1
|
Zhao X, Qiu Y, Liang L, Fu X. Interkingdom signaling between gastrointestinal hormones and the gut microbiome. Gut Microbes 2025; 17:2456592. [PMID: 39851261 PMCID: PMC11776477 DOI: 10.1080/19490976.2025.2456592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
The interplay between the gut microbiota and gastrointestinal hormones plays a pivotal role in the health of the host and the development of diseases. As a vital component of the intestinal microecosystem, the gut microbiota influences the synthesis and release of many gastrointestinal hormones through mechanisms such as modulating the intestinal environment, producing metabolites, impacting mucosal barriers, generating immune and inflammatory responses, and releasing neurotransmitters. Conversely, gastrointestinal hormones exert feedback regulation on the gut microbiota by modulating the intestinal environment, nutrient absorption and utilization, and the bacterial biological behavior and composition. The distributions of the gut microbiota and gastrointestinal hormones are anatomically intertwined, and close interactions between the gut microbiota and gastrointestinal hormones are crucial for maintaining gastrointestinal homeostasis. Interventions leveraging the interplay between the gut microbiota and gastrointestinal hormones have been employed in the clinical management of metabolic diseases and inflammatory bowel diseases, such as bariatric surgery and fecal microbiota transplantation, offering promising targets for the treatment of dysbiosis-related diseases.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Ye Qiu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Li G, Dong S, Liu C, Yang J, Rensen PCN, Wang Y. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective. LIFE METABOLISM 2025; 4:loae039. [PMID: 39926388 PMCID: PMC11803461 DOI: 10.1093/lifemeta/loae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025]
Abstract
Serotonin is one of the most potent gastrointestinal, peripheral, and neuronal signaling molecules and plays a key role in regulating energy metabolism. Accumulating evidence has shown the complex interplay between gut microbiota and host energy metabolism. In this review, we summarize recent findings on the role of gut microbiota in serotonin metabolism and discuss the complicated mechanisms by which serotonin, working in conjunction with the gut microbiota, affects total body energy metabolism in the host. Gut microbiota affects serotonin synthesis, storage, release, transport, and catabolism. In addition, serotonin plays an indispensable role in regulating host energy homeostasis through organ crosstalk and microbe-host communication, particularly with a wide array of serotonergic effects mediated by diverse serotonin receptors with unique tissue specificity. This fresh perspective will help broaden the understanding of serotonergic signaling in modulating energy metabolism, thus shedding light on the design of innovative serotonin-targeting strategies to treat metabolic diseases.
Collapse
Affiliation(s)
- Guoli Li
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijing Dong
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chunhao Liu
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Patrick C N Rensen
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yanan Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
3
|
Ko EA, Zhou T, Ko JH, Jung SC. Transcriptomic Alteration in the Brain and Gut of Offspring Following Prenatal Exposure to Corticosterone. Exp Neurobiol 2025; 34:9-19. [PMID: 40091635 PMCID: PMC11919639 DOI: 10.5607/en24029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Maternal stress during pregnancy can profoundly affect offspring health, increasing the risk of psychiatric disorders, metabolic diseases, and gastrointestinal problems. In this study, the effects of high prenatal corticosterone exposure on gene expression in the brain and small intestine of rat offspring were investigated via RNA-sequencing analysis. Pregnant rats were divided into two groups: Corti.Moms were injected with corticosterone daily, while Nor.Moms were given saline injections. Their offspring were labeled as Corti.Pups and Nor.Pups, respectively. The brain tissue analysis of Corti.Pups showed that the expression levels of the genes linked to neurodegenerative conditions increased and enhanced mitochondrial biogenesis, possibly due to higher ATP demands. The genes associated with calcium signaling pathways, neuroactive ligand-receptor interactions, and IgA production were also upregulated in the small intestine of Corti.pups. Conversely, the genes related to protein digestion, absorption, and serotonergic and dopaminergic synaptic activities were downregulated. These findings revealed that gene expression patterns in both the brain and intestinal smooth muscle of offspring prenatally exposed to corticosterone were substantially altered. Thus, this study provided valuable insights into the effects of prenatal stress on neurodevelopment and gut function.
Collapse
Affiliation(s)
- Eun-A Ko
- Department of Physiology, College of Medicine, Jeju National University, Jeju 63243, Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Sung-Cherl Jung
- Department of Physiology, College of Medicine, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
4
|
Zhang X, Wang S, Xie J, Wang J, Gu Y, Wu B, Zhang Y, Yan T, Jia Y. Multi-platform analysis revealed the substance basis and mechanism of Wei-Tong-Xin in ameliorating ENS dysfunction for dyspepsia treatment. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118875. [PMID: 39362321 DOI: 10.1016/j.jep.2024.118875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Duodenal motility disorder is a contributing factor to dyspepsia. The traditional Chinese medicine (TCM) formula Wei-Tong-Xin (WTX), originated from the famous ancient Chinese formula "Wan Ying Yuan", has been demonstrated efficacy in alleviating dyspepsia. AIM OF THE STUDY The current study aims to elucidate the chemical composition of WTX to establish the pharmacodynamic material basis. On the basis of component, in depth to illuminate the mechanism by which WTX treats dyspepsia via constructing the comprehensive analysis of multi-platform. MATERIALS AND METHODS The chemical constituents of WTX were systematically analyzed by UHPLC-Q-TOF-MS/MS data processing methods. Based on this, network pharmacology was employed to predict the mechanism by which WTX improved dyspepsia. The dyspepsia mouse model was constructed, and histopathology as well as intestinal permeability were assessed using H&E staining, PAS staining and FITC-dextran assay. Protein expression was detected using Western blot, immunofluorescence, immunohistochemistry and ELISA kits. RESULTS A total of 100 chemical components of WTX were preliminarily identified. Network pharmacological analysis indicated that the therapeutic mechanism of WTX in treating dyspepsia may be related to the regulation of inflammation and oxidative stress-related signaling pathways. In vivo studies showed that WTX mitigated duodenal inflammation and oxidative stress responses, repairing the intestinal mucosal barrier damaged by cisplatin (CIS). Additionally, WTX restored the number of glial cells diminished by inflammatory damage, and ameliorated the serotoninergic neuronal dysfunction caused by insufficient secretion of glia-derived neurotrophic factor (GDNF), and enhanced intestinal transit. CONCLUSIONS In this study, a total of 100 components of the WTX extract were identified through literature review and mass spectrometry database search. Utilizing computer technology, in conjunction with pharmacodynamic and mechanistic studies, WTX has been found to restore serotoninergic neuronal function by reducing intestinal mucosal inflammatory and oxidative damage, ultimately promoting intestinal transport and treating dyspepsia.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China; College of Pharmacy, Hebei University of Chinese Medicine, Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Shiyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Jinyu Xie
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Jinyu Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Yaru Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Xingyuan Road 3, Shijiazhuang, 050200, China
| | - Bo Wu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China
| | - Yixin Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Xingyuan Road 3, Shijiazhuang, 050200, China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050091, China
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| |
Collapse
|
5
|
Cai C, Song Z, Xu X, Yang X, Wei S, Chen F, Dong X, Zhang X, Zhu Y. The neurotoxicity of acrylamide in ultra-processed foods: interventions of polysaccharides through the microbiota-gut-brain axis. Food Funct 2025; 16:10-23. [PMID: 39611232 DOI: 10.1039/d4fo03002h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Ultra-processed foods (UPFs) have become popular in recent years, however, the detrimental effects of their excessive consumption have also become evident. Acrylamide (AA), a processing hazard present in UPFs, can further aggravate the harmful effects of UPFs. AA can cause significant damage to both the intestinal barrier and gut microbiota, thereby affecting the nervous system through the microbiota-gut-brain (MGB) axis. Natural polysaccharides have demonstrated the capacity to significantly alleviate the oxidative stress and inflammatory response associated with AA exposure. In addition, they exhibit neuroprotective properties that may be mediated through the MGB axis. This paper reviews literature on the presence of AA in certain UPFs and its potential to inflict serious harm on the human gut microbiota and brain. Moreover, the possibility of utilizing polysaccharides as a preventative measure against AA-induced neurotoxicity was also proposed. These findings provide new insights into the safety risks associated with the overconsumption of UPFs and highlight the potential of polysaccharides to counteract the neurodegeneration induced by AA.
Collapse
Affiliation(s)
- Chen Cai
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Xinrui Xu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| | - Xu Dong
- Department of Gynaecology, Beilun People's Hospital, Ningbo 315800, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, P.R. China.
| |
Collapse
|
6
|
Zehra N, Malik AH, Parui R, Hussain S, Krishnan Iyer P. A Conjugated Polymer-Based Portable Smartphone Platform for Sensitive and Point-Of-Care Detection of Monoamine Neurotransmitter. Chem Asian J 2024; 19:e202400544. [PMID: 38865578 DOI: 10.1002/asia.202400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
The precise and effective detection of neurotransmitters (NTs) is crucial for clinical investigation of neuronal processes, and timely monitoring of NT-related chronic diseases. However, sensitive detection of specific NT with unprecedented selectivity is highly challenging due to similarities in chemical and electronic structures of various interfering neurochemicals. Herein, an anionic conjugated polyelectrolyte Poly[(9,9-bis(4'-sulfonatobutyl)fluorene-co-alt-1,4-phenylene) sodium], PFPS was rationally designed and synthesized for amplified detection and point-of-care (PoC) determination of monoamine neurotransmitter, serotonin (5-Hydroxy tryptamine or 5-HT, also diagnostic biomarker of carcinoid tumor) in human blood plasma. The PFPS displayed a remarkable sensing response with an exceptionally high fluorescence quenching constant of 1.14×105 M-1 and an ultralow detection limit of 0.67 μM or 0.142 ppm, much below the clinical range. Furthermore, a smartphone-enabled portable platform was constructed for real-time onsite detection of 5-HT by quantification of visual fluorescence response of PFPS into RGB values using a color recognizer android application. The smartphone platform could be readily applied for convenient, non-invasive PoC testing of 5-HT levels in complex biological fluids accurately and is expected to revolutionize clinical diagnosis and personalized health care devices.
Collapse
Affiliation(s)
- Nehal Zehra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039., India
- Department of Chemistry, Shia P.G. College, Lucknow, 226020., U.P. India
| | - Akhtar H Malik
- Department of Chemistry, Government Degree College Sopore, Sopore, J & K, 193201, India
| | - Retwik Parui
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039., India
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039., India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039., India
- School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati, 781039., India
| |
Collapse
|
7
|
Chen H, He M, Cao J, Zhang Y, Zhou Y, Yu Q, Wang A, Xuan J, Li T. Acupuncture and moxibustion intervention in functional dyspepsia: Gastric and duodenal regulation. Heliyon 2024; 10:e35696. [PMID: 39263151 PMCID: PMC11386019 DOI: 10.1016/j.heliyon.2024.e35696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024] Open
Abstract
Functional dyspepsia (FD) is a brain-gut interaction disorder located in the stomach and duodenum, which has complex pathophysiological mechanisms, and there is no effective treatment for FD. Acupuncture and moxibustion have been proven to have definite and significant efficacy on FD. Focusing on the affected area and combined with the potential pathophysiology of FD, here we discuss the possible mechanisms of acupuncture and moxibustion in treating FD to guide future clinical and experimental research. We argue that the pathological causes of FD can be roughly divided into gastrointestinal dysfunction, duodenal low-grade inflammation, visceral hypersensitivity, and duodenal intestinal barrier and microbial imbalance. Correspondingly, the possible mechanisms of acupuncture and moxibustion in treating FD are elucidated from the perspective of how they improve gastric accommodation, regulate gastrointestinal motility, reduce gastric visceral sensitivity, regulate eosinophil-mast cell axis, inhibit low-grade inflammatory responses, and possibly regulate intestinal microbial homeostasis and duodenal barrier function through the microbiota-gut-brain axis. Although some evidence is still lacking, acupuncture remains a promising treatment for FD. In the future, it is necessary to conduct additional clinical and experimental research on acupuncture and moxibustion in treating FD to further explore their effects and mechanisms.
Collapse
Affiliation(s)
- Hongxiu Chen
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Min He
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Jiazhen Cao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Yifan Zhang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Ying Zhou
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Qianhui Yu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Anjie Wang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| | - Jing Xuan
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No.1478, Gongnong Rd, Chaoyang District, 130021, Changchun, PR China
| | - Tie Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, 130117, Changchun, PR China
| |
Collapse
|
8
|
Jiang L, Han D, Hao Y, Song Z, Sun Z, Dai Z. Linking serotonin homeostasis to gut function: Nutrition, gut microbiota and beyond. Crit Rev Food Sci Nutr 2024; 64:7291-7310. [PMID: 36861222 DOI: 10.1080/10408398.2023.2183935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Serotonin (5-HT) produced by enterochromaffin (EC) cells in the digestive tract is crucial for maintaining gut function and homeostasis. Nutritional and non-nutritional stimuli in the gut lumen can modulate the ability of EC cells to produce 5-HT in a temporal- and spatial-specific manner that toning gut physiology and immune response. Of particular interest, the interactions between dietary factors and the gut microbiota exert distinct impacts on gut 5-HT homeostasis and signaling in metabolism and the gut immune response. However, the underlying mechanisms need to be unraveled. This review aims to summarize and discuss the importance of gut 5-HT homeostasis and its regulation in maintaining gut metabolism and immune function in health and disease with special emphasis on different types of nutrients, dietary supplements, processing, and gut microbiota. Cutting-edge discoveries in this area will provide the basis for the development of new nutritional and pharmaceutical strategies for the prevention and treatment of serotonin homeostasis-related gut and systematic disorders and diseases.
Collapse
Affiliation(s)
- Lili Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Youling Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhuan Song
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhiyuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
9
|
Ding H, Wang Y, Gao Y, Ye F, Yao K, Cao L, Liu Z, Wang G, Zhang J. Duloxetine protected indomethacin-induced gastric mucosal injury by increasing serotonin-dependent RANTES expression and activating PI3K-AKT-VEGF pathway. Toxicol Appl Pharmacol 2024; 486:116950. [PMID: 38701902 DOI: 10.1016/j.taap.2024.116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Antidepressant duloxetine has been shown protective effect on indomethacin-induced gastric ulcer, which was escorted by inflammation in the gastric mucosa. Cytokines are the principal mediators of inflammation. Thus, by screening the differential expression of cytokines in the gastric mucosa using cytokine array at 3 h after indomethacin exposure, when the gastric ulcer began to format, we found that indomethacin increased cytokines which promoted inflammation responses, whereas duloxetine decreased pro-inflammatory cytokines increased by indomethacin and increased RANTES expression. RANTES was consistently increased by pretreated with both 5 mg/kg and 20 mg/kg duloxetine at 3 h and 6 h after indomethacin exposure in male rats. Selective blockade of RANTES-CCR5 axis by a functional antagonist Met-RANTES or a CCR5 antagonist maraviroc suppressed the protection of duloxetine. Considering the pharmacologic action of duloxetine on reuptake of monoamine neurotransmitters, we examined the serotonin (5-HT), norepinephrine and dopamine contents in the blood and discovered 20 mg/kg duloxetine increased 5-HT levels in platelet-poor plasma, while treatment with 5-HT promoted expression of RANTES in the gastric mucosa and alleviated the indomethacin-induced gastric injury. Furthermore, duloxetine activated PI3K-AKT-VEGF signaling pathway, which was regulated by RANTES-CCR5, and selective inhibitor of VEGF receptor axitinib blocked the prophylactic effect of duloxetine. Furthermore, duloxetine also protected gastric mucosa from indomethacin in female rats, and RANTES was increased by duloxetine after 6 h after indomethacin exposure too. Together, our results identified the role of cytokines, particularly RANTES, and the underlying mechanisms in gastroprotective effect of duloxetine against indomethacin, which advanced our understanding in inflammatory modulation by monoamine-based antidepressants.
Collapse
Affiliation(s)
- Hongwan Ding
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Ying Wang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yinge Gao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Fan Ye
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Kaiyun Yao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Linyu Cao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Zixin Liu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Guibin Wang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Digestive Health, Beijing, China.
| | - Jianjun Zhang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China; State Key Laboratory of Digestive Health, Beijing, China.
| |
Collapse
|
10
|
Sestak SS, da Motta Lima FG, de Oliveira AP, Barateiro LGRP, Vieira-Frez FC, de Souza SRG, Guarnier FA, Perles JVCM, Zanoni JN. Effects of cancer-induced cachexia and administration of L-glutathione on the intestinal mucosa in rat. Amino Acids 2024; 56:30. [PMID: 38607556 PMCID: PMC11009745 DOI: 10.1007/s00726-024-03391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Walker-256 tumor is an experimental model known to promote cachexia syndrome, oxidative stress, and systemic inflammation. This study evaluated the duodenal mucosa of rats with Walker-256 tumor administered with 1% L-glutathione, intending to evaluate the damage caused by cancer-associated cachexia in the gastrointestinal tract and the effects of antioxidant administration on mucosal protection. Twenty-four 55-day-old male Wistar rats were distributed into four groups: control (C); control administered with 1% L-glutathione (C-GSH); Walker-256 tumor (W) and Walker-256 tumor administered with 1% L-glutathione (W-GSH). After 14 days of treatment, the duodenum was harvested for morphometric analysis of the mucosa, proliferation, apoptosis, immunostaining of varicosities immunoreactive (IR) to vasoactive intestinal peptide (VIP) and 5-HT-IR cells, and quantification of mast cells and goblet cells. Walker-256 tumor-bearing rats showed cachexia syndrome, mucosal atrophy, reduced cell proliferation, reduced 5-HT-IR cells, and increased goblet cells and VIPergic varicosities, which were not reversed by L-glutathione. On the other hand, L-glutathione caused a reduction of cells in apoptosis and mast cell recruitment, demonstrating a partial recovery of the damage detected in the intestinal mucosa.
Collapse
Affiliation(s)
- Sabrina Silva Sestak
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil
| | - Fabiana Galvão da Motta Lima
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil
| | - Ana Paula de Oliveira
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil
| | | | | | | | | | | | - Jacqueline Nelisis Zanoni
- Department of Physiology, Laboratory of Enteric Neural Plasticity, State University of Maringá, O33 Block, Colombo Avenue, 5790, Maringá, Paraná, CEP 87020-900, Brazil.
- Department of Morphological Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
11
|
Grondin JA, Khan WI. Emerging Roles of Gut Serotonin in Regulation of Immune Response, Microbiota Composition and Intestinal Inflammation. J Can Assoc Gastroenterol 2024; 7:88-96. [PMID: 38314177 PMCID: PMC10836984 DOI: 10.1093/jcag/gwad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Although the exact etiology of inflammatory bowel diseases (IBD) is unknown, studies have shown that dysregulated immune responses, genetic factors, gut microbiota, and environmental factors contribute to their pathogenesis. Intriguingly, serotonin (5-hydroxytryptamine or 5-HT) seems to be a molecule with increasingly strong implications in the pathogenesis of intestinal inflammation, affecting host physiology, including autophagy and immune responses, as well as microbial composition and function. 5-HT may also play a role in mediating how environmental effects impact outcomes in IBD. In this review, we aim to explore the production and important functions of 5-HT, including its impact on the gut. In addition, we highlight the bidirectional impacts of 5-HT on the immune system, the gut microbiota, and the process of autophagy and how these effects contribute to the manifestation of intestinal inflammation. We also explore recent findings connecting 5-HT signalling and the influence of environmental factors, particularly diet, in the pathogenesis of IBD. Ultimately, we explore the pleiotropic effects of this ancient molecule on biology and health in the context of intestinal inflammation.
Collapse
Affiliation(s)
- Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Poplaski V, Bomidi C, Kambal A, Nguyen-Phuc H, Di Rienzi SC, Danhof HA, Zeng XL, Feagins LA, Deng N, Vilar E, McAllister F, Coarfa C, Min S, Kim HJ, Shukla R, Britton R, Estes MK, Blutt SE. Human intestinal organoids from Cronkhite-Canada syndrome patients reveal link between serotonin and proliferation. J Clin Invest 2023; 133:e166884. [PMID: 37909332 PMCID: PMC10617781 DOI: 10.1172/jci166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
Cronkhite-Canada Syndrome (CCS) is a rare, noninherited polyposis syndrome affecting 1 in every million individuals. Despite over 50 years of CCS cases, the etiopathogenesis and optimal treatment for CCS remains unknown due to the rarity of the disease and lack of model systems. To better understand the etiology of CCS, we generated human intestinal organoids (HIOs) from intestinal stem cells isolated from 2 patients. We discovered that CCS HIOs are highly proliferative and have increased numbers of enteroendocrine cells producing serotonin (also known as 5-hydroxytryptamine or 5HT). These features were also confirmed in patient tissue biopsies. Recombinant 5HT increased proliferation of non-CCS donor HIOs and inhibition of 5HT production in the CCS HIOs resulted in decreased proliferation, suggesting a link between local epithelial 5HT production and control of epithelial stem cell proliferation. This link was confirmed in genetically engineered HIOs with an increased number of enteroendocrine cells. This work provides a new mechanism to explain the pathogenesis of CCS and illustrates the important contribution of HIO cultures to understanding disease etiology and in the identification of novel therapies. Our work demonstrates the principle of using organoids for personalized medicine and sheds light on how intestinal hormones can play a role in intestinal epithelial proliferation.
Collapse
Affiliation(s)
- Victoria Poplaski
- Program in Translational Biology and Molecular Medicine
- Department of Molecular Virology and Microbiology, and
| | | | - Amal Kambal
- Department of Molecular Virology and Microbiology, and
| | | | - Sara C. Di Rienzi
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, and
| | - Linda A. Feagins
- Department of Internal Medicine, Center for Inflammatory Bowl Diseases, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston Texas, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Soyoun Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hyun Jung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richa Shukla
- Department of Medicine, Section of Gasteroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert Britton
- Department of Molecular Virology and Microbiology, and
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, and
- Department of Medicine, Section of Gasteroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston Texas, USA
| | | |
Collapse
|
13
|
Kundu S, Nayak S, Rakshit D, Singh T, Shukla R, Khatri DK, Mishra A. The microbiome-gut-brain axis in epilepsy: pharmacotherapeutic target from bench evidence for potential bedside applications. Eur J Neurol 2023; 30:3557-3567. [PMID: 36880679 DOI: 10.1111/ene.15767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The gut-brain axis augments the bidirectional communication between the gut and brain and modulates gut homeostasis and the central nervous system through the hypothalamic-pituitary-adrenal axis, enteroendocrine system, neuroendocrine system, inflammatory and immune pathways. Preclinical and clinical reports showed that gut dysbiosis might play a major regulatory role in neurological diseases such as epilepsy, Parkinson's, multiple sclerosis, and Alzheimer's disease. Epilepsy is a chronic neurological disease that causes recurrent and unprovoked seizures, and numerous risk factors are implicated in developing epilepsy. Advanced consideration of the gut-microbiota-brain axis can reduce ambiguity about epilepsy pathology, antiepileptic drugs, and effective therapeutic targets. Gut microbiota sequencing analysis reported that the level of Proteobacteria, Verrucomicrobia, Fusobacteria, and Firmicutes was increased and the level of Actinobacteria and Bacteroidetes was decreased in epilepsy patients. Clinical and preclinical studies also indicated that probiotics, ketogenic diet, faecal microbiota transplantation, and antibiotics can improve gut dysbiosis and alleviate seizure by enhancing the abundance of healthy biota. This study aims to give an overview of the connection between gut microbiota, and epilepsy, how gut microbiome changes may cause epilepsy, and whether gut microbiome restoration could be used as a treatment for epilepsy.
Collapse
Affiliation(s)
- Snehashis Kundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Sudipta Nayak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| |
Collapse
|
14
|
Rosa LF, Haasis E, Knauss A, Guseva D, Bischoff SC. Serotonin reuptake transporter deficiency promotes liver steatosis and impairs intestinal barrier function in obese mice fed a Western-style diet. Neurogastroenterol Motil 2023; 35:e14611. [PMID: 37246491 DOI: 10.1111/nmo.14611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/23/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Intestinal barrier dysfunctions have been associated with liver steatosis and metabolic diseases. Besides nutritional factors, like a Western-style diet (WSD), serotonin has been linked with leaky gut. Therefore, we aimed to evaluate the role of serotonin in the pathogenesis of intestinal barrier dysfunctions and liver steatosis in mice fed high-fat and high-sugar diets. METHODS 6-8 weeks old male serotonin reuptake transporter knockout mice (SERT-/- ) and wild-type controls (SERT+/+ ) were fed either a WSD or a control diet (CD) ad libitum with or without fructose 30% (F) added to the drinking water for 12 weeks. Markers of liver steatosis and intestinal barrier function were assessed. KEY RESULTS SERT-/- mice showed increased weight gain compared with SERT+/+ mice when fed a WSD ± F for 12 weeks (p < 0.05), whereby SERT-/- mice exhibited reduced energy (-21%) intake. Furthermore, SERT knockout resulted in a more pronounced liver steatosis (p < 0.05), enhanced levels of endotoxin in portal vein plasma (p < 0.05), and increased liver expression of Tnf and Myd88 (p < 0.05), when mice were fed a WSD ± F. Finally, SERT-/- mice, when compared with SERT+/+ mice, had a decreased mRNA expression of Muc2 (p < 0.01), Ocln (p < 0.05), Cldn5 (p = 0.054) and 7 (p < 0.01), Defa5 (p < 0.05) and other antimicrobial peptides in the ileum. On the protein level, ZO-1 (p < 0.01) and DEFA5 protein (p < 0.0001) were decreased. CONCLUSION AND INFERENCES Our data demonstrate that SERT knockout causes weight gain, liver steatosis, and leaky gut, especially in mice fed a WSD. Therefore, SERT induction could be a novel therapeutic approach to improve metabolic diseases associated with intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Louisa Filipe Rosa
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Eva Haasis
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Annkathrin Knauss
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Daria Guseva
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
15
|
Das S, Gnanasambandan R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci 2023; 316:121414. [PMID: 36682521 DOI: 10.1016/j.lfs.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
A significant portion of the health burden of diabetic kidney disease (DKD) is caused by both type 1 and type 2 diabetes which leads to morbidity and mortality globally. It is one of the most common diabetic complications characterized by loss of renal function with high prevalence, often leading to acute kidney disease (AKD). Inflammation triggered by gut microbiota is commonly associated with the development of DKD. Interactions between the gut microbiota and the host are correlated in maintaining metabolic and inflammatory homeostasis. However, the fundamental processes through which the gut microbiota affects the onset and progression of DKD are mainly unknown. In this narrative review, we summarised the potential role of the gut microbiome, their pathogenicity between diabetic and non-diabetic kidney disease (NDKD), and their impact on host immunity. A well-established association has already been seen between gut microbiota, diabetes and kidney disease. The gut-kidney interrelationship is confirmed by mounting evidence linking gut dysbiosis to DKD, however, it is still unclear what is the real cause of gut dysbiosis, the development of DKD, and its progression. In addition, we also try to distinguish novel biomarkers for early detection of DKD and the possible therapies that can be used to regulate the gut microbiota and improve the host immune response. This early detection and new therapies will help clinicians for better management of the disease and help improve patient outcomes.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramanathan Gnanasambandan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
16
|
Wang A, Li P, Ma F, Li X, Mu G, Tuo Y. Mixed Lactiplantibacillus plantarum strains alleviated DSS-induced intestinal inflammation of Balb/c mice via the 5-HT/5-HT7R/NF-κB signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
17
|
Fan M, Han S, Huang Q, Chen J, Feng S, Lu Y, You R. Ratiometric SERS-based assay with "sandwich" structure for detection of serotonin. Mikrochim Acta 2023; 190:100. [PMID: 36821003 DOI: 10.1007/s00604-023-05634-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/24/2022] [Indexed: 02/24/2023]
Abstract
A ratiometric nanoensemble-functionalized Surface-Enhanced Raman Spectroscopy (SERS) chip is proposed and an ultrasensitive "sandwich" structure introduced for the detection of 5-HT to achieve early diagnosis of colon cancer. The SERS-based chip contains core-shell SERS active substrates coded by different Raman tags with Raman-silent region peaks (Au@EBP@Au NR arrays and Au@MBN@Ag NPs) and then identify-function molecule modification to construct the "sandwich" structure (Au@EBP@Au NR arrays/5-HT/Au@MBN@Ag NPs). Au@EBP@Au NR arrays showed excellent SERS performance, including good uniformity with an RSD of 5.53% and an enhancement factor (EF) of 2.13 × 107. The intensity ratio of the peaks in the Raman silent region was proportional to the concentration of 5-HT in the range 5 × 10-7-1 × 10-3 M, with a detection limit (LOD) of 4.9 × 10-9 M. Excellent assay accuracy was also demonstrated, with recoveries in the range 96.80% to 104.96%. Finally, we found that 5-HT expression levels in normal human sera were much lower than those in colon cancer patients by using a SERS-based chip for determination of the concentration of 5-HT in clinical colon cancer serum. This result suggested that the proposed approach has potential for detecting 5-HT by ratiometric SERS-based chips for early diagnosis of colon cancer.
Collapse
Affiliation(s)
- Min Fan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China.,Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Sirui Han
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China
| | - Qian Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China
| | - Jingbo Chen
- Department of Oncology Shengli Clinical Medical College of Fujian Medical , University Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Shangyuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced, Materials Oriented Chemical Engineering, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
18
|
Adsorption Kinetic Model Predicts and Improves Reliability of Electrochemical Serotonin Detection. Methods Protoc 2023; 6:mps6010006. [PMID: 36648955 PMCID: PMC9844352 DOI: 10.3390/mps6010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
Serotonin (5-HT) is a neurotransmitter involved in many biophysiological processes in the brain and in the gastrointestinal tract. Electrochemical methods are commonly used to quantify 5-HT, but their reliability may suffer due to the time-dependent nature of adsorption-limited 5-HT detection, as well as electrode fouling over repeated measurements. Mathematical characterization and modeling of adsorption-based electrochemical signal generation would improve reliability of 5-HT measurement. Here, a model was developed to track 5-HT electrode adsorption and resulting current output by combining Langmuir adsorption kinetic equations and adsorption-limited electrochemical equations. 5-HT adsorption binding parameters were experimentally determined at a carbon-nanotube coated Au electrode: KD = 7 × 10-7 M, kon = 130 M-1 s-1, koff = 9.1 × 10-5 s-1. A computational model of 5-HT adsorption was then constructed, which could effectively predict 5-HT fouling over 50 measurements (R2 = 0.9947), as well as predict electrode responses over varying concentrations and measurement times. The model aided in optimizing the measurement of 5-HT secreted from a model enterochromaffin cell line-RIN14B-minimizing measurement time. The presented model simplified and improved the characterization of 5-HT detection at the selected electrode. This could be applied to many other adsorption-limited electrochemical analytes and electrode types, contributing to the improvement of application-specific modeling and optimization processes.
Collapse
|
19
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [PMID: 36356927 DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
20
|
Costas C, Louzao MC, Raposo-García S, Vale C, Vieytes MR, Botana LM. Intestinal secretory mechanisms in Okadaic acid induced diarrhoea. Food Chem Toxicol 2022; 169:113449. [DOI: 10.1016/j.fct.2022.113449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
|
21
|
Cao H, Tang J, Liu Q, Huang J, Xu R. Autism-like behaviors regulated by the serotonin receptor 5-HT2B in the dorsal fan-shaped body neurons of Drosophila melanogaster. Eur J Med Res 2022; 27:203. [PMID: 36253869 PMCID: PMC9575255 DOI: 10.1186/s40001-022-00838-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and repetitive stereotyped behaviors. Previous studies have reported an association of serotonin or 5-hydroxytryptamine (5-HT) with ASD, but the specific receptors and neurons by which serotonin modulates autistic behaviors have not been fully elucidated. METHODS RNAi-mediated knockdown was done to destroy the function of tryptophan hydroxylase (Trh) and all the five serotonin receptors. Given that ubiquitous knockdown of 5-HT2B showed significant defects in social behaviors, we applied the CRISPR/Cas9 system to knock out the 5-HT2B receptor gene. Social space assays and grooming assays were the major methods used to understand the role of serotonin and related specific receptors in autism-like behaviors of Drosophila melanogaster. RESULTS A close relationship was identified between serotonin and autism-like behaviors reflected by increased social space distance and high-frequency repetitive behavior in Drosophila. We further utilized the binary expression system to knock down all the five 5-HT receptors, and observed the 5-HT2B receptor as the main receptor responsible for the normal social space and repetitive behavior in Drosophila for the specific serotonin receptors underlying the regulation of these two behaviors. Our data also showed that neurons in the dorsal fan-shaped body (dFB), which expressed 5-HT2B, were functionally essential for the social behaviors of Drosophila. CONCLUSIONS Collectively, our data suggest that serotonin levels and the 5-HT2B receptor are closely related to the social interaction and repetitive behavior of Drosophila. Of all the 5 serotonin receptors, 5-HT2B receptor in dFB neurons is mainly responsible for serotonin-mediated regulation of autism-like behaviors.
Collapse
Affiliation(s)
- Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Junbo Tang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Qisha Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Juan Huang
- Capital Medical University School of Basic Medical Sciences, Beijing, 100069, China.
| | - Rui Xu
- State Key Laboratory of Reproductive Medicine, Center of Global Health, Nanjing Medical University, Nanjing, 211166, China. .,Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
22
|
Wang Z, Shao D, Wu S, Song Z, Shi S. Heat stress-induced intestinal barrier damage and dimethylglycine alleviates via improving the metabolism function of microbiota gut brain axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114053. [PMID: 36084503 DOI: 10.1016/j.ecoenv.2022.114053] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Heat stress, a widely occurred in subtropical climate regions, causes ecosystem destruction, and intestine injury in humans and animals. As an important compound in the metabolic pathway of choline, dimethylglycine (DMG) shows anti-inflammatory effects. This study examines the beneficial effects of dietary DMG against heat stress-induced intestine injury and further explores the underlying molecular mechanisms using a broiler model. Here, we showed that DMG supplements exhibited positive effects to growth performance, as evidenced by the significantly increased body weight and feed conversion rate. These therapeutic effects attributed to repaired gut barrier integrity, increased content of anti-inflammatory cytokines IL-10, decreased content of pro-inflammatory cytokines IL-6, and down-regulated gene expression of the NF-κB signaling pathway. DMG treatment led to the reshaping of the gut microbiota composition, mainly increasing the short-chain fatty acid (SCFAs) strains such as Faecalibacterium, and Marvinbryantia. DMG treatment also increased two main members of SCFAs, including acetate acid and isobutyrate. Particularly, distinct effects were found which mediated the tryptophan metabolism in intestines such as increased tryptophan and 5-HT, which further alleviate the occurrence of intestinal barrier damage caused by heat stress. Additionally, DMG treatment promoted neuroendocrine function and stimulated the hypothalamic neurotransmitter metabolism by activating tryptophan metabolism in the hypothalamus. Overall, DMG supplementation effectively reduced the occurrence of intestinal inflammation induced by heat stress through modulating cecal microbial communities and improving the metabolism function of microbiota gut brain axis. Our findings revealed a novel mechanism by which gut microbiota could improve host health.
Collapse
Affiliation(s)
- Zhenxin Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China; Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Shu Wu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Zhigang Song
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China.
| |
Collapse
|
23
|
Masanetz RK, Winkler J, Winner B, Günther C, Süß P. The Gut-Immune-Brain Axis: An Important Route for Neuropsychiatric Morbidity in Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:11111. [PMID: 36232412 PMCID: PMC9570400 DOI: 10.3390/ijms231911111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) comprises Crohn's disease (CD) and ulcerative colitis (UC) and is associated with neuropsychiatric symptoms like anxiety and depression. Both conditions strongly worsen IBD disease burden. In the present review, we summarize the current understanding of the pathogenesis of depression and anxiety in IBD. We present a stepwise cascade along a gut-immune-brain axis initiated by evasion of chronic intestinal inflammation to pass the epithelial and vascular barrier in the gut and cause systemic inflammation. We then summarize different anatomical transmission routes of gut-derived peripheral inflammation into the central nervous system (CNS) and highlight the current knowledge on neuroinflammatory changes in the CNS of preclinical IBD mouse models with a focus on microglia, the brain-resident macrophages. Subsequently, we discuss how neuroinflammation in IBD can alter neuronal circuitry to trigger symptoms like depression and anxiety. Finally, the role of intestinal microbiota in the gut-immune-brain axis in IBD will be reviewed. A more comprehensive understanding of the interaction between the gastrointestinal tract, the immune system and the CNS accounting for the similarities and differences between UC and CD will pave the path for improved prediction and treatment of neuropsychiatric comorbidities in IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Claudia Günther
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
24
|
Wang S, Ding Y, Jiang W. CSE/H2S ameliorates colitis in mice via protection of enteric glial cells and inhibition of the RhoA/ROCK pathway. Front Immunol 2022; 13:966881. [PMID: 36189321 PMCID: PMC9520914 DOI: 10.3389/fimmu.2022.966881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The enteric glial cells (EGCs) participate in the homeostasis of the gastrointestinal tract, and RhoA/ROCK signaling pathway plays a vital role in colonic tight junctions. Hydrogen sulfide (H2S) has been reported to alleviate colitis. However, the effect and mechanism of endogenous H2S on colitis remain unclear. This study established a Cystathionine-γ-lyase (CSE) knockout mouse model, a significant source of H2S production in the gut. The role of CSE-produced H2S on EGCs and the RhoA/ROCK signaling pathway was investigated in experimental colitis using CSE knockout (KO) and wild-type (WT) mice. CSE gene knockout animals presented with disease progression, more deteriorated clinical scores, colon shortening, and histological damage. EGCs dysfunction, characterized by decreased expression of the glial fibrillary acidic protein (GFAP), C3, and S100A10, was observed in the colon of WT and KO mice, especially in KO mice. RhoA/ROCK pathway was significantly upregulated in colon of colitis mice, which was more evident in KO mice. Pretreatment with NaHS, an exogenous H2S donor, significantly ameliorated mucosal injury and inhibited the expression of proinflammatory factors. Furthermore, we found that NaHS promoted the transformation of EGCs from “A1” to “A2” type, with decreased expression of C3 and increased expression of S100A10. These findings suggest that CSE/H2S protects mice from colon inflammation, which may be associated with preserving EGCs function by promoting EGCs transformation and inhibiting the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Song Wang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjun Jiang
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Wenjun Jiang,
| |
Collapse
|
25
|
Gama JFG, Cardoso LMDF, Bisaggio RDC, Lagrota-Candido J, Henriques-Pons A, Alves LA. Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions. Cells 2022; 11:cells11152327. [PMID: 35954171 PMCID: PMC9367574 DOI: 10.3390/cells11152327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
The transplantation world changed significantly following the introduction of immunosuppressants, with millions of people saved. Several physicians have noted that liver recipients that do not take their medication for different reasons became tolerant regarding kidney, heart, and lung transplantations at higher frequencies. Most studies have attempted to explain this phenomenon through unique immunological mechanisms and the fact that the hepatic environment is continuously exposed to high levels of pathogen-associated molecular patterns (PAMPs) or non-pathogenic microorganism-associated molecular patterns (MAMPs) from commensal flora. These components are highly inflammatory in the periphery but tolerated in the liver as part of the normal components that arrive via the hepatic portal vein. These immunological mechanisms are discussed herein based on current evidence, although we hypothesize the participation of neuroendocrine-immune pathways, which have played a relevant role in autoimmune diseases. Cells found in the liver present receptors for several cytokines, hormones, peptides, and neurotransmitters that would allow for system crosstalk. Furthermore, the liver is innervated by the autonomic system and may, thus, be influenced by the parasympathetic and sympathetic systems. This review therefore seeks to discuss classical immunological hepatic tolerance mechanisms and hypothesizes the possible participation of the neuroendocrine-immune system based on the current literature.
Collapse
Affiliation(s)
- Jaciara Fernanda Gomes Gama
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Liana Monteiro da Fonseca Cardoso
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
| | - Rodrigo da Cunha Bisaggio
- Department of Biotechnology, Federal Institute of Rio de Janeiro (IFRJ), Maracanã, Rio de Janeiro 20270-021, Brazil;
| | - Jussara Lagrota-Candido
- Laboratory of Immunopathology, Department of Immunobiology, Biology Institute, Federal Fluminense University (UFF), Gragoatá Bl-M Campus, Niterói 24210-200, Brazil;
| | - Andrea Henriques-Pons
- Laboratory of Innovations in Therapies, Education, and Bioproducts, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-361, Brazil;
| | - Luiz A. Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Brazil Avenue, 4365-Manguinhos, Rio de Janeiro 21045-900, Brazil; (J.F.G.G.); (L.M.d.F.C.)
- Correspondence: or ; Tel.: +55-(21)-2562-1816 (ext. 1841)
| |
Collapse
|
26
|
Immune Cells in Pulmonary Arterial Hypertension. Heart Lung Circ 2022; 31:934-943. [PMID: 35361533 DOI: 10.1016/j.hlc.2022.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and serious cardiopulmonary disease; it is characterised by increased pulmonary arterial pressure and pulmonary vascular remodelling accompanied by disordered endothelial and smooth muscle cell proliferation within pulmonary arterioles and arteries. Although recent reports have suggested that dysregulated immunity and inflammation are key players in PAH pathogenesis, their roles in PAH progression remain unclear. Intriguingly, altered host immune cell distribution, number, and polarisation within the lung arterial vasculature have been linked to disease development. This review mainly focusses on the roles of different immune cells in PAH and discusses the underlying mechanisms.
Collapse
|
27
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
28
|
Walldorf J, Porzner M, Neumann M, Joodi G, Niess JH, von Boyen G, Mäder K, Weissbach J, Kleger A, Seufferlein T. The Selective 5-HT1A Agonist SR57746A Protects Intestinal Epithelial Cells and Enteric Glia Cells and Promotes Mucosal Recovery in Experimental Colitis. Inflamm Bowel Dis 2022; 28:423-433. [PMID: 34417821 DOI: 10.1093/ibd/izab191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neurotrophic growth factors can stabilize the intestinal barrier by preventing the apoptosis of enteric glial cells (EGCs) and enterocytes. We reasoned that a selective 5-HT1A receptor agonist may have neuroprotective properties in the gut and that topical application of SR57746A might be an effective treatment strategy in inflammatory bowel disease (IBD). METHODS The therapeutic potential of 5-HT1A receptor agonist SR57746A in IBD was evaluated in vitro (nontransformed NCM460 colonic epithelial cells, SW480 colorectal carcinoma cells) and in vivo (murine dextran sulfate sodium [DSS] colitis and CD4-T-cell transfer colitis). In vitro, we analyzed the effect of SR57746A on apoptosis in intestinal epithelial cells (IECs) and EGCs, and upon proliferation, migration, and intracellular signaling in IECs. In vivo, the effect of topical application of SR57746 on disease activity and on histological and endoscopic findings was compared with intraperitoneal infliximab and placebo, respectively. RESULTS The SR57746A activates PI3-K/AKT- and ERK-signaling in IECs. Depending on ERK- and AKT activation, SR57746A potently prevents apoptosis of IECs without inducing proliferation or migration in these cells. Moreover, SR57746A prevented apoptosis in EGCs in vitro. Topical SR57746A treatment significantly reduced mucosal injury in 2 experimental murine colitis models and was as effective as intraperitoneal infliximab treatment. CONCLUSIONS Treatment with SR57746A prevents inflammatory cell damage and apoptosis in IECs and EGCs, similar to the neurotrophic effects of EGCs on IECs. Topical treatment with SR57746A could be a candidate for clinical evaluation in the treatment of IBD.
Collapse
Affiliation(s)
- Jens Walldorf
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg Halle (Saale), Germany
| | | | - Martin Neumann
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg Halle (Saale), Germany
| | - Golsa Joodi
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg Halle (Saale), Germany.,Yale School of Medicine, New Haven, Connecticut, USA
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland.,University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital of Basel, Basel, Switzerland
| | - Georg von Boyen
- Department of Internal Medicine, Hospital of Sigmaringen, Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg Halle (Saale), Germany
| | - Julia Weissbach
- Department of Internal Medicine I, Martin Luther University Halle-Wittenberg Halle (Saale), Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | | |
Collapse
|
29
|
Fabà L, de Groot N, Ramis G, Cabrera-Gómez CG, Doelman J. Serotonin receptors and their association with the immune system in the gastrointestinal tract of weaning piglets. Porcine Health Manag 2022; 8:8. [PMID: 35090573 PMCID: PMC8796611 DOI: 10.1186/s40813-022-00250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022] Open
Abstract
Background Immune cell activation and perpetuation of inflammation have been attributed to the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT). Our hypothesis was that the 5-HT system plays a role in GI health and immunity in post-weaning piglets. A disruption of the 5-HT system post-weaning with transcriptional upregulation of 5-HT receptors may be linked to increased cytokine mRNA abundance and immune system activation.
Methods The objective of this exploratory study was to assess the relationship between 5-HT receptor expression and immune system biomarkers in piglets at 1 (n = 9) and 15 (n = 10) days post-weaning. The mRNA transcript abundance of three 5-HT receptors (5-HTR3, 5-HTR4, and 5-HTR7) measured in jejunum and colon tissues were used to determine the relationship with the immune system and jejunal morphometry at 2 timepoints post-weaning using correlations, mixed models, and multivariate analysis techniques. Results Overall, 5-HT receptor mRNA expression decreased from day 1 to day 15 post-weaning. Time × tissue interactions showed the lowest 5-HTR3 expression in the colon and lower 5-HTR7 expression in the jejunum at 15 days post-weaning. 5-HTR3 and 5-HTR4 expression were negatively associated with pro-inflammatory (IFN-ɣ) and anti-inflammatory (IL-10 and IL-12β) cytokines in jejunum, and with TNF-α in the colon at 1-day post-weaning. At 15 days post-weaning, 5-HTR3 in the colon was negatively associated with pro-inflammatory (IL-1α, IL-1β, TNF-α, IL-8, and IFN-ɣ) and anti-inflammatory (IL-10 and IL-12β) cytokines. Furthermore, 5-HTR7 expressed a predominantly pro-inflammatory profile (IFN-α, IL-1α, IL-1β, IL-8, TNF-α and IL-12α) in the jejunum at the same timepoint, whereas colonic 5-HTR7 expression was negatively correlated with IL-1α, IL-1β, IL-10 and TGF-β. Lastly, positive correlations were found for increased expression of 5-HTR4 receptor with villus height, 5-HTR7 receptor expression and crypt depth, and increased expression of 5-HTR3 and 5-HTR4 receptor with villus height to crypt depth ratio at 1-day post-weaning. Conclusions The 5-HT receptor mRNA abundance was associated with the immune system and intestinal morphometry in piglets. The 5-HT receptors were highly expressed at weaning in both jejunum and colon tissues relative to 15 days post-weaning. Although a clear relationship between immune system and 5-HTR expression is observed, particularly at day 15, a cause-consequence cannot be proven with current data. Further research is warranted to elucidate the effects of 5-HT on gastrointestinal inflammation during the weaning process in piglets, which could be the basis for new interventions to ease weaning stress.
Collapse
Affiliation(s)
- Lluís Fabà
- Trouw Nutrition R&D, Boxmeer, The Netherlands.
| | | | - Guillermo Ramis
- Dpto. Producción Animal, Facultad de Veterinaria, Universidad de Murcia, Murcia, Spain
| | | | | |
Collapse
|
30
|
Men Z, Cao M, Gong Y, Hua L, Zhang R, Zhu X, Tang L, Jiang X, Xu S, Li J, Che L, Lin Y, Feng B, Fang Z, Wu D, Zhuo Y. Microbial and metabolomic mechanisms mediating the effects of dietary inulin and cellulose supplementation on porcine oocyte and uterine development. J Anim Sci Biotechnol 2022; 13:14. [PMID: 35033192 PMCID: PMC8760789 DOI: 10.1186/s40104-021-00657-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background Dietary fiber (DF) is often eschewed in swine diet due to its anti-nutritional effects, but DF is attracting growing attention for its reproductive benefits. The objective of this study was to investigate the effects of DF intake level on oocyte maturation and uterine development, to determine the optimal DF intake for gilts, and gain microbial and metabolomic insight into the underlying mechanisms involved. Methods Seventy-six Landrace × Yorkshire (LY) crossbred replacement gilts of similar age (92.6 ± 0.6 d; mean ± standard deviation [SD]) and body weight (BW, 33.8 ± 3.9 kg; mean ± SD) were randomly allocated to 4 dietary treatment groups (n = 19); a basal diet without extra DF intake (DF 1.0), and 3 dietary groups ingesting an extra 50% (DF 1.5), 75% (DF 1.75), and 100% (DF 2.0) dietary fiber mixture consisting of inulin and cellulose (1:4). Oocyte maturation and uterine development were assessed on 19 d of the 2nd oestrous cycle. Microbial diversity of faecal samples was analysed by high-throughput pyrosequencing (16S rRNA) and blood samples were subjected to untargeted metabolomics. Results The rates of oocytes showing first polar bodies after in vitro maturation for 44 h and uterine development increased linearly with increasing DF intake; DF 1.75 gilts had a 19.8% faster oocyte maturation rate and a 48.9 cm longer uterus than DF 1.0 gilts (P < 0.05). Among the top 10 microbiota components at the phylum level, 8 increased linearly with increasing DF level, and the relative abundance of 30 of 53 microbiota components at the genus level (> 0.1%) increased linearly or quadratically with increasing DF intake. Untargeted metabolic analysis revealed significant changes in serum metabolites that were closely associated with microbiota, including serotonin, a gut-derived signal that stimulates oocyte maturation. Conclusions The findings provide evidence of the benefits of increased DF intake by supplementing inulin and cellulose on oocyte maturation and uterine development in gilts, and new microbial and metabolomic insight into the mechanisms mediating the effects of DF on reproductive performance of replacement gilts. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00657-0.
Collapse
Affiliation(s)
- Zhaoyue Men
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Meng Cao
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yuechan Gong
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Ruihao Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xin Zhu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lianchao Tang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
31
|
Wang X, Yuan W, Xu M, Su X, Li F. Visualization of Acute Inflammation through a Macrophage-Camouflaged Afterglow Nanocomplex. ACS APPLIED MATERIALS & INTERFACES 2022; 14:259-267. [PMID: 34957836 DOI: 10.1021/acsami.1c19388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acute inflammation is a basic innate, immediate, and stereotyped immune response to injury, which is characterized by rapid recruitment of immune cells to the vasculature and extravasation into the damaged parenchyma. Visualization of acute inflammation plays an important role in monitoring the disease course and understanding pathogenesis, which lacks specific targeted and observing tools in vivo. Here, we report a Trojan horse strategy of a macrophage-camouflaged afterglow nanocomplex (UCANPs@RAW) to specifically visualize acute inflammation. Due to the advantages of optical antibackground interference elimination, as well as particular immune homing and long-term tracking capacity, UCANPs@RAW demonstrates an excellent acute inflammatory recognition ability. In an arthritis model, previously intravenously injected UCANPs@RAW could directionally migrate from the liver to the inflammation site as soon as 3 h after the model was induced, which could be continuously lighted for at least 36 h with the highest imaging signal-to-background ratio (SBR) as 382 at the time point of 9 h. Additionally, UCANPs@RAW is observed to penetrate the blood-brain barrier and image the deep brain inflamed region covered by the thick skull in an acute brain inflammation model with an SBRmax of 258, which is based on the strong recruiting ability of macrophages to immune response. In view of this smart nanocomplex, our strategy holds great potential for inflammatory detection and treatments.
Collapse
Affiliation(s)
- Xiu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Wei Yuan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Ming Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Xianlong Su
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Fuyou Li
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| |
Collapse
|
32
|
Haq S, Wang H, Grondin J, Banskota S, Marshall JK, Khan II, Chauhan U, Cote F, Kwon YH, Philpott D, Brumell JH, Surette M, Steinberg GR, Khan WI. Disruption of autophagy by increased 5-HT alters gut microbiota and enhances susceptibility to experimental colitis and Crohn's disease. SCIENCE ADVANCES 2021; 7:eabi6442. [PMID: 34739317 PMCID: PMC8570609 DOI: 10.1126/sciadv.abi6442] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Autophagy, an essential intracellular recycling process, is linked to the pathogenesis of various diseases including Crohn’s disease (CD). Factors that lead to the development of impaired autophagy during intestinal inflammation remain largely unexplored. Here, we report the impact of the interaction between serotonin [5-hydroxytryptamine;(5-HT)] and autophagy in colitis in mouse and human studies. In mice, increased gut 5-HT inhibited autophagy and led to enhanced colitis susceptibility. Reciprocally, mice with reduced 5-HT exhibited up-regulated autophagy via the mammalian target of rapamycin pathway, which resulted in significantly decreased colitis. Deletion of autophagy gene, Atg7, in an epithelial-specific manner, in concert with reduced 5-HT, promoted the development of a colitogenic microbiota and abolished the protective effects conferred by reduced 5-HT. Notably, in control and patient peripheral blood mononuclear cells, we uncovered that 5-HT treatment inhibited autophagy. Our findings suggest 5-HT as a previously unidentified therapeutic target in intestinal inflammatory disorders such as CD that exhibits dysregulated autophagy.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John K. Marshall
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Irfan I. Khan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Usha Chauhan
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Francine Cote
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dana Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - John H. Brumell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario and Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R. Steinberg
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Corresponding author.
| |
Collapse
|
33
|
Ding M, Lang Y, Shu H, Shao J, Cui L. Microbiota-Gut-Brain Axis and Epilepsy: A Review on Mechanisms and Potential Therapeutics. Front Immunol 2021; 12:742449. [PMID: 34707612 PMCID: PMC8542678 DOI: 10.3389/fimmu.2021.742449] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
The gut-brain axis refers to the bidirectional communication between the gut and brain, and regulates intestinal homeostasis and the central nervous system via neural networks and neuroendocrine, immune, and inflammatory pathways. The development of sequencing technology has evidenced the key regulatory role of the gut microbiota in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and multiple sclerosis. Epilepsy is a complex disease with multiple risk factors that affect more than 50 million people worldwide; nearly 30% of patients with epilepsy cannot be controlled with drugs. Interestingly, patients with inflammatory bowel disease are more susceptible to epilepsy, and a ketogenic diet is an effective treatment for patients with intractable epilepsy. Based on these clinical facts, the role of the microbiome and the gut-brain axis in epilepsy cannot be ignored. In this review, we discuss the relationship between the gut microbiota and epilepsy, summarize the possible pathogenic mechanisms of epilepsy from the perspective of the microbiota gut-brain axis, and discuss novel therapies targeting the gut microbiota. A better understanding of the role of the microbiota in the gut-brain axis, especially the intestinal one, would help investigate the mechanism, diagnosis, prognosis evaluation, and treatment of intractable epilepsy.
Collapse
Affiliation(s)
| | | | | | | | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Lu WD, Wu ML, Zhang JX, Huang TT, Du SS, Cao YX. The effect of sodium carboxymethyl starch with high degree of substitution on defecation. PLoS One 2021; 16:e0257012. [PMID: 34478474 PMCID: PMC8415588 DOI: 10.1371/journal.pone.0257012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Sodium carboxymethyl starch (CMS-Na), a kind of food additive with high degree of substitution, is also known as a prebiotic. The aim of this study was to determine the effect of CMS-Na on defecation. Constipated mouse model was prepared by loperamide. Normal rats were also used in the study. Short-chain fatty acids in rat feces were detected by gas chromatography. The bacterial communities in rat feces were identified by 16S rDNA gene sequencing. 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase 1 (Tph1) were measured by ELISA. The results showed that CMS-Na increased the fecal granule counts and intestinal propulsion rate in constipated mice. The contents of water, acetic acid, propionic acid and n-butyrate in feces, Tph1 in colon and 5-HT in serum of rats were increased. In addition, CMS-Na shortened the colonic transport time in rats. The 16S rDNA gene sequencing results indicated that CMS-Na increased the relative abundance of Alloprevotella and decreased the proportion of Lactobacillus. However, the biodiversity of the normal intestinal flora was not altered. In conclusion, CMS-Na can promote defecation in constipated mice. The mechanism may be related to the regulation of Alloprevotella and Lactobacillus in colon, the increase of short-chain fatty acids, and the promotion of the synthesis of Tph1 and 5-HT.
Collapse
Affiliation(s)
- Wu-dang Lu
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi`an, Shaanxi, China
| | - Man-li Wu
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi`an, Shaanxi, China
| | - Jun-xia Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi`an, Shaanxi, China
| | - Ting-ting Huang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi`an, Shaanxi, China
| | - Shuai-shuai Du
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi`an, Shaanxi, China
| | - Yong-xiao Cao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi`an, Shaanxi, China
- * E-mail:
| |
Collapse
|
35
|
Haq S, Grondin JA, Khan WI. Tryptophan-derived serotonin-kynurenine balance in immune activation and intestinal inflammation. FASEB J 2021; 35:e21888. [PMID: 34473368 PMCID: PMC9292703 DOI: 10.1096/fj.202100702r] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/29/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023]
Abstract
Endogenous tryptophan metabolism pathways lead to the production of serotonin (5‐hydroxytryptamine; 5‐HT), kynurenine, and several downstream metabolites which are involved in a multitude of immunological functions in both health and disease states. Ingested tryptophan is largely shunted to the kynurenine pathway (95%) while only minor portions (1%–2%) are sequestered for 5‐HT production. Though often associated with the functioning of the central nervous system, significant production of 5‐HT, kynurenine and their downstream metabolites takes place within the gut. Accumulating evidence suggests that these metabolites have essential roles in regulating immune cell function, intestinal inflammation, as well as in altering the production and suppression of inflammatory cytokines. In addition, both 5‐HT and kynurenine have a considerable influence on gut microbiota suggesting that these metabolites impact host physiology both directly and indirectly via compositional changes. It is also now evident that complex interactions exist between the two pathways to maintain gut homeostasis. Alterations in 5‐HT and kynurenine are implicated in the pathogenesis of many gastrointestinal dysfunctions, including inflammatory bowel disease. Thus, these pathways present numerous potential therapeutic targets, manipulation of which may aid those suffering from gastrointestinal disorders. This review aims to update both the role of 5‐HT and kynurenine in immune regulation and intestinal inflammation, and analyze the current knowledge of the relationship and interactions between 5‐HT and kynurenine pathways.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Laboratory Medicine, Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
36
|
Koopman N, Katsavelis D, Hove AST, Brul S, de Jonge WJ, Seppen J. The Multifaceted Role of Serotonin in Intestinal Homeostasis. Int J Mol Sci 2021; 22:9487. [PMID: 34502396 PMCID: PMC8431144 DOI: 10.3390/ijms22179487] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
The monoamine serotonin, 5-hydroxytryptamine (5-HT), is a remarkable molecule with conserved production in prokaryotes and eukaryotes and a wide range of functions. In the gastrointestinal tract, enterochromaffin cells are the most important source for 5-HT production. Some intestinal bacterial species are also able to produce 5-HT. Besides its role as a neurotransmitter, 5-HT acts on immune cells to regulate their activation. Several lines of evidence indicate that intestinal 5-HT signaling is altered in patients with inflammatory bowel disease. In this review, we discuss the current knowledge on the production, secretion, and signaling of 5-HT in the intestine. We present an inventory of intestinal immune and epithelial cells that respond to 5-HT and describe the effects of these signaling processes on intestinal homeostasis. Further, we detail the mechanisms by which 5-HT could affect inflammatory bowel disease course and describe the effects of interventions that target intestinal 5-HT signaling.
Collapse
Affiliation(s)
- Nienke Koopman
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098XH Amsterdam, The Netherlands; (N.K.); (D.K.); (S.B.)
| | - Drosos Katsavelis
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098XH Amsterdam, The Netherlands; (N.K.); (D.K.); (S.B.)
| | - Anne S. ten Hove
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105BK Amsterdam, The Netherlands; (A.S.t.H.); (W.J.d.J.)
| | - Stanley Brul
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098XH Amsterdam, The Netherlands; (N.K.); (D.K.); (S.B.)
| | - Wouter J. de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105BK Amsterdam, The Netherlands; (A.S.t.H.); (W.J.d.J.)
| | - Jurgen Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105BK Amsterdam, The Netherlands; (A.S.t.H.); (W.J.d.J.)
| |
Collapse
|
37
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
38
|
Liu N, Sun S, Wang P, Sun Y, Hu Q, Wang X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int J Mol Sci 2021; 22:ijms22157931. [PMID: 34360695 PMCID: PMC8347425 DOI: 10.3390/ijms22157931] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022] Open
Abstract
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan and is reported to modulate the development and neurogenesis of the enteric nervous system, gut motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of 5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover, studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-HT participates in cell metabolism and physiology can provide potential therapeutic strategies for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health of humans.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713ZG Groningen, The Netherlands
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Qingjuan Hu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (P.W.); (Y.S.); (Q.H.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- Key Laboratory of Precision Nutrition and Food Quality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Correspondence: ; Tel.: +86-10-6273-8589
| |
Collapse
|
39
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
40
|
Lin J, Sun-Waterhouse D, Cui C. The therapeutic potential of diet on immune-related diseases: based on the regulation on tryptophan metabolism. Crit Rev Food Sci Nutr 2021; 62:8793-8811. [PMID: 34085885 DOI: 10.1080/10408398.2021.1934813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tryptophan (TRP), as an essential amino acid, plays crucial roles in maintaining immune homeostasis due to its complex metabolism pathway, including the microbial metabolism, 5-hydroxytryptamine and kynurenine pathways (KP). Metabolites from these pathways can act antioxidant and endogenous ligand of aryl hydrocarbon receptor (including microbiota metabolites: indole, indole aldehyde, indole acetic acid, indole acrylic acid, indole lactate, indole pyruvate acid, indole propionic acid, skatole, tryptamine, and indoxyl sulfate; and KP metabolites: kynurenine, kynurenic acid, 3-hydroxyanthranilic acid, xanthurenic acid, and cinnabarinic acid) for regulating immune response. In immune-related diseases, the production of pro-inflammatory cytokine activates indoleamine-2,3-dioxygenase, a rate-limiting enzyme of KP, leading to abnormal TRP metabolism in vivo. Many recent studies found that TRP metabolism could be regulated by diet, and the diet regulation on TRP metabolism could therapy related diseases. Accordingly, this review provides a critical overview of the relationships among diet, TRP metabolism and immunity with the aim to seek a treatment opportunity for immune-related diseases.
Collapse
Affiliation(s)
- Junjie Lin
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Chun Cui
- College of Food Science and Technology, South China University of Technology, Guangzhou, China.,Guangdong Wei-Wei Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
41
|
Yang Y, Li X, Chen S, Xiao M, Liu Z, Li J, Cheng Y. Mechanism and therapeutic strategies of depression after myocardial infarction. Psychopharmacology (Berl) 2021; 238:1401-1415. [PMID: 33594503 DOI: 10.1007/s00213-021-05784-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
Depression resulted as an important factor associated with the myocardial infarction (MI) prognosis. Patients with MI also have a higher risk for developing depression. Although the issue of depression after MI has become a matter of clinical concern, the molecular mechanism underlying depression after MI remains unclear, whereby several strategies suggested have not got ideal effects, such as selective serotonin reuptake inhibitors. In this review, we summarized and discussed the occurrence mechanism of depression after MI, such as 5-hydroxytryptamine (5-HT) dysfunction, altered hypothalamus-pituitary-adrenal (HPA) axis function, gut microbiota imbalance, exosomal signal transduction, and inflammation. In addition, we offered a succinct overview of treatment, as well as some promising molecules especially from natural products for the treatment of depression after MI.
Collapse
Affiliation(s)
- Ying Yang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xuping Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Sixuan Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Mingzhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jingyan Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Yuanyuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
42
|
Kim JD, Zhu L, Sun Q, Fang L. Systemic metabolite profiling reveals sexual dimorphism of AIBP control of metabolism in mice. PLoS One 2021; 16:e0248964. [PMID: 33793635 PMCID: PMC8016339 DOI: 10.1371/journal.pone.0248964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
Emerging studies indicate that APOA-I binding protein (AIBP) is a secreted protein and functions extracellularly to promote cellular cholesterol efflux, thereby disrupting lipid rafts on the plasma membrane. AIBP is also present in the mitochondria and acts as an epimerase, facilitating the repair of dysfunctional hydrated NAD(P)H, known as NAD(P)H(X). Importantly, AIBP deficiency contributes to lethal neurometabolic disorder, reminiscent of the Leigh syndrome in humans. Whereas cyclic NADPHX production is proposed to be the underlying cause, we hypothesize that an unbiased metabolic profiling may: 1) reveal new clues for the lethality, e.g., changes of mitochondrial metabolites., and 2) identify metabolites associated with new AIBP functions. To this end, we performed unbiased and profound metabolic studies of plasma obtained from adult AIBP knockout mice and control littermates of both genders. Our systemic metabolite profiling, encompassing 9 super pathways, identified a total of 640 compounds. Our studies demonstrate a surprising sexual dimorphism of metabolites affected by AIBP deletion, with more statistically significant changes in the AIBP knockout female vs male when compared with the corresponding controls. AIBP knockout trends to reduce cholesterol but increase the bile acid precursor 7-HOCA in female but not male. Complex lipids, phospholipids, sphingomyelin and plasmalogens were reduced, while monoacylglycerol, fatty acids and the lipid soluble vitamins E and carotene diol were elevated in AIBP knockout female but not male. NAD metabolites were not significantly different in AIBP knockout vs control mice but differed for male vs female mice. Metabolites associated with glycolysis and the Krebs cycle were unchanged by AIBP knockout. Importantly, polyamine spermidine, critical for many cellular functions including cerebral cortex synapses, was reduced in male but not female AIBP knockout. This is the first report of a systemic metabolite profile of plasma samples from AIBP knockout mice, and provides a metabolic basis for future studies of AIBP regulation of cellular metabolism and the pathophysiological presentation of AIBP deficiency in patients.
Collapse
Affiliation(s)
- Jun-dae Kim
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
| | - Lingping Zhu
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Quan Sun
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States of America
- Weill Cornell Medical College, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
43
|
The Intestinal Fatty Acid-Enteroendocrine Interplay, Emerging Roles for Olfactory Signaling and Serotonin Conjugates. Molecules 2021; 26:molecules26051416. [PMID: 33807994 PMCID: PMC7961910 DOI: 10.3390/molecules26051416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Intestinal enteroendocrine cells (EECs) respond to fatty acids from dietary and microbial origin by releasing neurotransmitters and hormones with various paracrine and endocrine functions. Much has become known about the underlying signaling mechanisms, including the involvement of G-protein coupled receptors (GPCRs), like free fatty acids receptors (FFARs). This review focusses on two more recently emerging research lines: the roles of odorant receptors (ORs), and those of fatty acid conjugates in gut. Odorant receptors belong to a large family of GPCRs with functional roles that only lately have shown to reach beyond the nasal-oral cavity. In the intestinal tract, ORs are expressed on serotonin (5-HT) and glucagon-like-peptide-1 (GLP-1) producing enterochromaffin and enteroendocrine L cells, respectively. There, they appear to function as chemosensors of microbiologically produced short-, and branched-chain fatty acids. Another mechanism of fatty acid signaling in the intestine occurs via their conjugates. Among them, conjugates of unsaturated long chain fatty acids and acetate with 5-HT, N-acyl serotonins have recently emerged as mediators with immune-modulatory effects. In this review, novel findings in mechanisms and molecular players involved in intestinal fatty acid biology are highlighted and their potential relevance for EEC-mediated signaling to the pancreas, immune system, and brain is discussed.
Collapse
|
44
|
Lee JG, Cho HJ, Jeong YM, Lee JS. Genetic Approaches Using Zebrafish to Study the Microbiota-Gut-Brain Axis in Neurological Disorders. Cells 2021; 10:cells10030566. [PMID: 33807650 PMCID: PMC8002147 DOI: 10.3390/cells10030566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota-gut-brain axis (MGBA) is a bidirectional signaling pathway mediating the interaction of the microbiota, the intestine, and the central nervous system. While the MGBA plays a pivotal role in normal development and physiology of the nervous and gastrointestinal system of the host, its dysfunction has been strongly implicated in neurological disorders, where intestinal dysbiosis and derived metabolites cause barrier permeability defects and elicit local inflammation of the gastrointestinal tract, concomitant with increased pro-inflammatory cytokines, mobilization and infiltration of immune cells into the brain, and the dysregulated activation of the vagus nerve, culminating in neuroinflammation and neuronal dysfunction of the brain and behavioral abnormalities. In this topical review, we summarize recent findings in human and animal models regarding the roles of the MGBA in physiological and neuropathological conditions, and discuss the molecular, genetic, and neurobehavioral characteristics of zebrafish as an animal model to study the MGBA. The exploitation of zebrafish as an amenable genetic model combined with in vivo imaging capabilities and gnotobiotic approaches at the whole organism level may reveal novel mechanistic insights into microbiota-gut-brain interactions, especially in the context of neurological disorders such as autism spectrum disorder and Alzheimer's disease.
Collapse
Affiliation(s)
- Jae-Geun Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Cho
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
| | - Yun-Mi Jeong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (J.-G.L.); (H.-J.C.); (Y.-M.J.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
- Correspondence: ; Tel.: +82-42-860-4643
| |
Collapse
|
45
|
Abstract
The present review deals with the recent progress made in the field of the electrochemical detection of serotonin by means of electrochemical sensors based on various nanomaterials incorporated in the sensitive element. Due to the unique chemical and physical properties of these nanomaterials, it was possible to develop sensitive electrochemical sensors with excellent analytical performances, useful in the practice. The main electrochemical sensors used in serotonin detection are based on carbon electrodes modified with carbon nanotubes and various materials, such as benzofuran, polyalizarin red-S, poly(L-arginine), Nafion/Ni(OH)2, or graphene oxide, incorporating silver-silver selenite nanoparticles, as well as screen-printed electrodes modified with zinc oxide or aluminium oxide. Also, the review describes the nanocomposite sensors based on conductive polymers, tin oxide-tin sulphide, silver/polypyrole/copper oxide or a hybrid structure of cerium oxide-gold oxide nanofibers together with ruthenium oxide nanowires. The presentation focused on describing the sensitive materials, characterizing the sensors, the detection techniques, electroanalytical properties, validation and use of sensors in lab practice.
Collapse
|
46
|
Okubo R, Hasegawa T, Fukuyama K, Shiroyama T, Okada M. Current Limitations and Candidate Potential of 5-HT7 Receptor Antagonism in Psychiatric Pharmacotherapy. Front Psychiatry 2021; 12:623684. [PMID: 33679481 PMCID: PMC7930824 DOI: 10.3389/fpsyt.2021.623684] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Several mood-stabilizing atypical antipsychotics and antidepressants weakly block serotonin (5-HT) receptor type-7 (5-HT7R); however, the contributions of 5-HT7R antagonism to clinical efficacy and pathophysiology are yet to be clarified. A novel mood-stabilizing antipsychotic agent, lurasidone exhibits predominant binding affinity to 5-HT7R when compared with other monoamine receptors. To date, we have failed to discover the superior clinical efficacy of lurasidone on schizophrenia, mood, or anxiety disorders when compared with conventional mood-stabilizing atypical antipsychotics; however, numerous preclinical findings have indicated the possible potential of 5-HT7R antagonism against several neuropsychiatric disorders, as well as the generation of novel therapeutic options that could not be expected with conventional atypical antipsychotics. Traditional experimental techniques, electrophysiology, and microdialysis have demonstrated that the effects of 5-HT receptor type-1A (5-HT1AR) and 5-HT7R on neurotransmission are in contrast, but the effect of 5-HT1AR is more predominant than that of 5-HT7R, resulting in an insufficient understanding of the 5-HT7R function in the field of psychopharmacology. Accumulating knowledge regarding the pharmacodynamic profiles of 5-HT7R suggests that 5-HT7R is one of the key players in the establishment and remodeling of neural development and cytoarchitecture during the early developmental stage to the mature brain, and dysfunction or modulation of 5-HT7R is linked to the pathogenesis/pathophysiology of neuropsychiatric and neurodevelopmental disorders. In this review, to explore candidate novel applications for the treatment of several neuropsychiatric disorders, including mood disorders, schizophrenia, and other cognitive disturbance disorders, we discuss perspectives of psychopharmacology regarding the effects of 5-HT7R antagonism on transmission and intracellular signaling systems, based on preclinical findings.
Collapse
Affiliation(s)
- Ruri Okubo
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Toshiki Hasegawa
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kouji Fukuyama
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takashi Shiroyama
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Motohiro Okada
- Division of Neuroscience, Laboratory Department of Neuropsychiatry, Graduate School of Medicine, Mie University, Tsu, Japan
| |
Collapse
|
47
|
Zhang J, Zhu S, Ma N, Johnston LJ, Wu C, Ma X. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Med Res Rev 2020; 41:1061-1088. [PMID: 33174230 DOI: 10.1002/med.21752] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
In a complex, diverse intestinal environment, commensal microbiota metabolizes excessive dietary tryptophan to produce more bioactive metabolites connecting with kinds of diverse process, such as host physiological defense, homeostasis, excessive immune activation and the progression and outcome of different diseases, such as inflammatory bowel disease, irritable bowel syndrome and others. Although commensal microbiota includes bacteria, fungi, and protozoa and all that, they often have the similar metabolites in tryptophan metabolism process via same or different pathways. These metabolites can work as signal to activate the innate immunity of intestinal mucosa and induce the rapid inflammation response. They are critical in reconstruction of lumen homeostasis as well. This review aims to seek the potential function and mechanism of microbiota-derived tryptophan metabolites as targets to regulate and shape intestinal immune function, which mainly focused on two aspects. First, analyze the character of tryptophan metabolism in bacteria, fungi, and protozoa, and assess the functions of their metabolites (including indole and eight other derivatives, serotonin (5-HT) and d-tryptophan) on regulating the integrity of intestinal epithelium and the immunity of the intestinal mucosa. Second, focus on the mediator and pathway for their recognition, transfer and crosstalk between microbiota-derived tryptophan metabolites and intestinal mucosal immunity. Disruption of intestinal homeostasis has been described in different intestinal inflammatory diseases, available data suggest the remarkable potential of tryptophan-derived aryl hydrocarbon receptor agonists, indole derivatives on lumen equilibrium. These metabolites as preventive and therapeutic interventions have potential to promote proinflammatory or anti-inflammatory responses of the gut.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Shengwei Zhu
- Institute of Botany, Key laboratory of plant molecular physiology, Chinese Academy of Sciences, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research and Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Pardhi VP, Flora S. Stable solid dispersion of lurasidone hydrochloride with augmented physicochemical properties for the treatment of schizophrenia and bipolar disorder. Biopharm Drug Dispos 2020; 41:334-351. [PMID: 33080060 DOI: 10.1002/bdd.2252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
Crystalline solid dispersion of lurasidone hydrochloride (LH) was made with various polar and non-polar small molecules to overcome the poor aqueous solubility issue. LH-Glutathione (GSH) solid dispersion in 1:1 ratio was prepared by co-grinding method and characterized by using differential scanning calorimetry (DSC), powder X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. GSH acts as antioxidant and reported for anti-schizophrenic activity may provide synergistic action with LH or reduce the side effects. LH in LH-GSH solid dispersion (SD) has shown improvement in solubility by 7.9 folds than plain drug which translated in terms of improved dissolution rate by two-folds. The in vitro dissolution results showed maximum dissolution rate with LH-GSH SD (97.85 ± 2.40%) compared to plain drug (50.5 ± 3.02%) at 15 min (t15 min, %) and thus, satisfying criteria of immediate release dosage form. DSC and FTIR data confirmed the stability of LH-GSH SD for 3 months at accelerated stability condition (40 ± 2°C and 75 ± 5% RH). The prepared LH-GSH SD can be used as a tool to target dual problems that is, enhanced physicochemical properties along with possible management of disorder which could be due to synergism with co-administered GSH. This approach is thought to be efficiently providing the relief to the psychological patients.
Collapse
Affiliation(s)
- Vishwas P Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Swaran Flora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
49
|
Bistoletti M, Bosi A, Banfi D, Giaroni C, Baj A. The microbiota-gut-brain axis: Focus on the fundamental communication pathways. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 176:43-110. [PMID: 33814115 DOI: 10.1016/bs.pmbts.2020.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
50
|
Aryl Hydrocarbon Receptor (AHR) Ligands as Selective AHR Modulators (SAhRMs). Int J Mol Sci 2020; 21:ijms21186654. [PMID: 32932962 PMCID: PMC7555580 DOI: 10.3390/ijms21186654] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) was first identified as the intracellular protein that bound and mediated the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and dioxin-like compounds (DLCs). Subsequent studies show that the AhR plays an important role in maintaining cellular homeostasis and in pathophysiology, and there is increasing evidence that the AhR is an important drug target. The AhR binds structurally diverse compounds, including pharmaceuticals, phytochemicals and endogenous biochemicals, some of which may serve as endogenous ligands. Classification of DLCs and non-DLCs based on their persistence (metabolism), toxicities, binding to wild-type/mutant AhR and structural similarities have been reported. This review provides data suggesting that ligands for the AhR are selective AhR modulators (SAhRMs) that exhibit tissue/cell-specific AhR agonist and antagonist activities, and that their functional diversity is similar to selective receptor modulators that target steroid hormone and other nuclear receptors.
Collapse
|