1
|
Osunla A, Oloye F, Kayode A, Femi-Oloye O, Okiti A, Servos M, Giesy J. The Slow Pandemic: Emergence of Antimicrobial Resistance in the Postadvent of SARS-CoV-2 Pandemic. Glob Health Epidemiol Genom 2025; 2025:3172234. [PMID: 40271530 PMCID: PMC12017956 DOI: 10.1155/ghe3/3172234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/29/2024] [Indexed: 04/25/2025] Open
Abstract
Background: The unprecedented outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has dramatically changed the global approach to public health, emphasizing the importance of measures to control and prevent infections. In response to the COVID-19 crisis, stringent hygiene practices and surface disinfection have become the norm, with an unprecedented surge in the use of disinfectants and antiseptics (DAs). Main Text: While these measures have been crucial in curbing the spread of the virus, an emerging concern has taken center stage: the potential impact of the prolonged and widespread use of antimicrobial compounds in these products on the development of antibiotic resistance. Antimicrobial resistance (AMR) has long been recognized as one of the most pressing global health threats. Quaternary ammonium compounds (QAC) such as benzalkonium chloride, benzethonium chloride, and cetylpyridinium chloride, which are extensively used in DAs formulations, have gained less attention in the context of AMR. Conclusion: A high abundance of QACs was detected in wastewater, and certain bacteria such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterococcus species developed resistance to these compounds over time. We analyzed the available evidence from the scientific literature, examining the presence and concentrations of QACs in different water sources, and their resistance mechanisms. This review aimed to shed light on the multifaceted challenges that arise from the dual battle against the COVID-19 pandemic and the ongoing global fight against AMR.
Collapse
Affiliation(s)
- Ayodeji Osunla
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Microbiology, Adekunle Ajasin University, Akungba-Akoko, Ondo, Nigeria
| | - Femi Oloye
- Division of Physical and Computational Sciences, University of Pittsburgh, Bradford, Pennsylvania, USA
| | - Adeoye Kayode
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Oluwabunmi Femi-Oloye
- Division of Physical and Computational Sciences, University of Pittsburgh, Bradford, Pennsylvania, USA
| | - Ayomide Okiti
- Department of Microbiology, Adekunle Ajasin University, Akungba-Akoko, Ondo, Nigeria
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - John Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biology and Centre for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Frolov NA, Tyutin AA, Tyurina AN, Seferyan MA, Detusheva EV, Son E, Saverina EA, Vereshchagin AN. Expanding the Variety of Pyridinium-Based Bis-QACs with Antimicrobial Properties: Investigation into Linker Structure-Activity Correlation. ChemMedChem 2025; 20:e202400972. [PMID: 39821485 DOI: 10.1002/cmdc.202400972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
For decades quaternary ammonium compounds (QACs) have served as main component of a top antiseptic and disinfectant compositions. Among them, bis-QACs are the most prominent and effective class of biocides. Although mono-QACs still dominate the antiseptic market, their activity against Gram-negative bacteria is largely inferior to bis-QACs. Moreover, the new wave of bacterial resistance during the COVID-19 pandemic is threatening the efficiency of popular antiseptics. Therefore, the requirement for novel biocides is urgent. Reported here is a unified and simple two-step synthesis to achieve novel biocide's architectures with aromatic linkers. Thus, a series of 14 bis-QACs have been prepared using an Ullman-type reaction following by N-alkylation. The most prominent compounds showed strong bioactivity against a panel of nineteen microbial pathogens, multi-resistant bacterial ESKAPEE strains, fungi and biofilms, including strains, which acquired resistance during COVID-19 in 2021. Moreover, significant improvements in antibiofilm action were observed, where bis-QACs 5 c and 6 a outperformed gold standard pyridinium antiseptic octenidine. These findings will serve as a good basis for further studies of bis-QACs architectures as highly effective biocides.
Collapse
Affiliation(s)
- Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
| | - Alexander A Tyutin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, Departments of the Faculty of Natural Sciences and Department of Chemistry and Technology of Biomedical Drugs, Miusskaya square 9, 125047, Moscow, Russia
| | - Alexandra N Tyurina
- Mendeleev University of Chemical Technology of Russia, Departments of the Faculty of Natural Sciences and Department of Chemistry and Technology of Biomedical Drugs, Miusskaya square 9, 125047, Moscow, Russia
| | - Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
- Federal Budget Institution of Science «State research center for applied microbiology and biotechnology», 142279, Obolensk, Serpukhov, Moscow Region, Russia
| | - Elizabeth Son
- Federal Budget Institution of Science «State research center for applied microbiology and biotechnology», 142279, Obolensk, Serpukhov, Moscow Region, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Prospekt Lenina 92, 300012, Tula, Russia
| | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991, Moscow, Russia
| |
Collapse
|
3
|
Smith J, LeBlanc AR, Wuest WM. From Natural Products to Small Molecules: Recent Advancements in Anti-MRSA Therapeutics. ACS Med Chem Lett 2025; 16:542-551. [PMID: 40236547 PMCID: PMC11995227 DOI: 10.1021/acsmedchemlett.5c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
The urgent need for unique small molecules to treat increasing resistance in gram-positive pathogens, particularly methicillin-resistant Staphylococcus aureus, has motivated several creative research endeavors over the past decade. Recent advances have been inspired by natural products such as pleuromutilin, discovered in high-throughput screens, or repurposed approved drugs like sorafenib. This microperspective spotlights bioactive compounds, ranging from natural products to small molecule scaffolds, that have been reported in recent literature, highlighting their mechanisms of action, structure-activity relationships, and future potential.
Collapse
Affiliation(s)
- Jacqueline
R. Smith
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Andrew R. LeBlanc
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Bezold EL, Minbiole KP, Wuest WM. Not all disinfectants are created equal: the importance of mechanistic understanding to drive research forward. Future Microbiol 2025; 20:445-447. [PMID: 40098394 PMCID: PMC12001843 DOI: 10.1080/17460913.2025.2480946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025] Open
|
5
|
Rachii D, Bezold EL, Wuest WM, Minbiole KPC. Bushy-Tailed Multicationic Quaternary Phosphonium Compounds: Potent Amphiphilic Disinfectants with Promising Therapeutic Indices. ChemMedChem 2025; 20:e202400546. [PMID: 39448380 PMCID: PMC12048865 DOI: 10.1002/cmdc.202400546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Quaternary ammonium compounds (QACs) have been essential for protecting human health for almost a century, functioning as surface disinfectants and sanitizers. With bacterial resistance increasing against commercially available QACs, the development of novel antimicrobials with divergent architectures is essential for effective infection prevention and control. Toward this end, our group has expanded beyond traditional ammonium scaffolds and explored the development of quaternary phosphonium compounds (QPCs). Herein, we report the synthesis and biological investigation of a series of 20 novel multicationic QPCs, bearing multiple short alkyl or aryl chains, also referred to as "bushy-tailed" multiQPCs; these structures were hypothesized to have strong bioactivity while displaying low mammalian toxicity. Select bushy-tailed QPC derivatives with trishexylphosphonium groups displayed single-digit or sub-micromolar activity against all seven bacteria tested, and MIC values of 2- to 8-fold better than their bushy-tailed QAC counterparts. Importantly, therapeutic indices of these bushy-tailed QPCs were favorable in many cases, and were ≥4 against the entire bacterial panel for pX-P6*,P6* and 1,8-P6*,P6*, superior to more traditional architectures. This work highlights the promise of a novel set of multicationic phosphonium compounds as novel disinfectants with potent bioactivities and low toxicity.
Collapse
Affiliation(s)
- Diana Rachii
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Elise L. Bezold
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
6
|
McDonough D, Sanchez CA, Wuest WM, Minbiole KPC. Recent developments in antimicrobial small molecule quaternary phosphonium compounds (QPCs) - synthesis and biological insights. RSC Med Chem 2025:d4md00855c. [PMID: 39816496 PMCID: PMC11729670 DOI: 10.1039/d4md00855c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
The development and characterization of quaternary phosphonium compounds (QPCs) have long benefitted from their incorporation into a cornerstone reaction in organic synthesis - the Wittig reaction. These structures have, more recently, been developed into a wide variety of novel applications, ranging from phase transfer catalysis to mitochondrial targeting. Importantly, their antimicrobial action has demonstrated great promise against a wide variety of bacteria. This review aims to provide an overview of recent development in non-polymeric biocidal QPC structures, highlighting their synthetic preparation, and comparing their antimicrobial performance. Discussions of similarities and dissimilarities to QACs are included, both in bioactivity as well as likely mechanism(s) of action. The observed potential of QPCs to eradicate Gram-negative pathogens via a novel mechanism is highlighted, as there is an urgent need to address the declining biocide arsenal in modern infection control.
Collapse
Affiliation(s)
- Diana McDonough
- Department of Chemistry and Biochemistry, Villanova University Villanova PA 19085 USA
| | | | - William M Wuest
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | - Kevin P C Minbiole
- Department of Chemistry and Biochemistry, Villanova University Villanova PA 19085 USA
| |
Collapse
|
7
|
Voráčová M, Yli-Kauhaluoma J, Kiuru P. The key phosphorus moieties in drug design: antimicrobials and beyond. Future Med Chem 2024; 16:2455-2458. [PMID: 39560019 PMCID: PMC11622798 DOI: 10.1080/17568919.2024.2423602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00790, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00790, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00790, Finland
| |
Collapse
|
8
|
Sanchez C, Vargas-Cuebas GG, Michaud ME, Allen RA, Morrison-Lewis KR, Siddiqui S, Minbiole KPC, Wuest WM. Highly Effective Biocides against Pseudomonas aeruginosa Reveal New Mechanistic Insights Across Gram-Negative Bacteria. ACS Infect Dis 2024; 10:3868-3879. [PMID: 39440866 PMCID: PMC11555683 DOI: 10.1021/acsinfecdis.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Pseudomonas aeruginosa is a major nosocomial pathogen that persists in healthcare settings despite rigorous disinfection protocols due to intrinsic mechanisms conferring resistance. We sought to systematically assess cationic biocide efficacy against this pathogen using a panel of multidrug-resistant P. aeruginosa clinical isolates. Our studies revealed widespread resistance to commercial cationic disinfectants that are the current standard of care, raising concerns about their efficacy. To address this shortcoming, we highlight a new class of quaternary phosphonium compounds that are highly effective against all members of the panel. To understand the difference in efficacy, mechanism of action studies were carried out, which identified a discrete inner-membrane selective target. Resistance selection studies implicated the SmvRA efflux system (a transcriptionally regulated, inner membrane-associated efflux system) as a major determinant of resistance. This system is also implicated in resistance to two commercial bolaamphiphile antiseptics, octenidine and chlorhexidine, which was further validated herein. In sum, this work highlights, for the first time, a discrete inner-membrane specific mechanism for the bolaamphiphile class of disinfectants that contrasts with the prevailing model of indiscriminate membrane interactions of commercial amphiphiles paving the way for future innovations in disinfectant research.
Collapse
Affiliation(s)
- Christian
A. Sanchez
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Germán G. Vargas-Cuebas
- Department
of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, United States
| | - Marina E. Michaud
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A. Allen
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Shehreen Siddiqui
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P. C. Minbiole
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - William M. Wuest
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Crnčević D, Ramić A, Kastelic AR, Odžak R, Krce L, Weber I, Primožič I, Šprung M. Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents. Sci Rep 2024; 14:26211. [PMID: 39482460 PMCID: PMC11528103 DOI: 10.1038/s41598-024-77647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Quaternary ammonium compounds (QACs) are a biologically active group of chemicals with a wide range of different applications. Due to their strong antibacterial properties and broad spectrum of activity, they are commonly used as ingredients in antiseptics and disinfectants. In recent years, the spread of bacterial resistance to QACs, exacerbated by the spread of infectious diseases, has seriously threatened public health and endangered human lives. Recent trends in this field have suggested the development of a new generation of QACs, in parallel with the study of bacterial resistance mechanisms. In this work, we present a new series of quaternary 3-substituted quinuclidine compounds that exhibit potent activity across clinically relevant bacterial strains. Most of the derivatives had minimal inhibitory concentrations (MICs) in the low single-digit micromolar range. Notably, QApCl and QApBr were selected for further investigation due to their strong antibacterial activity and low toxicity to human cells along with their minimal potential to induce bacterial resistance. These compounds were also able to inhibit the formation of bacterial biofilms more effectively than commercial standard, eradicating the bacterial population within just 15 min of treatment. The candidates employ a membranolytic mode of action, which, in combination with the generation of reactive oxygen species (ROS), destabilizes the bacterial membrane. This treatment results in a loss of cell volume and alterations in surface morphology, ultimately leading to bacterial cell death. The prominent antibacterial potential of quaternary 3-aminoquinuclidines, as exemplified by QApCl and QApBr, paves the way for new trends in the development of novel generation of QACs.
Collapse
Affiliation(s)
- Doris Crnčević
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
- Faculty of Science, Doctoral Study in Biophysics, University of Split, R. Bošković 33, Split, Croatia
| | - Alma Ramić
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Andreja Radman Kastelic
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Renata Odžak
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
| | - Lucija Krce
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ivana Weber
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ines Primožič
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia.
| | - Matilda Šprung
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia.
| |
Collapse
|
10
|
Vargas-Cuebas GG, Sanchez CA, Brayton SR, Nikoloff A, Masters R, Minbiole KPC, Wuest WM. Exploring the Correlation of Dynamic Surface Tension with Antimicrobial Activities of Quaternary Ammonium-Based Disinfectants. ChemMedChem 2024; 19:e202400262. [PMID: 38718280 PMCID: PMC11992685 DOI: 10.1002/cmdc.202400262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/07/2024] [Indexed: 07/05/2024]
Abstract
Quaternary ammonium compound (QAC) disinfectants represent one of our first lines of defense against pathogens. Their inhibitory and bactericidal activities are usually tested through minimum inhibitory concentration (MIC) and time-kill assays, but these assays can become cumbersome when screening many compounds. We investigated how the dynamic surface tension (DST) measurements of QACs correlate with these antimicrobial activities by testing a panel of potent and structurally varied QACs against the gram-positive Staphylococcus aureus and the gram-negative Pseudomonas aeruginosa. We found that DST values correlated well with bactericidal activity in real-world disinfection conditions but not with MIC values. Moreover, no correlation between these two antimicrobial activities of QACs (bactericidal and inhibition) was observed. In addition, we observed that the bactericidal activity of our QAC panel against the gram-negative P. aeruginosa was severely affected in the presence of hard water. Interestingly, we found that the counterion of the QAC affects the killing of bacteria in these conditions, a phenomenon not observed in most MIC assessments. Moreover, some of our best-in-class QACs show enhanced bactericidal activity when combined with a commercially available QAC. In conclusion, we determined that an intrinsic physical property of QACs (DST) can be used as a technique to screen for bactericidal activity of QACs in conditions that mimic real-world disinfection conditions.
Collapse
Affiliation(s)
| | | | | | | | - Ronald Masters
- Research and Development Stepan Company, 60093, Northfield, IL (USA)
| | | | - William M. Wuest
- Department of Chemistry Emory University, 30322 Atlanta, GA (USA)
| |
Collapse
|
11
|
Leatherbury MS, Thierer LM, Sanchez CA, Vargas-Cuebas GG, Petersen AA, Amoo LE, Bezold EL, Washington KC, Mistrot MB, Zdilla MJ, Wuest WM, Minbiole KPC. Chimeric Amphiphilic Disinfectants: Quaternary Ammonium/Quaternary Phosphonium Hybrid Structures. ChemMedChem 2024; 19:e202300718. [PMID: 38416542 PMCID: PMC11993123 DOI: 10.1002/cmdc.202300718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
Cationic biocides play a crucial role in the disinfection of domestic and healthcare surfaces. Due to the rise of bacterial resistance towards common cationic disinfectants like quaternary ammonium compounds (QACs), the development of novel actives is necessary for effective infection prevention and control. Toward this end, a series of 15 chimeric biscationic amphiphilic compounds, bearing both ammonium and phosphonium residues, were prepared to probe the structure and efficacy of mixed cationic ammonium-phosphonium structures. Compounds were obtained in two steps and good yields, with straightforward and chromatography-free purifications. Antibacterial activity evaluation of these compounds against a panel of seven bacterial strains, including two MRSA strains as well as opportunistic pathogen A. baumannii, were encouraging, as low micromolar inhibitory activity was observed for multiple structures. Alkyl chain length on the ammonium group was, as expected, a major determinant of bioactivity. In addition, high therapeutic indexes (up to 125-fold) for triphenyl phosphonium-bearing amphiphiles were observed when comparing antimicrobial activity to mammalian cell lysis activity.
Collapse
Affiliation(s)
| | - Laura M Thierer
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | | | | | - Ashley A Petersen
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Lauren E Amoo
- Department of Chemistry, Villanova University, Villanova, PA 19085, USA
| | - Elise L Bezold
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - M Brody Mistrot
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Michael J Zdilla
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - William M Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
12
|
Mateos H, Mallardi A, Camero M, Lanave G, Catella C, Buonavoglia A, De Giglio O, Buonavoglia C, Palazzo G. Mechanism of surfactant interactions with feline coronavirus: A physical chemistry perspective. J Colloid Interface Sci 2024; 662:535-544. [PMID: 38364478 DOI: 10.1016/j.jcis.2024.02.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
HYPOTHESIS Surfactants are inexpensive chemicals with promising applications in virus inactivation, particularly for enveloped viruses. Yet, the detailed mechanisms by which surfactants deactivate coronaviruses remain underexplored. This study delves into the virucidal mechanisms of various surfactants on Feline Coronavirus (FCoV) and their potential applications against more pathogenic coronaviruses. EXPERIMENTS By integrating virucidal activity assays with fluorescence spectroscopy, dynamic light scattering and laser Doppler electrophoresis, alongside liposome permeability experiments, we have analyzed the effects of non-ionic and ionic surfactants on viral activity. FINDINGS The non-ionic surfactant octaethylene glycol monodecyl ether (C10EO8) inactivates the virus by disrupting the lipid envelope, whereas ionic surfactants like Sodium Dodecyl Sulfate and Cetylpyridinium Chloride predominantly affect the spike proteins, with their impact on the viral membrane being hampered by kinetic and thermodynamic constraints. FCoV served as a safe model for studying virucidal activity, offering a faster alternative to traditional virucidal assays. The study demonstrates that physicochemical techniques can expedite the screening of virucidal compounds, contributing to the design of effective disinfectant formulations. Our results not only highlight the critical role of surfactant-virus interactions but also contribute to strategic advancements in public health measures for future pandemic containment and the ongoing challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- Helena Mateos
- Department of Chemistry and CSGI (Centre for Colloid and Surface Science), University of Bari "A. Moro", via Orabona 4, 70125 Bari, Italy.
| | - Antonia Mallardi
- Institute for Physical and Chemical Processes, Bari Division, National Council of Research (CNR), c/o Chemistry Department, Via Orabona 4, 70125 Bari, Italy.
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari "A. Moro", Strada Provinciale per Casamassima km. 3, 70010 Valenzano, Bari, Italy.
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari "A. Moro", Strada Provinciale per Casamassima km. 3, 70010 Valenzano, Bari, Italy.
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari "A. Moro", Strada Provinciale per Casamassima km. 3, 70010 Valenzano, Bari, Italy.
| | - Alessio Buonavoglia
- Dental School, Department of Biomedical and Neuromotor Sciences, University of Bologna Alma Mater, Italy.
| | - Osvalda De Giglio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari "A. Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari "A. Moro", Strada Provinciale per Casamassima km. 3, 70010 Valenzano, Bari, Italy.
| | - Gerardo Palazzo
- Department of Chemistry and CSGI (Centre for Colloid and Surface Science), University of Bari "A. Moro", via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
13
|
Voráčová M, Zore M, Yli-Kauhaluoma J, Kiuru P. Harvesting phosphorus-containing moieties for their antibacterial effects. Bioorg Med Chem 2023; 96:117512. [PMID: 37939493 DOI: 10.1016/j.bmc.2023.117512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as β-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.
Collapse
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Ibrahim MK, Haria A, Mehta NV, Degani MS. Antimicrobial potential of quaternary phosphonium salt compounds: a review. Future Med Chem 2023; 15:2113-2141. [PMID: 37929337 DOI: 10.4155/fmc-2023-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Given that mitochondrial dysregulation is a biomarker of many cancers, cationic quaternary phosphonium salt (QPS) conjugation is a widely utilized strategy for anticancer drug design. QPS-conjugated compounds exhibit greater cell permeation and accumulation in negatively charged mitochondria, and thus, show enhanced activity. Phylogenetic similarities between mitochondria and bacteria have provided a rationale for exploring the antibacterial properties of mitochondria-targeted compounds. Additionally, due to the importance of mitochondria in the survival of pathogenic microbes, including fungi and parasites, this strategy can be extended to these organisms as well. This review examines recent literature on the antimicrobial activities of various QPS-conjugated compounds and provides future directions for exploring the medicinal chemistry of these compounds.
Collapse
Affiliation(s)
- Mahin K Ibrahim
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Akash Haria
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Namrashee V Mehta
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| |
Collapse
|
15
|
Lamch Ł, Szczęsna W, Balicki SJ, Bartman M, Szyk-Warszyńska L, Warszyński P, Wilk KA. Multiheaded Cationic Surfactants with Dedicated Functionalities: Design, Synthetic Strategies, Self-Assembly and Performance. Molecules 2023; 28:5806. [PMID: 37570776 PMCID: PMC10421305 DOI: 10.3390/molecules28155806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Contemporary research concerning surfactant science and technology comprises a variety of requirements relating to the design of surfactant structures with widely varying architectures to achieve physicochemical properties and dedicated functionality. Such approaches are necessary to make them applicable to modern technologies, such as nanostructure engineering, surface structurization or fine chemicals, e.g., magnetic surfactants, biocidal agents, capping and stabilizing reagents or reactive agents at interfaces. Even slight modifications of a surfactant's molecular structure with respect to the conventional single-head-single-tail design allow for various custom-designed products. Among them, multicharge structures are the most intriguing. Their preparation requires specific synthetic routes that enable both main amphiphilic compound synthesis using appropriate step-by-step reaction strategies or coupling approaches as well as further derivatization toward specific features such as magnetic properties. Some of the most challenging aspects of multicharge cationic surfactants relate to their use at different interfaces for stable nanostructures formation, applying capping effects or complexation with polyelectrolytes. Multiheaded cationic surfactants exhibit strong antimicrobial and antiviral activity, allowing them to be implemented in various biomedical fields, especially biofilm prevention and eradication. Therefore, recent advances in synthetic strategies for multiheaded cationic surfactants, their self-aggregation and performance are scrutinized in this up-to-date review, emphasizing their applications in different fields such as building blocks in nanostructure engineering and their use as fine chemicals.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Weronika Szczęsna
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Sebastian J. Balicki
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Marcin Bartman
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| | - Liliana Szyk-Warszyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Kraków, Poland; (L.S.-W.); (P.W.)
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (W.S.); (S.J.B.); (M.B.)
| |
Collapse
|
16
|
Odžak R, Crnčević D, Sabljić A, Krce L, Paladin A, Primožič I, Šprung M. Further Study of the Polar Group's Influence on the Antibacterial Activity of the 3-Substituted Quinuclidine Salts with Long Alkyl Chains. Antibiotics (Basel) 2023; 12:1231. [PMID: 37627651 PMCID: PMC10451673 DOI: 10.3390/antibiotics12081231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Quaternary ammonium compounds (QACs) are among the most potent antimicrobial agents increasingly used by humans as disinfectants, antiseptics, surfactants, and biological dyes. As reports of bacterial co- and cross-resistance to QACs and their toxicity have emerged in recent years, new attempts are being made to develop soft QACs by introducing hydrolyzable groups that allow their controlled degradation. However, the development of such compounds has been hindered by the structural features that affect the bioactivity of QACs, one of them being polarity of the substituent near the quaternary center. To further investigate the influence of the polar group on the bioactivity of QACs, we synthesized 3-aminoquinuclidine salts for comparison with their structural analogues, 3-acetamidoquinuclidines. We found that the less polar amino-substituted compounds exhibited improved antibacterial activity over their more polar amide analogues. In addition to their better minimum inhibitory concentrations, the candidates were excellent at suppressing Staphylococcus aureus biofilm formation and killing bacteria almost immediately, as shown by the flow cytometry measurements. In addition, two candidates, namely QNH2-C14 and QNH2-C16, effectively suppressed bacterial growth even at concentrations below the MIC. QNH2-C14 was particularly effective at subinhibitory concentrations, inhibiting bacterial growth for up to 6 h. In addition, we found that the compounds targeted the bacterial membrane, leading to its perforation and subsequent cell death. Their low toxicity to human cells and low potential to develop bacterial resistance suggest that these compounds could serve as a basis for the development of new QACs.
Collapse
Affiliation(s)
- Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
| | - Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia;
| | - Antonela Paladin
- Department of Biology, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia;
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
| |
Collapse
|