1
|
Cheng W, Miao Y, Wang C, Zu Y, Wu Z, Zhang Y, Li J. Peptide Molecular Siege Machine: Breaking through Mycobacterium tuberculosis's Cellular Defenses for Precise Detection and Monitoring. Anal Chem 2025; 97:9168-9173. [PMID: 40268554 DOI: 10.1021/acs.analchem.4c05763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
This work introduces a peptide biosensor for detecting Mycobacterium tuberculosis (Mtb). The designed peptide probe exhibits specific affinity toward distinct components of Mtb. First, a peptide sequence is tailored to target hydrophobic long-chain fatty acids in the mycobacterial cell wall. Following this, an electrochemical potential scan releases a peptide sequence aimed at the intracellular molecular chaperones of Mtb. This sequence, upon penetration of the bacterial cell membrane, binds with molecular chaperones, which is crucial for Mtb survival and stress response. The biosensor incorporates complementary peptide sequences to capture chaperone-bound peptides back onto the substrate surface, allowing for their subsequent electrochemical detection. This multistep process enables selective and sequential interactions with Mtb components, minimizing interference from nontarget molecules. By integrating these innovative peptide probes into a wearable substrate using conductive polymer technology, the biosensor achieves high sensitivity and accuracy, offering a promising tool for the real-time monitoring of tuberculosis progression and treatment response.
Collapse
Affiliation(s)
- Wenting Cheng
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing 211300, China
- Nanjing Gaochun People's Hospital Affiliated with Jiangsu Health Vocational College, Gaochun People's Hospital, Nanjing 211899, China
| | - Yuanyuan Miao
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Chuang Wang
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Yanwen Zu
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing 211300, China
- Nanjing Gaochun People's Hospital Affiliated with Jiangsu Health Vocational College, Gaochun People's Hospital, Nanjing 211899, China
| | - Zhisong Wu
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Yongchen Zhang
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Jinlong Li
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China
| |
Collapse
|
2
|
Zhou B, Shetye G, Klein LL, Wolf NM, Lee H, McAlpine JB, Harris G, Chen SN, Suh JW, Cho SH, Franzblau SG, Abad-Zapatero C, Pauli GF. Structure-Based Analysis of Semisynthetic Anti-TB Rufomycin Analogues. JOURNAL OF NATURAL PRODUCTS 2025; 88:907-925. [PMID: 40126472 PMCID: PMC12038834 DOI: 10.1021/acs.jnatprod.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
This study employed structural information from cocrystals of rufomycin 4 (1a) and caseinolytic protein C1 (ClpC1)-NTD-wt to guide design and semisynthesis of rufomycin analogues, evaluate their antituberculosis (TB) biological profiles, and establish structure-activity relationships (SAR). Covering three regions of interest (ROIs, A-C) as modification sites, 14 of the 30 semisynthetic analogues (2-31) showed similar or improved MICs relative to the main natural precursors, rufomycins 4/6 (1a/b). Compounds 5 and 27 exhibited up to 10-fold enhanced potency against Mycobacterium tuberculosis (Mtb) in vitro, with MIC values of 1.9 and 1.4 nM, respectively. Evaluation of ClpC1-binding properties used existing ClpC1-NTD complexes with rufomycin 4 (PDB: 6cn8) and ecumicin (PDB: 6pbs) as references. The newly reported X-ray ClpC1-NTD cocrystal structure of 11 (syn. But4-Cl) revealed significant conformational effects involving the side chains of certain amino acids of the heptapeptide and confirmed the importance of ROIs A-C for medicinal chemistry efforts. Observed interactions of the N-terminal tail of ClpC1 with the rufomycin analogues vs ecumicin explains their different modes of inactivating the ClpC1/P1/P2 homeostatic machinery. Collectively, the observations inform further SAR optimization strategies for the rufomycin class of antibiotics and complement our understanding of their mode of action.
Collapse
Affiliation(s)
- Bin Zhou
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Gauri Shetye
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Larry L. Klein
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Nina M. Wolf
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Hyun Lee
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - James B. McAlpine
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Guy Harris
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Joo Won Suh
- Myongji
Bioefficacy Research Center, Myongji University, Myongji-Ro 116, Yongin, Gyeonggi-Do 17058, Republic of Korea
- Microbiohealthcare
Co., Ltd., Myongji-Ro
116, Yongin, Gyeonggi-Do 17058, Republic
of Korea
| | - Sang-Hyun Cho
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Scott G. Franzblau
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Celerino Abad-Zapatero
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
3
|
Kufa M, Finger V, Kovar O, Soukup O, Torruellas C, Roh J, Korabecny J. Revolutionizing tuberculosis treatment: Breakthroughs, challenges, and hope on the horizon. Acta Pharm Sin B 2025; 15:1311-1332. [PMID: 40370552 PMCID: PMC12069392 DOI: 10.1016/j.apsb.2025.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 05/16/2025] Open
Abstract
Tuberculosis (TB), an infectious disease caused by the bacterium Mycobacterium tuberculosis (Mtb), was responsible for the deaths of approximately 1.3 million people in 2022. In addition, 7.5 million new cases of TB have been reported. Present-day treatments require a daily dosing of a multiple-drug regimen for a minimum of six-month, but poor adherence and other factors often lead to treatment failure. Consequently, drug-resistant TB strains have become a growing concern, leading to more complex and expensive treatments. Promising drugs such as bedaquiline, delamanid, and pretomanid have been recently released, and 19 drug candidates are currently at different phases of clinical trials, addressing the problem of drug-resistant TB. Notwithstanding recent advances, the development of effective and safe drugs with novel mechanisms of action remains a challenge due to the unique nature of Mtb. Despite the persistent need for new treatments, TB research remains underfunded, highlighting the importance of collaborations between academia and the private sector in the advancement of anti-TB drug development. This review provides a perspective on the dynamic landscape of anti-TB drug discovery in recent years, offering hope for a more effective approach to combat this persistent global health threat.
Collapse
Affiliation(s)
- Martin Kufa
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralove 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Vladimir Finger
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralove 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ondrej Kovar
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralove 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| | | | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Kralové, Charles University, Hradec Kralove 50003, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50003, Czech Republic
| |
Collapse
|
4
|
Pranathi AN, Devendra N, Bollikanda RK, Bangalore PK, Esaulkova IL, Mikhalsky MG, Niukalova MA, Zarubaev VV, Sridhar B, Kantevari S. 6-aryloxy-2-aminopyrimidine-benzonitrile hybrids as anti-infective agents: Synthesis, bioevaluation, and molecular docking. Arch Pharm (Weinheim) 2025; 358:e2400580. [PMID: 39721989 DOI: 10.1002/ardp.202400580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
This report explores the potential of novel 6-aryloxy-2-aminopyrimidine-benzonitrile scaffolds as promising anti-infective agents in the face of the increasing threat of infectious diseases. Starting from 2-amino-4,6-dichloropyrimidine, a series of 24 compounds inspired from the antiviral drugs dapivirine, etravirine, and rilpivirine were designed and synthesized via a two-step reaction sequence in good yields. Biological testing of synthetic analogs revealed potent inhibition against both viral and tuberculosis targets. Notably, compounds 5p (2,4-dimethyl substitution; IC50 = 44 ± 4.9 µM; selectivity index [SI] = 20) and 5 s (3-thiophenphenyl; IC50 = 6 ± 1 µM; SI = 120) showed significant antiviral activity against pandemic influenza virus A/Puerto Rico/8/34 (H1N1) with positive toxicity profiles and also exhibited good IC50 values (5p, IC50 = 10 ± 2 µM; SI = 9 and 5 s, IC50 = 16 ± 2 µM; SI = 60) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Wuhan strain) compared with favipiravir. In addition, analogs 5a, 5r, 5t, and 5u showed good antitubercular activity against Mycobacterium tuberculosis H37Rv strain and compounds 3, 5f, 5n, and 5q showed moderate antibacterial activity against gram+ve and gram-ve bacterial strains, suggesting that this scaffold has a broad spectrum of therapeutic effects.
Collapse
Affiliation(s)
- Abburi Naga Pranathi
- Fluoro & Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nagineni Devendra
- Fluoro & Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh K Bollikanda
- Fluoro & Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pavan K Bangalore
- Fluoro & Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Iana L Esaulkova
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russia
| | | | - Maria A Niukalova
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russia
| | | | - Balasubramanian Sridhar
- Centre for X-ray Crystallography, Analytical Chemistry Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Srinivas Kantevari
- Fluoro & Agro Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Kokuszi LTF, Paes YM, Faria ALS, Alvarado-Huayhuaz J, Balboni MDC, Dos Santos MC, Dos Santos SC, de Menezes Vicenti JR, Parize AL, Werhli AV, Dos Santos Machado K, de Lima VR. Benzohydroxamate and nitrobenzohydroxamate affect membrane order: Correlations between spectroscopic and molecular dynamics to approach tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184378. [PMID: 39163923 DOI: 10.1016/j.bbamem.2024.184378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
This work correlates the effects of benzohydroxamate (BH) and nitrobenzohydroxamate (NBH) anions in two membrane models which may be used for anti-tuberculosis (anti-TB) spectroscopic studies and/or computational studies. Firstly, the BH and NBH influence in the physico-chemical properties of soy asolectin (ASO)-based large multilamellar vesicles (MLVs) were evaluated by spectroscopic and calorimetric studies. In parallel, the BH and NBH interaction with a Mycobacterium tuberculosis (Mtb) inner membrane model, composed of phosphatidyl-myo-inositol-dimannoside (PIM2), was investigated by molecular dynamics (MD) simulations. Spectroscopic data showed a localization of BH close to the lipid phosphate group, while NBH was found close to the choline region. The BH ordered the ASO choline, phosphate and carbonyl regions and disrupted the acyl methylenes, reducing the membrane packing of the lipid hydrophobic region. On the other hand, NBH showed an ordering effect in all the lipid groups (polar, interface and hydrophobic ones). By MD studies, it was found that NBH enhanced the stability of the PIM2 membrane more than BH, while also being positioned closer to its mannosyl oxygens. As in ASO MLVs, BH was localized close to the PIM2 phosphate group and disrupted its acyl chains. However, higher values of lateral diffusion were observed for NBH than BH. Despite this, BH and NBH increased the membrane thickness by 35 %, which suggests a global ordering effect of both drugs. Findings of this work reinforce the accordance and complementarity between MLVs based on ASO and the PIM2 MD model results to study the drug effects in Mtb membrane properties.
Collapse
Affiliation(s)
- Lucas Thadeu Felipe Kokuszi
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Yago Mendes Paes
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Aline Loise Santana Faria
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Jesus Alvarado-Huayhuaz
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Maurício Dornelles Caldeira Balboni
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Marinalva Cardoso Dos Santos
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Sandra Cruz Dos Santos
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Juliano Rosa de Menezes Vicenti
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil
| | - Alexandre Luis Parize
- Programa de Pós-Graduação em Química-PPGQ, Departamento de Química, Centro de Ciências Físicas e Matemáticas-CFM, Universidade Federal de Santa Catarina-UFSC, Campus Universitário Trindade, Caixa Postal 476, Florianópolis, SC 88040-900, Brazil
| | - Adriano Velasque Werhli
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Karina Dos Santos Machado
- COMBI-Lab, Grupo de Biologia Computacional, Centro de Ciências Computacionais, Universidade Federal do Rio Grande, Av. Itália, km 8, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil.
| | - Vânia Rodrigues de Lima
- Grupo de Investigação em Interações Moleculares em Membranas, Programa de Pós-Graduação em Química Tecnológica e Ambiental (PPGQTA), Escola de Química e Alimentos (EQA), 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
6
|
Bague D, Wang R, Hodge D, Mikati MO, Roma JS, Boshoff HI, Dailey AL, Girma M, Couch RD, Odom John AR, Dowd CS. Inhibition of DXR in the MEP pathway with lipophilic N-alkoxyaryl FR900098 analogs. RSC Med Chem 2024; 15:2422-2439. [PMID: 39026652 PMCID: PMC11253873 DOI: 10.1039/d3md00642e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
In Mycobacterium tuberculosis (Mtb) and Plasmodium falciparum (Pf), the methylerythritol phosphate (MEP) pathway is responsible for isoprene synthesis. This pathway and its products are vital to bacterial/parasitic metabolism and survival, and represent an attractive set of drug targets due to their essentiality in these pathogens but absence in humans. The second step in the MEP pathway is the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) to MEP and is catalyzed by 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR). Natural products fosmidomycin and FR900098 inhibit DXR, but are too polar to reach the desired target inside some cells, such as Mtb. Synthesized FR900098 analogs with lipophilic substitution in the position α to the phosphorous atom showed promise, resulting in increased activity against Mtb and Pf. Here, an α substitution, consisting of a 3,4-dichlorophenyl substituent, in combination with various O-linked alkylaryl substituents on the hydroxamate moiety is utilized in the synthesis of a novel series of FR900098 analogs. The purpose of the O-linked alkylaryl substituents is to further enhance DXR inhibition by extending the structure into the adjacent NADPH binding pocket, blocking the binding of both DXP and NADPH. Of the initial O-linked alkylaryl substituted analogs, compound 6e showed most potent activity against Pf parasites at 3.60 μM. Additional compounds varying the phenyl ring of 6e were synthesized. The most potent phosphonic acids, 6l and 6n, display nM activity against PfDXR and low μM activity against Pf parasites. Prodrugs of these compounds were less effective against Pf parasites but showed modest activity against Mtb cells. Data from this series of compounds suggests that this combination of substituents can be advantageous in designing a new generation of antimicrobials.
Collapse
Affiliation(s)
- Darean Bague
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Ruiqin Wang
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| | - Dana Hodge
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
| | - Marwa O Mikati
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Jose S Roma
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Helena I Boshoff
- Tuberculosis Research Section, LCIM, NIAID/NIH Bethesda MD 20892 USA
| | - Allyson L Dailey
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Misgina Girma
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Robin D Couch
- Department of Chemistry and Biochemistry, George Mason University Fairfax VA 22030 USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Children's Hospital of Philadelphia Philadelphia PA 19104 USA
- Department of Molecular Microbiology, Washington University School of Medicine St. Louis MO 63110 USA
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University Washington D.C. 20052 USA
| |
Collapse
|
7
|
Shanthakumar B, Gopinath P, Chagaleti BK, Saravanan V, Palaniappan SK, Musaed Almutairi S, Hussein DS, Eisa YH, Kathiravan M, Arockiaraj J. Imidazooxazine moiety as polyketide synthase 13 inhibitors targeting tuberculosis. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2024; 36:103220. [DOI: 10.1016/j.jksus.2024.103220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
8
|
Guida M, Tammaro C, Quaranta M, Salvucci B, Biava M, Poce G, Consalvi S. Amino Acid Biosynthesis Inhibitors in Tuberculosis Drug Discovery. Pharmaceutics 2024; 16:725. [PMID: 38931847 PMCID: PMC11206623 DOI: 10.3390/pharmaceutics16060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
According to the latest World Health Organization (WHO) report, an estimated 10.6 million people were diagnosed with tuberculosis (TB) in 2022, and 1.30 million died. A major concern is the emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) strains, fueled by the length of anti-TB treatment and HIV comorbidity. Innovative anti-TB agents acting with new modes of action are the only solution to counteract the spread of resistant infections. To escape starvation and survive inside macrophages, Mtb has evolved to become independent of the host by synthesizing its own amino acids. Therefore, targeting amino acid biosynthesis could subvert the ability of the mycobacterium to evade the host immune system, providing innovative avenues for drug discovery. The aim of this review is to give an overview of the most recent progress in the discovery of amino acid biosynthesis inhibitors. Among the hits discovered over the past five years, tryptophan (Trp) inhibitors stand out as the most advanced and have significantly contributed to demonstrating the feasibility of this approach for future TB drug discovery. Future efforts should be directed at prioritizing the chemical optimization of these hits to enrich the TB drug pipeline with high-quality leads.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| |
Collapse
|
9
|
Khan MF, Ali A, Rehman HM, Noor Khan S, Hammad HM, Waseem M, Wu Y, Clark TG, Jabbar A. Exploring optimal drug targets through subtractive proteomics analysis and pangenomic insights for tailored drug design in tuberculosis. Sci Rep 2024; 14:10904. [PMID: 38740859 PMCID: PMC11091173 DOI: 10.1038/s41598-024-61752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, ranks among the top causes of global human mortality, as reported by the World Health Organization's 2022 TB report. The prevalence of M. tuberculosis strains that are multiple and extensive-drug resistant represents a significant barrier to TB eradication. Fortunately, having many completely sequenced M. tuberculosis genomes available has made it possible to investigate the species pangenome, conduct a pan-phylogenetic investigation, and find potential new drug targets. The 442 complete genome dataset was used to estimate the pangenome of M. tuberculosis. This study involved phylogenomic classification and in-depth analyses. Sequential filters were applied to the conserved core genome containing 2754 proteins. These filters assessed non-human homology, virulence, essentiality, physiochemical properties, and pathway analysis. Through these intensive filtering approaches, promising broad-spectrum therapeutic targets were identified. These targets were docked with FDA-approved compounds readily available on the ZINC database. Selected highly ranked ligands with inhibitory potential include dihydroergotamine and abiraterone acetate. The effectiveness of the ligands has been supported by molecular dynamics simulation of the ligand-protein complexes, instilling optimism that the identified lead compounds may serve as a robust basis for the development of safe and efficient drugs for TB treatment, subject to further lead optimization and subsequent experimental validation.
Collapse
Affiliation(s)
- Muhammad Fayaz Khan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, KP, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, KP, Pakistan
| | - Hafiz Muhammad Hammad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Maaz Waseem
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Yurong Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Taane G Clark
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | - Abdul Jabbar
- Department of Medical Laboratory Technology, The University of Haripur, Haripur, KP, Pakistan.
| |
Collapse
|
10
|
Bhoye MR, Shinde A, Shaikh ALN, Shisode V, Chavan A, Maliwal D, Pissurlenkar RRS, Mhaske PC. New thiazolyl-isoxazole derivatives as potential anti-infective agents: design, synthesis, in vitro and in silico antimicrobial efficacy. J Biomol Struct Dyn 2024:1-15. [PMID: 38258445 DOI: 10.1080/07391102.2024.2306497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Antimicrobial resistance threatens the efficacious prevention and treatment of infectious diseases caused by microorganisms. To combat microbial infections, the need for new drug candidates is essential. In this context, the design, synthesis, antimicrobial screening, and in silico study of a new series of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) have been reported. The structure of new compounds was confirmed by spectrometric methods. Compounds 9a-t were evaluated for in vitro antitubercular and antimicrobial activity. Against M. tuberculosis H37Rv, fourteen compounds showed good to excellent antitubercular activity with MIC 2.01-9.80 µM. Compounds 9a, 9b, and 9r showed four-fold more activity than the reference drug isoniazid. Nine compounds, 9a, 9b, 9d, 9e, 9i, 9q, 9r, 9s, and 9t, showed good antibacterial activity against E. coli with MIC 7.8-15.62 µg/mL. Against A. niger, four compounds showed good activity with MIC 31.25 µg/mL. Against C. albicans, all twenty compounds reported excellent to good activity with MIC 7.8-31.25 µg/mL. Compounds 9c-e, 9g-j, and 9q-t showed comparable activity concerning the reference drug fluconazole. The compounds 9a-t were screened for cytotoxicity against 3t3l1 cell lines and found to be less or non-cytotoxic. The in silico study exposed that these compounds displayed high affinity towards the M. tuberculosis targets PanK, DprE1, DHFR, PknA, KasA, and Pks13, and C. albicans targets NMT, CYP51, and CS. The compound 9r was evaluated for structural dynamics and molecular dynamics simulations. The potent antitubercular and antimicrobial activity of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) derivatives has recommended that these compounds could assist in treating microbial infections.
Collapse
Affiliation(s)
- Manish R Bhoye
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
- Department of Chemistry, S.N Arts, D.J.M. Commerce and B.N.S. Science College, Sangamner, India
| | - Abhijit Shinde
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Abdul Latif N Shaikh
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
- Department of Chemistry, Jijamata College of Science and Arts, Bhende, India
| | - Vilas Shisode
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Abhijit Chavan
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| | - Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | | | - Pravin C Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Pune, India
| |
Collapse
|
11
|
Verma A, Naik B, Kumar V, Mishra S, Choudhary M, Khan JM, Gupta AK, Pandey P, Rustagi S, Kakati B, Gupta S. Revolutionizing Tuberculosis Treatment: Uncovering New Drugs and Breakthrough Inhibitors to Combat Drug-Resistant Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2369-2385. [PMID: 37944023 DOI: 10.1021/acsinfecdis.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, UP, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchur 788011, Assam, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, U.K., India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| |
Collapse
|
12
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
13
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
14
|
Sahoo SK, Ommi O, Maddipatla S, Singh P, Ahmad MN, Kaul G, Nanduri S, Dasgupta A, Chopra S, Yaddanapudi VM. Isoxazole carboxylic acid methyl ester-based urea and thiourea derivatives as promising antitubercular agents. Mol Divers 2023; 27:2037-2052. [PMID: 36282413 PMCID: PMC9592870 DOI: 10.1007/s11030-022-10543-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/28/2022] [Indexed: 11/01/2022]
Abstract
In our continued efforts to find potential chemotherapeutics active against drug-resistant (DR) Mycobacterium tuberculosis (Mtb), causative agent of Tuberculosis (TB) and to curb the current burdensome treatment regimen, herein we describe the synthesis and biological evaluation of urea and thiourea variants of 5-phenyl-3-isoxazolecarboxylic acid methyl esters as promising anti-TB agent. Majority of the tested compounds displayed potent in vitro activity not only against drug-susceptible (DS) Mtb H37Rv but also against drug-resistant (DR) Mtb. Cell viability test against Vero cells deemed these compounds devoid of significant toxicity. 3,4-Dichlorophenyl derivative (MIC 0.25 µg/mL) and 4-chlorophenyl congener (MIC 1 µg/mL) among urea and thiourea libraries respectively exhibited optimum potency. Lead optimization resulted in the identification of 1,4-linked analogue of 3,4-dichlorophenyl urea derivative demonstrating improved selectivity. Further, in silico study complemented with previously proposed prodrug like attributes of isoxazole esters. Taken together, this molecular hybridization approach presents a new chemotype having potential to be translated into an alternate anti-Mtb agent.
Collapse
Affiliation(s)
- Santosh Kumar Sahoo
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Ojaswitha Ommi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Sarvan Maddipatla
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Priti Singh
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Mohammad Naiyaz Ahmad
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India
| | - Arunava Dasgupta
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.
- AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
15
|
Irfan A, Faisal S, Zahoor AF, Noreen R, Al-Hussain SA, Tuzun B, Javaid R, Elhenawy AA, Zaki MEA, Ahmad S, Abdellattif MH. In Silico Development of Novel Benzofuran-1,3,4-Oxadiazoles as Lead Inhibitors of M. tuberculosis Polyketide Synthase 13. Pharmaceuticals (Basel) 2023; 16:829. [PMID: 37375776 PMCID: PMC10303075 DOI: 10.3390/ph16060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Benzofuran and 1,3,4-oxadiazole are privileged and versatile heterocyclic pharmacophores which display a broad spectrum of biological and pharmacological therapeutic potential against a wide variety of diseases. This article reports in silico CADD (computer-aided drug design) and molecular hybridization approaches for the evaluation of the chemotherapeutic efficacy of 16 S-linked N-phenyl acetamide moiety containing benzofuran-1,3,4-oxadiazole scaffolds BF1-BF16. This virtual screening was carried out to discover and assess the chemotherapeutic efficacy of BF1-BF16 structural motifs as Mycobacterium tuberculosis polyketide synthase 13 (Mtb Pks13) enzyme inhibitors. The CADD study results revealed that the benzofuran clubbed oxadiazole derivatives BF3, BF4, and BF8 showed excellent and remarkably significant binding energies against the Mtb Pks13 enzyme comparable with the standard benzofuran-based TAM-16 inhibitor. The best binding affinity scores were displayed by 1,3,4-oxadiazoles-based benzofuran scaffolds BF3 (-14.23 kcal/mol), BF4 (-14.82 kcal/mol), and BF8 (-14.11 kcal/mol), in comparison to the binding affinity score of the standard reference TAM-16 drug (-14.61 kcal/mol). 2,5-Dimethoxy moiety-based bromobenzofuran-oxadiazole derivative BF4 demonstrated the highest binding affinity score amongst the screened compounds, and was higher than the reference Pks13 inhibitor TAM-16 drug. The bindings of these three leads BF3, BF4, and BF8 were further confirmed by the MM-PBSA investigations in which they also exhibited strong bindings with the Pks13 of Mtb. Moreover, the stability analysis of these benzofuran-1,3,4-oxadiazoles in the active sites of the Pks13 enzyme was achieved through molecular dynamic (MD) simulations at 250 ns virtual simulation time, which indicated that these three in silico predicted bio-potent benzofuran tethered oxadiazole molecules BF3, BF4, and BF8 demonstrated stability with the active site of the Pks13 enzyme.
Collapse
Affiliation(s)
- Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.J.)
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan;
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.J.)
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia;
| | - Burak Tuzun
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas 58140, Turkey;
| | - Rakshanda Javaid
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.J.)
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
- Chemistry Department, Faculty of Science and Art, AlBaha University, Mukhwah, Al Bahah 65731, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13623, Saudi Arabia;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
16
|
Sau S, Roy A, Agnivesh PK, Kumar S, Guru SK, Sharma S, Kalia NP. Unravelling the flexibility of Mycobacterium tuberculosis: an escape way for the bacilli. J Med Microbiol 2023; 72. [PMID: 37261969 DOI: 10.1099/jmm.0.001695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The persistence of Mycobacterium tuberculosis makes it difficult to eradicate the associated infection from the host. The flexible nature of mycobacteria and their ability to adapt to adverse host conditions give rise to different drug-tolerant phenotypes. Granuloma formation restricts nutrient supply, limits oxygen availability and exposes bacteria to a low pH environment, resulting in non-replicating bacteria. These non-replicating mycobacteria, which need high doses and long exposure to anti-tubercular drugs, are the root cause of lengthy chemotherapy. Novel strategies, which are effective against non-replicating mycobacteria, need to be adopted to shorten tuberculosis treatment. This not only will reduce the treatment time but also will help prevent the emergence of multi-drug-resistant strains of mycobacteria.
Collapse
Affiliation(s)
- Shashikanta Sau
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Arnab Roy
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sunil Kumar
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab -144411, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
17
|
Hegde P, Orimoloye MO, Sharma S, Engelhart CA, Schnappinger D, Aldrich CC. Polyfluorinated salicylic acid analogs do not interfere with siderophore biosynthesis. Tuberculosis (Edinb) 2023; 140:102346. [PMID: 37119793 PMCID: PMC10247463 DOI: 10.1016/j.tube.2023.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is a leading cause of infectious disease mortality. The salicylic acid derived small molecule siderophores known as mycobactins are essential in vivo for iron acquisition of Mtb where iron is restricted in the host. Herein, we synthesize and explore the mechanism of action of polyfluorinated salicylic acid derivates, which were previously reported to possess potent antimycobacterial activity. We hypothesized fluorinated salicylic acid derivates may inhibit mycobactin biosynthesis through initial bioactivation and conversion to downstream metabolites that block late steps in assembly of the mycobactins. Enzymatic studies demonstrated that some of the fluorinated salicylic acid derivatives compounds were readily activated by the bifunctional adenylating enzyme MbtA, responsible for incorporation of salicylic acid into the mycobactin biosynthetic pathway; however, they did not inhibit mycobactin biosynthesis as confirmed by LS-MS/MS using an authentic synthetic mycobactin standard. Further mechanistic analysis of the most active derivative (Sal-4) using an MbtA-overexpressing Mtb strain as well as complementation studies with iron and salicylic acid revealed Sal-4 cannot be antagonized by overexpression of MbtA or through supplementation with iron or salicylic acid. Taken together, our results indicate the observed antimycobacterial activity of polyfluorinated salicylic acid derivative is independent of mycobactin biosynthesis.
Collapse
Affiliation(s)
- Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10021, USA.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Sharma S, Jayasinghe YP, Mishra NK, Orimoloye MO, Wong TY, Dalluge JJ, Ronning DR, Aldrich CC. Structural and Functional Characterization of Mycobacterium tuberculosis Homoserine Transacetylase. ACS Infect Dis 2023; 9:540-553. [PMID: 36753622 DOI: 10.1021/acsinfecdis.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) lacking functional homoserine transacetylase (HTA) is compromised in methionine biosynthesis, protein synthesis, and in the activity of multiple essential S-adenosyl-l-methionine-dependent enzymes. Additionally, deficient mutants are further disarmed by the toxic accumulation of lysine due to a redirection of the metabolic flux toward the lysine biosynthetic pathway. Studies with deletion mutants and crystallographic studies of the apoenzyme have, respectively, validated Mtb HTA as an essential enzyme and revealed a ligandable binding site. Seeking a mechanistic characterization of this enzyme, we report crucial structural details and comprehensive functional characterization of Mtb HTA. Crystallographic and mass spectral observation of the acetylated HTA intermediate and initial velocity studies were consistent with a ping-pong kinetic mechanism. Wild-type HTA and its site-directed mutants were kinetically characterized with a panel of natural and alternative substrates to understand substrate specificity and identify critical residues for catalysis. Titration experiments using fluorescence quenching showed that both substrates─acetyl-CoA and l-homoserine─engage in a strong and weak binding interaction with HTA. Additionally, substrate inhibition by acetyl-CoA and product inhibition by CoA and O-acetyl-l-homoserine were proposed to form the basis of a feedback regulation mechanism. By furnishing key mechanistic and structural information, these studies provide a foundation for structure-based design efforts around this attractive Mtb target.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yahani P Jayasinghe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Neeraj Kumar Mishra
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tsung-Yun Wong
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph J Dalluge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Kumar G, Kapoor S. Targeting mycobacterial membranes and membrane proteins: Progress and limitations. Bioorg Med Chem 2023; 81:117212. [PMID: 36804747 DOI: 10.1016/j.bmc.2023.117212] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Among the various bacterial infections, tuberculosis continues to hold center stage. Its causative agent, Mycobacterium tuberculosis, possesses robust defense mechanisms against most front-line antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. It is now well-established that bacteria change their membrane composition to optimize their environment to survive and elude drug action. Thus targeting membrane or membrane components is a promising avenue for exploiting the chemical space focussed on developing novel membrane-centric anti-bacterial small molecules. These approaches are more effective, non-toxic, and can attenuate resistance phenotype. We present the relevance of targeting the mycobacterial membrane as a practical therapeutic approach. The review highlights the direct and indirect targeting of membrane structure and function. Direct membrane targeting agents cause perturbation in the membrane potential and can cause leakage of the cytoplasmic contents. In contrast, indirect membrane targeting agents disrupt the function of membrane-associated proteins involved in cell wall biosynthesis or energy production. We discuss the chronological chemical improvements in various scaffolds targeting specific membrane-associated protein targets, their clinical evaluation, and up-to-date account of their ''mechanisms of action, potency, selectivity'' and limitations. The sources of anti-TB drugs/inhibitors discussed in this work have emerged from target-based identification, cell-based phenotypic screening, drug repurposing, and natural products. We believe this review will inspire the exploration of uncharted chemical space for informing the development of new scaffolds that can inhibit novel mycobacterial membrane targets.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Departemnt of Natural Products, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad 500037, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India; Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan.
| |
Collapse
|
20
|
Gupta S, Kumawat S, Fatima Z, Priya, Chatterjee S. Quantitative analysis of the bioenergetics of Mycobacterium tuberculosis along with Glyoxylate cycle as a drug target under inhibition of enzymes using Petri net. Comput Biol Chem 2023; 104:107828. [PMID: 36893566 DOI: 10.1016/j.compbiolchem.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
The bacteria Mycobacterium tuberculosis is responsible for the infectious disease Tuberculosis. Targeting the tubercule bacteria is an important challenge in developing the antimycobacterials. The glyoxylate cycle is considered as a potential target for the development of anti-tuberculosis agents, due to its absence in the humans. Humans only possess tricarboxylic acid cycle, while this cycle gets connected to glyoxylate cycle in microbes. Glyoxylate cycle is essential to the Mycobacterium for its growth and survival. Due to this reason, it is considered as a potential therapeutic target for the development of anti-tuberculosis agents. Here, we explore the effect on the behavior of the tricarboxylic acid cycle, glyoxylate cycle and their integrated pathway with the bioenergetics of the Mycobacterium, under the inhibition of key glyoxylate cycle enzymes using Continuous Petri net. Continuous Petri net is a special Petri net used to perform the quantitative analysis of the networks. We first study the tricarboxylic acid cycle and glyoxylate cycle of the tubercule bacteria by simulating its Continuous Petri net model under different scenarios. Both the cycles are then integrated with the bioenergetics of the bacteria and the integrated pathway is again simulated under different conditions. The simulation graphs show the metabolic consequences of inhibiting the key glyoxylate cycle enzymes and adding the uncouplers on the individual as well as integrated pathway. The uncouplers that inhibit the synthesis of adenosine triphosphate, play an important role as anti-mycobacterials. The simulation study done here validates the proposed Continuous Petri net model as compared with the experimental outcomes and also explains the consequences of the enzyme inhibition on the biochemical reactions involved in the metabolic pathways of the mycobacterium.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Mathematics, Faculty of Science, Shree Guru Gobind Singh Tricentenary University, Gurugram, India; Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| | - Sunita Kumawat
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| | - Zeeshan Fatima
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia; Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India.
| | - Priya
- Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, India.
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health science and Technology Institute, Faridabad, India.
| |
Collapse
|
21
|
Baliram Gaikwad N, Kumar Sahoo S, Ommi O, Naiyaz Ahmad M, Pathan A, Kaul G, Nanduri S, Dasgupta A, Chopra S, Madhavi Yaddanapudi V. Identification of 1,3‐Substituted Pyrazole‐Based Carboxamide Derivatives as Potent Antitubercular Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202203333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nikhil Baliram Gaikwad
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Santosh Kumar Sahoo
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Ojaswitha Ommi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Mohammad Naiyaz Ahmad
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031, UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Afroz Pathan
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Grace Kaul
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031, UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srinivas Nanduri
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031, UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology CSIR-Central Drug Research Institute Sector 10, Janakipuram Extension Sitapur Road Lucknow 226031, UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037, Telangana India
| |
Collapse
|
22
|
Singh N, Sharma N, Singh P, Pandey M, Ilyas M, Sisodiya L, Choudhury T, Gosain TP, Singh R, Atmakuri K. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Front Microbiol 2022; 13:937970. [PMID: 36071978 PMCID: PMC9441915 DOI: 10.3389/fmicb.2022.937970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
To survive and establish its niche, Mycobacterium tuberculosis (Mtb) engages in a steady battle against an array of host defenses and a barrage of antibiotics. Here, we demonstrate that Mtb employs HupB, a nucleoid-associated protein (NAP) as its key player to simultaneously battle and survive in these two stress-inducing fronts. Typically, NAPs are key to bacterial survival under a wide array of environmental or host-mediated stresses. Here, we report that for Mtb to survive under different macrophage-induced assaults including acidic pH, nutrient depletion, oxidative and nitrosative stresses, HupB presence is critical. As expected, the hupB knockout mutant is highly sensitive to these host-mediated stresses. Furthermore, Mtb aptly modulates HupB protein levels to overcome these stresses. We also report that HupB aids Mtb to gain tolerance to high levels of rifampicin (RIF) and isoniazid (INH) exposure. Loss of hupB makes Mtb highly susceptible to even short exposures to reduced amounts of RIF and INH. Overexpressing hupB in Mtb or complementing hupB in the hupB knockout mutant triggers enhanced survival of Mtb under these stresses. We also find that upon loss of hupB, Mtb significantly enhances the permeability of its cell wall by modulating the levels of several surface lipids including phthiocerol dimycocerosates (PDIMs), thus possibly influencing overall susceptibility to host-mediated stresses. Loss of hupB also downregulates efflux pump expression possibly influencing increased susceptibility to INH and RIF. Finally, we find that therapeutic targeting of HupB with SD1, a known small molecule inhibitor, significantly enhances Mtb susceptibility to INH and THP-1 macrophages and significantly reduces MIC to INH. Thus, our data strongly indicate that HupB is a highly promising therapeutic target especially for potential combinatorial shortened therapy with reduced INH and RIF doses.
Collapse
Affiliation(s)
- Niti Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Manipal University, Manipal, Karnataka, India
| | - Nishant Sharma
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Department of Life Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Mohd Ilyas
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lovely Sisodiya
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tejaswini Choudhury
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tannu Priya Gosain
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramandeep Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Krishnamohan Atmakuri
| |
Collapse
|
23
|
Synthesis and Assessment of the In Vitro and Ex Vivo Activity of Salicylate Synthase (Mbti) Inhibitors as New Candidates for the Treatment of Mycobacterial Infections. Pharmaceuticals (Basel) 2022; 15:ph15080992. [PMID: 36015139 PMCID: PMC9413995 DOI: 10.3390/ph15080992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculosis (TB) causes millions of deaths every year, ranking as one of the most dangerous infectious diseases worldwide. Because several pathogenic strains of M. tuberculosis (Mtb) have developed resistance against most of the established anti-TB drugs, new therapeutic options are urgently needed. An attractive target for the development of new anti-TB agents is the salicylate synthase MbtI, the first enzyme of the mycobacterial siderophore biochemical machinery, absent in human cells. In this work, a set of analogues of 5-(3-cyanophenyl)furan-2-carboxylic acid (I), the most potent MbtI inhibitor identified to date, was synthesized, characterized, and tested to further elucidate the structural requirements for achieving an efficient MbtI inhibition and potent antitubercular activity. The structure–activity relationships (SAR) discussed herein evidenced the importance of the side chain linked to the phenyl moiety to improve the in vitro antimycobacterial activity. In detail, 1f emerged as the most effective analogue against the pathogen, acting without cytotoxicity issues. To deepen the understanding of its mechanism of action, we established a fluorescence-based screening test to quantify the pathogen infectivity within host cells, using MPI-2 murine cells, a robust surrogate for alveolar macrophages. The set-up of the new assay demonstrates significant potential to accelerate the discovery of new anti-TB drugs.
Collapse
|
24
|
Reddy DS, Sinha A, Kumar A, Saini VK. Drug re-engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch Pharm (Weinheim) 2022; 355:e2200214. [PMID: 35841594 DOI: 10.1002/ardp.202200214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of tuberculosis (TB) remains the leading cause of death from a single infectious agent, ranking it above all other contagious diseases. The problem to tackle this disease seems to become even worse due to the outbreak of SARS-CoV-2. Further, the complications related to drug-resistant TB, prolonged treatment regimens, and synergy between TB and HIV are significant drawbacks. There are several drugs to treat TB, but there is still no rapid and accurate treatment available. Intensive research is, therefore, necessary to discover newer molecular analogs that can probably eliminate this disease within a short span. An increase in efficacy can be achieved through re-engineering old TB-drug families and repurposing known drugs. These two approaches have led to the production of newer classes of compounds with novel mechanisms to treat multidrug-resistant strains. With respect to this context, we discuss structural aspects of developing new anti-TB drugs as well as examine advances in TB drug discovery. It was found that the fluoroquinolone, oxazolidinone, and nitroimidazole classes of compounds have greater potential to be further explored for TB drug development. Most of the TB drug candidates in the clinical phase are modified versions of these classes of compounds. Therefore, here we anticipate that modification or repurposing of these classes of compounds has a higher probability to reach the clinical phase of drug development. The information provided will pave the way for researchers to design and identify newer molecular analogs for TB drug development and also broaden the scope of exploring future-generation potent, yet safer anti-TB drugs.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Anamika Sinha
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Vipin K Saini
- Materials and Environmental Chemistry Research Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, India
| |
Collapse
|
25
|
Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis. Eur J Med Chem 2022; 239:114531. [PMID: 35759907 DOI: 10.1016/j.ejmech.2022.114531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022]
Abstract
Isoniazid is a cornerstone of modern tuberculosis (TB) therapy and targets the enoyl ACP reductase InhA, a key enzyme in mycolic acid biosynthesis. InhA is still a promising target for the development of new anti-TB drugs. Herein, we report the design, synthesis, and anti-tubercular activity of new isoniazid hybrids. Among these, 1H-1,2,3 triazole-tethered quinoline-isoniazid conjugates 16a to 16g exhibited high activity against Mycobacterium tuberculosis with minimal inhibitory concentrations in the 0.25-0.50 μg/mL range and were bactericidal in vitro. Importantly, these compounds were well tolerated at high doses on mammalian cells, leading to high selectivity indices. The hybrids were dependent on functional KatG production to inhibit mycolic acid biosynthesis. Moreover, overexpression of InhA in M. tuberculosis resulted in high resistance levels to 16a-16g and reduced mycolic acid biosynthesis inhibition, similar to isoniazid. Overall, these findings suggest that the synthesized quinoline-isoniazid hybrids are promising anti-tubercular molecules, which require further pre-clinical evaluation.
Collapse
|
26
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
27
|
Kumar N, Garg P. Probing the Molecular Basis of Cofactor Affinity and Conformational Dynamics of Mycobacterium tuberculosis Elongation Factor Tu: An Integrated Approach Employing Steered Molecular Dynamics and Umbrella Sampling Simulations. J Phys Chem B 2022; 126:1447-1461. [PMID: 35167282 DOI: 10.1021/acs.jpcb.1c09438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of multidrug-resistant and extensively drug-resistant tuberculosis strains is the reason that the infectious tuberculosis pathogen is still the most common cause of death. The quest for new antitubercular drugs that can fit into multidrug regimens, function swiftly, and overcome the ever-increasing prevalence of drug resistance continues. The crucial role of MtbEF-Tu in translation and trans-translation processes makes it an excellent target for antitubercular drug design. In this study, the primary sequence of MtbEF-Tu was used to model the three-dimensional structures of MtbEF-Tu in the presence of GDP ("off" state) and GTP ("on" state). The binding free energy computed using both the molecular mechanics/Poisson-Boltzmann surface area and umbrella sampling approaches shows that GDP binds to MtbEF-Tu with an ∼2-fold affinity compared to GTP. The steered molecular dynamics (SMD) and umbrella sampling simulation also shows that the dissociation of GDP from MtbEF-Tu in the presence of Mg2+ is a thermodynamically intensive process, while in the absence of Mg2+, the destabilized GDP dissociates very easily from the MtbEF-Tu. Naturally, the dissociation of Mg2+ from the MtbEF-Tu is facilitated by the nucleotide exchange factor EF-Ts, and this prior release of magnesium makes the dissociation process of destabilized GDP easy, similar to that observed in the umbrella sampling and SMD study. The MD simulations of MtbEF-Tu's "on" state conformation in the presence of GTP reveal that the secondary structure of switch-I and Mg2+ coordination network remains similar to its template despite the absence of identity in the conserved region of switch-I. On the other hand, the secondary structure in the conserved region of the switch-I of MtbEF-Tu unwinds from a helix to a loop in the presence of GDP. The major conformational changes observed in switch-I and the movement of Thr64 away from Mg2+ mainly reflect essential conformational changes to make the shift of MtbEF-Tu's "on" state to the "off" state in the presence of GDP. These obtained structural and functional insights into MtbEF-Tu are pivotal for a better understanding of structural-functional linkages of MtbEF-Tu, and these findings may serve as a basis for the design and development of MtbEF-Tu-specific inhibitors.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar 160062, Punjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|
28
|
Perveen S, Kumari D, Singh K, Sharma R. Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance. Eur J Med Chem 2022; 229:114066. [PMID: 34973508 DOI: 10.1016/j.ejmech.2021.114066] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023]
Abstract
The emergence of drug resistance continues to afflict TB control where drug resistant strains have become a global health concern. Contrary to drug-sensitive TB, the treatment of MDR/XDR-TB is more complicated requiring the administration of second-line drugs that are inefficient than the first line drugs and are associated with greater side effects. The emergence of drug resistant Mtb strains had coincided with an innovation void in the field of drug discovery of anti-mycobacterials. However, the approval of bedaquiline and delamanid recently for use in MDR/XDR-TB has given an impetus to the TB drug discovery. The review discusses the drug discovery efforts in the field of tuberculosis with a focus on the strategies adopted and challenges confronted by TB research community. Here, we discuss the diverse clinical candidates in the current TB drug discovery pipeline. There is an urgent need to combat the current TB menace through multidisciplinary approaches and strategies making use of the recent advances in understanding the molecular biology and pathogenesis of Mtb. The review highlights the recent advances in drug discovery, with the host directed therapeutics and nanoparticles-drug delivery coming up as important tools to fight tuberculosis in the future.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diksha Kumari
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
29
|
Ramesh D, Sarkar D, Joji A, Singh M, Mohanty AK, G Vijayakumar B, Chatterjee M, Sriram D, Muthuvel SK, Kannan T. First-in-class pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones against leishmaniasis and tuberculosis: Rationale, in vitro, ex vivo studies and mechanistic insights. Arch Pharm (Weinheim) 2022; 355:e2100440. [PMID: 35106845 DOI: 10.1002/ardp.202100440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022]
Abstract
Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones were synthesized, for the first time, from indole chalcones and 6-aminouracil, and their ability to inhibit leishmaniasis and tuberculosis (Tb) infections was evaluated. The in vitro antileishmanial activity against promastigotes of Leishmania donovani revealed exceptional activities of compounds 3, 12 and 13, with IC50 values ranging from 10.23 ± 1.50 to 15.58 ± 1.67 µg/ml, which is better than the IC50 value of the standard drug pentostam of 500 μg/ml. The selectivity of the compounds towards Leishmania parasites was evaluated via ex vivo studies in Swiss albino mice. The efficiency of these compounds against Tb infection was then evaluated using the in vitro anti-Tb microplate Alamar Blue assay. Five compounds, 3, 7, 8, 9 and 12, showed MIC100 values against the Mycobacterium tuberculosis H37 Rv strain at 25 µg/ml, and compound 20 yielded an MIC100 value of 50 µg/ml. Molecular modelling of these compounds highlighted interactions with binding sites of dihydrofolate reductase, pteridine reductase and thymidylate kinase, thus establishing the rationale of their pharmacological activity against both pathogens, which is consistent with the in vitro results. From the above results, it is clear that compounds 3 and 12 are promising lead candidates for Leishmania and Mycobacterium infections and may be promising for coinfections.
Collapse
Affiliation(s)
- Deepthi Ramesh
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Deblina Sarkar
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Annu Joji
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, India
| | - Monica Singh
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Amaresh K Mohanty
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | | - Mitali Chatterjee
- Department of Pharmacology, Institute of Post Graduate Medical Education & Research (IPGME&R), Kolkata, West Bengal, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Hyderabad, India
| | - Suresh K Muthuvel
- Department of Bioinformatics, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
30
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
31
|
Li L, Koirala B, Hernandez Y, MacIntyre LW, Ternei MA, Russo R, Brady SF. Identification of structurally diverse menaquinone-binding antibiotics with in vivo activity against multidrug-resistant pathogens. Nat Microbiol 2022; 7:120-131. [PMID: 34949828 PMCID: PMC8732328 DOI: 10.1038/s41564-021-01013-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
The emergence of multidrug-resistant bacteria poses a threat to global health and necessitates the development of additional in vivo active antibiotics with diverse modes of action. Directly targeting menaquinone (MK), which plays an important role in bacterial electron transport, is an appealing, yet underexplored, mode of action due to a dearth of MK-binding molecules. Here we combine sequence-based metagenomic mining with a motif search of bioinformatically predicted natural product structures to identify six biosynthetic gene clusters that we predicted encode MK-binding antibiotics (MBAs). Their predicted products (MBA1-6) were rapidly accessed using a synthetic bioinformatic natural product approach, which relies on bioinformatic structure prediction followed by chemical synthesis. Among these six structurally diverse MBAs, four make up two new MBA structural families. The most potent member of each new family (MBA3, MBA6) proved effective at treating methicillin-resistant Staphylococcus aureus infection in a murine peritonitis-sepsis model. The only conserved feature present in all MBAs is the sequence 'GXLXXXW', which we propose represents a minimum MK-binding motif. Notably, we found that a subset of MBAs were active against Mycobacterium tuberculosis both in vitro and in macrophages. Our findings suggest that naturally occurring MBAs are a structurally diverse and untapped class of mechanistically interesting, in vivo active antibiotics.
Collapse
Affiliation(s)
- Lei Li
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Bimal Koirala
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Yozen Hernandez
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Logan W MacIntyre
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Melinda A Ternei
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA
| | - Riccardo Russo
- Department of Medicine, Center for Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
32
|
Knudsen Dal NJ, Speth M, Johann K, Barz M, Beauvineau C, Wohlmann J, Fenaroli F, Gicquel B, Griffiths G, Alonso-Rodriguez N. The zebrafish embryo as an in vivo model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds. Dis Model Mech 2022; 15:dmm049147. [PMID: 34842273 PMCID: PMC8807572 DOI: 10.1242/dmm.049147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022] Open
Abstract
With the increasing emergence of drug-resistant Mycobacterium tuberculosis strains, new and effective antibiotics against tuberculosis (TB) are urgently needed. However, the high frequency of poorly water-soluble compounds among hits in high-throughput drug screening campaigns is a major obstacle in drug discovery. Moreover, in vivo testing using conventional animal TB models, such as mice, is time consuming and costly, and represents a major bottleneck in lead compound discovery and development. Here, we report the use of the zebrafish embryo TB model for evaluating the in vivo toxicity and efficacy of five poorly water-soluble nitronaphthofuran derivatives, which were recently identified as possessing anti-TB activity in vitro. To aid solubilization, compounds were formulated in biocompatible polymeric micelles (PMs). Three of the five PM-formulated nitronaphthofuran derivatives showed low toxicity in vivo, significantly reduced bacterial burden and improved survival in infected zebrafish embryos. We propose the zebrafish embryo TB-model as a quick and sensitive tool for evaluating the in vivo toxicity and efficacy of new anti-TB compounds during early stages of drug development. Thus, this model is well suited for pinpointing promising compounds for further development.
Collapse
Affiliation(s)
- Nils-Jørgen Knudsen Dal
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Martin Speth
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Kerstin Johann
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Matthias Barz
- Department of Chemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Center for Drug Research (LACDR), Leiden University, 2333 Leiden, The Netherlands
| | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, F-91405 Orsay, France
| | - Jens Wohlmann
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Federico Fenaroli
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Dep Génomes and Génétique, Institute Pasteur, 75015 Paris, France
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease Control, 518054 Shenzhen, China
| | - Gareth Griffiths
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Noelia Alonso-Rodriguez
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
33
|
Han J, Liu X, Zhang L, Quinn RJ, Feng Y. Anti-mycobacterial natural products and mechanisms of action. Nat Prod Rep 2021; 39:77-89. [PMID: 34226909 DOI: 10.1039/d1np00011j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to June, 2020Tuberculosis (TB) continues to be a major disease with high mortality and morbidity globally. Drug resistance and long duration of treatment make antituberculosis drug discovery more challenging. In this review, we summarize recent advances on anti-TB natural products (NPs) and their potential molecular targets in cell wall synthesis, protein production, energy generation, nucleic acid synthesis and other emerging areas. We highlight compounds with activity against drug-resistant TB, and reveal several novel targets including Mtb biotin synthase, ATP synthase, 1,4-dihydroxy-2-naphthoate prenyltransferase and biofilms. These anti-TB NPs and their targets could facilitate target-based screening and accelerate TB drug discovery.
Collapse
Affiliation(s)
- Jianying Han
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Yunjiang Feng
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
34
|
Evans JC, Murugesan D, Post JM, Mendes V, Wang Z, Nahiyaan N, Lynch SL, Thompson S, Green SR, Ray PC, Hess J, Spry C, Coyne AG, Abell C, Boshoff HIM, Wyatt PG, Rhee KY, Blundell TL, Barry CE, Mizrahi V. Targeting Mycobacterium tuberculosis CoaBC through Chemical Inhibition of 4'-Phosphopantothenoyl-l-cysteine Synthetase (CoaB) Activity. ACS Infect Dis 2021; 7:1666-1679. [PMID: 33939919 PMCID: PMC8205227 DOI: 10.1021/acsinfecdis.0c00904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.
Collapse
Affiliation(s)
- Joanna C. Evans
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Dinakaran Murugesan
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - John M. Post
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Vitor Mendes
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Zhe Wang
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Navid Nahiyaan
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Sasha L. Lynch
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Stephen Thompson
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Simon R. Green
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Peter C. Ray
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Jeannine Hess
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christina Spry
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Anthony G. Coyne
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chris Abell
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Paul G. Wyatt
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Kyu Y. Rhee
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Tom L. Blundell
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Clifton E. Barry
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Valerie Mizrahi
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
35
|
Calsavara LL, Hegeto LA, Sampiron EG, Costacurta GF, Murase LS, Souza JV, de Almeida AL, de S Santos NC, Siqueira VL, de L Scodro RB, Cardoso RF, Caleffi-Ferracioli KR. Rescue of streptomycin activity by piperine in Mycobacterium tuberculosis. Future Microbiol 2021; 16:623-633. [PMID: 34098743 DOI: 10.2217/fmb-2020-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the modulatory effect of piperine (PIP) on streptomycin (SM) activity in Mycobacterium tuberculosis (Mtb). Materials & methods: SM and PIP minimum inhibitory concentration (MIC) and combinatory activity were determined in Mtb H37Rv and in susceptible and resistant clinical isolates. Ethidium bromide accumulation assay and relative quantification of efflux pumps genes (rv1258c, rv1218c and rv2942), after SM and SM+PIP combination exposure, were also performed. Results: PIP concentration of 25 μg/ml (1/4× MIC) was able to inhibit efflux pumps activity, to modulate SM activity in Mtb, and conducted changes in the relative quantification of efflux pumps genes. Conclusion: SM+PIP combination was able to rescue the SM-susceptible MIC values in SM-resistant Mtb.
Collapse
Affiliation(s)
- Leonora L Calsavara
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Laíse A Hegeto
- Postgraduate Program in Health Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Eloisa G Sampiron
- Postgraduate Program in Health Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Giovana F Costacurta
- Postgraduate Program in Health Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Letícia S Murase
- Postgraduate Program in Health Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - João Vp Souza
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Aryadne L de Almeida
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Nathally C de S Santos
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Vera Ld Siqueira
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Regiane B de L Scodro
- Postgraduate Program in Health Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Postgraduate Program in Health Sciences, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| | - Katiany R Caleffi-Ferracioli
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringá (UEM), Maringá, Paraná, Brazil.,Department of Clinical Analysis & Biomedicine, Laboratory of Medical Bacteriology, State University of Maringa, Parana, Brazil
| |
Collapse
|
36
|
Solcia MC, Campos DL, Grecco JA, Paiva Silva CS, Bento da Silva P, Cristiane da Silva I, Balduino da Silva AP, Silva J, Oda FB, Gonzaga Dos Santos A, Pavan FR. Growth-inhibitory effects of tris-(1,10-phenanthroline) iron (II) against Mycobacterium tuberculosis in vitro and in vivo. Tuberculosis (Edinb) 2021; 128:102087. [PMID: 34022507 DOI: 10.1016/j.tube.2021.102087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis is the major etiological agent for tuberculosis (TB), which is the leading cause of single pathogen infection-related deaths worldwide. The End TB Strategy of the World Health Organization aimed to decrease the incidence of TB by 20% between 2015 and 2020, which was not achieved. Here, the growth-inhibitory effects of tris-(1,10-phenanthroline) iron (II) complex ([Fe(phen)3]2+), a known commercially available cheap chemical substance, were examined. The best in vitro results showed great activity with MIC ranging from 0.77 to 3.06 μM against clinical strains and at low pH (mimicking the granuloma) with MIC of 0.21 μM. Preliminary safety analysis revealed that the complex did not exhibit cytotoxic activity against different cell lines or mutagenic activity in vitro. The complex was orally bioavailable after 2 h of administration in vivo. Additionally, the results of the acute toxicity test revealed that the complex did not exert toxic effects in female BALB/c mice. The mechanism of action was performed using D29 mycobacteriophages where the treatment with different concentrations of the complex inhibited viral protein synthesis, which indicated that the anti-TB mechanisms of the complex involve protein synthesis inhibition. These findings suggested that [Fe(phen)3]2+ is a potential novel therapeutic for TB.
Collapse
Affiliation(s)
- Mariana Cristina Solcia
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Débora Leite Campos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Júlia Araújo Grecco
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Caio Sander Paiva Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Patrícia Bento da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Isabel Cristiane da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Ana Paula Balduino da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Joás Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Fernando Bombarda Oda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, 14800-903, Brazil
| | - André Gonzaga Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, 14800-903, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil.
| |
Collapse
|
37
|
Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10:611683. [PMID: 33505923 PMCID: PMC7831573 DOI: 10.3389/fcimb.2020.611683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
Development of novel anti-tuberculosis combination regimens that increase efficacy and reduce treatment timelines will improve patient compliance, limit side-effects, reduce costs, and enhance cure rates. Such advancements would significantly improve the global TB burden and reduce drug resistance acquisition. Bioenergetics has received considerable attention in recent years as a fertile area for anti-tuberculosis drug discovery. Targeting the electron transport chain (ETC) and oxidative phosphorylation machinery promises not only to kill growing cells but also metabolically dormant bacilli that are inherently more drug tolerant. Over the last two decades, a broad array of drugs targeting various ETC components have been developed. Here, we provide a focused review of the current state of art of bioenergetic inhibitors of Mtb with an in-depth analysis of the metabolic and bioenergetic disruptions caused by specific target inhibition as well as their synergistic and antagonistic interactions with other drugs. This foundation is then used to explore the reigning theories on the mechanisms of antibiotic-induced cell death and we discuss how bioenergetic inhibitors in particular fail to be adequately described by these models. These discussions lead us to develop a clear roadmap for new lines of investigation to better understand the mechanisms of action of these drugs with complex mechanisms as well as how to leverage that knowledge for the development of novel, rationally-designed combination therapies to cure TB.
Collapse
Affiliation(s)
- Erik J Hasenoehrl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
38
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
39
|
Su C, Tuan NQ, Lee MJ, Zhang XY, Cheng JH, Jin YY, Zhao XQ, Suh JW. Enhanced Production of Active Ecumicin Component with Higher Antituberculosis Activity by the Rare Actinomycete Nonomuraea sp. MJM5123 Using a Novel Promoter-Engineering Strategy. ACS Synth Biol 2020; 9:3019-3029. [PMID: 32916055 DOI: 10.1021/acssynbio.0c00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ecumicins are potent antituberculosis natural compounds produced by the rare actinomycete Nonomuraea sp. MJM5123. Here, we report an efficient genetic manipulation platform of this rare actinomycete. CRISPR/Cas9-based genome editing was achieved based on successful sporulation. Two genes in the ecumicin gene cluster were further investigated, ecuN and ecuE, which potentially encode a pretailoring cytochrome P450 hydroxylase and the core peptide synthase, respectively. Deletion of ecuN led to an enhanced ratio of the ecumicin compound EcuH16 relative to that of EcuH14, indicating that EcuN is indeed a P450 hydroxylase, and there is catalyzed hydroxylation at the C-3 position in unit12 phenylalanine to transform EcuH16 to the compound EcuH14. Furthermore, promoter engineering of ecuE by employing the strong promoter kasO*P was performed and optimized. We found that integrating the endogenous ribosome-binding site (RBS) of ecuE together with the RBS from kasO*P led to improved ecumicin production and resulted in a remarkably high EcuH16/EcuH14 ratio. Importantly, production of the more active component EcuH16 was considerably increased in the double RBSs engineered strain EPR1 compared to that in the wild-type strain, reaching 310 mg/L. At the same time, this production level was 2.3 times higher than that of the control strain EPA1 with only one RBS from kasO*P. To the best of our knowledge, this is the first report of genome editing and promoter engineering on the rare actinomycete Nonomuraea.
Collapse
Affiliation(s)
- Chun Su
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Nguyen-Quang Tuan
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Mi-Jin Lee
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Xia-Ying Zhang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jin-Hua Cheng
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| | - Ying-Yu Jin
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
- R&D Center, MANBANGBIO CO., LTD, Cheoingu, Yongin, Gyeonggi-Do 17058, Republic of Korea
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Gyeonggi, 17058, Republic of Korea
| |
Collapse
|
40
|
Dalberto PF, de Souza EV, Abbadi BL, Neves CE, Rambo RS, Ramos AS, Macchi FS, Machado P, Bizarro CV, Basso LA. Handling the Hurdles on the Way to Anti-tuberculosis Drug Development. Front Chem 2020; 8:586294. [PMID: 33330374 PMCID: PMC7710551 DOI: 10.3389/fchem.2020.586294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The global epidemic of tuberculosis (TB) imposes a sustained epidemiologic vigilance and investments in research by governments. Mycobacterium tuberculosis, the main causative agent of TB in human beings, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2018, ~10 million individuals were contaminated with this bacillus and became ill with TB, and about 1.2 million succumbed to the disease. Most of the success of the M. tuberculosis to linger in the population comes from its ability to persist in an asymptomatic latent state into the host and, in fact, the majority of the individuals are unaware of being contaminated. Even though TB is a treatable disease and is curable in most cases, the treatment is lengthy and laborious. In addition, the rise of resistance to first-line anti-TB drugs elicits a response from TB research groups to discover new chemical entities, preferably with novel mechanisms of action. The pathway to find a new TB drug, however, is arduous and has many barriers that are difficult to overcome. Fortunately, several approaches are available today to be pursued by scientists interested in anti-TB drug development, which goes from massively testing chemical compounds against mycobacteria, to discovering new molecular targets by genetic manipulation. This review presents some difficulties found along the TB drug development process and illustrates different approaches that might be used to try to identify new molecules or targets that are able to impair M. tuberculosis survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
41
|
Chengalroyen MD, Jordaan A, Seldon R, Ioerger T, Franzblau SG, Nasr M, Warner DF, Mizrahi V. Biological Profiling Enables Rapid Mechanistic Classification of Phenotypic Screening Hits and Identification of KatG Activation-Dependent Pyridine Carboxamide Prodrugs With Activity Against Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:582416. [PMID: 33282750 PMCID: PMC7691319 DOI: 10.3389/fcimb.2020.582416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023] Open
Abstract
Compounds with novel modes of action are urgently needed to develop effective combination therapies for the treatment of tuberculosis. In this study, a series of compounds was evaluated for activity against replicating Mycobacterium tuberculosis and Vero cell line toxicity. Fourteen of the compounds with in vitro activities in the low micrometer range and a favorable selectivity index were classified using reporter strains of M. tuberculosis which showed that six interfered with cell wall metabolism and one disrupted DNA metabolism. Counter-screening against strains carrying mutations in promiscuous drug targets argued against DprE1 and MmpL3 as hits of any of the cell wall actives and eliminated the cytochrome bc1 complex as a target of any of the compounds. Instead, whole-genome sequencing of spontaneous resistant mutants and/or counter-screening against common isoniazid-resistant mutants of M. tuberculosis revealed that four of the six cell wall-active compounds, all pyridine carboxamide analogues, were metabolized by KatG to form InhA inhibitors. Resistance to two of these compounds was associated with mutations in katG that did not confer cross-resistance to isoniazid. Of the remaining seven compounds, low-level resistance to one was associated with an inactivating mutation in Rv0678, the regulator of the MmpS5-MmpL5 system, which has been implicated in non-specific efflux of multiple chemotypes. Another mapped to the mycothiol-dependent reductase, Rv2466c, suggesting a prodrug mechanism of action in that case. The inability to isolate spontaneous resistant mutants to the seven remaining compounds suggests that they act via mechanisms which have yet to be elucidated.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ronnett Seldon
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa.,H3D Drug Discovery and Development Centre, Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Thomas Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Mohamed Nasr
- Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Suresh A, Srinivasarao S, Khetmalis YM, Nizalapur S, Sankaranarayanan M, Gowri Chandra Sekhar KV. Inhibitors of pantothenate synthetase of Mycobacterium tuberculosis - a medicinal chemist perspective. RSC Adv 2020; 10:37098-37115. [PMID: 35521286 PMCID: PMC9057165 DOI: 10.1039/d0ra07398a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/30/2020] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB), one of the most prevalent infections, is on the rise today. Although there are drugs available in the market to combat this lethal disorder, there are several shortcomings with the current drug regimen, such as prolonged treatment period, drug resistance, high cost, etc. Hence, it is inevitable for the current researchers across the globe to embark on new strategies for TB drug discovery, which will yield highly active low cost drugs with a shorter treatment period. To achieve this, novel strategies need to be adopted to discover new drugs. Pantothenate Synthetase (PS) is one such striking drug target in Mycobacterium tuberculosis (MTB). It was observed that the pantothenate biosynthetic pathway is crucial for the pathogenicity of MTB. Pantothenate is absent in mammals and needs to be obtained from dietary sources. Hence, the pantothenate biosynthesis pathway is an impending target for emerging new therapeutics to treat TB. Worldwide, several approaches have been implemented by researchers in the quest for these inhibitors such as high-throughput screening, simulating the reaction intermediate pantoyl adenylate, use of vibrant combinatorial chemistry, hybridization approach, virtual screening of databases, inhibitors based on the crystal structure of MTB PS, etc. The present review recapitulates current developments in PS inhibitors, important analogues of numerous metabolic intermediates, and newly established inhibitors with innumerable chemical structures.
Collapse
Affiliation(s)
- Amaroju Suresh
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | - Singireddi Srinivasarao
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | - Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | | | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani Pilani Campus Pilani 333031 Rajasthan India
| | | |
Collapse
|
43
|
Makhoba XH, Viegas C, Mosa RA, Viegas FPD, Pooe OJ. Potential Impact of the Multi-Target Drug Approach in the Treatment of Some Complex Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3235-3249. [PMID: 32884235 PMCID: PMC7440888 DOI: 10.2147/dddt.s257494] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
It is essential to acknowledge the efforts made thus far to manage or eliminate various disease burden faced by humankind. However, the rising global trends of the so-called incurable diseases continue to put pressure on Pharma industries and other drug discovery platforms. In the past, drugs with more than one target were deemed as undesirable options with interest being on the one-drug-single target. Despite the successes of the single-target drugs, it is currently beyond doubt that these drugs have limited efficacy against complex diseases in which the pathogenesis is dependent on a set of biochemical events and several bioreceptors operating concomitantly. Different approaches have thus been proposed to come up with effective drugs to combat even the complex diseases. In the past, the focus was on producing drugs from screening plant compounds; today, we talk about combination therapy and multi-targeting drugs. The multi-target drugs have recently attracted much attention as promising tools to fight against most challenging diseases, and thus a new research focus area. This review will discuss the potential impact of multi-target drug approach on various complex diseases with focus on malaria, tuberculosis (TB), diabetes and neurodegenerative diseases as the main representatives of multifactorial diseases. We will also discuss alternative ideas to solve the current problems bearing in mind the fourth industrial revolution on drug discovery.
Collapse
Affiliation(s)
- Xolani H Makhoba
- Department of Biochemistry, Genetics and Microbiology, Division of Biochemistry, University of Pretoria, Hatfield, South Africa
| | - Claudio Viegas
- Laboratory of Research in Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Rebamang A Mosa
- Department of Biochemistry, Genetics and Microbiology, Division of Biochemistry, University of Pretoria, Hatfield, South Africa
| | - Flávia P D Viegas
- Laboratory of Research in Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Ofentse J Pooe
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
44
|
Abstract
Multi-omics strategies are indispensable tools in the search for new anti-tuberculosis drugs. Omics methodologies, where the ensemble of a class of biological molecules are measured and evaluated together, enable drug discovery programs to answer two fundamental questions. Firstly, in a discovery biology approach, to find new targets in druggable pathways for target-based investigation, advancing from target to lead compound. Secondly, in a discovery chemistry approach, to identify the mode of action of lead compounds derived from high-throughput screens, progressing from compound to target. The advantage of multi-omics methodologies in both of these settings is that omics approaches are unsupervised and unbiased to a priori hypotheses, making omics useful tools to confirm drug action, reveal new insights into compound activity, and discover new avenues for inquiry. This review summarizes the application of Mycobacterium tuberculosis omics technologies to the early stages of tuberculosis antimicrobial drug discovery.
Collapse
|
45
|
Ramesh D, Joji A, Vijayakumar BG, Sethumadhavan A, Mani M, Kannan T. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. Eur J Med Chem 2020; 198:112358. [DOI: 10.1016/j.ejmech.2020.112358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
|
46
|
Structural Modifications of 3-Triazeneindoles and Their Increased Activity Against Mycobacterium tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060356. [PMID: 32599854 PMCID: PMC7344711 DOI: 10.3390/antibiotics9060356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/01/2023] Open
Abstract
We synthesized 100 novel indole-based compounds with polyaza-functionalities, including 3-triazeneindoles, and tested their activity in vitro against laboratory M. tuberculosis H37Rv and clinical izoniazid-resistant CN-40 isolates, using gross and fine titration approaches. Here we present a few 3-triazeneindoles with the highest anti-mycobacterial activity. Introduction of short lipid tails into the 3-triazeneindole core additionally increased their activity against mycobacteria engulfed by murine macrophages. We also demonstrate that the compound TU112, one of the most active in our previous study, being not bioavailable after administration in mice per os, manifests prominent anti-mycobacterial activity after intravenous or aerosol delivery, as assessed by the mouse serum and lung supernatant titration assays.
Collapse
|
47
|
Mycobacterium smegmatis MSMEG_0129 is a nutrition-associated regulator that interacts with CarD and ClpP2. Int J Biochem Cell Biol 2020; 124:105763. [PMID: 32389745 DOI: 10.1016/j.biocel.2020.105763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Mycobacterium smegmatis MSMEG_0129 and Rv0164, its homologue in Mycobacterium tuberculosis, are single START-domain proteins essential for bacterial growth and survival, but their biochemical activities and biological roles remain undetermined. Here, we probed the possible functions of MSMEG_0129 and its underlying mechanisms by determining its cellular location, searching for its interaction partners and monitoring its transcription profile. MSMEG_0129, and Rv0164 by extension, were found to be cytosolic proteins rather than secreted components as previously understood. Increases in MSMEG_0129 expression at physiological levels accelerated bacterial growth in a proportional manner, but additional growth acceleration was not observed when MSMEG_0129 was overexpressed up to 20 fold. MSMEG_0129 is a short-lived protein, unstable at both the mRNA and protein levels. Co-IP and GST pull-down assays showed that MSMEG_0129 interacts with the ClpP2 protease and a global transcription factor, CarD, their expression being correlated with that of MSMEG_0129. Nutrient deficiency led to the downregulation of MSMEG_0129 but upregulation of CarD. However, in the context of constitutive MSMEG_0129 overexpression under nutrient-rich or starvation conditions, the mRNA level of CarD was reduced 3 fold. Conversely, expression of ClpP2 decreased with MSMEG_0129 downregulation under starvation conditions, but increased 4-8 fold when MSMEG_0129 was overexpressed. Our data suggest that MSMEG_0129, and Rv0164 by analogy, are likely to be nutrition sensing factors that regulate mycobacterial growth and may be involved in signal transfer under nutrient deficiency, possibly via physical and regulatory interactions with CarD and ClpP2.
Collapse
|
48
|
Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules 2020; 25:molecules25061259. [PMID: 32168746 PMCID: PMC7144000 DOI: 10.3390/molecules25061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.
Collapse
|
49
|
Guy CS, Murray K, Gibson MI, Fullam E. Dimeric benzoboroxoles for targeted activity against Mycobacterium tuberculosis. Org Biomol Chem 2019; 17:9524-9528. [PMID: 31659363 DOI: 10.1039/c9ob02222h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dimeric benzoboroxoles that are covalently linked by a short scaffold enhance selective anti-tubercular activity. These multimeric benzoboroxole compounds are capable of engaging the specific extracellular Mycobacterium tuberculosis glycans, do not lead to the evolution of resistance and bypass the need to cross the impermeable mycobacterial cell envelope barrier.
Collapse
Affiliation(s)
- Collette S Guy
- School of Life Sciences, University of Warwick, CV4 7AL, UK.
| | | | | | | |
Collapse
|
50
|
Pan Z, Wang Y, Gu X, Wang J, Cheng M. Refined homology model of cytochrome bcc complex B subunit for virtual screening of potential anti-tuberculosis agents. J Biomol Struct Dyn 2019; 38:4733-4745. [DOI: 10.1080/07391102.2019.1688196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhenhai Pan
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Xi Gu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|