1
|
Hernández-Vázquez E, Ramírez-Trinidad Á, Tovar-Román CE, Rivera Chávez JA, Huerta-Salazar E. N-acyl-4-arylaminopiperidines: Design and synthesis of a potential antimicrobial scaffold. Bioorg Med Chem Lett 2024; 112:129936. [PMID: 39214507 DOI: 10.1016/j.bmcl.2024.129936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
We report a concise synthesis of N-acylated piperidines through a Knoevenagel-Doebner condensation/amide construction/ amination sequence. The design of the piperidines considered the pharmacophoric features found in previously reported inhibitors of FabI, an enzyme implicated in bacterial fatty acid biosynthesis. After the microbiological evaluation at 50 μM, the analogs displayed moderate activity against some pathogens from the ESKAPE group, reaching up to 42 % of growth inhibition for MRSA, 54 % for K. pneumoniae, and 37 % for P. aeruginosa (multiresistant strains). Docking studies demonstrate that almost all of them docked satisfactorily into the catalytic domain of S. aureus FabI, maintaining a similar pose as other reported inhibitors. The results shown herein propose the N-acyl-4-arylaminopiperidines as the basis for the development of more active candidates.
Collapse
Affiliation(s)
- Eduardo Hernández-Vázquez
- Departmento de Química Orgánica. Instituto de Química, Universidad Nacional Autónoma de México, Mexico.
| | - Ángel Ramírez-Trinidad
- Departmento de Química Orgánica. Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - César E Tovar-Román
- Departmento de Química Orgánica. Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - José A Rivera Chávez
- Departmento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| | - Elizabeth Huerta-Salazar
- Departmento de Química Orgánica. Instituto de Química, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
2
|
Donati G, Viviano M, D'Amore VM, Cipriano A, Diakogiannaki I, Amato J, Tomassi S, Brancaccio D, Russomanno P, Di Leva FS, Arosio D, Seneci P, Taliani S, Magiera-Mularz K, Musielak B, Skalniak L, Holak TA, Castellano S, La Pietra V, Marinelli L. A combined approach of structure-based virtual screening and NMR to interrupt the PD-1/PD-L1 axis: Biphenyl-benzimidazole containing compounds as novel PD-L1 inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300583. [PMID: 38110703 DOI: 10.1002/ardp.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.
Collapse
Affiliation(s)
- Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | | | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | | | | | | | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | | | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Raj KC H, Gilmore DF, Alam MA. Development of 4-[4-(Anilinomethyl)-3-phenyl-pyrazol-1-yl] Benzoic Acid Derivatives as Potent Anti-Staphylococci and Anti-Enterococci Agents. Antibiotics (Basel) 2022; 11:939. [PMID: 35884194 PMCID: PMC9311742 DOI: 10.3390/antibiotics11070939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
From a library of compounds, 11 hit antibacterial agents have been identified as potent anti-Gram-positive bacterial agents. These pyrazole derivatives are active against two groups of pathogens, staphylococci and enterococci, with minimum inhibitory concentration (MIC) values as low as 0.78 μg/mL. These potent compounds showed bactericidal action, and some were effective at inhibiting and eradicating Staphylococcus aureus and Enterococcus faecalis biofilms. Real-time biofilm inhibition by the potent compounds was studied, by using Bioscreen C. These lead compounds were also very potent against S. aureus persisters as compared to controls, gentamycin and vancomycin. In multiple passage studies, bacteria developed little resistance to these compounds (no more than 2 × MIC). The plausible mode of action of the lead compounds is the permeabilization of the cell membrane determined by flow cytometry and protein leakage assays. With the detailed antimicrobial studies, both in planktonic and biofilm contexts, some of these potent compounds have the potential for further antimicrobial drug development.
Collapse
Affiliation(s)
- Hansa Raj KC
- Department of Chemistry and Physics, The College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72401, USA;
| | - David F. Gilmore
- Department of Biological Sciences, The College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72401, USA;
| | - Mohammad A. Alam
- Department of Chemistry and Physics, The College of Sciences and Mathematics, Arkansas State University, Jonesboro, AR 72401, USA;
| |
Collapse
|
4
|
Zheng Y, Lu X, Liu B, Li B, Yang C, Tang W, Zhang J. Novel FabI inhibitor disrupts the biofilm formation of MRSA through down-regulating the expression of quorum-sensing regulatory genes. Microb Pathog 2022; 163:105391. [PMID: 34999247 DOI: 10.1016/j.micpath.2022.105391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The aim of this study was to explore the antibiofilm and antivirulence efficacy of benzylaniline 4k against MRSA. METHODS The clinical MRSA strains were identified and used to evaluate their potential to form biofilm using crystal violet assay. The minimal inhibitory concentration (MIC) was determined using broth microdilution method. The expression of genes was detected using quantitative real-time PCR (qRT-PCR). Rabbit blood hemolytic assay was used to observe the inhibitory ability of alpha-hemolysin (Hla). RESULTS Compound 4k showed potent antibacterial activity against 16 clinical MRSA with an MIC50 of 1.25 mg/L and MIC90 of 2.25 mg/L. The value of minimum biofilm eradication concentration (MBEC) against MRSA2858 biofilm was of 1.5 mg/L, close to its MIC, superior to those of vancomycin and erythromycin. Compound 4k eradicated the formation of biofilm through inhibiting the gene expression of branched-chain fatty acid synthesis, down-regulating the expression of quorum-sensing (QS) regulatory genes (norA, agrA, icaA, hla), decreasing the level of hemolysis in a dose-dependent manner, and inhibiting rabbit blood hemolysis by 86.9% at a concentration of 1.25 mg/L. In a mouse model of abdominal infection, compound 4k was more effective than vancomycin in reducing bacterial load. CONCLUSIONS These results suggested that compound 4k could be developed as promising an anti-MRSA agent through affecting quorum-sensing system.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Obstetrics, The First Hospital Affiliated to Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Xueer Lu
- Department of Clinical Laboratory, Huaibei People's Hospital, Huaibei, 235000, China; Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, 230022, China
| | - Biyong Liu
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, 230022, China
| | - Bo Li
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, 230022, China
| | - Chengwei Yang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, 230022, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, 230022, China.
| |
Collapse
|
5
|
Synthesis of 3,5-Bis(trifluoromethyl)phenyl-Substituted Pyrazole Derivatives as Potent Growth Inhibitors of Drug-Resistant Bacteria. Molecules 2021; 26:molecules26165083. [PMID: 34443670 PMCID: PMC8398255 DOI: 10.3390/molecules26165083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Enterococci and methicillin-resistant S. aureus (MRSA) are among the menacing bacterial pathogens. Novel antibiotics are urgently needed to tackle these antibiotic-resistant bacterial infections. This article reports the design, synthesis, and antimicrobial studies of 30 novel pyrazole derivatives. Most of the synthesized compounds are potent growth inhibitors of planktonic Gram-positive bacteria with minimum inhibitory concertation (MIC) values as low as 0.25 µg/mL. Further studies led to the discovery of several lead compounds, which are bactericidal and potent against MRSA persisters. Compounds 11, 28, and 29 are potent against S. aureus biofilms with minimum biofilm eradication concentration (MBEC) values as low as 1 µg/mL.
Collapse
|
6
|
Zha GF, Preetham HD, Rangappa S, Sharath Kumar KS, Girish YR, Rakesh KP, Ashrafizadeh M, Zarrabi A, Rangappa KS. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2021; 115:105175. [PMID: 34298242 DOI: 10.1016/j.bioorg.2021.105175] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022]
Abstract
Small molecule based inhibitors development is a growing field in medicinal chemistry. In recent years, different heterocyclic derivatives have been designed to counter the infections caused by multi-drug resistant bacteria. Indeed, small molecule inhibitors can be employed as an efficient antibacterial agents with different mechanism of action. Methicillin-resistant Staphylococcus aureus (MRSA) is becoming lethal to mankind due to easy transmission mode, rapid resistance development to existing antibiotics and affect difficult-to-treat skin and filmsy diseases. Benzimidazoles are a class of heterocyclic compounds which have capability to fight against MRSA. High biocompatibility of benzimidazoles, synergistic behaviour with antibiotics and their tunable physico-chemical properties attracted the researchers to develop new benzimidazole based antibacterial agents. The present review focus on recent developments of benzimidazole-hybrid molecules as anti MRSA agents and the results of in-vitro and in-vivo studies with possible mechanism of action and discussing structure-activity relationship (SAR) in different directions. Benzimdazoles act as DNA binding agents, enzyme inhibitors, anti-biofilm agents and showed synergistic effect with available antibiotics to achieve antibacterial activity against MRSA. This cumulative figures would help to design new benzimidazole-based MRSA growth inhibitors.
Collapse
Affiliation(s)
- Gao-Feng Zha
- Scientific Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhan 518107, China.
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | | | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B. G. Nagara, Mandya, 571448, India
| | - Kadalipura P Rakesh
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | | |
Collapse
|
7
|
4-4-(Anilinomethyl)-3-[4-(trifluoromethyl)phenyl]-1H-pyrazol-1-ylbenzoic acid derivatives as potent anti-gram-positive bacterial agents. Eur J Med Chem 2021; 219:113402. [PMID: 33845234 DOI: 10.1016/j.ejmech.2021.113402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
A collection of potent antimicrobials consisting of novel 1,3-bis-benzoic acid and trifluoromethyl phenyl derived pyrazoles has been synthesized and tested for antibacterial activity. The majority of trifluoromethyl phenyl derivatives are highly potent growth inhibitors of Gram-positive bacteria and showed low toxicity to human cultured cells. In particular, two compounds (59 and 74) were selected for additional studies. These compounds are highly effective against Staphylococcus aureus as shown by a low minimum inhibitory concentration (MIC), a bactericidal effect in time-kill assays, moderate inhibition of biofilm formation as well as biofilm destruction, and a bactericidal effect against stationary phase cells representing non-growing persister cells. Multistep resistance assays showed a very low tendency for S. aureus and Enterococcus faecalis to develop resistance through mutation. Additionally, in vivo mouse model studies showed no harmful effects at doses up to 50 mg/kg using 14 blood plasma organ toxicity markers or TUNEL assay in liver and kidney. Investigations into the mode of action by performing macromolecular synthesis inhibition studies showed a broad range of inhibitory effects, suggesting targets that have a global effect on bacterial cell function.
Collapse
|
8
|
Song X, Cai X, Zhang X, Fan X. Synthesis of N-acylbenzimidazoles through [4 + 1] annulation of N-arylpivalimidamides with dioxazolones. Org Chem Front 2021. [DOI: 10.1039/d1qo01137e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Presented herein is a novel and efficient synthesis of N-acylbenzimidazoles through an unprecedented [4 + 1] annulation of N-arylpivalimidamides with dioxazolones.
Collapse
Affiliation(s)
- Xia Song
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinyuan Cai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Demissie R, Kabre P, Fung LWM. Nonactive-Site Mutations in S. aureus FabI That Induce Triclosan Resistance. ACS OMEGA 2020; 5:23175-23183. [PMID: 32954168 PMCID: PMC7495757 DOI: 10.1021/acsomega.0c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The wide use of the antimicrobial agent/biocide, triclosan, promotes triclosan-resistant bacterial strains, including Staphylococcus aureus, as well as leads to accumulation in the aquatic and terrestrial environments. Knowledge of the molecular actions of triclosan on S. aureus is needed to understand the consequence of triclosan resistance and environmental accumulation of triclosan on S. aureus resistant strains, as well as to develop biphenyl ether analogs as antibiotic candidates. Triclosan inhibits an essential enzyme in the fatty acid biosynthetic pathway, the reduced nicotinamide adenine dinucleotide (NADH)/reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent enoyl-acyl carrier protein (enoyl-ACP) reductase, or FabI. In this study, we used error-prone polymerase chain reaction (epPCR) to generate mutations in the S. aureus FabI enzyme. Instead of using an elaborate FabI enzyme activity assay that involves ACP-linked substrates to determine whether triclosan inhibits the enzyme activities of individual FabI mutants, we used an efficient and economical assay that we developed, based on thermal shift principles, to screen for triclosan binding to FabI mutants in cells. We identified four active-site mutations. More interestingly, we also identified nine triclosan-resistant mutations distant from the active site (G113V, Y123H, S166N, N220I, G227C, A230T, V241I, F252I, and H253P) but located in disparate positions in the monomer-monomer and dimer-dimer interface regions in S. aureus FabI. We suggest that these sites may serve as potential allosteric sites for designing potential therapeutic inhibitors that offer advantages in selectivity since allosteric sites are less evolutionarily conserved.
Collapse
Affiliation(s)
- Robel Demissie
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | | | - Leslie W.-M. Fung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
10
|
Johnson ME, Fung LWM. Structural approaches to pathway-specific antimicrobial agents. Transl Res 2020; 220:114-121. [PMID: 32105648 PMCID: PMC7293926 DOI: 10.1016/j.trsl.2020.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
This perspective provides an overview of the evolution of antibiotic discovery from a largely phenotypic-based effort, through an intensive structure-based design focus, to a more holistic approach today. The current focus on antibiotic development incorporates assay and discovery conditions that replicate the host environment as much as feasible. They also incorporate several strategies, including target identification and validation within the whole cell environment, a variety of target deconvolution methods, and continued refinement of structure-based design approaches.
Collapse
Affiliation(s)
- Michael E Johnson
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois.
| | - Leslie W-M Fung
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Cesur MF, Siraj B, Uddin R, Durmuş S, Çakır T. Network-Based Metabolism-Centered Screening of Potential Drug Targets in Klebsiella pneumoniae at Genome Scale. Front Cell Infect Microbiol 2020; 9:447. [PMID: 31993376 PMCID: PMC6970976 DOI: 10.3389/fcimb.2019.00447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 12/12/2019] [Indexed: 01/28/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic bacterial pathogen leading to life-threatening nosocomial infections. Emergence of highly resistant strains poses a major challenge in the management of the infections by healthcare-associated K. pneumoniae isolates. Thus, despite intensive efforts, the current treatment strategies remain insufficient to eradicate such infections. Failure of the conventional infection-prevention and treatment efforts explicitly indicates the requirement of new therapeutic approaches. This prompted us to systematically analyze the K. pneumoniae metabolism to investigate drug targets. Genome-scale metabolic networks (GMNs) facilitating the systematic analysis of the metabolism are promising platforms. Thus, we used a GMN of K. pneumoniae MGH 78578 to determine putative targets through gene- and metabolite-centric approaches. To develop more realistic infection models, we performed the bacterial growth simulations within different host-mimicking media, using an improved biomass formation reaction. We selected more suitable targets based on several property-based prioritization procedures. KdsA was identified as the high-ranked putative target satisfying most of the target prioritization criteria specified under the gene-centric approach. Through a structure-based virtual screening protocol, we identified potential KdsA inhibitors. In addition, the metabolite-centric approach extended the drug target list based on synthetic lethality. This revealed the importance of combined metabolic analyses for a better understanding of the metabolism. To our knowledge, this is the first comprehensive effort on the investigation of the K. pneumoniae metabolism for drug target prediction through the constraint-based analysis of its GMN in conjunction with several bioinformatic approaches. This study can guide the researchers for the future drug designs by providing initial findings regarding crucial components of the Klebsiella metabolism.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| | - Bushra Siraj
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
12
|
Virtual screening of antibacterial compounds by similarity search of Enoyl-ACP reductase (FabI) inhibitors. Future Med Chem 2019; 12:51-68. [PMID: 31729258 DOI: 10.4155/fmc-2019-0158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Antibiotic resistance is an alarming issue, as multidrug-resistant bacteria are growing worldwide, hence the decrease of therapeutic potential of available antibiotic arsenal. Among these bacteria, Staphylococcus aureus was pointed by the WHO in the pathogens list to be prioritized in drug development. Methods: We report the use of chemical similarity models for the virtual screening of new antibacterial with structural similarity to known inhibitors of FabI. The potential inhibitors were experimentally evaluated for antibacterial activity and membrane disrupting capabilities. Results & conclusion: These models led to the finding of four new compounds with antibacterial activity, one of which having antimicrobial activity already reported in the literature.
Collapse
|
13
|
Maltarollo VG. Classification of Staphylococcus Aureus FabI Inhibitors by Machine Learning Techniques. ACTA ACUST UNITED AC 2019. [DOI: 10.4018/ijqspr.2019100101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enoyl-acyl carrier protein reductase (FabI) is a key enzyme in the fatty acid metabolism of gram-positive bacteria and is considered a potential target for new antibacterial drugs development. Indeed, triclosan is a widely employed antibacterial and AFN-1252 is currently under phase-II clinical trials, both are known as FabI inhibitors. Nowadays, there is an urgent need for new drug discovery due to increasing antibacterial resistance. In the present study, classification models using machine learning techniques were generated to distinguish SaFabI inhibitors from non-inhibitors successfully (e.g., Mathews correlation coefficient values equal to 0.837 and 0.789 calculated with internal and external validations). The interpretation of a selected model indicates that larger compounds, number of N atoms and the distance between central amide and naphthyridinone ring are important to biological activity, corroborating previous studies. Therefore, these obtained information and generated models can be useful for design/discovery of novel bioactive ligands as potential antibacterial agents.
Collapse
|
14
|
Ghattas MA, Eissa NA, Tessaro F, Perozzo R, Scapozza L, Obaid D, Atatreh N. Structure-based drug design and in vitro testing reveal new inhibitors of enoyl-acyl carrier protein reductases. Chem Biol Drug Des 2019; 94:1545-1555. [PMID: 31063658 DOI: 10.1111/cbdd.13536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 11/29/2022]
Abstract
The need for new antibacterial agents is increasingly becoming of great importance as bacterial resistance to current drugs is quickly spreading. Enoyl-acyl carrier protein reductases (FabI) are important enzymes for fatty acid biosynthesis in bacteria and other micro-organisms. In this project, we conducted structure-based virtual screening against the FabI enzyme, and accordingly, 37 compounds were selected for experimental testing. Interestingly, five compounds were able to demonstrate antimicrobial effect with variable inhibition activity against various strains of bacteria and fungi. Minimum inhibitory concentrations of the active compounds were determined and showed to be in low to medium micromolar range. Subsequently, enzyme inhibition assay was carried out for our five antimicrobial hits to confirm their biological target and determine their IC50 values. Three of these tested compounds exhibited inhibition activity for the FabI enzyme where our best hit MN02 had an IC50 value of 7.8 μM. Furthermore, MN02 is a small bisphenolic compound that is predicted to have all required features to firmly bind with the target enzyme. To sum up, hits discovered in this work can act as a good starting point for the future development of new and potent antimicrobial agents.
Collapse
Affiliation(s)
- Mohammad A Ghattas
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nermin A Eissa
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Francesca Tessaro
- Pharmaceutical Biochemistry Group, University of Geneva, Geneva, Switzerland.,University of Lausanne, Lausanne, Switzerland
| | - Remo Perozzo
- Pharmaceutical Biochemistry Group, University of Geneva, Geneva, Switzerland.,University of Lausanne, Lausanne, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry Group, University of Geneva, Geneva, Switzerland.,University of Lausanne, Lausanne, Switzerland
| | - Dana Obaid
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Noor Atatreh
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Shanbhag AP. FabG: from a core to circumstantial catalyst. Biotechnol Lett 2019; 41:675-688. [PMID: 31037463 DOI: 10.1007/s10529-019-02678-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022]
Abstract
Core biochemical pathways such as Fatty-acid synthesis II (FAS II) is ascribed to the synthesis of fatty-acids, biotin and lipoic acid in prokaryotes. It has two dehydrogenases namely, FabG and FabI which interact with the fatty-acid chain bound to Acyl-carrier protein (ACP), a well-studied enzyme which binds to substrates of varying lengths. This protein-protein interaction 'broadens' the active site of these dehydrogenases thus, contributing to their flexible nature. This property is exploited for catalysing numerous chiral synthons, alkanes, long-chain alcohols and secondary metabolites in industries especially with FabG. FASI relegates FASII in eukaryotes making it a 'relic gene pool' and an antibacterial drug target with diverse inhibitor and substrate markush. FabG often substitutes other dehydrogenases for producing secondary metabolites in nature. This redundancy is probably due to gene duplication or addition events possibly making FabG, a progenitor to some of the complex short-chain dehydrogenases used in organisms and industries today.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India. .,Bugworks Research India Pvt. Ltd, C-CAMP, NCBS Campus, UAS-GKVK, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
16
|
Zhang J, Huang H, Zhou X, Xu Y, Chen B, Tang W, Xu K. N-Benzylanilines as Fatty Acid Synthesis Inhibitors against Biofilm-related Methicillin-resistant Staphylococcus aureus. ACS Med Chem Lett 2019; 10:329-333. [PMID: 30891135 DOI: 10.1021/acsmedchemlett.8b00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Bacterial fatty acid synthase system is a well validated target for the development of novel antimicrobial agents. This study reports the synthesis of Schiff bases and their reductive N-benzylanilines. Most N-benzylanilines were active against Gram-positive bacteria, among which compound 4k performed best against both S. aureus and MRSA with the MIC value at 0.5 mg/L. Moreover, we identified the strong antibacterial activity for compound 4k against 19 clinical MRSA strains isolated from different specimen, which indicated its potential in clinical application. In vitro biofilm inhibition and microscopy assay revealed compound 4k inhibits biofilm formation and eradicates preformed biofilm effectively. The size-exclusion chromatography and docking study indicated that compound 4k mimics the binding mode of triclosan with saFabI. The efficiency of the protein-inhibitor interaction was evaluated by measuring NADPH reduction using trans-2-octenoyl-CoA as substrate. Overall, our data demonstrate that N-benzylaniline is a promising scaffold for anti-staphylococcal drug development.
Collapse
Affiliation(s)
- Jing Zhang
- Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People’s Hospital, Hefei 230022, China
| | - Hao Huang
- College of Basic Medical, Anhui Medical University, Hefei 230032, China
| | - Xueting Zhou
- College of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yingying Xu
- College of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Baochun Chen
- Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People’s Hospital, Hefei 230022, China
| | - Wenjian Tang
- College of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Kehan Xu
- College of Basic Medical, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
17
|
Serafim MSM, Lavorato SN, Kronenberger T, Sousa YV, Oliveira GP, Dos Santos SG, Kroon EG, Maltarollo VG, Alves RJ, Mota BEF. Antibacterial activity of synthetic 1,3-bis(aryloxy)propan-2-amines against Gram-positive bacteria. Microbiologyopen 2019; 8:e814. [PMID: 30773849 PMCID: PMC6855212 DOI: 10.1002/mbo3.814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Synthetic 1,3‐bis(aryloxy)propan‐2‐amines have been shown in previous studies to possess several biological activities, such as antifungal and antiprotozoal. In the present study, we describe the antibacterial activity of new synthetic 1,3‐bis(aryloxy)propan‐2‐amines against Gram‐positive pathogens (Streptococcus pyogenes, Enterococcus faecalis and Staphylococcus aureus) including Methicillin–resistant S. aureus strains. Our compounds showed minimal inhibitory concentrations (MIC) in the range of 2.5–10 μg/ml (5.99–28.58 μM), against different bacterial strains. The minimal bactericidal concentrations found were similar to MIC, suggesting a bactericidal mechanism of action of these compounds. Furthermore, possible molecular targets were suggested by chemical similarity search followed by docking approaches. Our compounds are similar to known ligands targeting the cell division protein FtsZ, Quinolone resistance protein norA and the Enoyl‐[acyl‐carrier‐protein] reductase FabI. Taken together, our data show that synthetic 1,3‐bis(aryloxy)propan‐2‐amines are active against Gram‐positive bacteria, including multidrug–resistant strains and can be a promising lead in the development of new antibacterial compounds for the treatment of these infections.
Collapse
Affiliation(s)
- Mateus S M Serafim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Stefânia N Lavorato
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Yamara V Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Graziele P Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Simone G Dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Erna G Kroon
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo J Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruno E F Mota
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
18
|
Jana P, Patel N, Mukherjee T, Soppina V, Kanvah S. A “turn-on” Michler's ketone–benzimidazole fluorescent probe for selective detection of serum albumins. NEW J CHEM 2019. [DOI: 10.1039/c9nj01972c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enhanced emission and selective binding with albumins.
Collapse
Affiliation(s)
- Palash Jana
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Palaj
- India
| | - Nishaben Patel
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Palaj
- India
| | | | - Virupakshi Soppina
- Department of Biological Engineering
- Indian Institute of Technology Gandhinagar
- Palaj
- India
| | - Sriram Kanvah
- Department of Chemistry
- Indian Institute of Technology Gandhinagar
- Palaj
- India
| |
Collapse
|
19
|
Konaklieva MI. Addressing Antimicrobial Resistance through New Medicinal and Synthetic Chemistry Strategies. SLAS DISCOVERY 2018; 24:419-439. [PMID: 30523713 DOI: 10.1177/2472555218812657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past century, a multitude of derivatives of structural scaffolds with established antimicrobial potential have been prepared and tested, and a variety of new scaffolds have emerged. The effectiveness of antibiotics, however, is in sharp decline because of the emergence of drug-resistant microorganisms. The prevalence of drug resistance, both in clinical and community settings, is a consequence of bacterial ingenuity in altering pathways and/or cell morphology, making it a persistent threat to human health. The fundamental ability of pathogens to survive in a multitude of habitats can be triggered by recognition of chemical signals that warn organisms of exposure to a potentially harmful environment. Host immune defenses, including reactive oxygen intermediates and antibacterial substances, are among the multitude of chemical signals that can subsequently trigger expression of phenotypes better adapted for survival in that hostile environment. Thus, resistance development appears to be unavoidable, which leads to the conclusion that developing an alternative perspective for treatment options is vital. This review will discuss emerging medicinal chemistry approaches for addressing the global multidrug resistance in the 21st century.
Collapse
|
20
|
Ren J, Mistry TL, Su PC, Mehboob S, Demissie R, Fung LWM, Ghosh AK, Johnson ME. Determination of absolute configuration and binding efficacy of benzimidazole-based FabI inhibitors through the support of electronic circular dichroism and MM-GBSA techniques. Bioorg Med Chem Lett 2018; 28:2074-2079. [PMID: 29730028 DOI: 10.1016/j.bmcl.2018.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/12/2023]
Abstract
We have previously reported benzimidazole-based compounds to be potent inhibitors of FabI for Francisella tularensis (FtFabI), making them promising antimicrobial hits. Optically active enantiomers exhibit markedly differing affinities toward FtFabI. The IC50 of benzimidazole (-)-1 is ∼100× lower than the (+)-enantiomer, with similar results for the 2 enantiomers. Determining the absolute configuration for these optical compounds and elucidating their binding modes is important for further design. Electronic circular dichroism (ECD) quantum calculations have become important in determining absolute configurations of optical compounds. We determined the absolute configuration of (-)/(+)-1 and (-)/(+)-2 by comparing experimental spectra and theoretical density functional theory (DFT) simulations of ECD spectra at the B3LYP/6-311+G(2d, p) level using Gaussian09. Comparison of experimental and calculated ECD spectra indicates that the S configuration corresponds to the (-)-rotation for both compounds 1 and 2, while the R configuration corresponds to the (+)-rotation. Further, molecular dynamics simulations and MM-GBSA binding energy calculations for these two pairs of enantiomers with FtFabI show much tighter binding MM-GBSA free energies for S-1 and S-2 than for their enantiomers, R-1 and R-2, consistent with the S configuration being the more active one, and with the ECD determination of the S configuration corresponding to (-) and the R configuration corresponding to (+). Thus, our computational studies allow us to assign (-) to (S)- and (+) to (R)- for compounds 1 and 2, and to further evaluate structural changes to improve efficacy.
Collapse
Affiliation(s)
- Jinhong Ren
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Tina L Mistry
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Pin-Chih Su
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Shahila Mehboob
- Novalex Therapeutics, Inc., 2242 W Harrison, Chicago, IL 60612, USA
| | - Robel Demissie
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St, Chicago, IL 60607, USA
| | - Leslie Wo-Mei Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St, Chicago, IL 60607, USA
| | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Michael E Johnson
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; Novalex Therapeutics, Inc., 2242 W Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Skariyachan S, Manjunath M, Bachappanavar N. Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii - insights from molecular docking, molecular dynamic simulations and in vitro assays. J Biomol Struct Dyn 2018. [PMID: 29529934 DOI: 10.1080/07391102.2018.1451387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii, an opportunistic pathogen, has become multi-drug resistant (MDR) to major classes of antibacterial and poses grave threat to public health. The current study focused to screen novel phytotherapeutics against prioritised targets of Acinetobacter baumannii by computational investigation. Fourteen potential drug targets were screened based on their functional role in various biosynthetic pathways and the 3D structures of 9 targets were retrieved from Protein Data Bank and others were computationally predicted. By extensive literature survey, 104 molecules from 48 herbal sources were screened and subjected to virtual screening. Ten clinical isolates of A. baumannii were tested for antibiotic susceptibility towards clinafloxacin, imipenem and polymyxin-E. Computational screening suggested that Ajmalicine ((19α)-16, 17-didehydro-19-methyloxayohimban-16-carboxylic acid methyl ester from Rauwolfia serpentina), Strictamin (Akuammilan-17-oic acid methyl ester from Alstonia scholaris) and Limonin (7, 16-dioxo-7, 16-dideoxylimondiol from Citrus sps) exhibited promising binding towards multiple drug targets of A. baumannii in comparison with the binding between standard drugs and their targets. Limonin displayed promising binding potential (binding energy -9.8 kcal/mol) towards diaminopimelate epimerase (DapF) and UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). Ajmalicine and Strictamin demonstrated good binding potential (-9.5, -8.5 kcal/mol, respectively) towards MurA and shikimate dehydrogenase (-7.8 kcal/mol). Molecular dynamic simulations further validated the docking results. In vitro assay suggested that the tested isolates exhibited resistance to clinafloxacin, imipenem and polymyxin-E and the herbal preparations (crude extract) demonstrated a significant antibacterial potential (p ≤ .05). The study suggests that the aforementioned lead candidates and targets can be used for structure-based drug screening towards MDR A. baumannii.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| | - Meghna Manjunath
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| | - Nikhil Bachappanavar
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| |
Collapse
|
22
|
A novel series of enoyl reductase inhibitors targeting the ESKAPE pathogens, Staphylococcus aureus and Acinetobacter baumannii. Bioorg Med Chem 2017; 26:65-76. [PMID: 29162308 DOI: 10.1016/j.bmc.2017.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 11/22/2022]
Abstract
S. aureus and A. baumannii are among the ESKAPE pathogens that are increasingly difficult to treat due to the rise in the number of drug resistant strains. Novel therapeutics targeting these pathogens are much needed. The bacterial enoyl reductase (FabI) is as potentially significant drug target for developing pathogen-specific antibiotics due to the presence of alternate FabI isoforms in many other bacterial species. We report the identification and development of a novel N-carboxy pyrrolidine scaffold targeting FabI in S. aureus and A. baumannii, two pathogens for which FabI essentiality has been established. This scaffold is unrelated to other known antibiotic families, and FabI is not targeted by any currently approved antibiotic. Our data shows that this scaffold displays promising enzyme inhibitory activity against FabI from both S. aureus and A. baumannii, as well as encouraging antibacterial activity in S. aureus. Compounds also display excellent synergy when combined with colistin and tested against A. baumannii. In this combination the MIC of colistin is reduced by 10-fold. Our first generation compound displays promising enzyme inhibition, targets FabI in S. aureus with a favorable selectivity index (ratio of cytotoxicity to MIC), and has excellent synergy with colistin against A. baumannii, including a multidrug resistant strain.
Collapse
|