1
|
Chernykh A, Sumer-Bayraktar Z, Lee JH, Meyer EJ, Torpy DJ, Thaysen-Andersen M. RCL glycosylation of serum corticosteroid-binding globulin: implications in cortisol delivery and septic shock. Glycobiology 2025; 35:cwaf013. [PMID: 40044123 PMCID: PMC11915215 DOI: 10.1093/glycob/cwaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Corticosteroid-binding globulin (CBG) is a serum glycoprotein that binds and delivers anti-inflammatory cortisol to inflammatory sites through neutrophil elastase-mediated proteolysis of an exposed reactive centre loop (RCL) on CBG. Timely and tissue-specific delivery of cortisol is critical to alleviate inflammation including in life-threatening septic shock conditions. Herein, we firstly summarise our recently published report of functional RCL O- and N-glycosylation events of serum CBG (Chernykh, J Biol Chem, 2023). A key finding of that published work was the LC-MS/MS-based discovery of RCL O-glycans at Thr342 and Thr345 of serum CBG and their inhibitory roles in neutrophil elastase-mediated RCL proteolysis. While these observations are of significance as they implicate RCL O-glycosylation as a potential regulator of cortisol delivery, the link to septic shock remains unexplored. To this end, we used a similar LC-MS/MS approach to profile the RCL O-glycosylation of CBG purified from serum of twelve septic shock patients. Serum CBG from all patients exhibited RCL O-glycosylation comprising (di)sialyl T (NeuAc1-2Gal1GalNAc1) core 1-type O-glycan structures decorating exclusively the Thr342 site. Importantly, relative to less severe cases, individuals presenting with the most severe illness displayed elevated RCL O-glycosylation upon ICU admission, suggesting a previously unknown link to septic shock severity. Overall, we have elucidated the coordinated RCL N- and O-glycosylation events of serum CBG, which improve our understanding of molecular mechanisms governing the timely and tissue-specific delivery of cortisol to inflammatory sites. This work provides clues to molecular aberrations and disease mechanisms underpinning septic shock.
Collapse
Affiliation(s)
- Anastasia Chernykh
- School of Natural Sciences, Macquarie University, 4 Wally’s Walk, Macquarie Park, 2109, New South Wales, Australia
| | - Zeynep Sumer-Bayraktar
- School of Natural Sciences, Macquarie University, 4 Wally’s Walk, Macquarie Park, 2109, New South Wales, Australia
| | - Jessica H Lee
- Department of Medicine, University of Adelaide, Corner of George Street and North Terrace, Adelaide, 5000, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Port Road, Adelaide, 5000, South Australia, Australia
| | - Emily J Meyer
- Department of Medicine, University of Adelaide, Corner of George Street and North Terrace, Adelaide, 5000, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Port Road, Adelaide, 5000, South Australia, Australia
| | - David J Torpy
- Department of Medicine, University of Adelaide, Corner of George Street and North Terrace, Adelaide, 5000, South Australia, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Port Road, Adelaide, 5000, South Australia, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, 4 Wally’s Walk, Macquarie Park, 2109, New South Wales, Australia
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furocho, Chikusa Ward, Nagoya, 464-8601, Aichi, Japan
| |
Collapse
|
2
|
Ma W, Liu X, Yu R, Song J, Hou L, Guo Y, Wu H, Feng D, Zhou Q, Li H. Exploring the relationship between sepsis and Golgi apparatus dysfunction: bioinformatics insights and diagnostic marker discovery. Front Genet 2025; 16:1483493. [PMID: 39981259 PMCID: PMC11839613 DOI: 10.3389/fgene.2025.1483493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Background Sepsis, a critical infectious disease, is intricately linked to the dysfunction of the intracellular Golgi apparatus. This study aims to explore the relationship between sepsis and the Golgi apparatus using bioinformatics, offering fresh insights into its diagnosis and treatment. Methods To explore the role of Golgi-related genes in sepsis, we analyzed mRNA expression profiles from the NCBI GEO database. We identified differentially expressed genes (DEGs). These DEGs, Golgi-associated genes obtained from the MSigDB database, and key modules identified through WGCNA were intersected to determine Golgi-associated differentially expressed genes (GARGs) linked to sepsis. Subsequently, functional enrichment analyses, including GO, KEGG, and GSEA, were performed to explore the biological significance of the GARGs.A PPI network was constructed to identify core genes, and immune infiltration analysis was performed using the ssGSEA algorithm. To further evaluate immune microenvironmental features, unsupervised clustering was applied to identify immunological subgroups. A diagnostic model was developed using logistic regression, and its performance was validated using ROC curve analysis. Finally, key diagnostic biomarkers were identified and validated across multiple datasets to confirm their diagnostic accuracy. Results By intersecting DEGs, WGCNA modules, and Golgi-related gene sets, 53 overlapping GARGs were identified. Functional enrichment analysis indicated that these GARGs were predominantly involved in protein glycosylation and Golgi membrane-related processes. PPI analysis further identified eight hub genes: B3GNT5, FUT11, MFNG, ST3GAL5, MAN1C1, ST6GAL1, C1GALT1C1, and GALNT14. Immune infiltration analysis revealed significant differences in immune cell populations, mainly activated dendritic cells, and effector memory CD8+ T cells, between sepsis patients and healthy controls. A diagnostic model constructed using five pivotal genes (B3GNT5, FUT11, MAN1C1, ST6GAL1, and C1GALT1C1) exhibited predictive accuracy, with AUC values exceeding 0.96 for all genes. Validation with an independent dataset confirmed the differential expression patterns of B3GNT5, C1GALT1C1, and GALNT14, reinforcing their potential as robust diagnostic biomarkers for sepsis. Conclusion This study elucidates the link between sepsis and the Golgi apparatus, introduces novel biomarkers for sepsis diagnosis, and offers valuable insights for future research on its pathogenesis and treatment strategies.
Collapse
Affiliation(s)
- Wanli Ma
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Xinyi Liu
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Ran Yu
- Department of Anesthesiology, Chifeng Clinical College of Inner Mongolia Medical University, Chifeng, Inner Mongolia, China
| | - Jiannan Song
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Lina Hou
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Ying Guo
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Hongwei Wu
- Department of Anesthesiology, Chifeng Clinical College of Inner Mongolia Medical University, Chifeng, Inner Mongolia, China
| | - Dandan Feng
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Qi Zhou
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| | - Haibo Li
- Department of Anesthesiology, Municipal Hospital of Chifeng, Chifeng, Inner Mongolia, China
| |
Collapse
|
3
|
Datta R, Singh S. The endothelium or mitochondrial level therapy: new frontiers in sepsis? Med Intensiva 2025:502130. [PMID: 39799036 DOI: 10.1016/j.medine.2024.502130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 01/15/2025]
Abstract
The host and microbes play complex roles in balancing the pro- and anti-inflammatory pathways that cause sepsis. It is now increasingly recognized as a disorder of the mitochondrial system intrinsically or as a consequence of microcirculatory abnormalities leading to hypoperfusion/hypoxia ("microcirculatory and mitochondrial distress syndrome"). It is expected that improvements in endothelium or mitochondrial level therapy will lower sepsis-related morbidity and mortality. This article aimed to clarify the mitochondrial and microcirculation abnormalities in patients with sepsis and the futuristic research agenda for the management of sepsis.
Collapse
Affiliation(s)
- Rashmi Datta
- Intensive Care Unit, Adesh Medical College and Hospital, NH44, Mohri, Ambala, Haryana-136135, India; Department of Anaesthesiology and Critical Care, Command Hospital (NC), Udhampur 182101, India
| | - Shalendra Singh
- Intensive Care Unit, Adesh Medical College and Hospital, NH44, Mohri, Ambala, Haryana-136135, India; Department of Anaesthesiology and Critical Care, Command Hospital (NC), Udhampur 182101, India.
| |
Collapse
|
4
|
Torpy H, Chau TH, Chatterjee S, Chernykh A, Torpy DJ, Meyer EJ, Thaysen-Andersen M. Impact of different pathogen classes on the serum N-glycome in septic shock. BBA ADVANCES 2025; 7:100138. [PMID: 39877544 PMCID: PMC11773048 DOI: 10.1016/j.bbadva.2025.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The morbidity and mortality of sepsis remain high. Clinicians lack effective markers to rapidly diagnose sepsis and identify the underlying pathogen infection particularly for patients with candidaemia or cases of culture-negative sepsis where culture-based diagnostics are inadequate. In our search for new lines of potential sepsis biomarkers, we here explore the impact of various classes of infectious agents on the serum N-glycome in a septic shock cohort. Comparative N-glycomics was performed on sera collected from 49 septic shock patients infected with viral (n = 9), bacterial (n = 37) or fungal (n = 3) pathogens using an established PGC-LC-MS/MS method. Aberrant serum N-glycosylation features were observed in patients with fungal infection relative to the other infection sub-groups including i) altered expression of prominent α2,6-sialylated biantennary N-glycan isomers, ii) elevated levels of IgG-type N-glycosylation and iii) a global shift in the serum N-glycome involving altered glycan type distribution and considerable changes in core fucosylation and α2,6-sialylation. Septic shock patients infected with bacterial and viral pathogens exhibited similar global serum N-glycome features and therefore could not be stratified based on their serum N-glycosylation. Subtle and less consistent serum N-glycome differences were observed between septic shock patients infected with different bacterial pathogens. In conclusion, our study has tested the impact of different pathogen classes on the serum N-glycome in a septic shock cohort, and reports that fungal infection impacts the host serum N-glycome differently compared to bacterial or viral infections thus potentially opening avenues for glycan-based biomarkers to better diagnose patients with candidaemia.
Collapse
Affiliation(s)
- Helena Torpy
- Infectious Diseases Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - The Huong Chau
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Anastasia Chernykh
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - David J. Torpy
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Emily J. Meyer
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- Endocrine and Diabetes Services, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Institute for Glyco-core Research, Nagoya University, Nagoya, Aichi 464-0813, Japan
| |
Collapse
|
5
|
Tsui CK, Twells N, Durieux J, Doan E, Woo J, Khosrojerdi N, Brooks J, Kulepa A, Webster B, Mahal LK, Dillin A. CRISPR screens and lectin microarrays identify high mannose N-glycan regulators. Nat Commun 2024; 15:9970. [PMID: 39557836 PMCID: PMC11574202 DOI: 10.1038/s41467-024-53225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 11/20/2024] Open
Abstract
Glycans play critical roles in cellular signaling and function. Unlike proteins, glycan structures are not templated from genetic sequences but synthesized by the concerted activity of many genes, making them historically challenging to study. Here, we present a strategy that utilizes CRISPR screens and lectin microarrays to uncover and characterize regulators of glycosylation. We applied this approach to study the regulation of high mannose glycans - the starting structure of all asparagine(N)-linked-glycans. We used CRISPR screens to uncover the expanded network of genes controlling high mannose levels, followed by lectin microarrays to fully measure the complex effect of select regulators on glycosylation globally. Through this, we elucidated how two high mannose regulators - TM9SF3 and the CCC complex - control complex N-glycosylation via regulating Golgi morphology and function. Notably, this allows us to interrogate Golgi function in-depth and reveals that similar disruption to Golgi morphology can lead to drastically different glycosylation outcomes. Collectively, this work demonstrates a generalizable approach for systematically dissecting the regulatory network underlying glycosylation.
Collapse
Affiliation(s)
- C Kimberly Tsui
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Nicholas Twells
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Jenni Durieux
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Emma Doan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jacqueline Woo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noosha Khosrojerdi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Janiya Brooks
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ayodeji Kulepa
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Brant Webster
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
6
|
Yaykasli KO, van Schie KA, Toes REM, Wuhrer M, Koeleman CAM, Bila G, Negrych N, Schett G, Knopf J, Herrmann M, Bilyy R. Neutrophil Depletion Changes the N-Glycosylation Pattern of IgG in Experimental Murine Sepsis. Int J Mol Sci 2024; 25:6478. [PMID: 38928183 PMCID: PMC11203722 DOI: 10.3390/ijms25126478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the exact effector mechanism of action still remains a mystery. Changes in the glycosylation pattern of the immunoglobulin G (IgG) Fc region are described for several diseases including meningococcal sepsis. In this study, we investigated the possible contribution of neutrophils and neutrophil implication, potentially related to degranulation or neutrophil extracellular trap (NET) formation in changing the IgG Fc N-glycosylation pattern in a murine sepsis model. We have measured the serum level of cytokines/chemokines and immunoglobulins, the serum activity of neutrophil elastase (NE), and analyzed the IgG Fc glycosylation pattern by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) and Lectin enzyme-linked immunosorbent assay (ELISA). We observed an increased activity of NE- and neutrophil-associated cytokines such as keratinocyte chemoattractant (KC) with the development of sepsis. Regarding the IgG Fc N-glycosylation, we observed an increase in fucosylation and α1,3-galactosylation and a decrease for sialyation. Interestingly, these changes were not uniform for all IgG subclasses. After depletion of neutrophils, we saw a change in the exposure of fucose and α2,6-linked sialic acid during the time course of our experimental sepsis model. In conclusion, neutrophils can influence changes in the IgG glycosylation pattern in experimental sepsis.
Collapse
Affiliation(s)
- Kursat O. Yaykasli
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Karin A. van Schie
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - René E. M. Toes
- Department of Rheumatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Carolien A. M. Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Galyna Bila
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’, 050568 Bucharest, Romania
| | - Nazar Negrych
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (K.O.Y.)
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine (R.B.)
- Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’, 050568 Bucharest, Romania
| |
Collapse
|
7
|
Tsui CK, Twells N, Doan E, Woo J, Khosrojerdi N, Brooks J, Kulepa A, Webster B, Mahal LK, Dillin A. CRISPR screens and lectin microarrays identify novel high mannose N-glycan regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563662. [PMID: 37961200 PMCID: PMC10634773 DOI: 10.1101/2023.10.23.563662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glycans play critical roles in cellular signaling and function. Unlike proteins, glycan structures are not templated from genes but the concerted activity of many genes, making them historically challenging to study. Here, we present a strategy that utilizes pooled CRISPR screens and lectin microarrays to uncover and characterize regulators of cell surface glycosylation. We applied this approach to study the regulation of high mannose glycans - the starting structure of all asparagine(N)-linked-glycans. We used CRISPR screens to uncover the expanded network of genes controlling high mannose surface levels, followed by lectin microarrays to fully measure the complex effect of select regulators on glycosylation globally. Through this, we elucidated how two novel high mannose regulators - TM9SF3 and the CCC complex - control complex N-glycosylation via regulating Golgi morphology and function. Notably, this method allowed us to interrogate Golgi function in-depth and reveal that similar disruption to Golgi morphology can lead to drastically different glycosylation outcomes. Collectively, this work demonstrates a generalizable approach for systematically dissecting the regulatory network underlying glycosylation.
Collapse
Affiliation(s)
- C Kimberly Tsui
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Twells
- Department of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - Emma Doan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jacqueline Woo
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noosha Khosrojerdi
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Janiya Brooks
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ayodeji Kulepa
- Department of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - Brant Webster
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada, T6G 2G2
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Lundstrøm J, Gillon E, Chazalet V, Kerekes N, Di Maio A, Feizi T, Liu Y, Varrot A, Bojar D. Elucidating the glycan-binding specificity and structure of Cucumis melo agglutinin, a new R-type lectin. Beilstein J Org Chem 2024; 20:306-320. [PMID: 38410776 PMCID: PMC10896221 DOI: 10.3762/bjoc.20.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Plant lectins have garnered attention for their roles as laboratory probes and potential therapeutics. Here, we report the discovery and characterization of Cucumis melo agglutinin (CMA1), a new R-type lectin from melon. Our findings reveal CMA1's unique glycan-binding profile, mechanistically explained by its 3D structure, augmenting our understanding of R-type lectins. We expressed CMA1 recombinantly and assessed its binding specificity using multiple glycan arrays, covering 1,046 unique sequences. This resulted in a complex binding profile, strongly preferring C2-substituted, beta-linked galactose (both GalNAc and Fuca1-2Gal), which we contrasted with the established R-type lectin Ricinus communis agglutinin 1 (RCA1). We also report binding of specific glycosaminoglycan subtypes and a general enhancement of binding by sulfation. Further validation using agglutination, thermal shift assays, and surface plasmon resonance confirmed and quantified this binding specificity in solution. Finally, we solved the high-resolution structure of the CMA1 N-terminal domain using X-ray crystallography, supporting our functional findings at the molecular level. Our study provides a comprehensive understanding of CMA1, laying the groundwork for further exploration of its biological and therapeutic potential.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Emilie Gillon
- Univ. Grenoble Alpes, CNRS, CERMAV, 601 Rue de la Chimie, 38610 Gières, France
| | - Valérie Chazalet
- Univ. Grenoble Alpes, CNRS, CERMAV, 601 Rue de la Chimie, 38610 Gières, France
| | - Nicole Kerekes
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Antonio Di Maio
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Du Cane Rd, London W12 0NN, United Kingdom
| | - Ten Feizi
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Du Cane Rd, London W12 0NN, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Du Cane Rd, London W12 0NN, United Kingdom
| | - Annabelle Varrot
- Univ. Grenoble Alpes, CNRS, CERMAV, 601 Rue de la Chimie, 38610 Gières, France
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 413 90 Gothenburg, Sweden
| |
Collapse
|
9
|
Boottanun P, Nagai-Okatani C, Nagai M, Ungkulpasvich U, Yamane S, Yamada M, Kuno A. An improved evanescent fluorescence scanner suitable for high-resolution glycome mapping of formalin-fixed paraffin-embedded tissue sections. Anal Bioanal Chem 2023; 415:6975-6984. [PMID: 37395746 DOI: 10.1007/s00216-023-04824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Lectin microarray (LMA) is a high-throughput platform that enables the rapid and sensitive analysis of N- and O-glycans attached to glycoproteins in biological samples, including formalin-fixed paraffin-embedded (FFPE) tissue sections. Here, we evaluated the sensitivity of the advanced scanner based on the evanescent-field fluorescence principle, which is equipped with a 1× infinity correction optical system and a high-end complementary metal-oxide semiconductor (CMOS) image sensor in digital binning mode. Using various glycoprotein samples, we estimated that the mGSR1200-CMOS scanner has at least fourfold higher sensitivity for the lower limit of linearity range than that of a previous charge-coupled device scanner (mGSR1200). A subsequent sensitivity test using HEK293T cell lysates demonstrated that cell glycomic profiling could be performed with only three cells, which has the potential for the glycomic profiling of cell subpopulations. Thus, we examined its application in tissue glycome mapping, as indicated in the online LM-GlycomeAtlas database. To achieve fine glycome mapping, we refined the laser microdissection-assisted LMA procedure to analyze FFPE tissue sections. In this protocol, it was sufficient to collect 0.1 mm2 of each of the tissue fragments from 5-μm-thick sections, which differentiated the glycomic profile between the glomerulus and renal tubules of a normal mouse kidney. In conclusion, the improved LMA enables high-resolution spatial analysis, which expands the possibilities of its application classifying cell subpopulations in clinical FFPE tissue specimens. This will be used in the discovery phase for the development of novel glyco-biomarkers and therapeutic targets, and to expand the range of target diseases.
Collapse
Affiliation(s)
- Patcharaporn Boottanun
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Chiaki Nagai-Okatani
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| | - Misugi Nagai
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Umbhorn Ungkulpasvich
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Shinjiro Yamane
- GlycoTechnica Ltd, 101 Hiranobiru3, 5-28-6 Utsukushigaoka, Aoba-Ku, Yokohama, Kanagawa, 225-0002, Japan
| | - Masao Yamada
- EMUKK LLC, 2-21-19, Matsunoki, Kuwana, Mie, 511-0902, Japan
| | - Atsushi Kuno
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
10
|
Gupta P, Hu Z, Kopparapu PK, Deshmukh M, Sághy T, Mohammad M, Jin T, Engdahl C. The impact of TLR2 and aging on the humoral immune response to Staphylococcus aureus bacteremia in mice. Sci Rep 2023; 13:8850. [PMID: 37258615 DOI: 10.1038/s41598-023-35970-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Aging alters immunoglobulin production, affecting the humoral immune response. Toll-like receptor 2 (TLR2) recognizes Staphylococcus aureus (S. aureus) which causes bacteremia with high mortality in the elderly. To understand how TLR2 and aging affect the humoral immune response in bacteremia, four groups of mice (wild type-young, wild type-old, TLR2-/--young, and TLR2-/--old) were used to analyze immunoglobulin levels in healthy conditions as well as 10 days after intravenous injection with S. aureus. We found that aging increased the levels of both IgM and IgG. Increased IgG in aged mice was controlled by TLR2. In bacteremia infection, aged mice failed to mount proper IgM response in both wild-type (WT) and TLR2-/- mice, whereas IgG response was impaired in both aged and TLR2-/- mice. Aged mice displayed reduced IgG1 and IgG2a response irrespective of TLR2 expression. However, impaired IgG2b response was only found in aged WT mice and not in TLR2-/- mice. Both aging and TLR2-/- increased the levels of anti-staphylococcal IgM in bacteremia. Aging increased sialylated IgG in WT mice but not in TLR2-/- mice. IgG sialylation was not affected by the infection in neither of the mice. In summary, aging increases all immunoglobulins except IgG1. However, aged mice fail to mount a proper antibody response to S. aureus bacteremia. TLR2 plays the regulatory role in IgG but not IgM response to infection.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden.
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Center, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- SciLifeLab, University of Gothenburg, Box 413, 405 30, Gothenburg, Sweden.
| | - Zhicheng Hu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
- Centre for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pradeep Kumar Kopparapu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
| | - Meghshree Deshmukh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
| | - Tibor Sághy
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Center, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Box 413, 405 30, Gothenburg, Sweden
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cecilia Engdahl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Center, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Box 413, 405 30, Gothenburg, Sweden
| |
Collapse
|
11
|
Qin R, Kurz E, Chen S, Zeck B, Chiribogas L, Jackson D, Herchen A, Attia T, Carlock M, Rapkiewicz A, Bar-Sagi D, Ritchie B, Ross TM, Mahal LK. α2,6-Sialylation Is Upregulated in Severe COVID-19, Implicating the Complement Cascade. ACS Infect Dis 2022; 8:2348-2361. [PMID: 36219583 PMCID: PMC9578644 DOI: 10.1021/acsinfecdis.2c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Better understanding of the molecular mechanisms underlying COVID-19 severity is desperately needed in current times. Although hyper-inflammation drives severe COVID-19, precise mechanisms triggering this cascade and what role glycosylation might play therein are unknown. Here we report the first high-throughput glycomic analysis of COVID-19 plasma samples and autopsy tissues. We find that α2,6-sialylation is upregulated in the plasma of patients with severe COVID-19 and in autopsied lung tissue. This glycan motif is enriched on members of the complement cascade (e.g., C5, C9), which show higher levels of sialylation in severe COVID-19. In the lung tissue, we observe increased complement deposition, associated with elevated α2,6-sialylation levels, corresponding to elevated markers of poor prognosis (IL-6) and fibrotic response. We also observe upregulation of the α2,6-sialylation enzyme ST6GAL1 in patients who succumbed to COVID-19. Our work identifies a heretofore undescribed relationship between sialylation and complement in severe COVID-19, potentially informing future therapeutic development.
Collapse
Affiliation(s)
- Rui Qin
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Emma Kurz
- Department
of Cell Biology, NYU Grossman School of
Medicine, 550 First Avenue, New York, New York 10016, United
States
| | - Shuhui Chen
- Department
of Chemistry, Biomedical Research Institute, New York University, New York, New York10003, United States
| | - Briana Zeck
- Center
for Biospecimen Research and Development, NYU Langone, New York, New York 10016, United
States
| | - Luis Chiribogas
- Center
for Biospecimen Research and Development, NYU Langone, New York, New York 10016, United
States
| | - Dana Jackson
- University
of Alberta Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Alex Herchen
- University
of Alberta Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Tyson Attia
- University
of Alberta Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Michael Carlock
- Center for
Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States
| | - Amy Rapkiewicz
- Department
of Pathology, NYU Long Island School of
Medicine, Mineola, New York 11501, United
States
| | - Dafna Bar-Sagi
- Department
of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - Bruce Ritchie
- University
of Alberta Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Ted M. Ross
- Center for
Vaccines and Immunology, University of Georgia, Athens, Georgia 30605, United States
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|