1
|
Kovács Á, Hérincs Z, Papp K, Kaczmarek JZ, Larsen DN, Stage P, Bereczki L, Ujhelyi E, Pfeil T, Prechl J. In-depth immunochemical characterization of the serum antibody response using a dual-titration microspot assay. Front Immunol 2025; 16:1494624. [PMID: 40070838 PMCID: PMC11893856 DOI: 10.3389/fimmu.2025.1494624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Antigen specific humoral immunity can be characterized by the analysis of serum antibodies. While serological assays for the measurement of specific antibody levels are available, these are not quantitative in the biochemical sense. Yet, understanding humoral immune responses quantitatively on the systemic level would need a universal, complete, quantitative, comparable measurement method of antigen specific serum antibodies of selected immunoglobulin classes. Here we describe a fluorescent, dual-titration immunoassay, which provides the biochemical parameters that are both necessary and sufficient to quantitatively characterize the humoral immune response. For validation of theory, we used recombinant receptor binding domain of SARS-CoV-2 as antigen on microspot arrays and varied the concentration of both the antigen and the serum antibodies from infected persons to obtain a measurement matrix of binding data. Both titration curves were simultaneously fitted using an algorithm based on the generalized logistic function and adapted for analyzing biochemical variables of binding. We obtained equilibrium affinity constants and concentrations for distinct antibody classes. These variables reflect the quality and the effective quantity of serum antibodies, respectively. The proposed fluorescent dual-titration microspot immunoassay can generate truly quantitative serological data that is suitable for immunological, medical and systems biological analysis.
Collapse
Affiliation(s)
- Ágnes Kovács
- Department of Biostatistics, University of Veterinary Medicine Budapest, Budapest, Hungary
- Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | - Daniel Nyberg Larsen
- Research and Development Department, Ovodan Biotech A/S, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pernille Stage
- Research and Development Department, Ovodan Biotech A/S, Odense, Denmark
| | | | | | - Tamás Pfeil
- Department of Applied Analysis and Computational Mathematics, Eötvös Loránd University, Budapest, Hungary
- HUN-REN–ELTE Numerical Analysis and Large Networks Research Group, Budapest, Hungary
| | | |
Collapse
|
2
|
Krainer G, Jacquat RPB, Schneider MM, Welsh TJ, Fan J, Peter QAE, Andrzejewska EA, Šneiderienė G, Czekalska MA, Ausserwoeger H, Chai L, Arter WE, Saar KL, Herling TW, Franzmann TM, Kosmoliaptsis V, Alberti S, Hartl FU, Lee SF, Knowles TPJ. Single-molecule digital sizing of proteins in solution. Nat Commun 2024; 15:7740. [PMID: 39231922 PMCID: PMC11375031 DOI: 10.1038/s41467-024-50825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
The physical characterization of proteins in terms of their sizes, interactions, and assembly states is key to understanding their biological function and dysfunction. However, this has remained a difficult task because proteins are often highly polydisperse and present as multicomponent mixtures. Here, we address this challenge by introducing single-molecule microfluidic diffusional sizing (smMDS). This approach measures the hydrodynamic radius of single proteins and protein assemblies in microchannels using single-molecule fluorescence detection. smMDS allows for ultrasensitive sizing of proteins down to femtomolar concentrations and enables affinity profiling of protein interactions at the single-molecule level. We show that smMDS is effective in resolving the assembly states of protein oligomers and in characterizing the size of protein species within complex mixtures, including fibrillar protein aggregates and nanoscale condensate clusters. Overall, smMDS is a highly sensitive method for the analysis of proteins in solution, with wide-ranging applications in drug discovery, diagnostics, and nanobiotechnology.
Collapse
Affiliation(s)
- Georg Krainer
- Institute of Molecular Biosciences (IMB), University of Graz, Humboldtstraße 50, 8010, Graz, Austria.
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Raphael P B Jacquat
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Matthias M Schneider
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jieyuan Fan
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Quentin A E Peter
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ewa A Andrzejewska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Greta Šneiderienė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Magdalena A Czekalska
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hannes Ausserwoeger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Lin Chai
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - William E Arter
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Kadi L Saar
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Therese W Herling
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Titus M Franzmann
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
3
|
O'Mahoney C, Watt I, Fiedler S, Devenish S, Srikanth S, Justice E, Dover T, Dean D, Peng C. Microfluidic Diffusional Sizing (MDS) Measurements of Secretory Neutralizing Antibody Affinity Against SARS-CoV-2. Ann Biomed Eng 2024; 52:1653-1664. [PMID: 38459195 PMCID: PMC11082020 DOI: 10.1007/s10439-024-03478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 has rampantly spread around the globe and continues to cause unprecedented loss through ongoing waves of (re)infection. Increasing our understanding of the protection against infection with SARS-CoV-2 is critical to ending the pandemic. Serological assays have been widely used to assess immune responses, but secretory antibodies, the essential first line of defense, have been studied to only a limited extent. Of particular interest and importance are neutralizing antibodies, which block the binding of the spike protein of SARS-CoV-2 to the human receptor angiotensin-converting enzyme-2 (ACE2) and thus are essential for immune defense. Here, we employed Microfluidic Diffusional Sizing (MDS), an immobilization-free technology, to characterize neutralizing antibody affinity to SARS-CoV-2 spike receptor-binding domain (RBD) and spike trimer in saliva. Affinity measurement was obtained through a contrived sample and buffer using recombinant SARS-CoV-2 RBD and monoclonal antibody. Limited saliva samples demonstrated that MDS applies to saliva neutralizing antibody measurement. The ability to disrupt a complex of ACE2-Fc and spike trimer is shown. Using a quantitative assay on the patient sample, we determined the affinity and binding site concentration of the neutralizing antibodies.
Collapse
Affiliation(s)
- Cara O'Mahoney
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Ian Watt
- Fluidic Analytics, Cambridge, UK
| | | | | | - Sujata Srikanth
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Erica Justice
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Tristan Dover
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA
| | - Congyue Peng
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
- Center for Innovative Medical Devices and Sensors, Clemson University, Clemson, SC, USA.
| |
Collapse
|
4
|
Fauquet J, Carette J, Duez P, Zhang J, Nachtergael A. Microfluidic Diffusion Sizing Applied to the Study of Natural Products and Extracts That Modulate the SARS-CoV-2 Spike RBD/ACE2 Interaction. Molecules 2023; 28:8072. [PMID: 38138562 PMCID: PMC10745392 DOI: 10.3390/molecules28248072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The interaction between SARS-CoV-2 spike RBD and ACE2 proteins is a crucial step for host cell infection by the virus. Without it, the entire virion entrance mechanism is compromised. The aim of this study was to evaluate the capacity of various natural product classes, including flavonoids, anthraquinones, saponins, ivermectin, chloroquine, and erythromycin, to modulate this interaction. To accomplish this, we applied a recently developed a microfluidic diffusional sizing (MDS) technique that allows us to probe protein-protein interactions via measurements of the hydrodynamic radius (Rh) and dissociation constant (KD); the evolution of Rh is monitored in the presence of increasing concentrations of the partner protein (ACE2); and the KD is determined through a binding curve experimental design. In a second time, with the protein partners present in equimolar amounts, the Rh of the protein complex was measured in the presence of different natural products. Five of the nine natural products/extracts tested were found to modulate the formation of the protein complex. A methanol extract of Chenopodium quinoa Willd bitter seed husks (50 µg/mL; bisdesmoside saponins) and the flavonoid naringenin (1 µM) were particularly effective. This rapid selection of effective modulators will allow us to better understand agents that may prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jason Fauquet
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (J.F.); (P.D.); (A.N.)
| | - Julie Carette
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (J.F.); (P.D.); (A.N.)
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (J.F.); (P.D.); (A.N.)
| | - Jiuliang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Amandine Nachtergael
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium; (J.F.); (P.D.); (A.N.)
| |
Collapse
|
5
|
Loi LK, Yang CC, Lin YC, Su YF, Juan YC, Chen YH, Chang HC. Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells. Heliyon 2023; 9:e22614. [PMID: 38107325 PMCID: PMC10724569 DOI: 10.1016/j.heliyon.2023.e22614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The entry of SARS-CoV-2 into host cells involves the interaction between the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor. Given that the spike protein evolves rapidly to evade host immunity, therapeutics that block ACE2 accessibility, such as spike decoys, could serve as an alternative strategy for attenuating viral infection. Here, we constructed a drug screening platform based on oral epithelial cells to rapidly identify peptides or compounds capable of blocking the spike-ACE2 interaction. We engineered short decoy peptides, 8 to 14 amino acids in length, using the spike protein's receptor-binding motif (RBM) and demonstrated that these peptides can effectively inhibit virus attachment to host cells. Additionally, we discovered that diminazene aceturate (DIZE), an ACE2 activator, similarly inhibited virus binding. Our research thus validates the potential of decoy peptides as a new therapeutic strategy against SARS-CoV-2 infections, opening avenues for further development and study.
Collapse
Affiliation(s)
- Lai-Keng Loi
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yee-Fun Su
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Chen Juan
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Hsin Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Chuan Chang
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Kelly CM, Martin JL, Coseno M, Previs MJ. Visualization of cardiac thick filament dynamics in ex vivo heart preparations. J Mol Cell Cardiol 2023; 185:88-98. [PMID: 37923195 PMCID: PMC10959293 DOI: 10.1016/j.yjmcc.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
RATIONALE Cardiac muscle cells are terminally differentiated after birth and must beat continually throughout one's lifetime. This mechanical process is driven by the sliding of actin-based thin filaments along myosin-based thick filaments, organized within sarcomeres. Despite costly energetic demand, the half-life of the proteins that comprise the cardiac thick filaments is ∼10 days, with individual molecules being replaced stochastically, by unknown mechanisms. OBJECTIVES To allow for the stochastic replacement of molecules, we hypothesized that the structure of thick filaments must be highly dynamic in vivo. METHODS AND RESULTS To test this hypothesis in adult mouse hearts, we replaced a fraction of the endogenous myosin regulatory light chain (RLC), a component of thick filaments, with GFP-labeled RLC by adeno-associated viral (AAV) transduction. The RLC-GFP was properly localized to the heads of the myosin molecules within thick filaments in ex vivo heart preparations and had no effect on heart size or actin filament siding in vitro. However, the localization of the RLC-GFP molecules was highly mobile, changing its position within the sarcomere on the minute timescale, when quantified by fluorescence recovery after photobleaching (FRAP) using multiphoton microscopy. Interestingly, RLC-GFP mobility was restricted to within the boundaries of single sarcomeres. When cardiomyocytes were lysed, the RLC-GFP remained strongly bound to myosin heavy chain, and the intact myosin molecules adopted a folded, compact configuration, when disassociated from the filaments at physiological ionic conditions. CONCLUSIONS These data demonstrate that the structure of the thick filament is highly dynamic in the intact heart, with a rate of molecular exchange into and out of thick filaments that is ∼1500 times faster than that required for the replacement of molecules through protein synthesis or degradation.
Collapse
Affiliation(s)
- Colleen M Kelly
- Molecular Physiology and Biophysics Department, University of Vermont, Larner College of Medicine, Burlington, VT 05405, United States of America
| | - Jody L Martin
- Department of Pharmacology, University of California, Davis, Davis, CA 90095, United States of America
| | - Molly Coseno
- Fluidic Analytics, The Paddocks Business Centre, Cambridge CB1 8DH, United Kingdom
| | - Michael J Previs
- Molecular Physiology and Biophysics Department, University of Vermont, Larner College of Medicine, Burlington, VT 05405, United States of America.
| |
Collapse
|
7
|
Emmenegger M, Worth R, Fiedler S, Devenish SRA, Knowles TPJ, Aguzzi A. Protocol to determine antibody affinity and concentration in complex solutions using microfluidic antibody affinity profiling. STAR Protoc 2023; 4:102095. [PMID: 36853663 PMCID: PMC9925161 DOI: 10.1016/j.xpro.2023.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/24/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Conventional methods of measuring affinity are limited by artificial immobilization, large sample volumes, and homogeneous solutions. This protocol describes microfluidic antibody affinity profiling on complex human samples in solution to obtain a fingerprint reflecting both affinity and active concentration of the target protein. To illustrate the protocol, we analyze the antibody response in SARS-CoV-2 omicron-naïve samples against different SARS-CoV-2 variants of concern. However, the protocol and the technology are amenable to a broad spectrum of biomedical questions. For complete details on the use and execution of this protocol, please refer to Emmenegger et al. (2022),1 Schneider et al. (2022),2 and Fiedler et al. (2022).3.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland.
| | - Roland Worth
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Sebastian Fiedler
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Sean R A Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
8
|
Li K, Dodds M, Spreng RL, Abraha M, Huntwork RHC, Dahora LC, Nyanhete T, Dutta S, Wille-Reece U, Jongert E, Ewer KJ, Hill AVS, Jin C, Hill J, Pollard AJ, Munir Alam S, Tomaras GD, Dennison SM. A tool for evaluating heterogeneity in avidity of polyclonal antibodies. Front Immunol 2023; 14:1049673. [PMID: 36875126 PMCID: PMC9978818 DOI: 10.3389/fimmu.2023.1049673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Diversity in specificity of polyclonal antibody (pAb) responses is extensively investigated in vaccine efficacy or immunological evaluations, but the heterogeneity in antibody avidity is rarely probed as convenient tools are lacking. Here we have developed a polyclonal antibodies avidity resolution tool (PAART) for use with label-free techniques, such as surface plasmon resonance and biolayer interferometry, that can monitor pAb-antigen interactions in real time to measure dissociation rate constant (kd ) for defining avidity. PAART utilizes a sum of exponentials model to fit the dissociation time-courses of pAb-antigens interactions and resolve multiple kd contributing to the overall dissociation. Each kd value of pAb dissociation resolved by PAART corresponds to a group of antibodies with similar avidity. PAART is designed to identify the minimum number of exponentials required to explain the dissociation course and guards against overfitting of data by parsimony selection of best model using Akaike information criterion. Validation of PAART was performed using binary mixtures of monoclonal antibodies of same specificity but differing in kd of the interaction with their epitope. We applied PAART to examine the heterogeneity in avidities of pAb from malaria and typhoid vaccinees, and individuals living with HIV-1 that naturally control the viral load. In many cases, two to three kd were dissected indicating the heterogeneity of pAb avidities. We showcase examples of affinity maturation of vaccine induced pAb responses at component level and enhanced resolution of heterogeneity in avidity when antigen-binding fragments (Fab) are used instead of polyclonal IgG antibodies. The utility of PAART can be manifold in examining circulating pAb characteristics and could inform vaccine strategies aimed to guide the host humoral immune response.
Collapse
Affiliation(s)
- Kan Li
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Michael Dodds
- Integrated Drug Development, Certara, Seattle, WA, United States
| | - Rachel L. Spreng
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Milite Abraha
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Richard H. C. Huntwork
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| | - Lindsay C. Dahora
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
| | - Tinashe Nyanhete
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ulrike Wille-Reece
- PATH's Center for Vaccine Innovation and Access, Washington, DC, United States
| | | | - Katie J. Ewer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Center, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group and Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group and Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. Pollard
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Center, Oxford, United Kingdom
- Oxford Vaccine Group and Department of Pediatrics, University of Oxford, Oxford, United Kingdom
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Department of Pathology, Duke University, Durham, NC, United States
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Department of Immunology, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, NC, United States
- Department of Surgery, Duke University, Durham, NC, United States
| |
Collapse
|
9
|
Fiedler S, Devenish SRA, Morgunov AS, Ilsley A, Ricci F, Emmenegger M, Kosmoliaptsis V, Theel ES, Mills JR, Sholukh AM, Aguzzi A, Iwasaki A, Lynn AK, Knowles TPJ. Serological fingerprints link antiviral activity of therapeutic antibodies to affinity and concentration. Sci Rep 2022; 12:19791. [PMID: 36396691 PMCID: PMC9672333 DOI: 10.1038/s41598-022-22214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022] Open
Abstract
The effectiveness of therapeutic monoclonal antibodies (mAbs) against variants of the SARS-CoV-2 virus is highly variable. As target recognition of mAbs relies on tight binding affinity, we assessed the affinities of five therapeutic mAbs to the receptor binding domain (RBD) of wild type (A), Delta (B.1.617.2), and Omicron BA.1 SARS-CoV-2 (B.1.1.529.1) spike using microfluidic diffusional sizing (MDS). Four therapeutic mAbs showed strongly reduced affinity to Omicron BA.1 RBD, whereas one (sotrovimab) was less impacted. These affinity reductions correlate with reduced antiviral activities suggesting that affinity could serve as a rapid indicator for activity before time-consuming virus neutralization assays are performed. We also compared the same mAbs to serological fingerprints (affinity and concentration) obtained by MDS of antibodies in sera of 65 convalescent individuals. The affinities of the therapeutic mAbs to wild type and Delta RBD were similar to the serum antibody response, indicating high antiviral activities. For Omicron BA.1 RBD, only sotrovimab retained affinities within the range of the serum antibody response, in agreement with high antiviral activity. These results suggest that serological fingerprints provide a route to evaluating affinity and antiviral activity of mAb drugs and could guide the development of new therapeutics.
Collapse
Affiliation(s)
- Sebastian Fiedler
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK.
| | - Sean R A Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Alexey S Morgunov
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Alison Ilsley
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Francesco Ricci
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091, Zurich, Switzerland
| | - Vasilis Kosmoliaptsis
- Department of Surgery, University of Cambridge, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
- NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Elitza S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - John R Mills
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Anton M Sholukh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091, Zurich, Switzerland
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06519, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Andrew K Lynn
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK
| | - Tuomas P J Knowles
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge, CB1 8DH, UK.
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK.
| |
Collapse
|
10
|
Ausserwöger H, Schneider MM, Herling TW, Arosio P, Invernizzi G, Knowles TPJ, Lorenzen N. Non-specificity as the sticky problem in therapeutic antibody development. Nat Rev Chem 2022; 6:844-861. [PMID: 37117703 DOI: 10.1038/s41570-022-00438-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Antibodies are highly potent therapeutic scaffolds with more than a hundred different products approved on the market. Successful development of antibody-based drugs requires a trade-off between high target specificity and target binding affinity. In order to better understand this problem, we here review non-specific interactions and explore their fundamental physicochemical origins. We discuss the role of surface patches - clusters of surface-exposed amino acid residues with similar physicochemical properties - as inducers of non-specific interactions. These patches collectively drive interactions including dipole-dipole, π-stacking and hydrophobic interactions to complementary moieties. We elucidate links between these supramolecular assembly processes and macroscopic development issues, such as decreased physical stability and poor in vivo half-life. Finally, we highlight challenges and opportunities for optimizing protein binding specificity and minimizing non-specificity for future generations of therapeutics.
Collapse
|
11
|
Toledo-Romani ME, García-Carmenate M, Verdecia-Sánchez L, Pérez-Rodríguez S, Rodriguez-González M, Valenzuela-Silva C, Paredes-Moreno B, Sanchez-Ramirez B, González-Mugica R, Hernández-Garcia T, Orosa-Vázquez I, Díaz-Hernández M, Pérez-Guevara MT, Enriquez-Puertas J, Noa-Romero E, Palenzuela-Diaz A, Baro-Roman G, Mendoza-Hernández I, Muñoz Y, Gómez-Maceo Y, Santos-Vega BL, Fernandez-Castillo S, Climent-Ruiz Y, Rodríguez-Noda L, Santana-Mederos D, García-Vega Y, Chen GW, Doroud D, Biglari A, Boggiano-Ayo T, Valdés-Balbín Y, Rivera DG, García-Rivera D, Vérez-Bencomo V. Safety and immunogenicity of anti-SARS-CoV-2 heterologous scheme with SOBERANA 02 and SOBERANA Plus vaccines: Phase IIb clinical trial in adults. MED (NEW YORK, N.Y.) 2022; 3:760-773.e5. [PMID: 35998623 PMCID: PMC9359498 DOI: 10.1016/j.medj.2022.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 08/02/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND SOBERANA 02 has been evaluated in phase I and IIa studies comparing homologous versus heterologous schedule (this one, including SOBERANA Plus). Here, we report results of immunogenicity, safety, and reactogenicity of SOBERANA 02 in a two- or three-dose heterologous scheme in adults. METHOD Phase IIb was a parallel, multicenter, adaptive, double-blind, randomized, and placebo-controlled trial. Subjects (n = 810) aged 19-80 years were randomized to receive two doses of SARS-CoV-2 RBD conjugated to tetanus toxoid (SOBERANA 02) and a third dose of dimeric RBD (SOBERANA Plus) 28 days apart; two production batches of active ingredients of SOBERANA 02 were evaluated. Primary outcome was the percentage of seroconverted subjects with ≥4-fold the anti-RBD immunoglobulin G (IgG) concentration. Secondary outcomes were safety, reactogenicity, and neutralizing antibodies. FINDINGS Seroconversion rate in vaccinees was 76.3% after two doses and 96.8% after the third dose of SOBERANA Plus (7.3% in the placebo group). Neutralizing IgG antibodies were detected against D614G and variants of concern (VOCs) Alpha, Beta, Delta, and Omicron. Specific, functional antibodies were detected 7-8 months after the third dose. The frequency of serious adverse events (AEs) associated with vaccination was very low (0.1%). Local pain was the most frequent AE. CONCLUSIONS Two doses of SOBERANA 02 were safe and immunogenic in adults. The heterologous combination with SOBERANA Plus increased neutralizing antibodies, detectable 7-8 months after the third dose. TRIAL REGISTRY https://rpcec.sld.cu/trials/RPCEC00000347 FUNDING: This work was supported by Finlay Vaccine Institute, BioCubaFarma, and the Fondo Nacional de Ciencia y Técnica (FONCI-CITMA-Cuba, contract 2020-20).
Collapse
Affiliation(s)
| | - Mayra García-Carmenate
- "19 de Abril" Polyclinic, Tulipan St. between Panorama y Oeste, Nuevo Vedado, Plaza de la Revolución, Havana 10400, Cuba
| | | | - Suzel Pérez-Rodríguez
- "19 de Abril" Polyclinic, Tulipan St. between Panorama y Oeste, Nuevo Vedado, Plaza de la Revolución, Havana 10400, Cuba
| | | | - Carmen Valenzuela-Silva
- Cybernetics, Mathematics and Physics Institute, 15th St. #55, Vedado, Plaza de la Revolución, Havana 10400, Cuba
| | - Beatriz Paredes-Moreno
- Finlay Vaccine Institute, 21st Avenue Nº 19810 Between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | | | - Raúl González-Mugica
- Finlay Vaccine Institute, 21st Avenue Nº 19810 Between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Tays Hernández-Garcia
- Center of Molecular Immunology, 15th Avenue and 216 St, Siboney, Playa, Havana, Cuba
| | - Ivette Orosa-Vázquez
- Center of Molecular Immunology, 15th Avenue and 216 St, Siboney, Playa, Havana, Cuba
| | | | | | | | - Enrique Noa-Romero
- National Civil Defense Research Laboratory, San José de las Lajas, Mayabeque, Cuba
| | | | - Gerardo Baro-Roman
- Centre for Immunoassays, 134 St. and 25, Cubanacán, Playa, Havana 11600 Cuba
| | - Ivis Mendoza-Hernández
- National Clinical Trials Coordinating Center, 5th Avenue and 62, Miramar, Playa, Havana, Cuba
| | - Yaima Muñoz
- National Clinical Trials Coordinating Center, 5th Avenue and 62, Miramar, Playa, Havana, Cuba
| | | | - Bertha Leysi Santos-Vega
- "19 de Abril" Polyclinic, Tulipan St. between Panorama y Oeste, Nuevo Vedado, Plaza de la Revolución, Havana 10400, Cuba
| | - Sonsire Fernandez-Castillo
- Finlay Vaccine Institute, 21st Avenue Nº 19810 Between 198 and 200 St, Atabey, Playa, Havana, Cuba,Corresponding author
| | - Yanet Climent-Ruiz
- Finlay Vaccine Institute, 21st Avenue Nº 19810 Between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Laura Rodríguez-Noda
- Finlay Vaccine Institute, 21st Avenue Nº 19810 Between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Darielys Santana-Mederos
- Finlay Vaccine Institute, 21st Avenue Nº 19810 Between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Yanelda García-Vega
- Center of Molecular Immunology, 15th Avenue and 216 St, Siboney, Playa, Havana, Cuba
| | - Guang-Wu Chen
- Chengdu Olisynn Biotech. Co. Ltd., Chengdu 610041, People’s Republic of China,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Delaram Doroud
- Pasteur Institute of Iran, No. 69, Pasteur Avenue, Tehran 1316943551, Islamic Republic of Iran
| | - Alireza Biglari
- Pasteur Institute of Iran, No. 69, Pasteur Avenue, Tehran 1316943551, Islamic Republic of Iran
| | - Tammy Boggiano-Ayo
- Center of Molecular Immunology, 15th Avenue and 216 St, Siboney, Playa, Havana, Cuba
| | - Yury Valdés-Balbín
- Finlay Vaccine Institute, 21st Avenue Nº 19810 Between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Daniel G. Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Havana 10400, Cuba
| | - Dagmar García-Rivera
- Finlay Vaccine Institute, 21st Avenue Nº 19810 Between 198 and 200 St, Atabey, Playa, Havana, Cuba
| | - Vicente Vérez-Bencomo
- Finlay Vaccine Institute, 21st Avenue Nº 19810 Between 198 and 200 St, Atabey, Playa, Havana, Cuba,Corresponding author
| | | |
Collapse
|
12
|
Glueck D, Grethen A, Das M, Mmeka OP, Patallo EP, Meister A, Rajender R, Kins S, Räschle M, Victor J, Chu C, Etzkorn M, Köck Z, Bernhard F, Babalola JO, Vargas C, Keller S. Electroneutral Polymer Nanodiscs Enable Interference-Free Probing of Membrane Proteins in a Lipid-Bilayer Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202492. [PMID: 36228092 DOI: 10.1002/smll.202202492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral-yet water-soluble-polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein-lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.
Collapse
Affiliation(s)
- David Glueck
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Anne Grethen
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Ogochukwu Patricia Mmeka
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Department of Chemistry, University of Ibadan, Ibadan, 200284, Nigeria
| | - Eugenio Pérez Patallo
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Annette Meister
- HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Ritu Rajender
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Stefan Kins
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, Technische Universität Kaiserslautern (TUK), Paul-Ehrlich-Str. 24, 67663, Kaiserslautern, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ci Chu
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | | | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
13
|
Emmenegger M, Fiedler S, Brugger SD, Devenish SR, Morgunov AS, Ilsley A, Ricci F, Malik AY, Scheier T, Batkitar L, Madrigal L, Rossi M, Meisl G, Lynn AK, Saleh L, von Eckardstein A, Knowles TP, Aguzzi A. Both COVID-19 infection and vaccination induce high-affinity cross-clade responses to SARS-CoV-2 variants. iScience 2022; 25:104766. [PMID: 35875683 PMCID: PMC9288251 DOI: 10.1016/j.isci.2022.104766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/06/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
The B.1.1.529 (omicron) variant has rapidly supplanted most other SARS-CoV-2 variants. Using microfluidics-based antibody affinity profiling (MAAP), we have characterized affinity and IgG concentration in the plasma of 39 individuals with multiple trajectories of SARS-CoV-2 infection and/or vaccination. Antibody affinity was similar against the wild-type, delta, and omicron variants (K A ranges: 122 ± 155, 159 ± 148, 211 ± 307 μM-1, respectively), indicating a surprisingly broad and mature cross-clade immune response. Postinfectious and vaccinated subjects showed different IgG profiles, with IgG3 (p-value = 0.002) against spike being more prominent in the former group. Lastly, we found that the ELISA titers correlated linearly with measured concentrations (R = 0.72) but not with affinity (R = 0.29). These findings suggest that the wild-type and delta spike induce a polyclonal immune response capable of binding the omicron spike with similar affinity. Changes in titers were primarily driven by antibody concentration, suggesting that B-cell expansion, rather than affinity maturation, dominated the response after infection or vaccination.
Collapse
Affiliation(s)
- Marc Emmenegger
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Sebastian Fiedler
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sean R.A. Devenish
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Alexey S. Morgunov
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Alison Ilsley
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Francesco Ricci
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Anisa Y. Malik
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Leyla Batkitar
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Lidia Madrigal
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Marco Rossi
- Department of Laboratory Medicine, University Hospital Zürich, 8091 Zurich, Switzerland
| | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Andrew K. Lynn
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
| | - Lanja Saleh
- Department of Laboratory Medicine, University Hospital Zürich, 8091 Zurich, Switzerland
| | | | - Tuomas P.J. Knowles
- Fluidic Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, UK
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
14
|
Homogeneous surrogate virus neutralization assay to rapidly assess neutralization activity of anti-SARS-CoV-2 antibodies. Nat Commun 2022; 13:3716. [PMID: 35778399 PMCID: PMC9249905 DOI: 10.1038/s41467-022-31300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a 'Serological Assay based on a Tri-part split-NanoLuc® (SATiN)' to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Here, we expand on our previous work and describe a reconfigured version of the SATiN assay, called Neutralization SATiN (Neu-SATiN), which measures neutralization activity of antibodies directly from convalescent or vaccinated sera. The results obtained with our assay and other neutralization assays are comparable but with significantly shorter preparation and run time for Neu-SATiN. As the assay is modular, we further demonstrate that Neu-SATiN enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.
Collapse
|
15
|
Plikusiene I, Maciulis V, Juciute S, Maciuleviciene R, Balevicius S, Ramanavicius A, Ramanaviciene A. Investigation and Comparison of Specific Antibodies' Affinity Interaction with SARS-CoV-2 Wild-Type, B.1.1.7, and B.1.351 Spike Protein by Total Internal Reflection Ellipsometry. BIOSENSORS 2022; 12:351. [PMID: 35624652 PMCID: PMC9139055 DOI: 10.3390/bios12050351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 05/21/2023]
Abstract
SARS-CoV-2 vaccines provide strong protection against COVID-19. However, the emergence of SARS-CoV-2 variants has raised concerns about the efficacy of vaccines. In this study, we investigated the interactions of specific polyclonal human antibodies (pAb-SCoV2-S) produced after vaccination with the Vaxzevria vaccine with the spike proteins of three SARS-CoV-2 variants of concern: wild-type, B.1.1.7, and B.1.351. Highly sensitive, label-free, and real-time monitoring of these interactions was accomplished using the total internal reflection ellipsometry method. Thermodynamic parameters such as association and dissociation rate constants, the stable immune complex formation rate constant (kr), the equilibrium association and dissociation (KD) constants and steric factors (Ps) were calculated using a two-step irreversible binding mathematical model. The results obtained show that the KD values for the specific antibody interactions with all three types of spike protein are in the same nanomolar range. The KD values for B.1.1.7 and B.1.351 suggest that the antibody produced after vaccination can successfully protect the population from the alpha (B.1.1.7) and beta (B.1.351) SARS-CoV-2 mutations. The steric factors (Ps) obtained for all three types of spike proteins showed a 100-fold lower requirement for the formation of an immune complex when compared with nucleocapsid protein.
Collapse
Affiliation(s)
- Ieva Plikusiene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania; (I.P.); (V.M.); (S.J.); (R.M.); (S.B.); (A.R.)
| | - Vincentas Maciulis
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania; (I.P.); (V.M.); (S.J.); (R.M.); (S.B.); (A.R.)
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, 03225 Vilnius, Lithuania
| | - Silvija Juciute
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania; (I.P.); (V.M.); (S.J.); (R.M.); (S.B.); (A.R.)
| | - Ruta Maciuleviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania; (I.P.); (V.M.); (S.J.); (R.M.); (S.B.); (A.R.)
| | - Saulius Balevicius
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania; (I.P.); (V.M.); (S.J.); (R.M.); (S.B.); (A.R.)
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, 03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania; (I.P.); (V.M.); (S.J.); (R.M.); (S.B.); (A.R.)
| | - Almira Ramanaviciene
- NanoTechnas—Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225 Vilnius, Lithuania; (I.P.); (V.M.); (S.J.); (R.M.); (S.B.); (A.R.)
| |
Collapse
|
16
|
Hendriks J, Schasfoort R, Koerselman M, Dannenberg M, Cornet AD, Beishuizen A, van der Palen J, Krabbe J, Mulder AHL, Karperien M. High Titers of Low Affinity Antibodies in COVID-19 Patients Are Associated With Disease Severity. Front Immunol 2022; 13:867716. [PMID: 35493512 PMCID: PMC9043688 DOI: 10.3389/fimmu.2022.867716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Almost 2 years from the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there is still a lot unknown how the humoral response affects disease progression. In this study, we investigated humoral antibody responses against specific SARS-CoV2 proteins, their strength of binding, and their relationship with COVID severity and clinical information. Furthermore, we studied the interactions of the specific receptor-binding domain (RBD) in more depth by characterizing specific antibody response to a peptide library. Materials and Methods We measured specific antibodies of isotypes IgM, IgG, and IgA, as well as their binding strength against the SARS-CoV2 antigens RBD, NCP, S1, and S1S2 in sera of 76 COVID-19 patients using surface plasmon resonance imaging. In addition, these samples were analyzed using a peptide epitope mapping assay, which consists of a library of peptides originating from the RBD. Results A positive association was observed between disease severity and IgG antibody titers against all SARS-CoV2 proteins and additionally for IgM and IgA antibodies directed against RBD. Interestingly, in contrast to the titer of antibodies, the binding strength went down with increasing disease severity. Within the critically ill patient group, a positive association with pulmonary embolism, d-dimer, and antibody titers was observed. Conclusion In critically ill patients, antibody production is high, but affinity is low, and maturation is impaired. This may play a role in disease exacerbation and could be valuable as a prognostic marker for predicting severity.
Collapse
Affiliation(s)
- Jan Hendriks
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Richard Schasfoort
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Maureen Dannenberg
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | | | | - Job van der Palen
- Medical School, Medisch Spectrum Twente, Enschede, Netherlands.,Section Cognition, Education and Data, Faculty of Behavioural, Management and Social Sciences, University of Twente, Enschede, Netherlands
| | - Johannes Krabbe
- Department of Clinical Chemistry, Medlon BV, Enschede, Netherlands.,Department of Clinical Chemistry and Laboratory Medicine, Medisch Spectrum Twente, Enschede, Netherlands
| | - Alide H L Mulder
- Department of Clinical Chemistry, Medlon BV, Enschede, Netherlands.,Department of Clinical Chemistry, Ziekenhuis Groep Twente, Almelo, Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| |
Collapse
|
17
|
Fursht O, Liran M, Nash Y, Medala VK, Ini D, Royal TG, Goldsmith G, Nahary L, Benhar I, Frenkel D. Antibody-Mediated Inhibition of Insulin-Degrading Enzyme Improves Insulin Activity in a Diabetic Mouse Model. Front Immunol 2022; 13:835774. [PMID: 35350789 PMCID: PMC8958001 DOI: 10.3389/fimmu.2022.835774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetes is a metabolic disease that may lead to different life-threatening complications. While insulin constitutes a beneficial treatment, its use may be limited due to increased degradation and an increase in side effects such as weight gain and hypoglycemia. Small molecule inhibitors to insulin-degrading enzyme (IDE) have been previously suggested as a potential treatment for diabetes through their ability to reduce insulin degradation and thus increase insulin activity. Nevertheless, their tendency to bind to the zinc ion in the catalytic site of IDE may affect other important metalloproteases and limit their clinical use. Here, we describe the isolation of an IDE-specific antibody that specifically inhibits insulin degradation by IDE. Using phage display, we generated a human IDE-specific antibody that binds human and mouse IDE with high affinity and specificity and can differentiate between active IDE to a mutated IDE with reduced catalytic activity in the range of 30 nM. We further assessed the ability of that IDE-inhibiting antibody to improve insulin activity in vivo in an STZ-induced diabetes mouse model. Since human antibodies may stimulate the mouse immune response to generate anti-human antibodies, we reformatted our inhibitory antibody to a “reverse chimeric” antibody that maintained the ability to inhibit IDE in vitro, but consisted of mouse constant regions, for reduced immunogenicity. We discovered that one intraperitoneal (IP) administration of the IDE-specific antibody in STZ-induced diabetic mice improved insulin activity in an insulin tolerance test (ITT) assay and reduced blood glucose levels. Our results suggest that antibody-mediated inhibition of IDE may be beneficial on improving insulin activity in a diabetic environment.
Collapse
Affiliation(s)
- Ofir Fursht
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mirit Liran
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nash
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Vijay Krishna Medala
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dor Ini
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tabitha Grace Royal
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Guy Goldsmith
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Limor Nahary
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itai Benhar
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dan Frenkel
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Denninger V, Xu CK, Meisl G, Morgunov AS, Fiedler S, Ilsley A, Emmenegger M, Malik AY, Piziorska MA, Schneider MM, Devenish SRA, Kosmoliaptsis V, Aguzzi A, Fiegler H, Knowles TPJ. Microfluidic Antibody Affinity Profiling Reveals the Role of Memory Reactivation and Cross-Reactivity in the Defense Against SARS-CoV-2. ACS Infect Dis 2022; 8:790-799. [PMID: 35352558 PMCID: PMC8982494 DOI: 10.1021/acsinfecdis.1c00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 11/30/2022]
Abstract
Recent efforts in understanding the course and severity of SARS-CoV-2 infections have highlighted both potentially beneficial and detrimental effects of cross-reactive antibodies derived from memory immunity. Specifically, due to a significant degree of sequence similarity between SARS-CoV-2 and other members of the coronavirus family, memory B-cells that emerged from previous infections with endemic human coronaviruses (HCoVs) could be reactivated upon encountering the newly emerged SARS-CoV-2, thus prompting the production of cross-reactive antibodies. Determining the affinity and concentration of these potentially cross-reactive antibodies to the new SARS-CoV-2 antigens is therefore particularly important when assessing both existing immunity against common HCoVs and adverse effects like antibody-dependent enhancement (ADE) in COVID-19. However, these two fundamental parameters cannot easily be disentangled by surface-based assays like enzyme-linked immunosorbent assays (ELISAs), which are routinely used to assess cross-reactivity. Here, we have used microfluidic antibody affinity profiling (MAAP) to quantitatively evaluate the humoral immune response in COVID-19 convalescent patients by determining both antibody affinity and concentration against spike antigens of SARS-CoV-2 directly in nine convalescent COVID-19 patient and three pre-pandemic sera that were seropositive for common HCoVs. All 12 sera contained low concentrations of high-affinity antibodies against spike antigens of HCoV-NL63 and HCoV-HKU1, indicative of past exposure to these pathogens, while the affinity against the SARS-CoV-2 spike protein was lower. These results suggest that cross-reactivity as a consequence of memory reactivation upon an acute SARS-CoV-2 infection may not be a significant factor in generating immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Viola Denninger
- Fluidic
Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Catherine K. Xu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georg Meisl
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexey S. Morgunov
- Fluidic
Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sebastian Fiedler
- Fluidic
Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Alison Ilsley
- Fluidic
Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Marc Emmenegger
- Institute
of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Anisa Y. Malik
- Fluidic
Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Monika A. Piziorska
- Fluidic
Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Matthias M. Schneider
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sean R. A. Devenish
- Fluidic
Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Vasilis Kosmoliaptsis
- Department
of Surgery, University of Cambridge, Addenbrookes
Hospital, Cambridge CB2 0QQ, United Kingdom
- NIHR
Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Hills Road, Cambridge CB2 0QQ, United Kingdom
- NIHR
Cambridge
Biomedical Research Centre, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Adriano Aguzzi
- Institute
of Neuropathology, University of Zurich, 8091 Zurich, Switzerland
| | - Heike Fiegler
- Fluidic
Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
| | - Tuomas P. J. Knowles
- Fluidic
Analytics, Unit A, The Paddocks Business Centre, Cherry Hinton Road, Cambridge CB1 8DH, United Kingdom
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thomson
Ave, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
19
|
Ropón-Palacios G, Pérez-Silva J, Rojas-Humpire R, Olivos-Ramírez GE, Chenet-Zuta M, Cornejo-Villanueva V, Carmen-Sifuentes S, Otazu K, Ramirez-Díaz YL, Chozo KV, Camps I. Glycosylation is key for enhancing drug recognition into spike glycoprotein of SARS-CoV-2. Comput Biol Chem 2022; 98:107668. [PMID: 35339763 PMCID: PMC8941845 DOI: 10.1016/j.compbiolchem.2022.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022]
Abstract
The emergence of COVID-19 caused by SARS-CoV-2 and its spread since 2019 represents the major public health problem worldwide nowadays, which has generated a high number of infections and deaths. The spike protein (S protein) is the most studied protein of SARS-CoV-2, and key to host-cell entry through ACE2 receptor. This protein presents a large pattern of glycosylations with important roles in immunity and infection mechanisms. Therefore, understanding key aspects of the molecular mechanisms of these structures, during drug recognition in SARS-CoV-2, may contribute to therapeutic alternatives. In this work, we explored the impact of glycosylations on the drug recognition on two domains of the S protein, the receptor-binding domain (RBD) and the N-terminal domain (NTD) through molecular dynamics simulations and computational biophysics analysis. Our results show that glycosylations in the S protein induce structural stability and changes in rigidity/flexibility related to the number of glycosylations in the structure. These structural changes are important for its biological activity as well as the correct interaction of ligands in the RBD and NTD regions. Additionally, we evidenced a roto-translation phenomenon in the interaction of the ligand with RBD in the absence of glycosylation, which disappears due to the influence of glycosylation and the convergence of metastable states in RBM. Similarly, glycosylations in NTD promote an induced fit phenomenon, which is not observed in the absence of glycosylations; this process is decisive for the activity of the ligand at the cryptic site. Altogether, these results provide an explanation of glycosylation relevance in biophysical properties and drug recognition to S protein of SARS-CoV-2, which must be considered in the rational drug development and virtual screening targeting S protein.
Collapse
Affiliation(s)
- Georcki Ropón-Palacios
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil.
| | - Jhon Pérez-Silva
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil
| | - Ricardo Rojas-Humpire
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil
| | - Gustavo E Olivos-Ramírez
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil
| | | | | | - Sheyla Carmen-Sifuentes
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil
| | - Kewin Otazu
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil
| | - Yaritza L Ramirez-Díaz
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil
| | - Karolyn Vega Chozo
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil
| | - Ihosvany Camps
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas, Brazil; High Performance & Quantum Computing Labs, Waterloo, Canada.
| |
Collapse
|
20
|
Schneider MM, Emmenegger M, Xu CK, Condado Morales I, Meisl G, Turelli P, Zografou C, Zimmermann MR, Frey BM, Fiedler S, Denninger V, Jacquat RP, Madrigal L, Ilsley A, Kosmoliaptsis V, Fiegler H, Trono D, Knowles TP, Aguzzi A. Microfluidic characterisation reveals broad range of SARS-CoV-2 antibody affinity in human plasma. Life Sci Alliance 2022; 5:e202101270. [PMID: 34848436 PMCID: PMC8645332 DOI: 10.26508/lsa.202101270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
The clinical outcome of SARS-CoV-2 infections, which can range from asymptomatic to lethal, is crucially shaped by the concentration of antiviral antibodies and by their affinity to their targets. However, the affinity of polyclonal antibody responses in plasma is difficult to measure. Here we used microfluidic antibody affinity profiling (MAAP) to determine the aggregate affinities and concentrations of anti-SARS-CoV-2 antibodies in plasma samples of 42 seropositive individuals, 19 of which were healthy donors, 20 displayed mild symptoms, and 3 were critically ill. We found that dissociation constants, K d, of anti-receptor-binding domain antibodies spanned 2.5 orders of magnitude from sub-nanomolar to 43 nM. Using MAAP we found that antibodies of seropositive individuals induced the dissociation of pre-formed spike-ACE2 receptor complexes, which indicates that MAAP can be adapted as a complementary receptor competition assay. By comparison with cytopathic effect-based neutralisation assays, we show that MAAP can reliably predict the cellular neutralisation ability of sera, which may be an important consideration when selecting the most effective samples for therapeutic plasmapheresis and tracking the success of vaccinations.
Collapse
Affiliation(s)
- Matthias M Schneider
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | | | - Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Chryssa Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manuela R Zimmermann
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Beat M Frey
- Regional Blood Transfusion Service Zurich, Swiss Red Cross, Schlieren, Switzerland
| | | | - Viola Denninger
- Fluidic Analytics, Unit A, Paddocks Business Centre, Cambridge, UK
| | - Raphaël Pb Jacquat
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Lidia Madrigal
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Alison Ilsley
- Fluidic Analytics, Unit A, Paddocks Business Centre, Cambridge, UK
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Organ Donation and Transplantation, University of Cambridge, Cambridge, UK
| | - Heike Fiegler
- Fluidic Analytics, Unit A, Paddocks Business Centre, Cambridge, UK
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tuomas Pj Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Diffusional microfluidics for protein analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|