1
|
Suleman M, Clark JR, Bull S, Jones JD. Ethical argument for establishing good manufacturing practice for phage therapy in the UK. JOURNAL OF MEDICAL ETHICS 2025; 51:jme-2023-109423. [PMID: 38342498 DOI: 10.1136/jme-2023-109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/10/2024] [Indexed: 02/13/2024]
Abstract
Antimicrobial resistance (AMR) poses an increasing threat to patient care and population health and there is a growing need for novel therapies to tackle AMR. Bacteriophage (phage) therapy is a re-emerging antimicrobial strategy with the potential to transform how bacterial infections are treated in patients and populations. Currently, in the UK, phages can be used as unlicensed medicinal products on a 'named-patient' basis. We make an ethical case for why it is crucially important for the UK to invest in Good Manufacturing Practice (GMP) for both ongoing unlicensed and future licensed phage therapy. Access to phages produced to GMP (GMP phages) will ensure effective patient care and better outcomes as well as health systems benefits. The UK also has the potential to become a global leader in the timely and cost-efficient manufacturing and supply of a therapy that meets internationally recognised standards.
Collapse
Affiliation(s)
- Mehrunisha Suleman
- Ethox Center, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Gulf University for Science and Technology, Hawally, Kuwait
| | | | - Susan Bull
- The Ethox Centre, University of Oxford Medical Sciences Division, Oxford, UK
| | | |
Collapse
|
2
|
Campey A, Łapińska U, Chait R, Tsaneva-Atanasova K, Pagliara S. Antibiotic resistant bacteria survive treatment by doubling while shrinking. mBio 2024; 15:e0237524. [PMID: 39565111 PMCID: PMC11633386 DOI: 10.1128/mbio.02375-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Many antibiotics that are used in healthcare, farming, and aquaculture end up in environments with different spatial structures that might promote heterogeneity in the emergence of antibiotic resistance. However, the experimental evolution of microbes at sub-inhibitory concentrations of antibiotics has been mainly carried out at the population level which does not allow capturing single-cell responses to antibiotics. Here, we investigate and compare the emergence of resistance to ciprofloxacin in Escherichia coli in well-mixed and structured environments using experimental evolution, genomics, and microfluidics-based time-lapse microscopy. We discover that resistance to ciprofloxacin and cross-resistance to other antibiotics is stronger in the well-mixed environment due to the emergence of target mutations, whereas efflux regulator mutations emerge in the structured environment. The latter mutants also harbor sub-populations of persisters that survive high concentrations of ciprofloxacin that inhibit bacterial growth at the population level. In contrast, genetically resistant bacteria that display target mutations also survive high concentrations of ciprofloxacin that inhibit their growth via population-level antibiotic tolerance. These resistant and tolerant bacteria keep doubling while shrinking in size in the presence of ciprofloxacin and regain their original size after antibiotic removal, which constitutes a newly discovered phenotypic response. This new knowledge sheds light on the diversity of strategies employed by bacteria to survive antibiotics and poses a stepping stone for understanding the link between mutations at the population level and phenotypic single-cell responses. IMPORTANCE The evolution of antimicrobial resistance poses a pressing challenge to global health with an estimated 5 million deaths associated with antimicrobial resistance every year globally. Here, we investigate the diversity of strategies employed by bacteria to survive antibiotics. We discovered that bacteria evolve genetic resistance to antibiotics while simultaneously displaying tolerance to very high doses of antibiotics by doubling while shrinking in size.
Collapse
Affiliation(s)
- Adrian Campey
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Urszula Łapińska
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Remy Chait
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, Devon, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon, United Kingdom
| |
Collapse
|
3
|
Michaeli DT, Michaeli T, Albers S, Boch T, Michaeli JC. Special FDA designations for drug development: orphan, fast track, accelerated approval, priority review, and breakthrough therapy. THE EUROPEAN JOURNAL OF HEALTH ECONOMICS : HEPAC : HEALTH ECONOMICS IN PREVENTION AND CARE 2024; 25:979-997. [PMID: 37962724 PMCID: PMC11283430 DOI: 10.1007/s10198-023-01639-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Over the past decades, US Congress enabled the US Food and Drug Administration (FDA) to facilitate and expedite drug development for serious conditions filling unmet medical needs with five special designations and review pathways: orphan, fast track, accelerated approval, priority review, and breakthrough therapy. OBJECTIVES This study reviews the FDA's five special designations for drug development regarding their safety, efficacy/clinical benefit, clinical trials, innovation, economic incentives, development timelines, and price. METHODS We conducted a keyword search to identify studies analyzing the impact of the FDA's special designations (orphan, fast track, accelerated approval, priority review, and breakthrough therapy) on the safety, efficacy/clinical benefit, trials, innovativeness, economic incentives, development times, and pricing of new drugs. Results were summarized in a narrative overview. RESULTS Expedited approval reduces new drugs' time to market. However, faster drug development and regulatory review are associated with more unrecognized adverse events and post-marketing safety revisions. Clinical trials supporting special FDA approvals frequently use small, non-randomized, open-label designs. Required post-approval trials to monitor unknown adverse events are often delayed or not even initiated. Evidence suggests that drugs approved under special review pathways, marketed as "breakthroughs", are more innovative and deliver a higher clinical benefit than those receiving standard FDA approval. Special designations are an economically viable strategy for investors and pharmaceutical companies to develop drugs for rare diseases with unmet medical needs, due to financial incentives, expedited development timelines, higher clinical trial success rates, alongside greater prices. Nonetheless, patients, physicians, and insurers are concerned about spending money on drugs without a proven benefit or even on drugs that turn out to be ineffective. While European countries established performance- and financial-based managed entry agreements to account for this uncertainty in clinical trial evidence and cost-effectiveness, the pricing and reimbursement of these drugs remain largely unregulated in the US. CONCLUSION Special FDA designations shorten clinical development and FDA approval times for new drugs treating rare and severe diseases with unmet medical needs. Special-designated drugs offer a greater clinical benefit to patients. However, physicians, patients, and insurers must be aware that special-designated drugs are often approved based on non-robust trials, associated with more unrecognized side effects, and sold for higher prices.
Collapse
Affiliation(s)
- Daniel Tobias Michaeli
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
- TUM School of Management, Technical University of Munich, Munich, Germany.
| | - Thomas Michaeli
- Department of Personalized Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Albers
- Department of Orthopaedics and Sport Orthopaedics, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Boch
- Department of Personalized Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
4
|
Zyoud S. Global Mapping and Visualization Analysis of One Health Knowledge in the COVID-19 Context. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241236017. [PMID: 38449589 PMCID: PMC10916474 DOI: 10.1177/11786302241236017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Globally, the COVID-19 pandemic had a significant impact on the health, social, and economic systems, triggering lasting damage and exposing the complexity of the problem beyond just being a health emergency. This crisis has highlighted the need for a comprehensive and collaborative strategy to successfully counter infectious diseases and other global challenges. With the COVID-19 pandemic pushing One Health to the forefront of global health and sustainable development agendas, this concept has emerged as a potential approach for addressing these challenges. In the context of COVID-19, this study investigates global knowledge about One Health by examining its state, significant contributions, and future directions. It seeks to offer an integrated framework of insights guiding the development of well-informed decisions. A comprehensive search using the Scopus database was conducted, employing specific terms related to One Health and COVID-19. VOSviewer 1.6.19 software was used to generate network visualization maps. Countries' research output was adjusted based on their gross domestic product (GDP) and population size. The study identified a total of 527 publications. The United States led with 134 documents (25.4%), but India topped the adjusted ranking. One Health journal stood as the most common outlet for disseminating knowledge (49 documents; 9.3%), while Centers for Disease Control and Prevention (CDC), the United States emerged as the most prolific institution (13 documents; 2.5%). Key topics were related to the virus transmission mechanisms, climate change impacts, antimicrobial resistance, ecosystem health, preparedness, collaboration, community engagement, and developing of efficient surveillance systems. The study emphasizes how critical it is to capitalize on the present momentum of COVID-19 to advance One Health concepts. Integrating social and environmental sciences, and a variety of professions for better interaction and collaboration is crucial. Additionally, increased funding for developing countries, and legislative empowerment are vital to advance One Health and boost disease prevention.
Collapse
Affiliation(s)
- Shaher Zyoud
- Department of Building Engineering & Environment,Palestine Technical University (Kadoorie), Tulkarem, Palestine
- Department of Civil Engineering & Sustainable Structures,Palestine Technical University (Kadoorie), Tulkarem, Palestine
| |
Collapse
|
5
|
Campaniço A, Harjivan SG, Freitas E, Serafini M, Gaspar MM, Capela R, Gomes P, Jordaan A, Madureira AM, André V, Silva AB, Duarte MT, Portugal I, Perdigão J, Moreira R, Warner DF, Lopes F. Structural Optimization of Antimycobacterial Azaaurones Towards Improved Solubility and Metabolic Stability. ChemMedChem 2023; 18:e202300410. [PMID: 37845182 DOI: 10.1002/cmdc.202300410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
While N-acetyl azaaurones have already been disclosed for their potential against tuberculosis (TB), their low metabolic stability remains an unaddressed liability. We now report a study designed to improve the metabolic stability and solubility of the azaaurone scaffold and to identify the structural requirements for antimycobacterial activity. Replacing the N-acetyl moiety for a N-carbamoyl group led to analogues with sub- and nanomolar potencies against M. tuberculosis H37Rv, as well as equipotent against drug-susceptible and drug-resistant M. tuberculosis isolates. The new N-carbamoyl azaaurones exhibited improved microsomal stability, compared to their N-acetylated counterparts, with several compounds displaying moderate to high kinetic solubility. The frequency of spontaneous resistance to azaaurones was observed to be in the range of 10-8 , a value that is comparable to current TB drugs in the market. Overall, these results reveal that azaaurones are amenable to structural modifications to improve metabolic and solubility liabilities, and highlight their potential as antimycobacterial agents.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Shrika G Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Elisabete Freitas
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Marco Serafini
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M Manuela Gaspar
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Pedro Gomes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
| | - Ana M Madureira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Vânia André
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Avenida António José de Almeida, n.° 12, 1000-043, Lisboa, Portugal
| | - Andreia B Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M Teresa Duarte
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Isabel Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - João Perdigão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
6
|
Gordon J, Gheorghe M, Goldenberg S, Miller R, Dennis J, Al-Taie A. Capturing Value Attributes in the Economic Evaluation of Ceftazidime with Avibactam for Treating Severe Aerobic Gram-Negative Bacterial Infections in the United Kingdom. PHARMACOECONOMICS 2023; 41:1657-1673. [PMID: 37587392 PMCID: PMC10635959 DOI: 10.1007/s40273-023-01310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Antimicrobial resistance remains a serious and growing threat to public health, both globally and in the UK, leading to diminishing effectiveness of antimicrobials. Despite a clear need for new antimicrobials, the clinical pipeline is insufficient, driven by high research and development costs and limited expected returns on investment. To counteract this, National Institute for Health and Care Excellence (NICE) and National Health Service (NHS) England have launched a reimbursement mechanism, de-linked from volume of sales, that aims to reduce economic risk by recognising the broader population-level value of antimicrobials. The objective of this study was to quantify the value of ceftazidime-avibactam for treating gram-negative infections in the UK considering some of these broader value elements unique to antimicrobials. METHODS A previously developed dynamic disease transmission and cost-effectiveness model was applied to assess the value of introducing ceftazidime-avibactam to UK treatment practice in the management of gram-negative hospital-acquired infections in line with the licenced indications for ceftazidime-avibactam. Model inputs were parameterised using sources aligned to the UK perspective. RESULTS The introduction of ceftazidime-avibactam into a two-line treatment sequence saved over 2300 lives, leading to a gain of 27,600 life years and 22,000 quality-adjusted life years (QALY) at an additional cost of £17 million, over a ten-year transmission period. Ceftazidime-avibactam was associated with a net monetary benefit of £642 million at willingness to pay threshold of £30,000 per QALY; even at a lower threshold of £20,000 per QALY, the net monetary benefit is £422 million. DISCUSSION Increasing the diversity of antimicrobial treatments through the introduction of an additional antimicrobial, in this instance ceftazidime-avibactam, was associated with substantial clinical and economic benefits, when considering broader population-level value. Despite revealing considerable benefits, the value of ceftazidime-avibactam is only partially reflected in this analysis. Further efforts are required to fully operationalise the spectrum, transmission, enablement, diversity and insurance (STEDI) value framework and accurately reflect the population-level value of antimicrobials.
Collapse
Affiliation(s)
- Jason Gordon
- Health Economics and Outcomes Research Ltd., Unit A, Cardiff Gate Business Park, Copse Walk, Pontprennau, Cardiff, CF23 8RB, UK.
| | | | - Simon Goldenberg
- Centre for Clinical Infection and Diagnostics Research, King's College London and Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Ryan Miller
- Health Economics and Outcomes Research Ltd., Unit A, Cardiff Gate Business Park, Copse Walk, Pontprennau, Cardiff, CF23 8RB, UK
| | - James Dennis
- Health Economics and Outcomes Research Ltd., Unit A, Cardiff Gate Business Park, Copse Walk, Pontprennau, Cardiff, CF23 8RB, UK
| | | |
Collapse
|
7
|
Li X, Song Y, Chen X, Yin J, Wang P, Huang H, Yin H. Single-cell microfluidics enabled dynamic evaluation of drug combinations on antibiotic resistance bacteria. Talanta 2023; 265:124814. [PMID: 37343360 DOI: 10.1016/j.talanta.2023.124814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
The rapid spread of antibiotic resistance has become a significant threat to global health, yet the development of new antibiotics is outpaced by emerging new resistance. To treat multidrug-resistant bacteria and prolong the lifetime of existing antibiotics, a productive strategy is to use combinations of antibiotics and/or adjuvants. However, evaluating drug combinations is primarily based on end-point checkerboard measurements, which provide limited information to study the mechanism of action and the discrepancies in the clinical outcomes. Here, single-cell microfluidics is used for rapid evaluation of the efficacy and mode of action of antibiotic combinations within 3 h. Focusing on multidrug-resistant Acinetobacter baumannii, the combination between berberine hydrochloride (BBH, as an adjuvant) and carbapenems (meropenem, MEM) or β-lactam antibiotic is evaluated. Real-time tracking of individual cells to programmable delivered antibiotics reveals multiple phenotypes (i.e., susceptible, resistant, and persistent cells) with fidelity. Our study discovers that BBH facilitates the accumulation of antibiotics within cells, indicating synergistic effects (FICI = 0.5). For example, the combination of 256 mg/L BBH and 16 mg/L MEM has a similar killing effect (i.e., the inhibition rates >90%) as the MIC of MEM (64 mg/L). Importantly, the synergistic effect of a combination can diminish if the bacteria are pre-stressed with any single drug. Such information is vital for understanding the underlying mechanisms of combinational treatments. Overall, our platform provides a promising approach to evaluate the dynamic and heterogenous response of a bacterial population to antibiotics, which will facilitate new drug discovery and reduce emerging antibiotic resistance.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, China; James Watt School of Engineering, University of Glasgow, G12 8LT, UK
| | - Yanqing Song
- James Watt School of Engineering, University of Glasgow, G12 8LT, UK
| | - Xiuzhao Chen
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Jianan Yin
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Ping Wang
- Tianjin Modern Innovative TCM Technology Co. Ltd., 300392, China
| | - He Huang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Huabing Yin
- James Watt School of Engineering, University of Glasgow, G12 8LT, UK.
| |
Collapse
|
8
|
Kim D, Lee J, Shyaka C, Kwak JH, Pai H, Rho M, Ciufolini MA, Han M, Park JH, Kim YR, Jung S, Jang AR, Kim E, Lee JY, Lee H, Son YJ, Hwang HJ. Identification of Micrococcin P2-Derivatives as Antibiotic Candidates against Two Gram-Positive Pathogens. J Med Chem 2023; 66:14263-14277. [PMID: 37796116 DOI: 10.1021/acs.jmedchem.3c01309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Thiopeptides exhibit potent antimicrobial activity against Gram-positive pathogens by inhibiting bacterial protein synthesis. Micrococcins are among the structurally simpler thiopeptides, but they have not been exploited in detail. This research involved a computational simulation of micrococcin P2 (MP2) docking in parallel with the structure-activity relationship (SAR) studied. The incorporation of particular nitrogen heterocycles in the side chain of MP2 enhances the antimicrobial activity. Micrococcin analogues 6c and 6d thus proved to be more effective against impetigo and C. difficile infection (CDI), respectively, as compared to current first-line treatments. Compound 6c also showed a shorter treatment period than that of a first-line treatment for impetigo. This may be attributed to its ability to downregulate pro-inflammatory cytokines. Compound 6d had no observed recurrence for C. difficile and exerted a minimal impact on the beneficial gut microbiome. Their pharmacokinetic properties and low toxicity profile make these compounds ideal candidates for the treatment of impetigo and CDI and validate their involvement in preclinical development.
Collapse
Affiliation(s)
- Dahyun Kim
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Jusuk Lee
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Clovis Shyaka
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong Global University, 558 Handong Ro, Heunghae-Eup, Buk-Gu, Pohang 37554, Republic of Korea
- Office of the President, Sunlin University, 30, 36 Chogok-gil, Heunghae-Eup, Buk-Gu, Pohang 37560, Republic of Korea
| | - Hyunjoo Pai
- Department of Internal Medicine, Hanyang University College of Medicine, 232 Wangsimri Ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, 222 Wangsimri Ro, Seongdong-Gu, Seoul 04763, Republic of Korea
| | - Marco A Ciufolini
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6K 1Z1, Canada
| | - Minwoo Han
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea
- Nodcure Inc., 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea
| | - Young-Rok Kim
- School of Life Science, Handong Global University, 558 Handong Ro, Heunghae-Eup, Buk-Gu, Pohang 37554, Republic of Korea
| | - Sungji Jung
- School of Life Science, Handong Global University, 558 Handong Ro, Heunghae-Eup, Buk-Gu, Pohang 37554, Republic of Korea
| | - Ah-Ra Jang
- Nodcure Inc., 77 Yongbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea
| | - Eunjung Kim
- School of Life Science, Handong Global University, 558 Handong Ro, Heunghae-Eup, Buk-Gu, Pohang 37554, Republic of Korea
| | - Jee-Young Lee
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Hakyeong Lee
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Young-Jin Son
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Hee-Jong Hwang
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| |
Collapse
|
9
|
Roy A, Sarangi NK, Ghosh S, Prabhakaran A, Keyes TE. Leaflet by Leaflet Synergistic Effects of Antimicrobial Peptides on Bacterial and Mammalian Membrane Models. J Phys Chem Lett 2023; 14:3920-3928. [PMID: 37075204 PMCID: PMC10150393 DOI: 10.1021/acs.jpclett.3c00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Antimicrobial peptides (AMPs) offer significant hope in the fight against antibiotic resistance. Operating via a mechanism different from that of antibiotics, they target the microbial membrane and ideally should damage it without impacting mammalian cells. Here, the interactions of two AMPs, magainin 2 and PGLa, and their synergistic effects on bacterial and mammalian membrane models were studied using electrochemical impedance spectroscopy, atomic force microscopy (AFM), and fluorescence correlation spectroscopy. Toroidal pore formation was observed by AFM when the two AMPs were combined, while individually AMP effects were confined to the exterior leaflet of the bacterial membrane analogue. Using microcavity-supported lipid bilayers, the diffusivity of each bilayer leaflet could be studied independently, and we observed that combined, the AMPs penetrate both leaflets of the bacterial model but individually each peptide had a limited impact on the proximal leaflet of the bacterial model. The impact of AMPs on a ternary, mammalian mimetic membrane was much weaker.
Collapse
Affiliation(s)
- Arpita Roy
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Surajit Ghosh
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Amrutha Prabhakaran
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
10
|
Bag N, Bardhan S, Roy S, Roy J, Mondal D, Guo B, Das S. Nanoparticle-mediated stimulus-responsive antibacterial therapy. Biomater Sci 2023; 11:1994-2019. [PMID: 36748318 DOI: 10.1039/d2bm01941h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The limitations associated with conventional antibacterial therapies and the subsequent amplification of multidrug-resistant (MDR) microorganisms have increased, necessitating the urgent development of innovative antibacterial techniques. Accordingly, nanoparticle-mediated therapeutics have emerged as potential candidates for antibacterial treatment due to their suitable dimensions, penetration capacity, and high efficiency in targeted drug delivery. However, although nanoparticle-based drug delivery systems have been demonstrated to be effective, they are limited by their overuse and unwanted side effects. Thus, to overcome these drawbacks, stimulus-responsive antibiotic delivery has been extended as a promising strategy for site-specific restricted drug exemption. Nano-formulations that are triggered by various stimuli, such as intrinsic, extrinsic, and bacterial stimuli, have been developed. Thus, by harnessing the physicochemical properties of various nanoparticles, the selective release of therapeutic cargoes can be achieved through the application of a variety of local stimuli such as light, sound, irradiation, pH, and magnetic field. In this review, we also highlight the progress and perspectives of stimulus-responsive combination therapy, with special emphasis on the eradication of MDR strains and biofilms. Hence, this review addresses the advancement and challenges in the applications of stimulus-responsive nanoparticles together with the various future prospects of this technique.
Collapse
Affiliation(s)
- Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India. .,Department of Environmental Science, Netaji Nagar College for Women, Kolkata-700092, India
| | - Shubham Roy
- Department of Physics, Jadavpur University, Kolkata-700032, India. .,Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Jhilik Roy
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Dhananjoy Mondal
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| | - Sukhen Das
- Department of Physics, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
11
|
Zhang Y, Kepiro I, Ryadnov MG, Pagliara S. Single Cell Killing Kinetics Differentiate Phenotypic Bacterial Responses to Different Antibacterial Classes. Microbiol Spectr 2023; 11:e0366722. [PMID: 36651776 PMCID: PMC9927147 DOI: 10.1128/spectrum.03667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
With the spread of multidrug-resistant bacteria, there has been an increasing focus on molecular classes that have not yet yielded an antibiotic. A key capability for assessing and prescribing new antibacterial treatments is to compare the effects antibacterial agents have on bacterial growth at a phenotypic, single-cell level. Here, we combined time-lapse microscopy with microfluidics to investigate the concentration-dependent killing kinetics of stationary-phase Escherichia coli cells. We used antibacterial agents from three different molecular classes, β-lactams and fluoroquinolones, with the known antibiotics ampicillin and ciprofloxacin, respectively, and a new experimental class, protein Ψ-capsids. We found that bacterial cells elongated when treated with ampicillin and ciprofloxacin used at their minimum inhibitory concentration (MIC). This was in contrast to Ψ-capsids, which arrested bacterial elongation within the first two hours of treatment. At concentrations exceeding the MIC, all the antibacterial agents tested arrested bacterial growth within the first 2 h of treatment. Further, our single-cell experiments revealed differences in the modes of action of three different agents. At the MIC, ampicillin and ciprofloxacin caused the lysis of bacterial cells, whereas at higher concentrations, the mode of action shifted toward membrane disruption. The Ψ-capsids killed cells by disrupting their membranes at all concentrations tested. Finally, at increasing concentrations, ampicillin and Ψ-capsids reduced the fraction of the population that survived treatment in a viable but nonculturable state, whereas ciprofloxacin increased this fraction. This study introduces an effective capability to differentiate the killing kinetics of antibacterial agents from different molecular classes and offers a high content analysis of antibacterial mechanisms at the single-cell level. IMPORTANCE Antibiotics act against bacterial pathogens by inhibiting their growth or killing them directly. Different modes of action determine different antibacterial responses, whereas phenotypic differences in bacteria can challenge the efficacy of antibiotics. Therefore, it is important to be able to differentiate the concentration-dependent killing kinetics of antibacterial agents at a single-cell level, in particular for molecular classes which have not yielded an antibiotic before. Here, we measured single-cell responses using microfluidics-enabled imaging, revealing that a novel class of antibacterial agents, protein Ψ-capsids, arrests bacterial elongation at the onset of treatment, whereas elongation continues for cells treated with β-lactam and fluoroquinolone antibiotics. The study advances our current understanding of antibacterial function and offers an effective strategy for the comparative design of new antibacterial therapies, as well as clinical antibiotic susceptibility testing.
Collapse
Affiliation(s)
- Yuewen Zhang
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
- National Physical Laboratory, Teddington, United Kingdom
| | - Ibolya Kepiro
- National Physical Laboratory, Teddington, United Kingdom
| | - Maxim G. Ryadnov
- National Physical Laboratory, Teddington, United Kingdom
- Department of Physics, King’s College London, London, United Kingdom
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
12
|
Lau WYV, Taylor PK, Brinkman FSL, Lee AHY. Pathogen-associated gene discovery workflows for novel antivirulence therapeutic development. EBioMedicine 2023; 88:104429. [PMID: 36628845 PMCID: PMC9843249 DOI: 10.1016/j.ebiom.2022.104429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Novel therapeutics to manage bacterial infections are urgently needed as the impact and prevalence of antimicrobial resistance (AMR) grows. Antivirulence therapeutics are an alternative approach to antibiotics that aim to attenuate virulence rather than target bacterial essential functions, while minimizing microbiota perturbation and the risk of AMR development. Beyond known virulence factors, pathogen-associated genes (PAGs; genes found only in pathogens to date) may play an important role in virulence or host association. Many identified PAGs encode uncharacterized hypothetical proteins and represent an untapped wealth of novel drug targets. Here, we review current advances in antivirulence drug research and development, including PAG identification, and provide a comprehensive workflow from the discovery of antivirulence drug targets to drug discovery. We highlight the importance of integrating bioinformatic/genomic-based methods for novel virulence factor discovery, coupled with experimental characterization, into existing drug screening platforms to develop novel and effective antivirulence drugs.
Collapse
Affiliation(s)
- Wing Yin Venus Lau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Patrick K Taylor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - Amy H Y Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
13
|
DAWBAA S, NUHA D, EVREN AE, CANKILIÇ MYILMAZ, YURTTAŞ L, TURAN G. New Oxadiazole/Triazole Derivatives with Antimicrobial and Antioxidant Properties. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
14
|
Wasan H, Singh D, Reeta K, Gupta YK. Landscape of Push Funding in Antibiotic Research: Current Status and Way Forward. BIOLOGY 2023; 12:biology12010101. [PMID: 36671792 PMCID: PMC9855914 DOI: 10.3390/biology12010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
The growing need for effective antibiotics is attributed to the intrinsic ability of bacteria to develop survival mechanisms. The speed at which pathogens develop resistance is at par or even faster than the discovery of newer agents. Due to the enormous cost of developing an antibiotic and poor return on investment, big pharmaceutical companies are stepping out of the antibiotic research field, and the world is now heading towards the silent pandemic of antibiotic resistance. Lack of investment in research has further led to the anemic antibiotic pipeline. To overcome these challenges, various organizations have come forward with push funding to financially assist antibiotic developers. Although push funding has somewhat reinvigorated the dwindled field of antibiotic development by bearing the financial risks of failure, the landscape is still large and staggered. Most of the funding is funneled towards the early stages; however, to carry the promising compounds forward, equal or more funding is required formid- and late-stage research. To some extent, the complexity associated with accessing the funding mechanisms has led to their underutilization. In the present review, we discuss several major push funding mechanisms, issues in their effective utilization, recent strategies adopted, and a way forward to streamline funding in antibiotic research.
Collapse
Affiliation(s)
- Himika Wasan
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Devendra Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - K.H. Reeta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
- Correspondence:
| | - Yogendra Kumar Gupta
- Principal Advisor India Strategy Development, Global Antibiotics Research and Development Partnership (GARDP), New Delhi 110016, India
| |
Collapse
|
15
|
Theuretzbacher U, Baraldi E, Ciabuschi F, Callegari S. Challenges and shortcomings of antibacterial discovery projects. Clin Microbiol Infect 2022; 29:610-615. [PMID: 36503116 PMCID: PMC10160915 DOI: 10.1016/j.cmi.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Antibacterial drug discovery activities are essential for filling clinical pipelines with promising clinical candidates. Little information is available about the challenges and shortcomings of small companies and academic institutions in performing these important discovery tasks. METHODS We performed a content analysis of 463 reviewer comments on 91 funding applications of antibacterial drug discovery projects submitted to two major global funders between 2016 and 2020 that had not proceeded further in the selection process. This quality assessment was complemented with the inputs (via e-mail) from a panel involving six antibiotic research and development (R&D) experts with long-standing expertise and experience in antibiotic drug discovery. RESULTS Common critical comments of reviewers are grouped into three main categories: scientific and technical shortcomings, unclear potential societal impact, and insufficient capability and expertise of the project team regarding the R&D process. Insufficient characterization of in vitro activity and/or testing of the hits/leads and insufficient antibacterial activity were the most common critical comments. Other areas of concern were insufficient or lack of differentiation from available drugs or projects with a long R&D history, and the research team's insufficient knowledge of a structured streamlined R&D process as reflected in severe gaps in the expertise of the R&D team. Little appreciation for the problem of the emergence of target-based resistance, especially in single-target approaches, and little awareness of toxicological issues, including approaches with historical liabilities were also commonly mentioned. The shortcomings identified through the analysis of funding applications are echoed by the results of the expert panel. DISCUSSION Our analysis identified an urgent need of strengthening the support for antibacterial drug discovery teams to help more projects reach such a quality to be eligible for global funders and private investors.
Collapse
Affiliation(s)
| | - Enrico Baraldi
- Department of Civil and Industrial Engineering, Uppsala University, Uppsala, Sweden
| | | | - Simone Callegari
- Department of Informatics and Media, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Somanader DS, Brunskill I, Perrin M, Barkema HW, Hillier S, Hindmarch S, Weese JS, Wright GD, Morris AM. Canada has an opportunity to address antimicrobial resistance through COVID-19 recovery spending. LANCET REGIONAL HEALTH. AMERICAS 2022; 16:100393. [PMID: 36415218 PMCID: PMC9672386 DOI: 10.1016/j.lana.2022.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022]
Abstract
Antimicrobial Resistance (AMR) causes more than a million deaths globally per year due to infections incurable with currently available antibiotics. Failing to effectively address AMR will have significant negative consequences for Canadians and the Canadian economy. Canada is behind on allocation of required funding and nationally coordinated AMR mitigation strategies relative to other high-income countries. A Pan-Canadian AMR action plan and development of a new governance model is pending. Recent AMR-specific funding commitments are significant but fall short while distribution of funds indicate a siloed approach. Canada could initiate progress towards AMR mitigation through incorporation within the scope of budget allocations intended for COVID-19 recovery and mitigation efforts. We discuss the following components for inclusion: development of infectious disease diagnostics and therapeutics; antimicrobial stewardship interventions in long-term care and Indigenous communities; environmental monitoring of AMR; comprehensive antimicrobial use, and AMR surveillance; and support for capacity-building in low and middle-income countries.
Collapse
Affiliation(s)
- Deborah S. Somanader
- Antimicrobial Stewardship Program, Sinai Health-University Health Network, Toronto, ON, Canada
| | | | | | | | - Sean Hillier
- Faculty of Health, York University, Toronto, ON, Canada
| | - Suzanne Hindmarch
- Department of Political Science, University of New Brunswick, Fredericton, NB, Canada
| | - J. Scott Weese
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Gerard D. Wright
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Andrew M. Morris
- Antimicrobial Stewardship Program, Sinai Health-University Health Network, Toronto, ON, Canada
| |
Collapse
|
17
|
Ohashi T, Nagashima M, Kawai N, Ohmagari N, Tateda K. A narrative review on drug development for the management of antimicrobial- resistant infection crisis in Japan: the past, present, and future. Expert Rev Anti Infect Ther 2022; 20:1603-1614. [PMID: 36368311 DOI: 10.1080/14787210.2022.2142118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is a major threat to global health requiring continuous development of new antimicrobial agents. Antimicrobial research and development (R&D) should be promoted in the pharmaceutical industry and academia to ensure sustainable patient access to new treatment options and reduce the global AMR burden. AREAS COVERED This review describes the historical challenges in novel antimicrobial drug development in Japan, current national efforts to promote the development, and proposals to effectively manage future AMR pandemics. Literature searches were performed in the PubMed database (from inception to January 2022). EXPERT OPINION R&D activities in the antimicrobial space in Japan have been insufficient due to multiple factors, including unfavorable cost-profit balance and differences in regulatory requirements between Japan and Western countries. However, the situation is improving with the implementation of the Japanese AMR action plan, drug R&D programs led by the Japan Agency for Medical Research and Development, and efforts of regulatory agencies in the United States, Europe, and Japan in aligning and expediting the clinical development process. Further actions during the interpandemic period will strengthen antimicrobial R&D, including international and interdisciplinary collaboration, continued funding and investment with the national government's leadership, and fostering of new-generation academic research leaders.PLAINLANGUAGE SUMMARYEvery year, many people suffer and die of antimicrobial-resistant infections worldwide. New treatment options are required to tackle antimicrobial-resistant infections; however, pharmaceutical companies have not been very active in developing antimicrobial agents in the last two decades. This was mainly due to the difficulty in discovering new and effective compounds and insufficient funds being spent on drug discovery. In addition, differences in drug development requirements between the United States (US), Europe, and Japan have made it difficult for Japanese pharmaceutical companies to develop antimicrobial agents that can be used in all regions in a timely manner. In the last decade, several measures have been taken to re-activate antimicrobial research and development in the pharmaceutical industry, as well as in academia, in Japan. These measures include a national action plan to combat antimicrobial-resistant infections and research support programs led by the Japan Agency for Medical Research and Development. Regulatory authorities in the US, Europe, and Japan have initiated efforts to expedite the development of drugs to treat infections. Moreover, pathways for accelerated regulatory review have been established to reduce the time taken for new drugs to be approved, and this has already been applied to several new anti-infective drugs. To combat the coronavirus disease 2019 (COVID-19) pandemic, the development of novel vaccines and antiviral drugs has been accelerated with unprecedented speed. Additional actions, such as international research collaboration programs and investment in new antimicrobial development, may help promote antimicrobial research and development activities in Japan.
Collapse
Affiliation(s)
| | | | | | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Postek W, Pacocha N, Garstecki P. Microfluidics for antibiotic susceptibility testing. LAB ON A CHIP 2022; 22:3637-3662. [PMID: 36069631 DOI: 10.1039/d2lc00394e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rise of antibiotic resistance is a threat to global health. Rapid and comprehensive analysis of infectious strains is critical to reducing the global use of antibiotics, as informed antibiotic use could slow down the emergence of resistant strains worldwide. Multiple platforms for antibiotic susceptibility testing (AST) have been developed with the use of microfluidic solutions. Here we describe microfluidic systems that have been proposed to aid AST. We identify the key contributions in overcoming outstanding challenges associated with the required degree of multiplexing, reduction of detection time, scalability, ease of use, and capacity for commercialization. We introduce the reader to microfluidics in general, and we analyze the challenges and opportunities related to the field of microfluidic AST.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA 02142, USA.
| | - Natalia Pacocha
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| |
Collapse
|
19
|
Al Nahas K, Fletcher M, Hammond K, Nehls C, Cama J, Ryadnov MG, Keyser UF. Measuring Thousands of Single-Vesicle Leakage Events Reveals the Mode of Action of Antimicrobial Peptides. Anal Chem 2022; 94:9530-9539. [PMID: 35760038 PMCID: PMC9280716 DOI: 10.1021/acs.analchem.1c03564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Host defense or antimicrobial
peptides hold promise for providing
new pipelines of effective antimicrobial agents. Their activity quantified
against model phospholipid membranes is fundamental to a detailed
understanding of their structure–activity relationships. However,
classical characterization assays often lack the ability to achieve
this insight. Leveraging a highly parallelized microfluidic platform
for trapping and studying thousands of giant unilamellar vesicles,
we conducted quantitative long-term microscopy studies to monitor
the membrane-disruptive activity of archetypal antimicrobial peptides
with a high spatiotemporal resolution. We described the modes of action
of these peptides via measurements of the disruption of the vesicle
population under the conditions of continuous peptide dosing using
a range of concentrations and related the observed modes to the molecular
activity mechanisms of these peptides. The study offers an effective
approach for characterizing membrane-targeting antimicrobial agents
in a standardized manner and for assigning specific modes of action
to the corresponding antimicrobial mechanisms.
Collapse
Affiliation(s)
- Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.,London Centre for Nanotechnology, University College London, London WC1H 0AH, U.K
| | - Christian Nehls
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, Borstel 23845, Germany
| | - Jehangir Cama
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.,Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.,Department of Physics, King's College London, Strand Lane, London WC2R 2LS, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
20
|
Shinohara DR, de Carvalho NMM, Mattos MDSFD, Fedrigo NH, Mitsugui CS, Carrara-Marroni FE, Nishiyama SAB, Tognim MCB. Evaluation of phenotypic methods for detection of polymyxin B-resistant bacteria. J Microbiol Methods 2022; 199:106531. [PMID: 35772571 DOI: 10.1016/j.mimet.2022.106531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022]
Abstract
Determination of sensitivity to polymyxins has always been a challenge, especially in clinical laboratory routines. This study evaluated two rapid, simple, and inexpensive phenotypic methods to test polymyxin B (PMB) susceptibility in Enterobacterales and non-fermenting Gram-negative bacilli. One hundred isolates were used in the tests. The isolates were collected in three hospitals in southern and southeastern Brazil from 1995 to 2019. We compared broth microdilution (reference method) with the broth disk elution test and modified drop test, using polymyxin B -disk or PMB -powder in 2 concentrations (12 and 16 μg/ml). For the broth disk elution and modified drop test with the concentration of 12 μg/ml, categorical agreement values exceeded 90%. The modified drop test with a concentration of 12 μg/ml and broth disk elution may be excellent for initial screening of polymyxin-resistance in laboratory routines. Moreover, these methods are simple and use inexpensive supplies, and may optimize therapeutic decisions.
Collapse
|
21
|
Multitargeted anti-infective drugs: resilience to resistance in the antimicrobial resistance era. FUTURE DRUG DISCOVERY 2022; 4:FDD73. [PMID: 35600289 PMCID: PMC9112235 DOI: 10.4155/fdd-2022-0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022] Open
Abstract
The standard drug discovery paradigm of single molecule – single biological target – single biological effect is perhaps particularly unsuitable for anti-infective drug discovery. This is due to the rapid evolution of resistance likely to be observed with single target drugs. Multitargeted anti-infective drugs are likely to be superior due to their lower susceptibility to target-related resistance mechanisms. Strathclyde minor groove binders are a class of compounds which have been developed by adopting the multitargeted anti-infective drugs paradigm, and their effectiveness against a wide range of pathogenic organisms is discussed. The renaming of this class to Strathclyde nucleic acid binders is also presented due to their likely targets including both DNA and RNA.
Collapse
|
22
|
Butler MS, Gigante V, Sati H, Paulin S, Al-Sulaiman L, Rex JH, Fernandes P, Arias CA, Paul M, Thwaites GE, Czaplewski L, Alm RA, Lienhardt C, Spigelman M, Silver LL, Ohmagari N, Kozlov R, Harbarth S, Beyer P. Analysis of the Clinical Pipeline of Treatments for Drug-Resistant Bacterial Infections: Despite Progress, More Action Is Needed. Antimicrob Agents Chemother 2022; 66:e0199121. [PMID: 35007139 PMCID: PMC8923189 DOI: 10.1128/aac.01991-21] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
There is an urgent global need for new strategies and drugs to control and treat multidrug-resistant bacterial infections. In 2017, the World Health Organization (WHO) released a list of 12 antibiotic-resistant priority pathogens and began to critically analyze the antibacterial clinical pipeline. This review analyzes "traditional" and "nontraditional" antibacterial agents and modulators in clinical development current on 30 June 2021 with activity against the WHO priority pathogens mycobacteria and Clostridioides difficile. Since 2017, 12 new antibacterial drugs have been approved globally, but only vaborbactam belongs to a new antibacterial class. Also innovative is the cephalosporin derivative cefiderocol, which incorporates an iron-chelating siderophore that facilitates Gram-negative bacteria cell entry. Overall, there were 76 antibacterial agents in clinical development (45 traditional and 31 nontraditional), with 28 in phase 1, 32 in phase 2, 12 in phase 3, and 4 under regulatory evaluation. Forty-one out of 76 (54%) targeted WHO priority pathogens, 16 (21%) were against mycobacteria, 15 (20%) were against C. difficile, and 4 (5%) were nontraditional agents with broad-spectrum effects. Nineteen of the 76 antibacterial agents have new pharmacophores, and 4 of these have new modes of actions not previously exploited by marketed antibacterial drugs. Despite there being 76 antibacterial clinical candidates, this analysis indicated that there were still relatively few clinically differentiated antibacterial agents in late-stage clinical development, especially against critical-priority pathogens. We believe that future antibacterial research and development (R&D) should focus on the development of innovative and clinically differentiated candidates that have clear and feasible progression pathways to the market.
Collapse
Affiliation(s)
- Mark S. Butler
- MSBChem Consulting, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | | | - Hatim Sati
- Antimicrobial Resistance Division, WHO, Geneva, Switzerland
| | - Sarah Paulin
- Antimicrobial Resistance Division, WHO, Geneva, Switzerland
| | | | - John H. Rex
- F2G Limited, Eccles, Manchester, United Kingdom
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Prabhavathi Fernandes
- Scientific Advisory Committee, GARDP, Geneva, Switzerland
- The National Biodefense Science Board, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Cesar A. Arias
- Center for Infectious Diseases Research, Houston Methodist Research Institute, Houston, Texas, USA
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas, USA
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Lloyd Czaplewski
- Chemical Biology Ventures Ltd., Abingdon, Oxfordshire, United Kingdom
| | | | - Christian Lienhardt
- Université de Montpellier, INSERM, Institut de Recherche pour le Développement, Montpellier, France
| | | | | | - Norio Ohmagari
- National Center for Global Health and Medicine, Tokyo, Japan
| | - Roman Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Smolensk, Russia
| | - Stephan Harbarth
- National Center for Infection Prevention, Swissnoso, Bern, Switzerland
- Infection Control Programme, Geneva University Hospitals and Faculty of Medicine, WHO Collaborating Center for Patient Safety, Geneva, Switzerland
| | - Peter Beyer
- Antimicrobial Resistance Division, WHO, Geneva, Switzerland
| |
Collapse
|
23
|
Cama J, Al Nahas K, Fletcher M, Hammond K, Ryadnov MG, Keyser UF, Pagliara S. An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics. Sci Rep 2022; 12:4005. [PMID: 35256720 PMCID: PMC8901753 DOI: 10.1038/s41598-022-07973-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance challenges the ability of modern medicine to contain infections. Given the dire need for new antimicrobials, polypeptide antibiotics hold particular promise. These agents hit multiple targets in bacteria starting with their most exposed regions-their membranes. However, suitable approaches to quantify the efficacy of polypeptide antibiotics at the membrane and cellular level have been lacking. Here, we employ two complementary microfluidic platforms to probe the structure-activity relationships of two experimental series of polypeptide antibiotics. We reveal strong correlations between each peptide's physicochemical activity at the membrane level and biological activity at the cellular level. We achieve this knowledge by assaying the membranolytic activities of the compounds on hundreds of individual giant lipid vesicles, and by quantifying phenotypic responses within clonal bacterial populations with single-cell resolution. Our strategy proved capable of detecting differential responses for peptides with single amino acid substitutions between them, and can accelerate the rational design and development of peptide antimicrobials.
Collapse
Affiliation(s)
- Jehangir Cama
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter, EX4 4QF, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Kareem Al Nahas
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Marcus Fletcher
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- Department of Physics, King's College London, Strand Lane, London, WC2R 2LS, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
24
|
Caceres AM, Singh KK, Minssen T, Van Katwyk SR, Hoffman SJ. Using the International Pandemic Instrument to Revitalize the Innovation Ecosystem for Antimicrobial R&D. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2022; 50:47-54. [PMID: 36889345 PMCID: PMC10009383 DOI: 10.1017/jme.2022.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The inclusion of antimicrobial resistance (AMR) and increased research and development (R&D) capabilities in the most recent outline of the World Health Organization's (WHO's) international pandemic instrument signals an opportunity to reshape pharmaceutical R&D system in favour of antimicrobial product development. This article explains why the current innovation ecosystem has disadvantaged the creation of antimicrobial products for human use. It also highlights how the COVID-19 pandemic experience can inform and stimulate international cooperation to implement innovative R&D incentives to bring new, life-saving antimicrobial products to the market.
Collapse
|
25
|
Glover RE, Singer AC, Roberts AP, Kirchhelle C. NIMble innovation—a networked model for public antibiotic trials. THE LANCET MICROBE 2021; 2:e637-e644. [DOI: 10.1016/s2666-5247(21)00182-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
|
26
|
Abstract
Introduction Antimicrobial resistance (AMR) is an emerging global threat. It increases mortality and morbidity and strains healthcare systems. Health care professionals can counter the rising AMR by promoting antibiotic stewardship and facilitating new drug development. Even with the economic and scientific challenges, it is reassuring that new agents continue to be developed. Methods This review addresses new antibiotics in the pipeline. We conducted a review of the literature including Medline, Clinicaltrials.org, and relevant pharmaceutical companies for approved and in pipeline antibiotics in phase 3 or new drug application (NDA). Results We found a number of new antibiotics and reviewed their current development status, mode of action, spectra of activity, and indications for which they have been approved. The included studies from phase 3 clinical trials were mainly utilized for the treatment of acute bacterial skin and skin structure infections, community-acquired bacterial pneumonia, and pneumonia acquired in the healthcare settings. The number of these agents is limited against high priority organisms. The identified antibiotics were based mainly on previously known molecules or pre-existing antimicrobial agents. Conclusion There are a limited number of antibiotics against high priority organisms such as multi-drug-resistant Pseudomonas aeruginosa, and carbapenem-resistant Enterobacteriaceae. New antimicrobial agents directed against the top priority organisms as classified by the World Health Organization are urgently needed.
Collapse
|