1
|
Li R, Sun M, Li ZH, Qu Y, Li Y, Ampomah-Wireko M, Li D, Kong H, Wu Y, Hossain AA, Zhang E. Important Role of Triphenylamine in Modulating the Antibacterial Performance Relationships of Antimicrobial Peptide Mimics by Alkyl Chain Engineering. J Med Chem 2025; 68:10299-10313. [PMID: 40270226 DOI: 10.1021/acs.jmedchem.5c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Multidrug resistance (MDR) bacteria pose a serious threat to human health, and the development of effective antimicrobial drugs is urgent. Herein, we used alkyl chain engineering to design and synthesize two series of antimicrobial peptide mimics with distinct cores: triphenylamine quaternary ammonium derivatives (TPQs) and diphenylethene quaternary ammonium derivatives (BPQs), and we investigated the effect of varying the alkyl chain lengths on antibacterial activity. We found that the introduction of a triphenylamine group significantly enhances the antibacterial activity of short-chain dimethyl quaternary ammonium derivatives while maintaining their excellent biocompatibility. Most notably, TPQ-1 exhibited negligible invasiveness toward living cells and possesses good antimicrobial activities, with good efficacy against biofilms and persisters. Moreover, TPQ-1 exhibited good antimicrobial effects in vivo and significantly accelerated the healing process of methicillin-resistant Staphylococcus aureus-infected wounds. This work promotes the practical application of antimicrobial peptide mimics and triphenylamine derivatives.
Collapse
Affiliation(s)
- Ruirui Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Moran Sun
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Hao Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanbo Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Daran Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Yuequan Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Adib Azwad Hossain
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China
| |
Collapse
|
2
|
Sonker H, Chaudhary K, Agrahari B, Dewan S, Ankit, Chaudhary A, Kumar A, Swain N, Singh RG. De Novo 3-(Phenylcarbamoyl) Benzoate Analogues: Efficacy against Multidrug-Resistant S. aureus and Elucidation of the Biodistribution Profile. J Med Chem 2025; 68:10329-10345. [PMID: 40338676 DOI: 10.1021/acs.jmedchem.5c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
This study presents the first design, synthesis, and characterization of a novel library of carboxylate analogues of 3-(phenylcarbamoyl) benzoate (L1-L17) as potent antimicrobial agents targeting Staphylococcus aureus infections. The lead compounds L8, L13, L14, and L15 demonstrated significant activity against methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA, respectively) with MIC values of 2-8 μg/mL. Mechanistic investigations using scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed bacterial membrane disruption as the primary mode of action. Further in vitro, in silico, and in vivo analyses identified L13 and L15 as the most promising candidates. A translational study using a BALB/c mouse skin abscess model confirmed their therapeutic potential, supported by biodistribution profiling via LC/Q-TOF mass spectrometry. These findings mark a significant step toward developing novel antibiotics against S. aureus, particularly for hospital-acquired infections, offering a promising avenue in the fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Himanshu Sonker
- Department of Chemistry, IIT, Kanpur 208016, Uttar Pradesh, India
| | - Kajal Chaudhary
- Department of Chemistry, IIT, Kanpur 208016, Uttar Pradesh, India
| | - Bhumika Agrahari
- Department of Chemistry, IIT, Kanpur 208016, Uttar Pradesh, India
| | - Sayari Dewan
- Department of Chemistry, IIT, Kanpur 208016, Uttar Pradesh, India
| | - Ankit
- Department of Chemistry, IIT, Kanpur 208016, Uttar Pradesh, India
| | - Ayushi Chaudhary
- Department of Chemistry, IIT, Kanpur 208016, Uttar Pradesh, India
| | - Ashwini Kumar
- Department of Chemistry, IIT, Kanpur 208016, Uttar Pradesh, India
| | - Nikhil Swain
- Department of Chemistry, IIT, Kanpur 208016, Uttar Pradesh, India
| | | |
Collapse
|
3
|
Agrahari B, Chaudhary K, Dewan S, Sonker H, S V A, Chandra A, Awasthi N, Makari H, Sinharay S, Singh RG. Theragnostic Dual-Action Platform: Ruthenium p-Cymene-Derived Metalloantibiotics With NIR-II Photoacoustic Spectral Signal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503986. [PMID: 40370269 DOI: 10.1002/smll.202503986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/10/2025] [Indexed: 05/16/2025]
Abstract
This study initiates the development of Ru1, a metalloantibiotic derived from p-cymene, which delivers dual functionality. Our approach begins with the design and synthesis of half-sandwich ruthenium complexes, Ru1-Ru11. By varying the structure of the ancillary ligand, the biological activities of eleven ruthenium complexes against five bacterial strains were explored. Most active, Ru1 (4 µg mL-1) and Ru 11 (1 µg mL-1) was solicited for further study. To assess the safety of these compounds, hemolytic activity and cytotoxicity were evaluated against human red blood cells (RBCs) and the HEK cell line, respectively. Based on these results, Ru1 was selected for further investigation. Ru1 exhibited significant efficacy against MRSA (methicillin-resistant S. aureus) and VRSA (vancomycin-resistant S. aureus). Additionally, Ru1 exhibited strong DNA-binding affinity (Kb = 1.73*105 M-1 and 1.6 *105 M-1). Molecular docking studies further highlighted Ru1's potent interaction with the active sites of key bacterial proteins, including S. aureus MurB, topoisomerase II DNA gyrase, and 1BNA, with binding energies of -12.05 kcal/mol, -6.30 kcal/mol and -7.77 kcal/mol, respectively. Furthermore, Ru1 showed high photoacoustic signal intensity at 902 nm in MSOT imaging, underscoring its potential as a dual-function therapeutic and diagnostic (theragnostic) agent.
Collapse
Affiliation(s)
| | | | - Sayari Dewan
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, India
| | | | - Arjun S V
- Department of Bioengineering, IISc, Bengaluru, 560012, India
| | - Anshuman Chandra
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nidhi Awasthi
- Department of Chemistry, IIT Kanpur, Kanpur, 208016, India
| | - Hanumanthappa Makari
- Maharani's Science College for Women, University of Mysore, Mysore, 570005, India
| | | | | |
Collapse
|
4
|
Gao C, Li R, Li Y, Wu Y, Qu Y, Ampomah-Wireko M, Zheng J, Wang Z, Wang YN, Zhang E. Design, synthesis and evaluation of quinolone quaternary ammonium antibacterial agent with killing ability to biofilm. Bioorg Chem 2025; 162:108579. [PMID: 40383012 DOI: 10.1016/j.bioorg.2025.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Staphylococcus aureus (S. aureus) is the most common and widely distributed pathogenic bacterium. The problem of methicillin-resistant Staphylococcus aureus (MRSA) caused by the widespread use of antibiotics is particularly severe. In addition, S. aureus can resist antibiotics by forming biofilms, making clinical treatment difficult. A series of antimicrobial quinolone-based quaternary ammonium compounds were designed and synthesized. Among them, the optimal compound 3e showed the strongest activity against S. aureus, and it had relatively low hemolytic toxicity and cytotoxicity. Compound 3e has excellent bactericidal performance, capable of quickly and thoroughly sterilizing. In continuous sub-lethal concentration bacterial passage culture, no bacterial resistance tendency caused by 3e was found. Moreover, 3e can exert a significant level of activity in blood components and still has a period of suppression on bacteria after the drug is removed. Encouragingly, 3e has a certain bactericidal potential against bacteria with high concentration and high tolerance. It has shown strong bactericidal effects when fighting against persister bacteria and biofilms in vitro. Mechanism research indicates that 3e exerts its antimicrobial action through related membrane activity and is related to membrane components phosphatidylglycerol (PG) and cardiolipin (CL). In addition, 3e can also bind to bacterial DNA.
Collapse
Affiliation(s)
- Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuanbo Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuequan Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiangbo Zheng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ya-Na Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
5
|
Chen S, Qu Y, Li R, Ampomah-Wireko M, Kong H, Li D, Wang M, Gao C, Qin S, Liu J, Wang Z, Zhang M, Zhang E. Exploration of membrane-active cephalosporin derivatives as potent antibacterial agents against Staphylococcus aureus biofilms and persisters. Eur J Med Chem 2025; 289:117484. [PMID: 40081101 DOI: 10.1016/j.ejmech.2025.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Developing innovative antimicrobial agents is essential in the fight against drug-resistant bacteria, as well as biofilms and persistent bacteria. In this study, four series of amphiphilic cephalosporin derivatives were synthesized. Most of the compounds showed good activity against Gram-positive bacteria, among which membrane-active cephalosporin 15e showed high activity against Staphylococcus aureus. Furthermore, 15e can maintain antimicrobial activity in mammalian body fluids and does not develop detectable resistance. Antibacterial mechanism studies demonstrated that the compound 15e can destroy the bacterial cell membrane, causing leakage of intracellular nucleic acids and proteins. Moreover, it can also suppress bacterial metabolic activity and induce the accumulation of reactive oxygen species (ROS) in the bacteria. Of greater significance, compound 15e effectively prevented the formation of biofilms and eradicated established biofilms and persister cells. Notably, compound 15e exhibited potent in vivo antibacterial efficacy, which was better than cephalothin. These findings suggest that 15e has a potential to become a drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Daran Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Muchen Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
6
|
Asante JYD, Casey CM, Bezold EL, Fernando A, McDonough D, Wuest WM, Minbiole KPC. Resorcinol-based Bolaamphiphilic Quaternary Ammonium Compounds. ChemMedChem 2025; 20:e202400932. [PMID: 39822143 PMCID: PMC12052040 DOI: 10.1002/cmdc.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Quaternary ammonium compounds (QACs) play crucial disinfectant roles in healthcare, industry, and domestic settings. Most commercially utilized QACs like benzalkonium chloride have a common architectural theme, leading to a rise in bacterial resistance and urgent need for novel structural classes. Some potent QACs such as chlorhexidine (CHX) and octenidine (OCT) feature a bolaamphiphilic architecture, comprised of two cationic centers at the molecular periphery and a non-polar region connecting them; these compounds show promise to elude bacterial resistance mechanisms. Inspired by such structures, we synthesized a series of 43 biscationic amphiphilic compounds focused on a resorcinol core, featuring flexibility of linker lengths, alkyl tails, and relative substituent positioning, to study their structure activity relationships (SARs). Antibacterial activity evaluation against a panel of gram-positive and gram-negative strains, including ESKAPE pathogens (A. baumannii, P. aeruginosa), were encouraging, with minimum inhibitory concentrations (MICs) of 0.5-4 μM against all tested strains for select compounds. Ten prepared compounds bearing either 17 or 18 total side chain carbons demonstrated uniformly strong antibacterial activity against P. aeruginosa (MIC 4-16 μM) and 6 other strains (MIC ≤4 μM), irrespective of cationic spacing. These findings promise to further extend the application of bolaamphiphilic QACs as a novel class of disinfectants.
Collapse
Affiliation(s)
- Johanna Y. D. Asante
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA
| | - Caroline M. Casey
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA
| | - Elise L. Bezold
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Asantha Fernando
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Diana McDonough
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA
| | - William M. Wuest
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Kevin P. C. Minbiole
- Department of Chemistry and Biochemistry, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
7
|
Huo H, Dan W, Li M, Chen Y, Yang C, Wu L, Shi B, Li J. Design, synthesis, and biological evaluation of steroidal indole derivatives as membrane-targeting antibacterial candidates. Eur J Med Chem 2025; 283:117156. [PMID: 39671876 DOI: 10.1016/j.ejmech.2024.117156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Rational modification of natural products plays a key role in drug discovery. Herein, a series of steroidal indole derivatives containing various substituents and steroidal skeletons were designed and synthesized with classical Fischer indole synthesis as a key step in an efficient synthetic route for the first time. The in vitro antibacterial activity of all the synthesized derivatives was evaluated against four Gram-positive strains including three Methicillin-Resistant Staphylococcus aureus. Compound 11e displayed the most potent antibacterial activity (MIC = 1-2 μg/mL) with low cytotoxicity and hemolytic activity. Derivative 11e displayed more rapid bactericidal kinetic than vancomycin in the time-kill study and was less likely to induce bacterial resistance. Moreover, the preliminary antibacterial mechanism explorations indicated that compound 11e could effectively inhibit biofilm formation, promote the accumulation of reactive oxygen species, decrease bacterial metabolism, and destroy bacterial cell membranes to exert its antibacterial effects. The study of in vivo antibacterial activity suggested that compound 11e could significantly reduce the bacteria counts in a mouse subcutaneous infection model. These findings provided a bright hope for steroidal indole derivatives as promising antibacterial candidates to settle drug resistance.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Min Li
- Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Yanbin Chen
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Chaofu Yang
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| | - Lintao Wu
- Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China.
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China.
| |
Collapse
|
8
|
Gupta S, Luxami V, Paul K. Unlocking the Antibacterial Potential of Naphthalimide-Coumarins to Overcome Drug Resistance with Antibiofilm and Membrane Disruption Ability against Escherichia coli. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4380-4399. [PMID: 39772461 DOI: 10.1021/acsami.4c13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Resistance by bacteria to available antibiotics is a threat to human health, which demands the development of new antibacterial agents. Considering the prevailing conditions, we have developed a library of new naphthalimide-coumarin moieties as broad-spectrum antibacterial agents to fight against awful drug resistance. Preliminary studies indicate that compounds 8e and 8h display excellent antibacterial activity against Escherichia coli, exceeding the performance of marketed drug amoxicillin. These drug candidates effectively inhibit biofilm formation and disrupt the biofilm virulence factor, which is accountable for the formation of strong biofilm. In addition to this, both compounds exhibit fast bactericidal properties, thus shortening the time of treatment and resisting the emergence of drug resistance for up to 20 passages. Further, biofunctional evaluation reveals that both compounds effectively disrupt the membrane, causing the leakage of cytoplasmic contents and loss in metabolic activity. Both compounds 8e and 8h efficiently induce the ROS, leading to the oxidation of GSH to GSSG, decreasing the GSH activity of the cell, and causing oxidative damage to the cells. Additionally, both compounds effectively bind with DNA to block DNA replication and form supramolecular complexes, thus exhibiting antibacterial activity. Moreover, these compounds readily bind human serum albumin with high binding constants and can be transported to the target site easily. These findings reveal that newly synthesized naphthalimide-coumarin conjugates have the potential to build as potent antibacterial agents and can be used further for clinical trials.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Vijay Luxami
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
9
|
Chaudhary K, Agrahari B, Biswas B, Chatterjee N, Chaudhary A, Kumar A, Sonker H, Dewan S, Saxena D, Akhir A, Malhotra N, Chopra S, Misra S, Matheswaran S, Singh RG. Pyridine-2,6-Dicarboxamide Proligands and their Cu(II)/Zn(II) Complexes Targeting Staphylococcus Aureus for the Attenuation of In Vivo Dental Biofilm. Adv Healthc Mater 2024; 13:e2400378. [PMID: 38621382 DOI: 10.1002/adhm.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Indexed: 04/17/2024]
Abstract
In the pursuit to combat stubborn bacterial infections, particularly those stemming from gram-positive bacteria, this study is an attempt to craft a precision-driven platform characterized by unparalleled selectivity, specificity, and synergistic antimicrobial mechanisms. Leveraging remarkable potential of metalloantibiotics in antimicrobial applications, herein, this work rationally designs, synthesizes, and characterizes a new library of Pyridine-2,6-dicarboxamide ligands and their corresponding transition metal Cu(II)/Zn(II) complexes. The lead compound L11 demonstrates robust antibacterial properties against Staphylococcus aureus (Minimum Inhibitory Concentration (MIC) = 2-16 µg mL-1), methicillin and vancomycin-resistant S. aureus (MIC = 2-4 µg mL-1) and exhibit superior antibacterial activity when compared to FDA-approved vancomycin, the drug of last resort. Additionally, the compound exhibits notable antimicrobial efficacy against resistant enterococcus strains (MIC = 2-8 µg mL-1). To unravel mechanistic profile, advanced imaging techniques including SEM and AFM are harnessed, collectively suggesting a mechanistic pathway involving cell wall disruption. Live/dead fluorescence studies further confirm efficacy of L11 and its complexes against S. aureus membranes. This translational exploration extends to a rat model, indicating promising in vivo therapeutic potential. Thus, this comprehensive research initiative has capabilities to transcends the confines of this laboratory, heralding a pivotal step toward combatting antibiotic-resistant pathogens and advancing the frontiers of metalloantibiotics-based therapy with a profound clinical implication.
Collapse
Affiliation(s)
| | | | - Bhumika Biswas
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | - Niranjan Chatterjee
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | | | | - Sayari Dewan
- Department of Chemistry, IIT, Kanpur, 208016, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Abdul Akhir
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nidhi Malhotra
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Budh Nagar, 201314, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Santosh Misra
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | |
Collapse
|
10
|
Chen S, Qin S, Li R, Qu Y, Ampomah-Wireko M, Nininahazwe L, Wang M, Gao C, Zhang E. Design, synthesis and antibacterial evaluation of low toxicity amphiphilic-cephalosporin derivatives. Eur J Med Chem 2024; 268:116293. [PMID: 38447461 DOI: 10.1016/j.ejmech.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Global public health is facing a serious problem as a result of the rise in antibiotic resistance and the decline in the discovery of new antibiotics. In this study, two series of amphiphilic-cephalosporins were designed and synthesized, several of which showed good antibacterial activity against both Gram-positive and Gram-negative bacteria. Structure-activity relationships indicated that the length of the hydrophobic alkyl chain significantly affects the antibacterial activity against Gram-negative bacteria. The best compound 2d showed high activity against drug-susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 0.5 and 2-4 μg/mL, respectively. Furthermore, 2d remained active in complex mammalian body fluids and had a longer post-antibiotic effect (PAE) than vancomycin. Mechanism studies indicated that compound 2d lacks membrane-damaging properties and can target penicillin-binding proteins to disrupt bacterial cell wall structure, inhibit the metabolic activity and induce the accumulation of reactive oxygen species (ROS) in bacteria. Compound 2d showed minimal drug resistance and was nontoxic to HUVEC and HBZY-1 cells with CC50 > 128 μg/mL. These findings suggest that 2d is a promising drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
11
|
Gao C, Qin S, Wang M, Li R, Ampomah-Wireko M, Chen S, Qu Y, Zhang E. Effective ciprofloxacin cationic antibacterial agent against persister bacteria with low hemolytic toxicity. Eur J Med Chem 2024; 267:116215. [PMID: 38354522 DOI: 10.1016/j.ejmech.2024.116215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
With the widespread use of antibiotics, bacterial resistance has developed rapidly. To make matters worse, infections caused by persistent bacteria and biofilms often cannot be completely eliminated, which brings great difficulties to clinical medication. In this work, three series of quinolone pyridinium quaternary ammonium small molecules were designed and synthesized. Most of the compounds showed good antibacterial activity against Gram-positive bacteria (S. aureus and E. faecalis) and Gram-negative bacteria (E. coli and S. maltophilia). The activity of the para-pyridine quaternary ammonium salt was better than that of the meta-pyridine. 3f was the optimal compound with good stability in body fluids and was unlikely to induce bacterial resistance. The hemolysis rate of erythrocytes at 1280 μg/mL for 3f was only 5.1%. Encouragingly, 3f rapidly killed bacteria within 4 h at 4 × MIC concentration and was effective in killing persistent bacteria in biofilms. The antibacterial mechanism experiments showed that 3f could cause disorder of bacterial membrane potential, increase bacterial membrane permeability, dissolve and destroy the membrane. Incomplete bacterial membranes lead to leakage of bacterial genetic material, concomitant production of ROS, and bacterial death due to these multiple effects.
Collapse
Affiliation(s)
- Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
12
|
Mai Y, Wang Z, Zhou Y, Wang G, Chen J, Lin Y, Ji P, Zhang W, Jing Q, Chen L, Chen Z, Lin H, Jiang L, Yuan C, Xu P, Huang M. From disinfectants to antibiotics: Enhanced biosafety of quaternary ammonium compounds by chemical modification. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132454. [PMID: 37703742 DOI: 10.1016/j.jhazmat.2023.132454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
The excessive use of quaternary ammonium compounds (QACs) following the COVID-19 pandemic has raised substantial concerns regarding their biosafety. Overuse of QACs has been associated with chronic biological adverse effects, including genotoxicity or carcinogenicity. In particular, inadvertent intravascular administration or oral ingestion of QACs can lead to fatal acute toxicity. To enhance the biosafety and antimicrobial efficacy of QACs, this study reports a new series of QACs, termed as PACs, with the alkyl chain of benzalkonium substituted by a phthalocyanine moiety. Firstly, the rigid phthalocyanine moiety enhances the selectivity of QACs to bacteria over human cells and reduces alkyl chain's entropic penalty of binding to bacterial membranes. Furthermore, phthalocyanine neutralizes hemolysis and cytotoxicity of QACs by binding with albumin in plasma. Our experimental results demonstrate that PACs inherit the optical properties of phthalocyanine and validate the broad-spectrum antibacterial activity of PACs in vitro. Moreover, the intravascular administration of the most potent PAC, PAC1a, significantly reduced bacterial burden and ameliorated inflammation level in a bacteria-induced septic mouse model. This study presents a new strategy to improve the antimicrobial efficacy and biosafety of QACs, thus expanding their range of applications to the treatment of systemic infections.
Collapse
Affiliation(s)
- Yuhan Mai
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Zhiyou Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Guodong Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Jingyi Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Yuxin Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Panpan Ji
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Wei Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Qian Jing
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Liyun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Zheng Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Haili Lin
- Department of Pharmacy, The Peoples Hospital of Fujian Province, Fuzhou, Fujian 350004, PR China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, PR China.
| |
Collapse
|
13
|
Seferyan MA, Saverina EA, Frolov NA, Detusheva EV, Kamanina OA, Arlyapov VA, Ostashevskaya II, Ananikov VP, Vereshchagin AN. Multicationic Quaternary Ammonium Compounds: A Framework for Combating Bacterial Resistance. ACS Infect Dis 2023; 9:1206-1220. [PMID: 37161274 DOI: 10.1021/acsinfecdis.2c00546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During previous stages of research, high biocidal activity toward microorganism archival strains has been used as the main indicator in the development of new antiseptic formulations. Although this factor remains one of the most important characteristics of biocide efficiency, the scale of antimicrobial resistance spread causes serious concern. Therefore, focus shifts toward the development of formulations with a stable effect even in the case of prolonged contact with pathogens. Here, we introduce an original isocyanuric acid alkylation method with the use of available alkyl dichlorides, which opened access to a wide panel of multi-QACs with alkyl chains of various lengths between the nitrogen atoms of triazine and pyridine cycles. We used a complex approach for the resulting series of 17 compounds, including their antibiofilm properties, bacterial tolerance development, and antimicrobial activity toward multiresistant pathogenic strains. As a result of these efforts, available compounds have shown higher levels of antibacterial activity against ESKAPE pathogens than widely used commercial QACs. Hit compounds possessed high activity toward clinical bacterial strains and have also demonstrated a long-term biocidal effect without significant development of microorganism tolerance. The overall results indicated a high level of antibacterial activity and the broad application prospects of multi-QACs based on isocyanuric acid against multiresistant bacterial strains.
Collapse
Affiliation(s)
- Mary A Seferyan
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Tula State University, Lenin pr. 92, 300012 Tula, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | - Elena V Detusheva
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, 142279 Serpukhov, Moscow Region, Russia
| | | | | | - Irina I Ostashevskaya
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, 119991 Moscow, Russia
| | | |
Collapse
|
14
|
Kong H, Qin S, Yan D, Shen B, Zhang T, Wang M, Li S, Ampomah-Wireko M, Bai M, Zhang E, Cai J. Development of Aromatic-Linked Diamino Acid Antimicrobial Peptide Mimics with Low Hemolytic Toxicity and Excellent Activity against Methicillin-Resistant Staphylococcus aureus (MRSA). J Med Chem 2023. [PMID: 37192339 DOI: 10.1021/acs.jmedchem.2c01583] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) have become one of the biggest threats to public health. To develop new antibacterial agents against MRSA, a series of diamino acid compounds with aromatic nuclei linkers were designed and synthesized. Compound 8j, which exhibited low hemolytic toxicity and the best selectivity against S. aureus (SI > 2000), showed good activity against clinical MRSA isolates (MIC = 0.5-2 μg/mL). Compound 8j was able to quickly kill bacteria without inducing bacterial resistance. A mechanistic study and transcriptome analysis revealed that compound 8j can act on phosphatidylglycerol and induce the accumulation of endogenous reactive oxygen species, which can destroy bacterial membranes. Importantly, compound 8j achieved a 2.75 log reduction of MRSA count at 10 mg/kg/d in a mouse subcutaneous infection model. These findings suggested that compound 8j had the potential to be an antibacterial agent against MRSA.
Collapse
Affiliation(s)
- Hongtao Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Dachao Yan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Boyuan Shen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Sen Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Mengmeng Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
15
|
Majumder A, Sarkar C, Das I, Sk S, Bandyopadhyay S, Mandal S, Bera M. Design, Synthesis and Evaluation of a Series of Zinc(II) Complexes of Anthracene-Affixed Multifunctional Organic Assembly as Potential Antibacterial and Antibiofilm Agents against Methicillin-Resistant Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22781-22804. [PMID: 37129921 DOI: 10.1021/acsami.2c21899] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel class of zinc(II)-based metal complexes, i.e., [Zn2(acdp)(μ-Cl)]·2H2O (1), [Zn2(acdp)(μ-NO3)]·2H2O (2), and [Zn2(acdp)(μ-O2CCF3)]·2H2O (3) (Cl- = chloride; NO3- = nitrate; CF3CO2- = trifluoroacetate) of anthracene-affixed multifunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol), have emerged as promising antibacterial and antibiofilm agents in the domain of medicinal chemistry. Accordingly, complexes 1-3 were synthesized by utilizing H3acdp in combination with ZnCl2, Zn(NO3)2·6H2O, and Zn(CF3CO2)2·H2O respectively, in the presence of NaOH at ambient temperature. The complexation between H3acdp and Zn2+ was delineated by a combined approach of spectrophotometric and spectrofluorometric titration studies. The stoichiometry of acdp3-/Zn2+ in all three complexes is observed to be 1:2, as confirmed by spectrophotometric/spectrofluorometric titration data. Elemental analysis (C, H, N, Zn), molar conductance, FTIR, UV-vis, and thermoanalytical (TGA/DTA) data were effectively used to characterize these complexes. Besides, the structures of 1-3 were established by density functional theory (DFT) calculation using B3LYP/6-311G, specifying a self-assembled compact geometry with average Zn···Zn separation of 3.4629 Å. All three zinc complexes exhibited significantly high antibacterial and antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA BAA1717). However, complex 1 showed a more recognizable activity than 2 and 3, with minimum inhibitory concentration (MIC) values of 200, 350, and 450 μg/mL, respectively. The antimicrobial activity was tested by employing the minimum inhibitory concentration (MIC) and time-kill assay. The crystal violet (CV) assay and microscopic study were performed to examine the antibiofilm activity. As observed, complexes 1-3 had an effect on the production of extracellular polymeric substance (EPS), biofilm cell-viability, and other virulence factors such as staphyloxanthin and hemolysin production, autoaggregation ability, and microbial cell-surface hydrophobicity. Reactive oxygen species (ROS) generated due to inhibition of staphyloxanthin production in response to 1-3 were also analyzed. Moreover, complexes 1-3 showed an ability to damage the bacterial cell membrane due to accumulation of ROS resulting in DNA leakage. In addition, complexes 1-3 displayed a synergistic/additive activity with a commercially available antibiotic drug, vancomycin, with enhanced antibacterial activity. On the whole, our investigation disclosed that complex 1 could be a promising drug lead and attract much attention to medicinal chemists compared to 2 and 3 from therapeutic aspects.
Collapse
Affiliation(s)
- Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Chandan Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Indrajit Das
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sujan Sk
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
16
|
Li S, Wang M, Chen S, Ampomah-Wireko M, Gao C, Xia Z, Nininahazwe L, Qin S, Zhang E. Development of biaromatic core-linked antimicrobial peptide mimics: Substituent position significantly affects antibacterial activity and hemolytic toxicity. Eur J Med Chem 2023; 247:115029. [PMID: 36549113 DOI: 10.1016/j.ejmech.2022.115029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The development of bacterial resistance to the majority of clinically significant antimicrobials has made it more difficult to treat bacterial infections with conventional antibiotics. As part of ongoing research on antimicrobial peptide mimetics, a series of quaternary ammonium cationic compounds with various linkers were designed and synthesized, with some demonstrating high antibacterial activity against Gram-negative and Gram-positive bacteria. The structure-activity relationship study revealed that the spatial position of substituents had a significant impact on antibacterial activity and hemolytic toxicity. The best compound, 3e, has good antibacterial activity against Staphylococcus aureus [minimum inhibitory concentration (MIC = 1 μg/mL)] and the least hemolytic toxicity [hemolytic concentration (HC50 = 905 μg/mL)], is stable in mammalian body fluids, and rarely induces bacterial resistance. The mechanism study revealed that the membrane action mode may be its potential bactericidal mechanism, and it can effectively cause the accumulation of intracellular reactive oxygen species (ROS) for killing bacteria. Importantly, 3e can effectively reduce the load of methicillin-resistant Staphylococcus aureus (MRSA) in mouse skin and has a higher in vivo bactericidal efficiency than vancomycin. These findings highlight the significance of divergent linkers in quaternary ammonium cations as antimicrobial peptide mimics and the potential of these cations to treat bacterial infections.
Collapse
Affiliation(s)
- Sen Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ziwei Xia
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, PR China.
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou, 450001, PR China.
| |
Collapse
|
17
|
Shen BY, Wang MM, Xu SM, Gao C, Wang M, Li S, Ampomah-Wireko M, Chen SC, Yan DC, Qin S, Zhang E. Antibacterial efficacy evaluation and mechanism probe of small lysine chalcone peptide mimics. Eur J Med Chem 2022; 244:114885. [DOI: 10.1016/j.ejmech.2022.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
18
|
Schultz JR, Costa SK, Jachak GR, Hegde P, Zimmerman M, Pan Y, Josten M, Ejeh C, Hammerstad T, Sahl HG, Pereira PM, Pinho MG, Dartois V, Cheung A, Aldrich CC. Identification of 5-(Aryl/Heteroaryl)amino-4-quinolones as Potent Membrane-Disrupting Agents to Combat Antibiotic-Resistant Gram-Positive Bacteria. J Med Chem 2022; 65:13910-13934. [PMID: 36219779 PMCID: PMC9826610 DOI: 10.1021/acs.jmedchem.2c01151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nosocomial infections caused by resistant Gram-positive organisms are on the rise, presumably due to a combination of factors including prolonged hospital exposure, increased use of invasive procedures, and pervasive antibiotic therapy. Although antibiotic stewardship and infection control measures are helpful, newer agents against multidrug-resistant (MDR) Gram-positive bacteria are urgently needed. Here, we describe our efforts that led to the identification of 5-amino-4-quinolone 111 with exceptionally potent Gram-positive activity with minimum inhibitory concentrations (MICs) ≤0.06 μg/mL against numerous clinical isolates. Preliminary mechanism of action and resistance studies demonstrate that the 5-amino-4-quinolones are bacteriostatic, do not select for resistance, and selectively disrupt bacterial membranes. While the precise molecular mechanism has not been elucidated, the lead compound is nontoxic displaying a therapeutic index greater than 500, is devoid of hemolytic activity, and has attractive physicochemical properties (clog P = 3.8, molecular weight (MW) = 441) that warrant further investigation of this promising antibacterial scaffold for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- John R Schultz
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen K Costa
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Gorakhnath R Jachak
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Yan Pan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Michaele Josten
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Chinedu Ejeh
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Travis Hammerstad
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hans Georg Sahl
- Institute for Pharmaceutical Microbiology and Institute for Medical Microbiology, Immunology, and Parasitology, University of Bonn, D-53115 Bonn, Germany
| | - Pedro M Pereira
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Mariana G Pinho
- Bacterial Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2781-901 Oeiras, Portugal
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Ambrose Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Pengfei S, Yaqian L, Lanlan X, Zehao L, Yimin L, Shasha L, Linhui L, Yifan Y, Linying Z, Yong W. L007-0069 kills Staphylococcus aureus in high resistant phenotypes. Cell Mol Life Sci 2022; 79:552. [PMID: 36244019 PMCID: PMC11803045 DOI: 10.1007/s00018-022-04588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
Staphylococcus aureus, a common gram-positive pathogenic bacterium, is a main cause of hospital infection. The prevalence rate of methicillin-resistant S. aureus (MRSA) has made its treatment difficult in recent decades. Moreover, S. aureus in the highly tolerant format of biofilm or persister often renders infections refractory. Thus, developing new active compounds against resistant S. aureus is urgently needed. In this study, by a high-throughput screening assay, we identified a small molecule, L007-0069, that exhibited strong and effective bactericidal activity against S. aureus and its high resistance patterns, such as biofilms and persisters, with a low probability of inducing resistance. By molecular dynamics and fluorescent probe analysis, mechanistic studies revealed that the bactericidal activity of L007-0069 was mainly mediated by membrane disruption and metabolic disorder induction. Furthermore, L007-0069 showed effective anti-MRSA effects in vivo in both a wound infection model and a peritonitis-sepsis model, with no detectable toxicity observed at the therapeutic dosage. In conclusion, L007-0069 has the potential to become an alternative for the treatment of highly resistant S. aureus-related infections.
Collapse
Affiliation(s)
- She Pengfei
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Liu Yaqian
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Xu Lanlan
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Li Zehao
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Li Yimin
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Liu Shasha
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Li Linhui
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yang Yifan
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Zhou Linying
- Department of Laboratory Medicine, The First Hospital of Changsha, Changsha, 410005, Hunan, China
| | - Wu Yong
- Department of Laboratory Medicine, The First Hospital of Changsha, Changsha, 410005, Hunan, China.
| |
Collapse
|
20
|
Dan W, Gao J, Qi X, Wang J, Dai J. Antibacterial quaternary ammonium agents: Chemical diversity and biological mechanism. Eur J Med Chem 2022; 243:114765. [PMID: 36116235 DOI: 10.1016/j.ejmech.2022.114765] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023]
Abstract
Bacterial infections have seriously threatened public health especially with the increasing resistance and the cliff-like decline of the number of newly approved antibacterial agents. Quaternary ammonium compounds (QACs) possess potent medicinal properties with 95 successfully marketed drugs, which also have a long history as antibacterial agents. In this review, we summarize the chemical diversity of antibacterial QACs, divided into chain-like and aromatic ring, reported over the past decade (2012 to mid-2022). Additionally, the structure-activity relationships, mainly covering hydrophobicity, charges and skeleton features, are discussed. In the cases where sufficient information is available, antibacterial mechanisms including biofilm, cell membrane, and intracellular targets are presented. It is hoped that this review will provide sufficient information for medicinal chemists to discover the new generation of antibacterial agents based on QACs.
Collapse
Affiliation(s)
- Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Xiaohui Qi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Junru Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Shaanxi, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| |
Collapse
|
21
|
Wang Y, Wu P, Liu F, Chen J, Xue J, Qin Y, Chen F, Wang S, Ji L. Design, synthesis, and biological evaluation of membrane-active honokiol derivatives as potent antibacterial agents. Eur J Med Chem 2022; 240:114593. [PMID: 35820350 DOI: 10.1016/j.ejmech.2022.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Infections caused by drug-resistant bacteria have emerged to be one of the greatest threats to global public health, and new antimicrobial agents with novel mechanisms of action hence are in an urgent need to combat bacterial resistance. Herein, we reported the design, synthesis, and antibacterial evaluation of novel honokiol derivatives as mimics of antimicrobial peptides (AMPs). These mimics showed potent antimicrobial properties against Gram-positive bacteria. Among them, the most promising compound 13b exhibited excellent antibacterial activity, rapid bactericidal properties, avoidance of antibiotic resistance, and weak hemolytic and cytotoxic activities. In addition, compound 13b not only inhibited the biofilm formation but also destroy the preformed biofilm. Mechanism studies further revealed that compound 13b killed bacteria rapidly by interrupting the bacterial membrane. More intriguingly, compound 13b exhibited potent in vivo antibacterial efficacy in a mouse septicemia model induced by Staphylococcus aureus ATCC43300. These results highlight the potential of 13b to be used as therapeutic agents.
Collapse
Affiliation(s)
- Yinhu Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China.
| | - Ping Wu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Fangquan Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Junjie Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Jie Xue
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fang Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China.
| | - Lusha Ji
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China.
| |
Collapse
|
22
|
Svenson J, Molchanova N, Schroeder CI. Antimicrobial Peptide Mimics for Clinical Use: Does Size Matter? Front Immunol 2022; 13:915368. [PMID: 35720375 PMCID: PMC9204644 DOI: 10.3389/fimmu.2022.915368] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The search for efficient antimicrobial therapies that can alleviate suffering caused by infections from resistant bacteria is more urgent than ever before. Infections caused by multi-resistant pathogens represent a significant and increasing burden to healthcare and society and researcher are investigating new classes of bioactive compounds to slow down this development. Antimicrobial peptides from the innate immune system represent one promising class that offers a potential solution to the antibiotic resistance problem due to their mode of action on the microbial membranes. However, challenges associated with pharmacokinetics, bioavailability and off-target toxicity are slowing down the advancement and use of innate defensive peptides. Improving the therapeutic properties of these peptides is a strategy for reducing the clinical limitations and synthetic mimics of antimicrobial peptides are emerging as a promising class of molecules for a variety of antimicrobial applications. These compounds can be made significantly shorter while maintaining, or even improving antimicrobial properties, and several downsized synthetic mimics are now in clinical development for a range of infectious diseases. A variety of strategies can be employed to prepare these small compounds and this review describes the different compounds developed to date by adhering to a minimum pharmacophore based on an amphiphilic balance between cationic charge and hydrophobicity. These compounds can be made as small as dipeptides, circumventing the need for large compounds with elaborate three-dimensional structures to generate simplified and potent antimicrobial mimics for a range of medical applications. This review highlight key and recent development in the field of small antimicrobial peptide mimics as a promising class of antimicrobials, illustrating just how small you can go.
Collapse
Affiliation(s)
| | - Natalia Molchanova
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Christina I. Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
23
|
Membrane-active amino acid-coupled polyetheramine derivatives with high selectivity and broad-spectrum antibacterial activity. Acta Biomater 2022; 142:136-148. [PMID: 35158080 DOI: 10.1016/j.actbio.2022.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022]
Abstract
Membrane active antimicrobial peptide mimics have been considered as promising alternatives to antibiotics, which interact with bacterial cell membranes to combat bacteria and avoid the emergence of multidrug-resistant bacteria. Herein, a series of star-shaped and membrane-active cationic polyetheramides derived from amino acids, were synthesized via condensation of amino acids and polyetheamine (T403). The antibacterial and anti-biofilm activitives as well as the biocompatibility of these amino acids derived polyetheramides (AAPEAs) were investigated in detail. The star-shaped AAPEAs showed high-efficient and broad-spectrum antibacterial activity against the Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogens. In addition, the antibacterial activity was significantly affected by the type of amino acid. L-Trp-T403, which was obtained from L-tryptophan and polyetheramine, exhibited the best antibacterial activity with the minimum inhibitory concentration (MIC) of 1 µg/mL against methicillin-resistant S. aureus (MRSA). Time-kill kinetics and multi-passage resistance tests experiments indicated that L-Trp-T403 could rapidly kill bacteria within 1 h. This compound also showed potent antibacterial activity against bacteria over many passages. Moreover, the AAPEAs exhibited outstanding stability and long-term antibacterial activity in complex mammalian body fluids, as well as good biocompatibility, low hemolytic activity, slight toxicity for mammalian cell (L929) and low in vivo toxicity. The antibacterial activity of L-Trp-T403 was found to be based on the disruption of bacterial membranes, which leads to the leakage of the internal cytoplasm. The AAPEAs possessed high antibacterial and anti-biofilm activity, thus, they are promising to be used as long-term and biofilm-disrupting antimicrobial agents. STATEMENT OF SIGNIFICANCE: The growing epidemic of MDR-bacteria is becoming a severe public health threat. Here, a series of amino acids derived polyetheramides (AAPEAs) with a star-shaped polyether amide scaffold was synthesized. The star-shaped AAPEAs displayed broad-spectrum antibacterial activity against Gram-positive, Gram-negative bacteria and drug-resistant bacteria MRSA. Notably, the star-shaped AAPEAs were stable under plasma conditions and showed outstanding stability and long-term antibacterial activity in various complex mammalian fluids. Moreover, these star-shaped AAPEAs not only inhibited the formation of biofilms but also disrupted the established biofilms. Furthermore, the membrane-active AAPEAs eradicated bacteria via the fast membrane lytic mechanism, thus plausibly overcoming the MDR effect. These results demonstrate that membrane-active AAPEAs can serve as emerging long-term and biofilm-disrupting antimicrobial agents to treat biofilm-related infections.
Collapse
|
24
|
Guo Y, Hou E, Wen T, Yan X, Han M, Bai LP, Fu X, Liu J, Qin S. Development of Membrane-Active Honokiol/Magnolol Amphiphiles as Potent Antibacterial Agents against Methicillin-Resistant Staphylococcus aureus (MRSA). J Med Chem 2021; 64:12903-12916. [PMID: 34432450 DOI: 10.1021/acs.jmedchem.1c01073] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Currently, infections caused by drug-resistant bacteria have become a new challenge in anti-infective treatment, seriously endangering public health. In our continuous effort to develop new antimicrobials, a series of novel honokiol/magnolol amphiphiles were prepared by mimicking the chemical structures and antibacterial properties of cationic antimicrobial peptides. Among them, compound 5i showed excellent antibacterial activity against Gram-positive bacteria and clinical MRSA isolates (minimum inhibitory concentrations (MICs) = 0.5-2 μg/mL) with low hemolytic and cytotoxic activities and high membrane selectivity. Moreover, 5i exhibited rapid bactericidal properties, low resistance frequency, and good capabilities of disrupting bacterial biofilms. Mechanism studies revealed that 5i destroyed bacterial cell membranes, resulting in bacterial death. Additionally, 5i displayed high biosafety and potent in vivo anti-infective potency in a murine sepsis model. Our study indicates that these honokiol/magnolol amphiphiles shed light on developing novel antibacterial agents, and 5i is a potential antibacterial candidate for combating MRSA infections.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Enhua Hou
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tingyu Wen
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoting Yan
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Meiyue Han
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Xiangjing Fu
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jifeng Liu
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shangshang Qin
- School of Pharmaceutical Science, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, Henan, China
| |
Collapse
|
25
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
26
|
Unlocking the bacterial membrane as a therapeutic target for next-generation antimicrobial amphiphiles. Mol Aspects Med 2021; 81:100999. [PMID: 34325929 DOI: 10.1016/j.mam.2021.100999] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/21/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Gram-positive bacteria like Enterococcus faecium and Staphylococcus aureus, and Gram-negative bacteria like Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter Spp. are responsible for most of fatal bacterial infections. Bacteria present a handful of targets like ribosome, RNA polymerase, cell wall biosynthesis, and dihydrofolate reductase. Antibiotics targeting the protein synthesis like aminoglycosides and tetracyclines, inhibitors of RNA/DNA synthesis like fluoroquinolones, inhibitors of cell wall biosynthesis like glycopeptides and β-lactams, and membrane-targeting polymyxins and lipopeptides have shown very good success in combating the bacterial infections. Ability of the bacteria to develop drug resistance is a serious public health challenge as bacteria can develop antimicrobial resistance against newly introduced antibiotics that enhances the challenge for antibiotic drug discovery. Therefore, bacterial membranes present a suitable therapeutic target for development of antimicrobials as bacteria can find it difficult to develop resistance against membrane-targeting antimicrobials. In this review, we present the recent advances in engineering of membrane-targeting antimicrobial amphiphiles that can be effective alternatives to existing antibiotics in combating bacterial infections.
Collapse
|
27
|
Chen F, Bai M, Liu W, Kong H, Zhang T, Yao H, Zhang E, Du J, Qin S. H 2dpa derivatives containing pentadentate ligands: An acyclic adjuvant potentiates meropenem activity in vitro and in vivo against metallo-β-lactamase-producing Enterobacterales. Eur J Med Chem 2021; 224:113702. [PMID: 34303873 DOI: 10.1016/j.ejmech.2021.113702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
The emergence and dissemination of metallo-β-lactamases (MBLs) producing Enterobacterales is a great concern for public health due to the limited therapeutic options. No MBL inhibitors are currently available in clinical practice. Herein, we synthesized a series of H2dpa derivatives containing pentadentate-chelating ligands and evaluated their inhibitory activity against MBLs. Related compounds inhibited clinically relevant MBLs (Imipenemase, New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase) with IC50 values of 1-4.9 μM. In vitro, the most promising compounds, 5b and 5c, which had a chiral methyl at the acid adjacent to 5a, demonstrated potent synergistic activity against engineered strains, with fractional inhibitory concentration index values as low as 0.07-0.18. The addition of 5b and 5c restored meropenem efficacy against 42 MBL-producing Enterobacterales and Pseudomonas aeruginosa to satisfactory clinical levels. In addition, safety tests revealed that 5b/5c showed no toxicity in red blood cells, cell lines or mouse model. Further studies demonstrated that compounds 5b and 5c were non-competitive MBL inhibitors. In vivo compounds 5b and 5c potentiated meropenem efficacy and increased the survival rate from 0 to at least 83% in mice with sepsis caused by an NDM-1-positive clinical strain. The activity of the compounds exhibited consistency at the molecular, cellular, and in vivo levels. These data indicated that H2dpa derivatives 5b and 5c containing pentadentate-chelating ligands may be worthy of further study.
Collapse
Affiliation(s)
- Fangfang Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Mengmeng Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wentian Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Tingting Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hong Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Juan Du
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
28
|
Wang J, Zhang PL, Ansari MF, Li S, Zhou CH. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. Bioorg Chem 2021; 113:105039. [PMID: 34091291 DOI: 10.1016/j.bioorg.2021.105039] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
A series of 2-aminothiazole sulfanilamide oximes were developed as new membrane active antibacterial agents to conquer the microbial infection. Benzoyl derivative 10c was preponderant for the treatment of drug-resistant A. baumannii infection in contrast to norfloxacin and exerted excellent biocompatibility against mammalian cells including erythrocyte and LO2 cell line. Meanwhile, it had ability to eradicate established biofilm to alleviate the resistance burden. Mechanism investigation elucidated that compound 10c was able to disturb the membrane effectively and inhibit lactic dehydrogenase, which led to cytoplasmic content leakage. The cellular redox homeostasis was interfered via the production of reactive oxygen and nitrogen species (RONS), which further contributed to respiratory pathway inactivation and reduction of GSH activity. This work indicated that 2-aminothiazole sulfanilamide oximes could be a promising start for the exploitation of novel antibacterial agents against pathogens.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
29
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
30
|
Wang J, Ansari MF, Zhou CH. Unique para-aminobenzenesulfonyl oxadiazoles as novel structural potential membrane active antibacterial agents towards drug-resistant methicillin resistant Staphylococcus aureus. Bioorg Med Chem Lett 2021; 41:127995. [PMID: 33775834 DOI: 10.1016/j.bmcl.2021.127995] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
A class of structurally unique para-aminobenzenesulfonyl oxadiazoles as new potential antimicrobial agents was designed and synthesized from acetanilide. Some target para-aminobenzenesulfonyl oxadiazoles showed antibacterial potency. Noticeably, hexyl derivative 8b (MIC = 1 μg/mL) was more active than norfloxacin against drug resistant MRSA. Compound 8b was able to disturb the membrane effectively and intercalate into deoxyribonucleic acid (DNA) to form a steady 8b-DNA complex, which might be responsible for bacterial metabolic inactivation. Molecular docking indicated that 8b could interact with DNA topoisomerase IV through noncovalent interactions to form a supramolecular complex and hinder the function of this enzyme. These results indicated that hexyl derivative 8b deserved further investigation as a new lead compound.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
31
|
Yuan X, Wang C, Chen J, Shu X, Chai Y, Meng Z, Hou D, Li C, Meng Q. Oligo( para-phenylenes)s–Oligoarginine Conjugates as Effective Antibacterial Agents with High Plasma Stability and Low Hemolysis. ACS APPLIED BIO MATERIALS 2020; 3:8532-8541. [DOI: 10.1021/acsabm.0c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingyi Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Junyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Xiaoyan Shu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Yao Chai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Dabin Hou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Chunju Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| |
Collapse
|
32
|
Odusami JA, Ikhile MI, Izunobi JU, Olasupo IA, Osunsanmi FO, Opoku AR, Fotsing MCD, Asekun OT, Familoni OB, Ndinteh DT. Synthesis of substituted N-(2'-nitrophenyl)pyrrolidine-2-carboxamides towards the design of proline-rich antimicrobial peptide mimics to eliminate bacterial resistance to antibiotics. Bioorg Chem 2020; 105:104340. [PMID: 33096308 DOI: 10.1016/j.bioorg.2020.104340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023]
Abstract
The treatment of diseases is under threat due to the increasing resistance of disease-causing bacteria to antibiotics. Likewise, free radical-induced oxidative stress has been implicated in several human disease conditions, such as cancer, stroke and diabetes. In the search for amino acid analogues with antibacterial and antioxidant properties as possible mimics of antimicrobial peptides, substituted N-(2'-nitrophenyl)pyrrolidine-2-carboxamides 4a-4k and N-(2'-nitrophenyl)piperidine-2-carboxamides 4l-4n have been synthesized via a two-step, one-pot amidation of the corresponding acids, using thionyl chloride with different amines in dichloromethane. The carboxamides were characterized by infrared and nuclear magnetic resonance spectroscopy, mass spectrometry and elemental analysis. Carboxamides 4a-4n were assayed against five Gram-positive and five Gram-negative bacterial strains using the broth micro-dilution procedure and compared to standard antibiotic drugs (streptomycin and nalidixic acid). 4b showed the highest antibacterial activity with a minimum inhibitory concentration (MIC) value of 15.6 µg/mL against Staphylococcus aureus. Pertinently, 4b and 4k are promising candidates for narrow-spectrum (Gram-positive) and broad-spectrum antibiotics, respectively. The antioxidant properties of the carboxamides were also evaluated using the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical cation. 4a and 4k recorded the lowest IC50 values of 1.22 × 10-3 mg/mL (with DPPH) and 1.45 × 10-4 mg/mL (with ABTS), respectively. Notably, 4k recorded about 2.5 times better antioxidant capacity than the positive controls - ascorbic acid and butylated hydroxyanisole. These results bode well for N-aryl carboxamides as good mimics and substitutes for antimicrobial peptides towards mitigating bacterial resistance to antibiotics as well as ameliorating oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jocelyn A Odusami
- Department of Chemistry, University of Lagos, Akoka, Lagos, Nigeria; Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa; Department of Chemical Sciences, Yaba College of Technology, Yaba, Lagos, Nigeria
| | - Monisola I Ikhile
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa.
| | | | - Idris A Olasupo
- Department of Chemistry, University of Lagos, Akoka, Lagos, Nigeria
| | - Foluso O Osunsanmi
- Department of Biochemistry & Microbiology, University of Zululand, Kwadlangezwa, South Africa
| | - Andrew R Opoku
- Department of Biochemistry & Microbiology, University of Zululand, Kwadlangezwa, South Africa
| | - Marthe C D Fotsing
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
| | | | | | - Derek T Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
33
|
Yu CH, Chen GY, Xia MY, Xie Y, Chi YQ, He ZY, Zhang CL, Zhang T, Chen QM, Peng Q. Understanding the sheet size-antibacterial activity relationship of graphene oxide and the nano-bio interaction-based physical mechanisms. Colloids Surf B Biointerfaces 2020; 191:111009. [DOI: 10.1016/j.colsurfb.2020.111009] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
|
34
|
Cui DY, Yang Y, Bai MM, Han JX, Wang CC, Kong HT, Shen BY, Yan DC, Xiao CL, Liu YS, Zhang E. Systematic research of H 2dedpa derivatives as potent inhibitors of New Delhi Metallo-β-lactamase-1. Bioorg Chem 2020; 101:103965. [PMID: 32485471 DOI: 10.1016/j.bioorg.2020.103965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/03/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022]
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1), a Zn (II)-dependent enzyme, can catalyze the hydrolysis of almost all β-lactam antibiotics including carbapenems, resulting in bacterial antibiotic resistance, which threatens public health globally. Based on our finding that H2dedpa is as an efficient NDM-1 inhibitor, a series of H2dedpa derivatives was systematically prepared. These compounds exhibited significant activity against NDM-1, with IC50 values 0.06-0.94 μM. In vitro, compounds 6k and 6n could restore the activity of meropenem against Klebsiella pneumoniae, Escherichia coli and Proteus mirabilis possessing either NDM or IMP. In particular, the activity of meropenem against E. coli producing NDM-4 could be improved up to 5333 times when these two compounds were used. Time-kill cell-based assays showed that 99.9% of P. mirabilis were killed when treated with meropenem in combination with compound 6k or 6n. Furthermore, compounds 6k and 6n were nonhemolytic (HC50 > 1280 μg/mL) and showed low toxicity toward mammalian (HeLa) cells. Mechanistic studies indicated that compounds 6k and 6n inhibit NDM-1 by chelating the Zn2+ ion of the enzyme.
Collapse
Affiliation(s)
- De-Yun Cui
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi Yang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng-Meng Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiang-Xue Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Cong-Cong Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hong-Tao Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bo-Yuan Shen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Da-Chao Yan
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chun-Ling Xiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi-Shuang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China.
| |
Collapse
|
35
|
Cui DY, Kong HT, Yang Y, Cai J, Shen BY, Yan DC, Zhang XJ, Qu YL, Bai MM, Zhang E. Asymmetric synthesis of linezolid thiazolidine-2-thione derivatives via CS2 mediated decarboxylation cyclization. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|