe opioid actions in vivo.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amal E Daibani
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Valerie L Rouzic
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amanda Hunkele
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Nitin Nuthikattu
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rahul Jilakara
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lisa Thammavong
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
19
|
Grinnell SG, Uprety R, Varadi A, Subrath J, Hunkele A, Pan YX, Pasternak GW, Majumdar S. Synthesis and Characterization of Azido Aryl Analogs of IBNtxA for Radio-Photoaffinity Labeling Opioid Receptors in Cell Lines and in Mouse Brain. Cell Mol Neurobiol 2021; 41:977-993. [PMID: 32424771 PMCID: PMC7671950 DOI: 10.1007/s10571-020-00867-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Mu opioid receptors (MOR-1) mediate the biological actions of clinically used opioids such as morphine, oxycodone, and fentanyl. The mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, generating multiple splice variants. One type of splice variants are truncated variants containing only six transmembrane domains (6TM) that mediate the analgesic action of novel opioid drugs such as 3'-iodobenzoylnaltrexamide (IBNtxA). Previously, we have shown that IBNtxA is a potent analgesic effective in a spectrum of pain models but lacks many side-effects associated with traditional opiates. In order to investigate the targets labeled by IBNtxA, we synthesized two arylazido analogs of IBNtxA that allow photolabeling of mouse mu opioid receptors (mMOR-1) in transfected cell lines and mMOR-1 protein complexes that may comprise the 6TM sites in mouse brain. We demonstrate that both allyl and alkyne arylazido derivatives of IBNtxA efficiently radio-photolabeled mMOR-1 in cell lines and MOR-1 protein complexes expressed either exogenously or endogenously, as well as found in mouse brain. In future, design and application of such radio-photolabeling ligands with a conjugated handle will provide useful tools for further isolating or purifying MOR-1 to investigate site specific ligand-protein contacts and its signaling complexes.
Collapse
Affiliation(s)
- Steven G Grinnell
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| | - Rajendra Uprety
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Andras Varadi
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Joan Subrath
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Amanda Hunkele
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ying Xian Pan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, St Louis College of Pharmacy and Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
20
|
Chakraborty S, Majumdar S. Natural Products for the Treatment of Pain: Chemistry and Pharmacology of Salvinorin A, Mitragynine, and Collybolide. Biochemistry 2021; 60:1381-1400. [PMID: 32930582 PMCID: PMC7982354 DOI: 10.1021/acs.biochem.0c00629] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pain remains a very pervasive problem throughout medicine. Classical pain management is achieved through the use of opiates belonging to the mu opioid receptor (MOR) class, which have significant side effects that hinder their utility. Pharmacologists have been trying to develop opioids devoid of side effects since the isolation of morphine from papaver somniferum, more commonly known as opium by Sertürner in 1804. The natural products salvinorin A, mitragynine, and collybolide represent three nonmorphinan natural product-based targets, which are potent selective agonists of opioid receptors, and emerging next-generation analgesics. In this work, we review the phytochemistry and medicinal chemistry efforts on these templates and their effects on affinity, selectivity, analgesic actions, and a myriad of other opioid-receptor-related behavioral effects.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States; Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
21
|
Zaidi SA, Katritch V. Structural Characterization of KOR Inactive and Active States for 3D Pharmacology and Drug Discovery. Handb Exp Pharmacol 2021; 271:41-64. [PMID: 33945028 DOI: 10.1007/164_2021_461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The structure of the human kappa opioid receptor (KOR) in complex with the long-acting antagonist JDTic was solved crystallographically in 2012 and, along with structures of other opioid receptors, revolutionized our understanding of opioid system function and pharmacology. More recently, active state KOR structure was also determined, giving important insights into activation mechanisms of the receptor. In this review, we will discuss how the understanding of atomistic structures of KOR established a key platform for deciphering details of subtype and functional selectivity of KOR-targeting ligands and for discovery of new chemical probes with potentially beneficial pharmacological profiles.
Collapse
Affiliation(s)
- Saheem A Zaidi
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA. .,Department of Chemistry, Bridge Institute, USC Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Atigari DV, Paton KF, Uprety R, Váradi A, Alder AF, Scouller B, Miller JH, Majumdar S, Kivell BM. The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain. Neuropharmacology 2021; 185:108445. [PMID: 33383089 PMCID: PMC8344368 DOI: 10.1016/j.neuropharm.2020.108445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/20/2020] [Accepted: 12/20/2020] [Indexed: 01/04/2023]
Abstract
Effective treatments for chronic pain without abuse liability are urgently needed. One in 5 adults suffer chronic pain and half of these patients report inefficient treatment. Mu opioid receptor agonists (MOP), including oxycodone, tramadol and morphine, are often prescribed to treat chronic pain, however, use of drugs targeting MOP can lead to drug dependency, tolerance and overdose deaths. Kappa opioid receptor (KOP) agonists have antinociceptive effects without abuse potential; however, they have not been utilised clinically due to dysphoria and sedation. We hypothesise that mixed opioid receptor agonists targeting the KOP and delta opioid receptor (DOP) would have a wider therapeutic index, with the rewarding effects of DOP negating the negative effects of KOP. MP1104, an analogue of 3-Iodobenzoyl naltrexamine, is a novel mixed opioid receptor agonist with potent antinociceptive effects mediated via KOP and DOP in mice without rewarding or aversive effects. In this study, we show MP1104 has potent, long-acting antinociceptive effects in the warm-water tail-withdrawal assay in male and female mice and rats; and is longer acting than morphine. In the paclitaxel-induced neuropathic pain model in mice, MP1104 reduced both mechanical and cold allodynia and unlike morphine, did not produce tolerance when administered daily for 23 days. Moreover, MP1104 did not induce sedative effects in the open-field locomotor activity test, respiratory depression in mice using whole-body plethysmography, or have cross-tolerance with morphine. This data supports the therapeutic development of mixed opioid receptor agonists, particularly mixed KOP/DOP agonists, as non-addictive pain medications with reduced tolerance.
Collapse
Affiliation(s)
- Diana Vivian Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Kelly Frances Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - András Váradi
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Amy Frances Alder
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Brittany Scouller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - John H Miller
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Susruta Majumdar
- Center of Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA
| | - Bronwyn Maree Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
23
|
Uprety R, Che T, Zaidi SA, Grinnell SG, Varga BR, Faouzi A, Slocum ST, Allaoa A, Varadi A, Nelson M, Bernhard SM, Kulko E, Le Rouzic V, Eans SO, Simons CA, Hunkele A, Subrath J, Pan YX, Javitch JA, McLaughlin JP, Roth BL, Pasternak GW, Katritch V, Majumdar S. Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. eLife 2021; 10:e56519. [PMID: 33555255 PMCID: PMC7909954 DOI: 10.7554/elife.56519] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
Controlling receptor functional selectivity profiles for opioid receptors is a promising approach for discovering safer analgesics; however, the structural determinants conferring functional selectivity are not well understood. Here, we used crystal structures of opioid receptors, including the recently solved active state kappa opioid complex with MP1104, to rationally design novel mixed mu (MOR) and kappa (KOR) opioid receptor agonists with reduced arrestin signaling. Analysis of structure-activity relationships for new MP1104 analogs points to a region between transmembrane 5 (TM5) and extracellular loop (ECL2) as key for modulation of arrestin recruitment to both MOR and KOR. The lead compounds, MP1207 and MP1208, displayed MOR/KOR Gi-partial agonism with diminished arrestin signaling, showed efficient analgesia with attenuated liabilities, including respiratory depression and conditioned place preference and aversion in mice. The findings validate a novel structure-inspired paradigm for achieving beneficial in vivo profiles for analgesia through different mechanisms that include bias, partial agonism, and dual MOR/KOR agonism.
Collapse
Affiliation(s)
- Rajendra Uprety
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Tao Che
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University in St. Louis School of MedicineSt. LouisUnited States
| | - Saheem A Zaidi
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Steven G Grinnell
- Division of Molecular Therapeutics, New York State Psychiatric Institute and Departments of Psychiatry, Pharmacology, Columbia University Vagelos College of Physicians & SurgeonsNew YorkUnited States
| | - Balázs R Varga
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University in St. Louis School of MedicineSt. LouisUnited States
| | - Abdelfattah Faouzi
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University in St. Louis School of MedicineSt. LouisUnited States
| | - Samuel T Slocum
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Abdullah Allaoa
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - András Varadi
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Melissa Nelson
- Division of Molecular Therapeutics, New York State Psychiatric Institute and Departments of Psychiatry, Pharmacology, Columbia University Vagelos College of Physicians & SurgeonsNew YorkUnited States
| | - Sarah M Bernhard
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
| | - Elizaveta Kulko
- Division of Molecular Therapeutics, New York State Psychiatric Institute and Departments of Psychiatry, Pharmacology, Columbia University Vagelos College of Physicians & SurgeonsNew YorkUnited States
| | - Valerie Le Rouzic
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of FloridaGainesvilleUnited States
| | - Chloe A Simons
- Department of Pharmacodynamics, University of FloridaGainesvilleUnited States
| | - Amanda Hunkele
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joan Subrath
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Department of Anesthesiology, Rutgers New Jersey Medical School, New JerseyNewarkUnited States
| | - Jonathan A Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute and Departments of Psychiatry, Pharmacology, Columbia University Vagelos College of Physicians & SurgeonsNew YorkUnited States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of FloridaGainesvilleUnited States
| | - Bryan L Roth
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Susruta Majumdar
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University in St. Louis School of MedicineSt. LouisUnited States
| |
Collapse
|
24
|
Faouzi A, Uprety R, Gomes I, Massaly N, Keresztes AI, Le Rouzic V, Gupta A, Zhang T, Yoon HJ, Ansonoff M, Allaoa A, Pan YX, Pintar J, Morón JA, Streicher JM, Devi LA, Majumdar S. Synthesis and Pharmacology of a Novel μ-δ Opioid Receptor Heteromer-Selective Agonist Based on the Carfentanyl Template. J Med Chem 2020; 63:13618-13637. [PMID: 33170687 DOI: 10.1021/acs.jmedchem.0c00901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we studied a series of carfentanyl amide-based opioid derivatives targeting the mu opioid receptor (μOR) and the delta opioid receptor (δOR) heteromer as a credible novel target in pain management therapy. We identified a lead compound named MP135 that exhibits high G-protein activity at μ-δ heteromers compared to the homomeric δOR or μOR and low β-arrestin2 recruitment activity at all three. Furthermore, MP135 exhibits distinct signaling profile, as compared to the previously identified agonist targeting μ-δ heteromers, CYM51010. Pharmacological characterization of MP135 supports the utility of this compound as a molecule that could be developed as an antinociceptive agent similar to morphine in rodents. In vivo characterization reveals that MP135 maintains untoward side effects such as respiratory depression and reward behavior; together, these results suggest that optimization of MP135 is necessary for the development of therapeutics that suppress the classical side effects associated with conventional clinical opioids.
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Center for Clinical Pharmacology, St Louis College of Pharmacy and Washington University, School of Medicine, St. Louis, Missouri 63110, United States.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Attila I Keresztes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arkansas 85724, United States
| | - Valerie Le Rouzic
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tiffany Zhang
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Hye Jean Yoon
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Michael Ansonoff
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, United States
| | - Abdullah Allaoa
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - John Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, United States
| | - Jose A Morón
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Department of Neuroscience and Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arkansas 85724, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, St Louis College of Pharmacy and Washington University, School of Medicine, St. Louis, Missouri 63110, United States.,Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
25
|
Paton KF, Atigari DV, Kaska S, Prisinzano T, Kivell BM. Strategies for Developing κ Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects. J Pharmacol Exp Ther 2020; 375:332-348. [PMID: 32913006 PMCID: PMC7589957 DOI: 10.1124/jpet.120.000134] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
There is significant need to find effective, nonaddictive pain medications. κ Opioid receptor (KOPr) agonists have been studied for decades but have recently received increased attention because of their analgesic effects and lack of abuse potential. However, a range of side effects have limited the clinical development of these drugs. There are several strategies currently used to develop safer and more effective KOPr agonists. These strategies include identifying G-protein-biased agonists, developing peripherally restricted KOPr agonists without centrally mediated side effects, and developing mixed opioid agonists, which target multiple receptors at specific ratios to balance side-effect profiles and reduce tolerance. Here, we review the latest developments in research related to KOPr agonists for the treatment of pain. SIGNIFICANCE STATEMENT: This review discusses strategies for developing safer κ opioid receptor (KOPr) agonists with therapeutic potential for the treatment of pain. Although one strategy is to modify selective KOPr agonists to create peripherally restricted or G-protein-biased structures, another approach is to combine KOPr agonists with μ, δ, or nociceptin opioid receptor activation to obtain mixed opioid receptor agonists, therefore negating the adverse effects and retaining the therapeutic effect.
Collapse
Affiliation(s)
- Kelly F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Diana V Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Sophia Kaska
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Thomas Prisinzano
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand (K.P., D.V.A., B.M.K.) and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (S.K., T.P.)
| |
Collapse
|
26
|
Mizoguchi H, Fujii H. Exploring μ-Opioid Receptor Splice Variants as a Specific Molecular Target for New Analgesics. Curr Top Med Chem 2020; 20:2866-2877. [PMID: 32962616 DOI: 10.2174/1568026620666200922113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
Since a μ-opioid receptor gene containing multiple exons has been identified, the variety of splice variants for μ-opioid receptors have been reported in various species. Amidino-TAPA and IBNtxA have been discovered as new analgesics with different pharmacological profiles from morphine. These new analgesics show a very potent analgesic effect but do not have dependence liability. Interestingly, these analgesics show the selectivity to the morphine-insensitive μ-opioid receptor splice variants. The splice variants, sensitive to these new analgesics but insensitive to morphine, may be a better molecular target to develop the analgesics without side effects.
Collapse
Affiliation(s)
- Hirokazu Mizoguchi
- Department of Physiology and Anatomy, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medical Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
27
|
Barmaki S, Ali A, Desaulniers JP, Bolshan Y. Bromination of codeine and its derivatives: Revisiting a 95 year old process. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Ulker E, Toma W, White A, Uprety R, Majumdar S, Damaj MI. The antinociceptive effects of a dual kappa-delta opioid receptor agonist in the mouse formalin test. Behav Pharmacol 2020; 31:174-178. [PMID: 32168026 PMCID: PMC7080317 DOI: 10.1097/fbp.0000000000000541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pain management is a challenging and unmet medical need. Despite their demonstrated efficacy, currently used opioid drugs and nonsteroidal anti-inflammatory drugs are frequently associated with several adverse events. The identification of new and safe analgesics is therefore needed. MP1104, an analogue of 3'-iodobenzoyl naltrexamine, is a potent nonselective full agonist at mu (MOR), kappa (KOR), and delta (DOR) opioid receptors, respectively. It was shown to possess potent antinociceptive effects in acute thermal pain assays without aversion in mice. In this study, we investigated MP1104 in the formalin test, a model of tonic pain. MP1104 (0.05, 0.1, and 1.0 mg/kg) reduced pain-like behaviors in phases I and II of the formalin test in male and female ICR mice. Pretreatment with KOR antagonist (norbinaltorphimine 10 mg/kg) and DOR antagonist (naltrindole 10 mg/kg) abolished the antinociceptive effects of MP1104 in the formalin test. These findings support the development of MP1104 for further testing in other pain models.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Female
- Male
- Mice
- Mice, Inbred ICR
- Morphinans/metabolism
- Morphinans/pharmacology
- Narcotic Antagonists/pharmacology
- Pain/drug therapy
- Pain Management/methods
- Pain Measurement/drug effects
- Receptors, Opioid/agonists
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
Collapse
Affiliation(s)
- Esad Ulker
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, Virginia
| | - Wisam Toma
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, Virginia
| | - Alyssa White
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, Virginia
| | - Rajendra Uprety
- bDepartment of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York
| | - Susruta Majumdar
- cCenter for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, Missouri, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
29
|
Gutridge AM, Robins MT, Cassell RJ, Uprety R, Mores KL, Ko MJ, Pasternak GW, Majumdar S, van Rijn RM. G protein-biased kratom-alkaloids and synthetic carfentanil-amide opioids as potential treatments for alcohol use disorder. Br J Pharmacol 2020; 177:1497-1513. [PMID: 31705528 PMCID: PMC7060366 DOI: 10.1111/bph.14913] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Mitragyna speciosa, more commonly known as kratom, is a plant that contains opioidergic alkaloids but is unregulated in most countries. Kratom is used in the self-medication of chronic pain and to reduce illicit and prescription opioid dependence. Kratom may be less dangerous than typical opioids because of the stronger preference of kratom alkaloids to induce receptor interaction with G proteins over β-arrestin proteins. We hypothesized that kratom (alkaloids) can also reduce alcohol intake. EXPERIMENTAL APPROACH We pharmacologically characterized kratom extracts, kratom alkaloids (mitragynine, 7-hydroxymitragynine, paynantheine, and speciogynine) and synthetic carfentanil-amide opioids for their ability to interact with G proteins and β-arrestin at μ, δ, and κ opioid receptors in vitro. We used C57BL/6 mice to assess to which degree these opioids could reduce alcohol intake and whether they had rewarding properties. KEY RESULTS Kratom alkaloids were strongly G protein-biased at all three opioid receptors and reduced alcohol intake, but kratom and 7-hydroxymitragynine were rewarding. Several results indicated a key role for δ opioid receptors, including that the synthetic carfentanil-amide opioid MP102-a G protein-biased agonist with modest selectivity for δ opioid receptors-reduced alcohol intake, whereas the G protein-biased μ opioid agonist TRV130 did not. CONCLUSION AND IMPLICATIONS Our results suggest that kratom extracts can decrease alcohol intake but still carry significant risk upon prolonged use. Development of more δ opioid-selective synthetic opioids may provide a safer option than kratom to treat alcohol use disorder with fewer side effects.
Collapse
Affiliation(s)
- Anna M. Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Meridith T. Robins
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Robert J. Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Rajendra Uprety
- Department of Neurology and Molecular PharmacologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Kendall L. Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
| | - Mee Jung Ko
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
- Purdue Interdisciplinary Life Sciences Graduate ProgramPurdue UniversityWest LafayetteIndiana
| | - Gavril W. Pasternak
- Department of Neurology and Molecular PharmacologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
| | - Susruta Majumdar
- Department of Neurology and Molecular PharmacologyMemorial Sloan Kettering Cancer CenterNew YorkNew York
- Center for Clinical PharmacologySt. Louis College of Pharmacy and Washington University School of MedicineSt. LouisMissouri
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of PharmacyPurdue UniversityWest LafayetteIndiana
- Purdue Institute for Drug DiscoveryPurdue UniversityWest LafayetteIndiana
- Purdue Institute for Integrative NeurosciencePurdue UniversityWest LafayetteIndiana
- Purdue Interdisciplinary Life Sciences Graduate ProgramPurdue UniversityWest LafayetteIndiana
| |
Collapse
|
30
|
Le Rouzic V, Narayan A, Hunkle A, Marrone GF, Lu Z, Majumdar S, Xu J, Pan YX, Pasternak GW. Pharmacological Characterization of Levorphanol, a G-Protein Biased Opioid Analgesic. Anesth Analg 2019; 128:365-373. [PMID: 29649035 DOI: 10.1213/ane.0000000000003360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Levorphanol is a potent analgesic that has been used for decades. Most commonly used for acute and cancer pain, it also is effective against neuropathic pain. The recent appreciation of the importance of functional bias and the uncovering of multiple µ opioid receptor splice variants may help explain the variability of patient responses to different opioid drugs. METHODS Here, we evaluate levorphanol in a variety of traditional in vitro receptor binding and functional assays. In vivo analgesia studies using the radiant heat tail flick assay explored the receptor selectivity of the responses through the use of knockout (KO) mice, selective antagonists, and viral rescue approaches. RESULTS Receptor binding studies revealed high levorphanol affinity for all the μ, δ, and κ opioid receptors. In S-GTPγS binding assays, it was a full agonist at most µ receptor subtypes, with the exception of MOR-1O, but displayed little activity in β-arrestin2 recruitment assays, indicating a preference for G-protein transduction mechanisms. A KO mouse and selective antagonists confirmed that levorphanol analgesia was mediated through classical µ receptors, but there was a contribution from 6 transmembrane targets, as illustrated by a lower response in an exon 11 KO mouse and its rescue with a virally transfected 6 transmembrane receptor splice variant. Compared to morphine, levorphanol had less respiratory depression at equianalgesic doses. CONCLUSIONS While levorphanol shares many of the same properties as the classic opioid morphine, it displays subtle differences that may prove helpful in its clinical use. Its G-protein signaling bias is consistent with its diminished respiratory depression, while its incomplete cross tolerance with morphine suggests it may prove valuable clinically with opioid rotation.
Collapse
Affiliation(s)
- Valerie Le Rouzic
- From the Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ankita Narayan
- From the Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amanda Hunkle
- From the Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gina F Marrone
- From the Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhigang Lu
- First Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Susruta Majumdar
- From the Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jin Xu
- From the Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ying-Xian Pan
- From the Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gavril W Pasternak
- From the Department of Neurology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
31
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
32
|
Mores KL, Cummins BR, Cassell RJ, van Rijn RM. A Review of the Therapeutic Potential of Recently Developed G Protein-Biased Kappa Agonists. Front Pharmacol 2019; 10:407. [PMID: 31057409 PMCID: PMC6478756 DOI: 10.3389/fphar.2019.00407] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/01/2019] [Indexed: 01/22/2023] Open
Abstract
Between 2000 and 2005 several studies revealed that morphine is more potent and exhibits fewer side effects in beta-arrestin 2 knockout mice. These findings spurred efforts to develop opioids that signal primarily via G protein activation and do not, or only very weakly, recruit beta-arrestin. Development of such molecules targeting the mu opioid receptor initially outpaced those targeting the kappa, delta and nociceptin opioid receptors, with the G protein-biased mu opioid agonist oliceridine/TRV130 having completed phase III clinical trials with improved therapeutic window to treat moderate-to-severe acute pain. Recently however, there has been a sharp increase in the development of novel G protein-biased kappa agonists. It is hypothesized that G protein-biased kappa agonists can reduce pain and itch, but exhibit fewer side effects, such as anhedonia and psychosis, that have thus far limited the clinical development of unbiased kappa opioid agonists. Here we summarize recently discovered G protein-biased kappa agonists, comparing structures, degree of signal bias and preclinical effects. We specifically reviewed nalfurafine, 22-thiocyanatosalvinorin A (RB-64), mesyl-salvinorin B, 2-(4-(furan-2-ylmethyl)-5-((4-methyl-3-(trifluoromethyl)benzyl)thio)-4H-1,2,4-triazol-3-yl)pyridine (triazole 1.1), 3-(2-((cyclopropylmethyl)(phenethyl)amino)ethyl)phenol (HS666), N-n-butyl-N-phenylethyl-N-3-hydroxyphenylethyl-amine (compound 5/BPHA), 6-guanidinonaltrindole (6′GNTI), and collybolide. These agonists encompass a variety of chemical scaffolds and range in both their potency and efficacy in terms of G protein signaling and beta-arrestin recruitment. Thus unsurprisingly, the behavioral responses reported for these agonists are not uniform. Yet, it is our conclusion that the kappa opioid field will benefit tremendously from future studies that compare several biased agonists and correlate the degree of signaling bias to a particular pharmacological response.
Collapse
Affiliation(s)
- Kendall L Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States
| | - Benjamin R Cummins
- Department of Chemistry, College of Science, West Lafayette, IN, United States
| | - Robert J Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, West Lafayette, IN, United States.,Purdue Institute for Drug Discovery, West Lafayette, IN, United States.,Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
| |
Collapse
|
33
|
Atigari DV, Uprety R, Pasternak GW, Majumdar S, Kivell BM. MP1104, a mixed kappa-delta opioid receptor agonist has anti-cocaine properties with reduced side-effects in rats. Neuropharmacology 2019; 150:217-228. [PMID: 30768946 DOI: 10.1016/j.neuropharm.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/23/2019] [Accepted: 02/09/2019] [Indexed: 01/02/2023]
Abstract
Kappa opioid receptor (KOPr) agonists have preclinical anti-cocaine and antinociceptive effects. However, adverse effects including dysphoria, aversion, sedation, anxiety and depression limit their clinical development. MP1104, an analogue of 3-iodobenzoyl naltrexamine, is a potent dual agonist at KOPr and delta opioid receptor (DOPr), with full agonist efficacy at both these receptors. In this study, we evaluate the ability of MP1104 to modulate cocaine-induced behaviors and side-effects preclinically. In male Sprague-Dawley rats trained to self-administer cocaine, MP1104 (0.3 and 1 mg/kg) reduced cocaine-primed reinstatement of drug-seeking behavior and caused significant downward shift of the dose-response curve in cocaine self-administration tests (0.3 and 0.6 mg/kg). The anti-cocaine effects exerted by MP1104 are in part due to increased dopamine (DA) uptake by the dopamine transporter (DAT) in the dorsal striatum (dStr) and nucleus accumbens (NAc). MP1104 (0.3 and 0.6 mg/kg) showed no significant anxiogenic effects in the elevated plus maze, pro-depressive effects in the forced swim test, or conditioned place aversion. Furthermore, pre-treatment with a DOPr antagonist, led to MP1104 producing aversive effects. This data suggests that the DOPr agonist actions of MP1104 attenuate the KOPr-mediated aversive effects of MP1104. The overall results from this study show that MP1104, modulates DA uptake in the dStr and NAc, and exerts potent anti-cocaine properties in self-administration tests with reduced side-effects compared to pure KOPr agonists. This data supports the therapeutic development of dual KOPr/DOPr agonists to reduce the side-effects of selective KOPr agonists. This article is part of the Special Issue entitled 'Opioid Neuropharmacology: Advances in treating pain and opioid addiction'.
Collapse
Affiliation(s)
- Diana V Atigari
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Gavril W Pasternak
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA
| | - Susruta Majumdar
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Centre, New York, USA; Center for Clinical Pharmacology, St Louis College of Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
34
|
Fujii K, Koshidaka Y, Adachi M, Takao K. Effects of chronic fentanyl administration on behavioral characteristics of mice. Neuropsychopharmacol Rep 2018; 39:17-35. [PMID: 30506634 PMCID: PMC7292323 DOI: 10.1002/npr2.12040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 01/16/2023] Open
Abstract
Background Fentanyl, a synthetic opioid categorized as a narcotic analgesic, has a 100‐ to 200‐fold stronger effect than most opioids, such as morphine. Fatal accidents due to chronic use and abuse of fentanyl are a worldwide social problem. One reason for the abuse of fentanyl is its psychostimulant effects that could induce behavioral changes. The effects of chronic fentanyl administration on behavior, however, are unclear. Methods Adult male C57BL/6J mice were chronically administered fentanyl (0.03 or 0.3 mg/kg/d i.p.), and various behaviors were assessed using a behavioral test battery. Results Mice chronically administered a high dose of fentanyl (0.3 mg/kg/d) exhibited decreased anxiety‐like behavior as assessed by the open field and elevated plus maze tests. On the other hand, interruption of fentanyl administration led to increased anxiety‐like behavior as observed in the light and dark transition test. The hot plate test revealed that chronic administration of fentanyl reduced pain sensitivity. High‐dose chronic fentanyl administration reduced the locomotor stimulatory effects of cocaine. The results, however, failed to reach the threshold for study‐wide statistical significance. Conclusion Chronic fentanyl administration induces some behavioral changes in mice. Although further studies are needed to clarify the underlying mechanisms of the behavioral effects of chronic fentanyl administration, our findings suggest that fentanyl is safe under properly controlled conditions. To investigate the effects of long‐term fentanyl use on brain function, adult male C57BL/6J mice were chronically administered fentanyl (0.03 or 0.3 mg/kg/d ip) and analyzed in a behavioral test battery. Chronic fentanyl administration reduced anxiety‐like behavior, pain sensitivity, and the locomotor stimulatory effects of cocaine in mice. The results, however, failed to reach the threshold for study‐wide statistical significance.![]()
Collapse
Affiliation(s)
- Kazuki Fujii
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yumie Koshidaka
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Mayumi Adachi
- Life Science Research Center, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| |
Collapse
|
35
|
Kumar V, Polgar WE, Cami-Kobeci G, Thomas MP, Khroyan TV, Toll L, Husbands SM. Synthesis, Biological Evaluation, and SAR Studies of 14β-phenylacetyl Substituted 17-cyclopropylmethyl-7, 8-dihydronoroxymorphinones Derivatives: Ligands With Mixed NOP and Opioid Receptor Profile. Front Psychiatry 2018; 9:430. [PMID: 30283364 PMCID: PMC6156383 DOI: 10.3389/fpsyt.2018.00430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
A series of 14β-acyl substituted 17-cyclopropylmethyl-7,8-dihydronoroxymorphinone compounds has been synthesized and evaluated for affinity and efficacy for mu (MOP), kappa (KOP), and delta (DOP) opioid receptors and nociceptin/orphanin FQ peptide (NOP) receptors. The majority of the new ligands displayed high binding affinities for the three opioid receptors, and moderate affinity for NOP receptors. The affinities for NOP receptors are of particular interest as most classical opioid ligands do not bind to NOP receptors. The predominant activity in the [35S]GTPγS assay was partial agonism at each receptor. The results are consistent with our prediction that an appropriate 14β side chain would access a binding site within the NOP receptor and result in substantially higher affinity than displayed by the parent compound naltrexone. Molecular modeling studies, utilizing the recently reported structure of the NOP receptor, are also consistent with this interpretation.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | | | - Gerta Cami-Kobeci
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Mark P. Thomas
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | - Lawrence Toll
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Stephen M. Husbands
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| |
Collapse
|
36
|
Sader S, Anant K, Wu C. To probe interaction of morphine and IBNtxA with 7TM and 6TM variants of the human μ-opioid receptor using all-atom molecular dynamics simulations with an explicit membrane. Phys Chem Chem Phys 2018; 20:1724-1741. [PMID: 29265141 DOI: 10.1039/c7cp06745c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IBNtxA, a morphine derivative, is 10-fold more potent and has a better safety profile than morphine. Animal studies indicate that the analgesic effect of IBNtxA appears to be mediated by the activation of truncated splice variants (6TM) of the Mu opioid receptor (MOR-1) where transmembrane helix 1 (TM1) is removed. Interestingly, morphine is unable to activate 6TM variants. To date, a high resolution structure of 6TM variants is missing, and the interaction of 6TM variants with IBNtxA and morphine remains elusive. In this study we used homology modeling, docking and molecular dynamics (MD) simulations to study a representative 6TM variant (G1) and a full-length 7TM variant of human MOR-1 in complex with IBNtxA and morphine respectively. The structural models of human G1 and 7TM were obtained by homology modeling using the X-ray solved crystal structure of the active mouse 7TM bound to an agonist BU72 (PDB id: ) as the template. Our 6000 ns MD data show that either TM1 truncation (i.e. from 7TM to 6TM) or ligand modification (i.e. from morphine to IBNtxA) alone causes the loss of key morphine-7TM interactions that are well-known to be required for MOR-1 activation. Receptor disruptions are mainly located at TMs 2, 3, 6 and 7 in comparison with the active crystal complex. However, when both perturbations occur in the 6TM-IBNtxA complex, the key ligand-receptor interactions and the receptor conformation are recovered to resemble those in the active 7TM-morphine complex. Our molecular switch analysis further explains well why morphine is not able to activate 6TM variants. The close resemblance between 6TM-IBTtxA and 7TM in complex with PZM21, a G-protein biased 7TM agonist, suggests the possible biased agonism of IBNtxA on G1, which is consistent with its reduced side effects.
Collapse
Affiliation(s)
- Safaa Sader
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA.
| | | | | |
Collapse
|
37
|
Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell 2018; 172:55-67.e15. [PMID: 29307491 PMCID: PMC5802374 DOI: 10.1016/j.cell.2017.12.011] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/11/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
The κ-opioid receptor (KOP) mediates the actions of opioids with hallucinogenic, dysphoric, and analgesic activities. The design of KOP analgesics devoid of hallucinatory and dysphoric effects has been hindered by an incomplete structural and mechanistic understanding of KOP agonist actions. Here, we provide a crystal structure of human KOP in complex with the potent epoxymorphinan opioid agonist MP1104 and an active-state-stabilizing nanobody. Comparisons between inactive- and active-state opioid receptor structures reveal substantial conformational changes in the binding pocket and intracellular and extracellular regions. Extensive structural analysis and experimental validation illuminate key residues that propagate larger-scale structural rearrangements and transducer binding that, collectively, elucidate the structural determinants of KOP pharmacology, function, and biased signaling. These molecular insights promise to accelerate the structure-guided design of safer and more effective κ-opioid receptor therapeutics.
Collapse
Affiliation(s)
- Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Susruta Majumdar
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Saheem A Zaidi
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Pauline Ondachi
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - John D McCorvy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sheng Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Philip D Mosier
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonweath University, Richmond, VA 23298, USA
| | - Rajendra Uprety
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eyal Vardy
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gye Won Han
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Ming-Yue Lee
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; School of Molecular Sciences, Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Institute of Natural Resources and Environmental Audits, Nanjing Audit University, Nanjing, China
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, 1050 Brussels, Belgium
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Alexandra R Tribo
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gavril W Pasternak
- Molecular Pharmacology Program and Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC 27709, USA
| | - Raymond C Stevens
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Vadim Cherezov
- Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Vsevolod Katritch
- Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel Wacker
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
38
|
Harland AA, Pogozheva ID, Griggs NW, Trask TJ, Traynor JR, Mosberg HI. Placement of Hydroxy Moiety on Pendant of Peptidomimetic Scaffold Modulates Mu and Kappa Opioid Receptor Efficacy. ACS Chem Neurosci 2017; 8:2549-2557. [PMID: 28796483 PMCID: PMC5691919 DOI: 10.1021/acschemneuro.7b00284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
![]()
In
an effort to expand the structure–activity relationship (SAR)
studies of a series of mixed-efficacy opioid ligands, peptidomimetics
that incorporate methoxy and hydroxy groups around a benzyl or 2-methylindanyl
pendant on a tetrahydroquinoline (THQ) core of the peptidomimetics
were evaluated. Compounds containing a methoxy or hydroxy moiety in
the o- or m-positions increased
binding affinity to the kappa opioid receptor (KOR), whereas compounds
containing methoxy or hydroxy groups in the p-position
decreased KOR affinity and reduced or eliminated efficacy at the mu
opioid receptor (MOR). The results from a substituted 2-methylindanyl
series aligned with the findings from the substituted benzyl series.
Our studies culminated in the development of 8c, a mixed-efficacy
MOR agonist/KOR agonist with subnanomolar binding affinity for both
MOR and KOR.
Collapse
Affiliation(s)
- Aubrie A. Harland
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas W. Griggs
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tyler J. Trask
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Interdepartmental Program in Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Baumann MH, Majumdar S, Le Rouzic V, Hunkele A, Uprety R, Huang XP, Xu J, Roth BL, Pan YX, Pasternak GW. Pharmacological characterization of novel synthetic opioids (NSO) found in the recreational drug marketplace. Neuropharmacology 2017; 134:101-107. [PMID: 28807672 DOI: 10.1016/j.neuropharm.2017.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Novel synthetic opioids (NSO) are increasingly encountered in illicit heroin and counterfeit pain pills. Many NSO are resurrected from older biomedical literature or patent applications, so limited information is available about their biological effects. Here we examined the pharmacology of three structurally-distinct NSO found in the recreational drug market: N-(1-(2-phenylethyl)-4-piperidinyl)-N-phenylbutyramide (butyrylfentanyl), 3,4-dichloro-N-[(1R,2R)-2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700) and 1-cyclohexyl-4-(1,2-diphenylethyl)piperazine (MT-45). Radioligand binding and GTPγS functional assays were carried out in cells transfected with murine mu- (MOR-1), delta- (DOR-1) or kappa-opioid receptors (KOR-1). Antinociceptive effects were determined using the radiant heat tail flick technique in mice, and opioid specificity was assessed with the mu-opioid antagonist naloxone. Butyrylfentanyl, U-47700 and MT-45 displayed nM affinities at MOR-1, but were less potent than morphine, and had much weaker effects at DOR-1 and KOR-1. All NSO exhibited agonist actions at MOR-1 in the GTPγS assay. Butyrylfentanyl and U-47700 were 31- and 12-fold more potent than morphine in the tail flick assay, whereas MT-45 was equipotent with morphine. Analgesic effects were reversed by naloxone and absent in genetically-engineered mice lacking MOR-1. Our findings confirm that butyrylfentanyl, U-47700 and MT-45 are selective MOR-1 agonists with in vitro affinities less than morphine. However, analgesic potencies vary more than 30-fold across the compounds, and in vitro binding affinity does not predict in vivo potency. Taken together, our findings highlight the risks to humans who may unknowingly be exposed to these and other NSO when taking adulterated heroin or counterfeit pain medications. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'
Collapse
Affiliation(s)
- Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Susruta Majumdar
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Valerie Le Rouzic
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Amanda Hunkele
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Rajendra Uprety
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Xi Ping Huang
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jin Xu
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ying-Xian Pan
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| |
Collapse
|
40
|
Paton KF, Kumar N, Crowley RS, Harper JL, Prisinzano TE, Kivell BM. The analgesic and anti-inflammatory effects of Salvinorin A analogue β-tetrahydropyran Salvinorin B in mice. Eur J Pain 2017; 21:1039-1050. [PMID: 28158929 DOI: 10.1002/ejp.1002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Drugs activating the mu opioid receptor are routinely used to treat severe acute and chronic pain. Unfortunately, side effects including nausea, constipation, respiratory depression, addiction and tolerance can limit clinical utility. In contrast, kappa opioid receptor (KOPr) agonists, such as Salvinorin A (SalA), have analgesic properties with little potential for abuse. METHODS We evaluated SalA and the novel analogue β-tetrahydropyran Salvinorin B (β-THP SalB) for the ability to modulate pain and inflammation in vivo. The hot water tail-withdrawal assay, intradermal formalin-induced inflammatory pain and paclitaxel-induced neuropathic pain models were used to evaluate analgesic properties in mice. Tissue infiltration of inflammatory cells was measured by histology and flow cytometry. RESULTS β-tetrahydropyran Salvinorin B produced a longer duration of action in the tail-withdrawal assay compared to the parent compound SalA, and, like SalA and U50,488, β-THP SalB is a full agonist at the KOPr. In the formalin-induced inflammatory pain model, β-THP SalB and SalA significantly reduced pain score, paw oedema and limited the infiltration of neutrophils into the inflamed tissue. β-THP SalB and SalA supressed both mechanical and cold allodynia in the paclitaxel-induced neuropathic pain model, in a dose-dependent manner. CONCLUSIONS Structural modification of SalA at the C-2 position alters its analgesic potency and efficacy in vivo. Substitution with a tetrahydropyran group at C-2 produced potent analgesic and anti-inflammatory effects, including a reduction in paclitaxel-induced neuropathic pain. This study highlights the potential for KOPr agonists as analgesics with anti-inflammatory action and little risk of abuse. SIGNIFICANCE Salvinorin A and the novel analogue β-THP Salvinorin B show analgesic effects in the tail-withdrawal and formalin assays. They reduce oedema and decrease neutrophil infiltration into inflamed tissue, and suppress mechanical and cold allodynia in paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- K F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| | - N Kumar
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| | - R S Crowley
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, USA
| | - J L Harper
- Malaghan Institute of Medical Research, Wellington, New Zealand.,WelTec, Petone, Lower Hutt, New Zealand
| | - T E Prisinzano
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, USA
| | - B M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| |
Collapse
|
41
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
42
|
Urai Á, Váradi A, Szőcs L, Komjáti B, Le Rouzic V, Hunkele A, Pasternak GW, Majumdar S, Hosztafi S. Synthesis and pharmacological evaluation of novel selective MOR agonist 6β-pyridinyl amidomorphines exhibiting long-lasting antinociception. MEDCHEMCOMM 2017; 8:152-157. [PMID: 28603600 PMCID: PMC5464418 DOI: 10.1039/c6md00450d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/04/2016] [Indexed: 11/22/2022]
Abstract
It was previously reported that 6β-aminomorphinan derivatives show high affinity for opiate receptors. Novel 6β-heteroarylamidomorphinanes were designed based on the MOR selective antagonist NAP. The 6β-aminomorphinanes were prepared with stereoselective Mitsunobu reaction and subsequently acylated with nicotinic acid and isonicotinic acid chloride hydrochlorides. The receptor binding and efficacy were determined in vitro and the analgesic activity was studied in vivo. The in vitro studies revealed moderate selectivity for MOR. At least two compounds in this series exhibited long-acting analgesic response when administered subcutaneously and intracerebroventricularly. When the substances were given intracerebroventricularly to mice, they showed analgesic potency comparable to morphine.
Collapse
Affiliation(s)
- Ákos Urai
- Department of Pharmaceutical Chemistry
, Semmelweis University
,
Hőgyes E. u. 9.
, Budapest H-1092
, Hungary
.
| | - András Váradi
- Molecular Pharmacology and Chemistry Program and Department of Neurology
, Memorial Sloan Kettering Cancer Center
,
1275 York Ave.
, New York
, NY 10065
, USA
| | - Levente Szőcs
- Department of Pharmaceutical Chemistry
, Semmelweis University
,
Hőgyes E. u. 9.
, Budapest H-1092
, Hungary
.
| | - Balázs Komjáti
- Department of Organic Chemistry and Technology
, Budapest University of Technology and Economics
,
Szent Gellért tér 4
, Budapest 1111
, Hungary
| | - Valerie Le Rouzic
- Molecular Pharmacology and Chemistry Program and Department of Neurology
, Memorial Sloan Kettering Cancer Center
,
1275 York Ave.
, New York
, NY 10065
, USA
| | - Amanda Hunkele
- Molecular Pharmacology and Chemistry Program and Department of Neurology
, Memorial Sloan Kettering Cancer Center
,
1275 York Ave.
, New York
, NY 10065
, USA
| | - Gavril W. Pasternak
- Molecular Pharmacology and Chemistry Program and Department of Neurology
, Memorial Sloan Kettering Cancer Center
,
1275 York Ave.
, New York
, NY 10065
, USA
| | - Susruta Majumdar
- Molecular Pharmacology and Chemistry Program and Department of Neurology
, Memorial Sloan Kettering Cancer Center
,
1275 York Ave.
, New York
, NY 10065
, USA
| | - Sándor Hosztafi
- Department of Pharmaceutical Chemistry
, Semmelweis University
,
Hőgyes E. u. 9.
, Budapest H-1092
, Hungary
.
| |
Collapse
|
43
|
Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S, Hunkele A, Pagirsky J, Eans SO, Medina JM, Xu J, Pan YX, Borics A, Pasternak GW, McLaughlin JP, Majumdar S. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. J Med Chem 2016; 59:8381-97. [PMID: 27556704 DOI: 10.1021/acs.jmedchem.6b00748] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism. In vitro, 3 and its analogs were potent agonists in [(35)S]GTPγS assays at the mu opioid receptor but failed to recruit β-arrestin-2, which is associated with opioid side effects. Additionally, 3 developed analgesic tolerance more slowly than morphine, showed limited physical dependence, respiratory depression, constipation, and displayed no reward or aversion in CPP/CPA assays, suggesting that analogs might represent a promising new generation of novel pain relievers.
Collapse
Affiliation(s)
- András Váradi
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Gina F Marrone
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Travis C Palmer
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ankita Narayan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Márton R Szabó
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Valerie Le Rouzic
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Steven G Grinnell
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Joan J Subrath
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Evelyn Warner
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Sanjay Kalra
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Amanda Hunkele
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jeremy Pagirsky
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Shainnel O Eans
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jessica M Medina
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jin Xu
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ying-Xian Pan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Gavril W Pasternak
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jay P McLaughlin
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Susruta Majumdar
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| |
Collapse
|