1
|
Durham ND, Jain A, Howard A, Luban J, Munro JB. Molecular basis for the increased fusion activity of the Ebola virus glycoprotein epidemic variant A82V: Insights from simulations and experiments. Cell Rep 2025; 44:115521. [PMID: 40186866 PMCID: PMC12087377 DOI: 10.1016/j.celrep.2025.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
During the 2013-2016 Ebola virus (EBOV) epidemic in Western Africa, an A82V mutation emerged in the envelope glycoprotein (GP) that persisted in most circulating isolates. Previous studies demonstrated that A82V increased GP-mediated membrane fusion and altered its dependence on host factors. The mechanistic basis for these observations, in particular the impact of A82V on the conformational changes in GP that are needed for membrane fusion, has not been evaluated in molecular detail. Here, using molecular dynamics simulations, fluorescence correlation spectroscopy, and single-molecule Förster resonance energy transfer imaging, we specify the molecular mechanism by which A82V alters GP conformation to enhance viral entry. In so doing, we identify an allosteric network of interactions that links the receptor-binding site to the fusion loop of GP. Thus, the naturally occurring A82V mutation can tune the conformational dynamics of EBOV GP to enhance fusion loop mobility and subsequent viral fusion and infectivity in human cells.
Collapse
Affiliation(s)
- Natasha D Durham
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA.
| | - Aastha Jain
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Angela Howard
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - James B Munro
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Sundaram M, Dorado M, Akaribo B, Filion A, Han BA, Gottdenker NL, Schmidt JP, Drake JM, Stephens PR. Fruit-frugivore dependencies are important in Ebolavirus outbreaks in Sub-Saharan Africa. ECOGRAPHY 2024; 2024:e06950. [PMID: 40018392 PMCID: PMC11867621 DOI: 10.1111/ecog.06950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/01/2025]
Abstract
Ebolaviruses have the ability to infect a wide variety of species, with many African mammals potentially serving either as primary reservoirs or secondary amplifying hosts. Previous work has shown that frugivorous bats and primates are often associated with spillover and outbreaks. Yet the role that patterns of biodiversity, either of mammalian hosts or of common fruiting species such as Ficus (figs, fruit resources used by a wide variety of species), play in driving outbreak risk remains unclear. We investigated what factors most directly influence Ebolavirus outbreak risk in Sub-Saharan Africa by using a phylogenetically informed path analysis to compare a wide array of potential models (path diagrams) of spatial dynamics. We considered mammalian frugivore richness, cercopithecid and hominid primate richness, richness of pteropodid (fruit) bats, the spatial distribution of species that have tested positive for Ebolavirus antibodies in the wild, Ficus habitat suitability, and environmental conditions (mean annual and variability in temperature and rainfall). The proximate factors that most influenced whether a given host species range contained a site of a previous outbreak event were 1) habitat suitability for Ficus and 2) the diversity of cercopithecid primates. Frugivore richness overall (including bats, primates, and a few other mammals) and the richness of bats in the family Pteropodidae had a strong effect on which species tested positive for Ebolavirus antibodies, but did not influence outbreak risk directly in pathways explored. We interpret this as evidence that foraging around Ficus and frugivorous mammals (such as cercopithecid primates which are commonly hunted for food) play a prominent role in driving outbreaks into human communities, relative to other factors we considered which influence outbreak risk more indirectly.
Collapse
Affiliation(s)
- Mekala Sundaram
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
- Department of Infectious Diseases and Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA
| | | | - Benedicta Akaribo
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Antoine Filion
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | | | | | - John P. Schmidt
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Patrick R. Stephens
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
3
|
Shekunov EV, Efimova SS, Kever LV, Ishmanov TF, Ostroumova OS. Lipid Selectivity of Membrane Action of the Fragments of Fusion Peptides of Marburg and Ebola Viruses. Int J Mol Sci 2024; 25:9901. [PMID: 39337389 PMCID: PMC11432738 DOI: 10.3390/ijms25189901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The life cycle of Ebola and Marburg viruses includes a step of the virion envelope fusion with the cell membrane. Here, we analyzed whether the fusion of liposome membranes under the action of fragments of fusion peptides of Ebola and Marburg viruses depends on the composition of lipid vesicles. A fluorescence assay and electron microscopy were used to quantify the fusogenic activity of the virus fusion peptides and to identify the lipid determinants affecting membrane merging. Differential scanning calorimetry of lipid phase transitions revealed alterations in the physical properties of the lipid matrix produced by virus fusion peptides. Additionally, we found that plant polyphenols, quercetin, and myricetin inhibited vesicle fusion induced by the Marburg virus fusion peptide.
Collapse
Affiliation(s)
- Egor V Shekunov
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Svetlana S Efimova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Lyudmila V Kever
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Tagir F Ishmanov
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| | - Olga S Ostroumova
- Laboratory of Membrane and Ion Channel Modeling, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky 4, 194064 Saint Petersburg, Russia
| |
Collapse
|
4
|
Shaw AB, Tse HN, Byford O, Plahe G, Moon-Walker A, Hover SE, Saphire EO, Whelan SPJ, Mankouri J, Fontana J, Barr JN. Cellular endosomal potassium ion flux regulates arenavirus uncoating during virus entry. mBio 2024; 15:e0168423. [PMID: 38874413 PMCID: PMC11253613 DOI: 10.1128/mbio.01684-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/21/2024] [Indexed: 06/15/2024] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is an enveloped and segmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromised populations and, as the prototypical arenavirus member, acts as a model for the many highly pathogenic members of the Arenaviridae family, such as Junín, Lassa, and Lujo viruses, all of which are associated with devastating hemorrhagic fevers. To enter cells, the LCMV envelope fuses with late endosomal membranes, for which two established requirements are low pH and interaction between the LCMV glycoprotein (GP) spike and secondary receptor CD164. LCMV subsequently uncoats, where the RNA genome-associated nucleoprotein (NP) separates from the Z protein matrix layer, releasing the viral genome into the cytosol. To further examine LCMV endosome escape, we performed an siRNA screen which identified host cell potassium ion (K+) channels as important for LCMV infection, with pharmacological inhibition confirming K+ channel involvement during the LCMV entry phase completely abrogating productive infection. To better understand the K+-mediated block in infection, we tracked incoming virions along their entry pathway under physiological conditions, where uncoating was signified by separation of NP and Z proteins. In contrast, K+ channel blockade prevented uncoating, trapping virions within Rab7 and CD164-positive endosomes, identifying K+ as a third LCMV entry requirement. K+ did not increase GP-CD164 binding or alter GP-CD164-dependent fusion. Thus, we propose that K+ mediates uncoating by modulating NP-Z interactions within the virion interior. These results suggest K+ channels represent a potential anti-arenaviral target.IMPORTANCEArenaviruses can cause fatal human disease for which approved preventative or therapeutic options are not available. Here, using the prototypical LCMV, we identified K+ channels as critical for arenavirus infection, playing a vital role during the entry phase of the infection cycle. We showed that blocking K+ channel function resulted in entrapment of LCMV particles within late endosomal compartments, thus preventing productive replication. Our data suggest K+ is required for LCMV uncoating and genome release by modulating interactions between the viral nucleoprotein and the matrix protein layer inside the virus particle.
Collapse
Affiliation(s)
- Amelia B. Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Grace Plahe
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Alex Moon-Walker
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha E. Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
de Antonellis P, Ferrucci V, Miceli M, Bibbo F, Asadzadeh F, Gorini F, Mattivi A, Boccia A, Russo R, Andolfo I, Lasorsa VA, Cantalupo S, Fusco G, Viscardi M, Brandi S, Cerino P, Monaco V, Choi DR, Cheong JH, Iolascon A, Amente S, Monti M, Fava LL, Capasso M, Kim HY, Zollo M. Targeting ATP2B1 impairs PI3K/Akt/FOXO signaling and reduces SARS-COV-2 infection and replication. EMBO Rep 2024; 25:2974-3007. [PMID: 38816514 PMCID: PMC11239940 DOI: 10.1038/s44319-024-00164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
ATP2B1 is a known regulator of calcium (Ca2+) cellular export and homeostasis. Diminished levels of intracellular Ca2+ content have been suggested to impair SARS-CoV-2 replication. Here, we demonstrate that a nontoxic caloxin-derivative compound (PI-7) reduces intracellular Ca2+ levels and impairs SARS-CoV-2 infection. Furthermore, a rare homozygous intronic variant of ATP2B1 is shown to be associated with the severity of COVID-19. The mechanism of action during SARS-CoV-2 infection involves the PI3K/Akt signaling pathway activation, inactivation of FOXO3 transcription factor function, and subsequent transcriptional inhibition of the membrane and reticulum Ca2+ pumps ATP2B1 and ATP2A1, respectively. The pharmacological action of compound PI-7 on sustaining both ATP2B1 and ATP2A1 expression reduces the intracellular cytoplasmic Ca2+ pool and thus negatively influences SARS-CoV-2 replication and propagation. As compound PI-7 lacks toxicity in vitro, its prophylactic use as a therapeutic agent against COVID-19 is envisioned here.
Collapse
Affiliation(s)
- Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
| | - Francesca Bibbo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- European School of Molecular Medicine, SEMM, Naples, Italy
| | - Francesca Gorini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Alessia Mattivi
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | | | - Roberta Russo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Immacolata Andolfo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | | | | | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Vittoria Monaco
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Dong-Rac Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Stefano Amente
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Hong-Yeoul Kim
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy.
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- European School of Molecular Medicine, SEMM, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, 'Federico II' University of Naples, 80131, Naples, Italy.
| |
Collapse
|
6
|
Vaknin A, Grossman A, Durham ND, Lupovitz I, Goren S, Golani G, Roichman Y, Munro JB, Sorkin R. Ebola Virus Glycoprotein Strongly Binds to Membranes in the Absence of Receptor Engagement. ACS Infect Dis 2024; 10:1590-1601. [PMID: 38684073 PMCID: PMC11091876 DOI: 10.1021/acsinfecdis.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Ebola virus (EBOV) is an enveloped virus that must fuse with the host cell membrane in order to release its genome and initiate infection. This process requires the action of the EBOV envelope glycoprotein (GP), encoded by the virus, which resides in the viral envelope and consists of a receptor binding subunit, GP1, and a membrane fusion subunit, GP2. Despite extensive research, a mechanistic understanding of the viral fusion process is incomplete. To investigate GP-membrane association, a key step in the fusion process, we used two approaches: high-throughput measurements of single-particle diffusion and single-molecule measurements with optical tweezers. Using these methods, we show that the presence of the endosomal Niemann-Pick C1 (NPC1) receptor is not required for primed GP-membrane binding. In addition, we demonstrate this binding is very strong, likely attributed to the interaction between the GP fusion loop and the membrane's hydrophobic core. Our results also align with previously reported findings, emphasizing the significance of acidic pH in the protein-membrane interaction. Beyond Ebola virus research, our approach provides a powerful toolkit for studying other protein-membrane interactions, opening new avenues for a better understanding of protein-mediated membrane fusion events.
Collapse
Affiliation(s)
- Alisa Vaknin
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alon Grossman
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natasha D. Durham
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Inbal Lupovitz
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Goren
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gonen Golani
- Department
of Physics and Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 3498838, Israel
| | - Yael Roichman
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond
and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - James B. Munro
- Department
of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
- Department
of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States
| | - Raya Sorkin
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Li L, Wang J, Chen L, Ren Q, Akhtar MF, Liu W, Wang C, Cao S, Liu W, Zhao Q, Li Y, Wang T. Diltiazem HCl suppresses porcine reproductive and respiratory syndrome virus infection in susceptible cells and in swine. Vet Microbiol 2024; 292:110054. [PMID: 38507832 DOI: 10.1016/j.vetmic.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen for swine, resulting in substantial economic losses to the swine industry. However, there has been little success in developing effective vaccines or drugs for PRRSV control. In the present study, we discovered that Diltiazem HCl, an inhibitor of L-type Ca2+ channel, effectively suppresses PRRSV replication in MARC-145, PK-15CD163 and PAM cells in dose-dependent manner. Furthermore, it demonstrates a broad-spectrum activity against both PRRSV-1 and PRRSV-2 strains. Additionally, we explored the underlying mechanisms and found that Diltiazem HCl -induced inhibition of PRRSV associated with regulation of calcium ion homeostasis in susceptible cells. Moreover, we evaluated the antiviral effects of Diltiazem HCl in PRRSV-challenged piglets, assessing rectal temperature, viremia, and gross and microscopic lung lesions. Our results indicate that Diltiazem HCl treatment alleviates PRRSV-induced rectal temperature spikes, pulmonary pathological changes, and serum viral load. In conclusion, our data suggest that Diltiazem HCl could serve as a novel therapeutic drug against PRRSV infection.
Collapse
Affiliation(s)
- Liangliang Li
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Jiayu Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Li Chen
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qinghai Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | | | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Changfa Wang
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Shengliang Cao
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Wenqiang Liu
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yubao Li
- College of Agronomy, Liaocheng University, Liaocheng, China.
| | - Tongtong Wang
- College of Agronomy, Liaocheng University, Liaocheng, China.
| |
Collapse
|
8
|
Carten JD, Khelashvili G, Bidon MK, Straus MR, Tang T, Jaimes JA, Whittaker GR, Weinstein H, Daniel S. A Mechanistic Understanding of the Modes of Ca 2+ Ion Binding to the SARS-CoV-1 Fusion Peptide and Their Role in the Dynamics of Host Membrane Penetration. ACS Infect Dis 2024; 10:398-411. [PMID: 38270149 DOI: 10.1021/acsinfecdis.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The SARS-CoV-1 spike glycoprotein contains a fusion peptide (FP) segment that mediates the fusion of the viral and host cell membranes. Calcium ions are thought to position the FP optimally for membrane insertion by interacting with negatively charged residues in this segment (E801, D802, D812, E821, D825, and D830); however, which residues bind to calcium and in what combinations supportive of membrane insertion are unknown. Using biological assays and molecular dynamics studies, we have determined the functional configurations of FP-Ca2+ binding that likely promote membrane insertion. We first individually mutated the negatively charged residues in the SARS CoV-1 FP to assay their roles in cell entry and syncytia formation, finding that charge loss in the D802A or D830A mutants greatly reduced syncytia formation and pseudoparticle transduction of VeroE6 cells. Interestingly, one mutation (D812A) led to a modest increase in cell transduction, further indicating that FP function likely depends on calcium binding at specific residues and in specific combinations. To interpret these results mechanistically and identify specific modes of FP-Ca2+ binding that modulate membrane insertion, we performed molecular dynamics simulations of the SARS-CoV-1 FP and Ca2+ions. The preferred residue pairs for Ca2+ binding we identified (E801/D802, E801/D830, and D812/E821) include the two residues found to be essential for S function in our biological studies (D802 and D830). The three preferred Ca2+ binding pairs were also predicted to promote FP membrane insertion. We also identified a Ca2+ binding pair (E821/D825) predicted to inhibit FP membrane insertion. We then carried out simulations in the presence of membranes and found that binding of Ca2+ to SARS-CoV-1 FP residue pairs E801/D802 and D812/E821 facilitates membrane insertion by enabling the peptide to adopt conformations that shield the negative charges of the FP to reduce repulsion by the membrane phospholipid headgroups. This calcium binding mode also optimally positions the hydrophobic LLF region of the FP for membrane penetration. Conversely, Ca2+ binding to the FP E801/D802 and D821/D825 pairs eliminates the negative charge screening and instead creates a repulsive negative charge that hinders membrane penetration of the LLF motif. These computational results, taken together with our biological studies, provide an improved and nuanced mechanistic understanding of the dymanics of SARS-CoV-1 calcium binding and their potential effects on host cell entry.
Collapse
Affiliation(s)
- Juliana Debrito Carten
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - George Khelashvili
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10065, United States
| | - Miya K Bidon
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Marco R Straus
- Departments of Microbiology & Immunology, Cornell University, Ithaca, New York 14853, United States
| | - Tiffany Tang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Javier A Jaimes
- Departments of Microbiology & Immunology, Cornell University, Ithaca, New York 14853, United States
| | - Gary R Whittaker
- Departments of Microbiology & Immunology, Cornell University, Ithaca, New York 14853, United States
- Public & Ecosystem Health, Cornell University, Ithaca, New York 14853, United States
| | - Harel Weinstein
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10065, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Kao CF, Liu CY, Hsieh CL, Carillo KJD, Tzou DLM, Wang HC, Chang W. Structural and functional analyses of viral H2 protein of the vaccinia virus entry fusion complex. J Virol 2023; 97:e0134323. [PMID: 37975688 PMCID: PMC10734489 DOI: 10.1128/jvi.01343-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Vaccinia virus infection requires virus-cell membrane fusion to complete entry during endocytosis; however, it contains a large viral fusion protein complex of 11 viral proteins that share no structure or sequence homology to all the known viral fusion proteins, including type I, II, and III fusion proteins. It is thus very challenging to investigate how the vaccinia fusion complex works to trigger membrane fusion with host cells. In this study, we crystallized the ectodomain of vaccinia H2 protein, one component of the viral fusion complex. Furthermore, we performed a series of mutational, biochemical, and molecular analyses and identified two surface loops containing 170LGYSG174 and 125RRGTGDAW132 as the A28-binding region. We also showed that residues in the N-terminal helical region (amino acids 51-90) are also important for H2 function.
Collapse
Affiliation(s)
- Chi-Fei Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Yi Liu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Lin Hsieh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | | | - Hao-Ching Wang
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Ramirez JM, Calderon-Zavala AC, Balaram A, Heldwein EE. In vitro reconstitution of herpes simplex virus 1 fusion identifies low pH as a fusion co-trigger. mBio 2023; 14:e0208723. [PMID: 37874146 PMCID: PMC10746285 DOI: 10.1128/mbio.02087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE HSV-1 causes lifelong, incurable infections and diseases ranging from mucocutaneous lesions to fatal encephalitis. Fusion of viral and host membranes is a critical step in HSV-1 infection of target cells that requires multiple factors on both the viral and host sides. Due to this complexity, many fundamental questions remain unanswered, such as the identity of the viral and host factors that are necessary and sufficient for HSV-1-mediated membrane fusion and the nature of the fusion trigger. Here, we developed a simplified in vitro fusion assay to examine the fusion requirements and identified low pH as a co-trigger for virus-mediated fusion in vitro. We hypothesize that low pH has a critical role in cell entry and, potentially, pathogenesis.
Collapse
Affiliation(s)
- J. Martin Ramirez
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariana C. Calderon-Zavala
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ariane Balaram
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Jain A, Govindan R, Berkman AR, Luban J, Díaz-Salinas MA, Durham ND, Munro JB. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. PLoS Pathog 2023; 19:e1011848. [PMID: 38055723 PMCID: PMC10727438 DOI: 10.1371/journal.ppat.1011848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Förster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GP's interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
Affiliation(s)
- Aastha Jain
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Alex R. Berkman
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Natasha D. Durham
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
12
|
Ghafouri E, Bigdeli M, Khalafiyan A, Amirkhani Z, Ghanbari R, Hasan A, Khanahmad H, Boshtam M, Makvandi P. Unmasking the complex roles of hypocalcemia in cancer, COVID-19, and sepsis: Engineered nanodelivery and diagnosis. ENVIRONMENTAL RESEARCH 2023; 238:116979. [PMID: 37660871 DOI: 10.1016/j.envres.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Calcium (Ca2+) homeostasis is essential for maintaining physiological processes in the body. Disruptions in Ca2+ signaling can lead to various pathological conditions including inflammation, fibrosis, impaired immune function, and accelerated senescence. Hypocalcemia, a common symptom in diseases such as acute respiratory distress syndrome (ARDS), cancer, septic shock, and COVID-19, can have both potential protective and detrimental effects. This article explores the multifaceted role of Ca2+ dysregulation in inflammation, fibrosis, impaired immune function, and accelerated senescence, contributing to disease severity. Targeting Ca2+ signaling pathways may provide opportunities to develop novel therapeutics for age-related diseases and combat viral infections. However, the role of Ca2+ in viral infections is complex, and evidence suggests that hypocalcemia may have a protective effect against certain viruses, while changes in Ca2+ homeostasis can influence susceptibility to viral infections. The effectiveness and safety of Ca2+ supplements in COVID-19 patients remain a subject of ongoing research and debate. Further investigations are needed to understand the intricate interplay between Ca2+ signaling and disease pathogenesis.
Collapse
Affiliation(s)
- Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohre Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roham Ghanbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
13
|
Jain A, Govindan R, Berkman A, Luban J, Durham ND, Munro J. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524651. [PMID: 36711925 PMCID: PMC9882366 DOI: 10.1101/2023.01.18.524651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Forster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GPs interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
|
14
|
Abstract
There are at least 21 families of enveloped viruses that infect mammals, and many contain members of high concern for global human health. All enveloped viruses have a dedicated fusion protein or fusion complex that enacts the critical genome-releasing membrane fusion event that is essential before viral replication within the host cell interior can begin. Because all enveloped viruses enter cells by fusion, it behooves us to know how viral fusion proteins function. Viral fusion proteins are also major targets of neutralizing antibodies, and hence they serve as key vaccine immunogens. Here we review current concepts about viral membrane fusion proteins focusing on how they are triggered, structural intermediates between pre- and postfusion forms, and their interplay with the lipid bilayers they engage. We also discuss cellular and therapeutic interventions that thwart virus-cell membrane fusion.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA;
| | - Amanda E Ward
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
16
|
Odongo L, Habtegebrael BH, Kiessling V, White JM, Tamm LK. A novel in vitro system of supported planar endosomal membranes (SPEMs) reveals an enhancing role for cathepsin B in the final stage of Ebola virus fusion and entry. Microbiol Spectr 2023; 11:e0190823. [PMID: 37728342 PMCID: PMC10581071 DOI: 10.1128/spectrum.01908-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 09/21/2023] Open
Abstract
Ebola virus (EBOV) causes a hemorrhagic fever with fatality rates up to 90%. The EBOV entry process is complex and incompletely understood. Following attachment to host cells, EBOV is trafficked to late endosomes/lysosomes where its glycoprotein (GP) is processed to a 19-kDa form, which binds to the EBOV intracellular receptor Niemann-Pick type C1. We previously showed that the cathepsin protease inhibitor, E-64d, blocks infection by pseudovirus particles bearing 19-kDa GP, suggesting that further cathepsin action is needed to trigger fusion. This, however, has not been demonstrated directly. Since 19-kDa Ebola GP fusion occurs in late endosomes, we devised a system in which enriched late endosomes are used to prepare supported planar endosomal membranes (SPEMs), and fusion of fluorescent (pseudo)virus particles is monitored by total internal reflection fluorescence microscopy. We validated the system by demonstrating the pH dependencies of influenza virus hemagglutinin (HA)-mediated and Lassa virus (LASV) GP-mediated fusion. Using SPEMs, we showed that fusion mediated by 19-kDa Ebola GP is dependent on low pH, enhanced by Ca2+, and augmented by the addition of cathepsins. Subsequently, we found that E-64d inhibits full fusion, but not lipid mixing, mediated by 19-kDa GP, which we corroborated with the reversible cathepsin inhibitor VBY-825. Hence, we provide both gain- and loss-of-function evidence that further cathepsin action enhances the fusion activity of 19-kDa Ebola GP. In addition to providing new insights into how Ebola GP mediates fusion, the approach we developed employing SPEMs can now be broadly used for studies of virus and toxin entry through endosomes. IMPORTANCE Ebola virus is the causative agent of Ebola virus disease, which is severe and frequently lethal. EBOV gains entry into cells via late endosomes/lysosomes. The events immediately preceding fusion of the viral and endosomal membranes are incompletely understood. In this study, we report a novel in vitro system for studying virus fusion with endosomal membranes. We validated the system by demonstrating the low pH dependencies of influenza and Lassa virus fusion. Moreover, we show that further cathepsin B action enhances the fusion activity of the primed Ebola virus glycoprotein. Finally, this model endosomal membrane system should be useful in studying the mechanisms of bilayer breaching by other enveloped viruses, by non-enveloped viruses, and by acid-activated bacterial toxins.
Collapse
Affiliation(s)
- Laura Odongo
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Betelihem H. Habtegebrael
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Judith M. White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
17
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
18
|
Fani M, Moossavi M, Bakhshi H, Jahrodi AN, Khazdair MR, Zardast AH, Ghafari S. Targeting host calcium channels and viroporins: a promising strategy for SARS-CoV-2 therapy. Future Virol 2023:10.2217/fvl-2022-0203. [PMID: 37700758 PMCID: PMC10494978 DOI: 10.2217/fvl-2022-0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Despite passing the pandemic phase of the COVID-19, researchers are still investigating various drugs. Previous evidence suggests that blocking the calcium channels may be a suitable treatment option. Ca2+ is required to enhance the fusion process of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also, some important inflammatory factors during SARS-CoV-2 infection are dependent on Ca2+ level. On the other hand, viroporins have emerged as attractive targets for antiviral therapy due to their essential role in viral replication and pathogenesis. By inhibiting the host calcium channels and viroporins, it is possible to limit the spread of infection. Therefore, calcium channel blockers (CCBs) and drugs targeting Viroporins can be considered an effective option in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Mona Fani
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Moossavi
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Hasan Bakhshi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Mohammad Reza Khazdair
- Pharmaceutical Science & Clinical Physiology, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Shokouh Ghafari
- Cellular & Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
- Department of Microbiology & Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| |
Collapse
|
19
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
20
|
Guo X, Feng Y, Zhao X, Qiao S, Ma Z, Li Z, Zheng H, Xiao S. Coronavirus Porcine Epidemic Diarrhea Virus Utilizes Chemokine Interleukin-8 to Facilitate Viral Replication by Regulating Ca 2+ Flux. J Virol 2023; 97:e0029223. [PMID: 37133374 PMCID: PMC10231212 DOI: 10.1128/jvi.00292-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
Chemokine production by epithelial cells is crucial for neutrophil recruitment to sites of inflammation during viral infection. However, the effect of chemokine on epithelia and how chemokine is involved in coronavirus infection remains to be fully understood. Here, we identified an inducible chemokine interleukin-8 (CXCL8/IL-8), which could promote coronavirus porcine epidemic diarrhea virus (PEDV) infection in African green monkey kidney epithelial cells (Vero) and Lilly Laboratories cell-porcine kidney 1 epithelial cells (LLC-PK1). IL-8 deletion restrained cytosolic calcium (Ca2+), whereas IL-8 stimulation improved cytosolic Ca2+. The consumption of Ca2+ restricted PEDV infection. PEDV internalization and budding were obvious reductions when cytosolic Ca2+ was abolished in the presence of Ca2+ chelators. Further study revealed that the upregulated cytosolic Ca2+ redistributes intracellular Ca2+. Finally, we identified that G protein-coupled receptor (GPCR)-phospholipase C (PLC)-inositol trisphosphate receptor (IP3R)-store-operated Ca2+ (SOC) signaling was crucial for enhancive cytosolic Ca2+ and PEDV infection. To our knowledge, this study is the first to uncover the function of chemokine IL-8 during coronavirus PEDV infection in epithelia. PEDV induces IL-8 expression to elevate cytosolic Ca2+, promoting its infection. Our findings reveal a novel role of IL-8 in PEDV infection and suggest that targeting IL-8 could be a new approach to controlling PEDV infection. IMPORTANCE Coronavirus porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric coronavirus that caused severe economic losses worldwide, and more effort is needed to develop economical and efficient vaccines to control or eliminate this disease. The chemokine interleukin-8 (CXCL8/IL-8) is indispensable for the activation and trafficking of inflammatory mediators and tumor progression and metastasis. This study evaluated the effect of IL-8 on PEDV infection in epithelia. We found that IL-8 expression improved cytosolic Ca2+ in epithelia, facilitating PEDV rapid internalization and egress. G protein-coupled receptor (GPCR)-phospholipase C (PLC)-inositol trisphosphate receptor (IP3R)-SOC signaling was activated by IL-8, releasing the intracellular Ca2+ stores from endoplasmic reticulum (ER). These findings provide a better understanding of the role of IL-8 in PEDV-induced immune responses, which will help develop small-molecule drugs for coronavirus cure.
Collapse
Affiliation(s)
- Xuyang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojing Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuang Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zhiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Zhang J, Yang W, Roy S, Liu H, Roberts R, Wang L, Shi L, Ma W. Tight junction protein occludin is an internalization factor for SARS-CoV-2 infection and mediates virus cell-to-cell transmission. Proc Natl Acad Sci U S A 2023; 120:e2218623120. [PMID: 37068248 PMCID: PMC10151465 DOI: 10.1073/pnas.2218623120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/13/2023] [Indexed: 04/19/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads efficiently by spike-mediated, direct cell-to-cell transmission. However, the underlying mechanism is poorly understood. Herein, we demonstrate that the tight junction protein occludin (OCLN) is critical to this process. SARS-CoV-2 infection alters OCLN distribution and expression and causes syncytium formation that leads to viral spread. OCLN knockdown fails to alter SARS-CoV-2 binding but significantly lowers internalization, syncytium formation, and transmission. OCLN overexpression also has no effect on virus binding but enhances virus internalization, cell-to-cell transmission, and replication. OCLN directly interacts with the SARS-CoV-2 spike, and the endosomal entry pathway is involved in OCLN-mediated cell-to-cell fusion rather than in the cell surface entry pathway. All SARS-CoV-2 strains tested (prototypic, alpha, beta, gamma, delta, kappa, and omicron) are dependent on OCLN for cell-to-cell transmission, although the extent of syncytium formation differs between strains. We conclude that SARS-CoV-2 utilizes OCLN as an internalization factor for cell-to-cell transmission.
Collapse
Affiliation(s)
- Jialin Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Wenyu Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Sawrab Roy
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Heidi Liu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - R. Michael Roberts
- Division of Animal Sciences, College of Agriculture, Food, & Natural Resources, University of Missouri, Columbia, MO65211
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Liping Wang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Lei Shi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| | - Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO65211
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO65211
| |
Collapse
|
22
|
Park S, Cho NJ. Lipid Membrane Interface Viewpoint: From Viral Entry to Antiviral and Vaccine Development. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1-11. [PMID: 36576966 DOI: 10.1021/acs.langmuir.2c02501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane-enveloped viruses are responsible for most viral pandemics in history, and more effort is needed to advance broadly applicable countermeasures to mitigate the impact of future outbreaks. In this Perspective, we discuss how biosensing techniques associated with lipid model membrane platforms are contributing to improving our mechanistic knowledge of membrane fusion and destabilization that is closely linked to viral entry as well as vaccine and antiviral drug development. A key benefit of these platforms is the simplicity of interpreting the results which can be complemented by other techniques to decipher more complicated biological observations and evaluate the biophysical functionalities that can be correlated to biological activities. Then, we introduce exciting application examples of membrane-targeting antivirals that have been refined over time and will continue to improve based on biophysical insights. Two ways to abrogate the function of viral membranes are introduced here: (1) selective disruption of the viral membrane structure and (2) alteration of the membrane component. While both methods are suitable for broadly useful antivirals, the latter also has the potential to produce an inactivated vaccine. Collectively, we emphasize how biosensing tools based on membrane interfacial science can provide valuable information that could be translated into biomedicines and improve their selectivity and performance.
Collapse
Affiliation(s)
- Soohyun Park
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
23
|
Díez JJ, Iglesias P, García A, Martín-Casasempere I, Bernabéu-Andréu FA. Serum Calcium, Magnesium, and Phosphorus Levels in Patients with COVID-19: Relationships with Poor Outcome and Mortality. Horm Metab Res 2023; 55:31-39. [PMID: 35998676 DOI: 10.1055/a-1899-8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this retrospective study to assess the impact of serum corrected calcium (CorrCa), magnesium (Mg) and phosphorus (P) levels, all adult patients with laboratory-confirmed COVID-19 hospitalized during 2020 were included. Poor outcome was considered in patients who presented need for mechanical ventilation, intensive care unit (ICU) admission, or in-hospital mortality. We analyzed 2473 patients (956 females) aged (mean±SD) 63.4±15.9 years. During admission, 169 patients (6.8%) required mechanical ventilation, 205 (8.3%) were admitted to the ICU, and 270 (10.9%) died. Composite variable of poor outcome, defined as need for mechanical ventilation, ICU admission or death, was present in 434 (17.5%) patients. In univariate analysis, the need for mechanical ventilation was positively related to Mg levels (OR 8.37, 95% CI 3.62-19.33; p<0.001); ICU admission was related to CorrCa (OR 0.49, 95% CI 0.25-0.99; p=0.049) and Mg levels (OR 5.81, 95% CI 2.74-12.35; p<0.001); and in-hospital mortality was related to CorrCa (OR 1.73, 95% CI 1.14-2.64; p=0.011). The composite variable of poor outcome was only related to Mg (OR 2.68, 95% CI 1.54-4.68; p=0.001). However, in multivariate analysis only CorrCa was significantly related to the need for mechanical ventilation (OR 0.19, 95% CI 0.05-0.72; p=0.014) and ICU admission (OR 0.25; 95% CI 0.09-0.66; p=0.005), but not with in-hospital mortality or the composite variable. In conclusion, CorrCa can be used as a simple and reliable marker of poor outcome in patients with COVID-19, although not to predict the risk of in-hospital mortality.
Collapse
Affiliation(s)
- Juan J Díez
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Spain
| | - Pedro Iglesias
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Majadahonda, Spain
| | - Agustín García
- Department of Admission and Clinical Documentation, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - Ignacio Martín-Casasempere
- Subdirección General de Farmacia y Productos Sanitarios, Consejería de Sanidad de la Comunidad de Madrid, Madrid, Spain
| | | |
Collapse
|
24
|
Estimation of Serum Calcium on the Severity and Mortality in COVID-19 Infections in Sulaymaniyah City, Kurdistan Region of Iraq: A Cross-Sectional Study. Clin Pract 2022; 12:1001-1008. [PMID: 36547111 PMCID: PMC9777466 DOI: 10.3390/clinpract12060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Coronaviruses (COV) are a large family of viruses that cause infections ranging from the common cold to more serious diseases. Mild to severe respiratory illnesses have been linked to coronavirus disease 2019 (COVID-19), which has been classified as a pandemic disease by the World Health Organization. It has been demonstrated that the severity of COVID-19 is highly positively linked with hypocalcemia. Furthermore, calcium imbalances among other electrolytes are linked to the prognosis of COVID-19. OBJECTIVES This study demonstrates a connection between serum calcium levels and COVID-19 as biomedical indicators of COVID-19 infections in Sulaymaniyah city, Iraq. METHODS A cross-sectional study was conducted at Baxshin Hospital for about two months from February 2022 to April 2022. The work was conducted with a total of 40 patients including 22 males and 18 females. The patients' ages ranged from 22 to 80 years old. By analyzing a sample from a nasopharyngeal swab and performing real-time reverse transcription-polymerase chain reaction (RT-PCR), all of the patients tested positive as having COVID-19 infection. Serum calcium was determined from the blood samples of the patients in order to evaluate their serum calcium levels. The statistical package for social science (SPSS) was utilized to examine the obtained data. RESULTS The study revealed a level of calcium between 6.10 and 9.86 mg/dL in male and female patients. The majority of the female patients (61%) displayed low levels of serum calcium, and 33% of the males had a low level of calcium. It can be seen that the highest rate of male patients (66.6%) exhibited a normal level of serum calcium, while 33.3% showed decreased serum calcium. Based on gender and age groups, a statistically significant difference in calcium levels was observed. CONCLUSIONS This study discovered that infection with COVID-19 has some significant laboratory abnormalities, including hypocalcemia, showing that serum calcium might be employed as a prognostic marker in the clinic.
Collapse
|
25
|
Nogueira GM, Silva NLOR, Moura AF, Duarte Silveira MA, Moura-Neto JA. Acute kidney injury and electrolyte disorders in COVID-19. World J Virol 2022; 11:283-292. [PMID: 36188735 PMCID: PMC9523327 DOI: 10.5501/wjv.v11.i5.283] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) and electrolyte disorders are important complications of hospitalized coronavirus disease 2019 (COVID-19) patients. AKI is thought to occur due to multiple pathophysiological mechanisms, such as multiple organ dysfunction (mainly cardiac and respiratory), direct viral entry in the renal tubules, and cytokine release syndrome. AKI is present in approximately one in every ten hospitalized COVID-19 patients. The incidence rates of AKI increase in patients who are admitted to the intensive care unit (ICU), with levels higher than 50%. Additionally, renal replacement therapy (RRT) is used in 7% of all AKI cases, but in nearly 20% of patients admitted to an ICU. COVID-19 patients with AKI are considered moderate-to-severe cases and are managed with multiple interdisciplinary conducts. AKI acts as a risk factor for mortality in severe acute respiratory syndrome coronavirus 2 infection, especially when RRT is needed. Electrolyte disorders are also common manifestations in hospitalized COVID-19 patients, mainly hyponatremia, hypokalemia, and hypocalcemia. Hyponatremia occurs due to a combination of syndrome of inappropriate secretion of antidiuretic hormone and gastrointestinal fluid loss from vomiting and diarrhea. When it comes to hypokalemia, its mechanism is not fully understood but may derive from hyperaldosteronism due to renin angiotensin aldosterone system overstimulation and gastrointestinal fluid loss as well. The clinical features of hypokalemia in COVID-19 are similar to those in other conditions. Hypocalcemia is the most common electrolyte disorder in COVID-19 and seems to occur because of vitamin D deficiency and parathyroid imbalance. It is also highly associated with longer hospital and ICU stay.
Collapse
Affiliation(s)
- Gabriel Martins Nogueira
- Department of Medicine, Bahiana School of Medicine and Public Health, Salvador 40290-000, Bahia, Brazil
| | | | - Ana Flávia Moura
- Department of Medicine, Bahiana School of Medicine and Public Health, Salvador 40290-000, Bahia, Brazil
| | | | - José A Moura-Neto
- Department of Medicine, Bahiana School of Medicine and Public Health, Salvador 40290-000, Bahia, Brazil
| |
Collapse
|
26
|
Birtles D, Oh AE, Lee J. Exploring the
pH
dependence of the
SARS‐CoV
‐2 complete fusion domain and the role of its unique structural features. Protein Sci 2022. [PMCID: PMC9538437 DOI: 10.1002/pro.4390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
SARS‐CoV‐2 may enter target cells through the process of membrane fusion at either the plasma (~pH 7.4–7.0) or endosomal (~pH 6.5–5.0) membrane in order to deliver its genetic information. The fusion domain (FD) of the spike glycoprotein is responsible for initiating fusion and is thus integral to the viral life cycle. The FD of SARS‐CoV‐2 is unique in that it consists of two structurally distinctive regions referred to as the fusion peptide (FP) and the fusion loop (FL); yet the molecular mechanisms behind how this FD perturbs the membrane to initiate fusion remains unclear. In this study via solution NMR, we witnessed only a slight conformational change in the FD between pH 7.4 and pH 5.0, resulting in a minor elongation of helix 1. However, we found that the FD's ability to mediate membrane fusion has a large and significant pH dependence, with fusion events being more readily induced at low pH. Interestingly, a biphasic relationship between the environmental pH and fusogenicity was discovered, suggesting a preference for the FD to initiate fusion at the late endosomal membrane. Furthermore, the conserved disulfide bond and hydrophobic motif “LLF” were found to be critical for the function of the complete FD, with minimal activity witnessed when either was perturbed. In conclusion, these findings indicate that the SARS‐CoV‐2 FD preferably initiates fusion at a pH similar to the late endosome through a mechanism that heavily relies on the internal disulfide bond of the FL and hydrophobic LLF motif within the FP.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Anna E. Oh
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| |
Collapse
|
27
|
Cong VT, Houng JL, Kavallaris M, Chen X, Tilley RD, Gooding JJ. How can we use the endocytosis pathways to design nanoparticle drug-delivery vehicles to target cancer cells over healthy cells? Chem Soc Rev 2022; 51:7531-7559. [PMID: 35938511 DOI: 10.1039/d1cs00707f] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted drug delivery in cancer typically focuses on maximising the endocytosis of drugs into the diseased cells. However, there has been less focus on exploiting the differences in the endocytosis pathways of cancer cells versus non-cancer cells. An understanding of the endocytosis pathways in both cancer and non-cancer cells allows for the design of nanoparticles to deliver drugs to cancer cells whilst restricting healthy cells from taking up anticancer drugs, thus efficiently killing the cancer cells. Herein we compare the differences in the endocytosis pathways of cancer and healthy cells. Second, we highlight the importance of the physicochemical properties of nanoparticles (size, shape, stiffness, and surface chemistry) on cellular uptake and how they can be adjusted to selectively target the dominated endocytosis pathway of cancer cells over healthy cells and to deliver anticancer drug to the target cells. The review generates new thought in the design of cancer-selective nanoparticles based on the endocytosis pathways.
Collapse
Affiliation(s)
- Vu Thanh Cong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacinta L Houng
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria Kavallaris
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.,Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.,School of Clinical Medicine, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, China
| | - Richard D Tilley
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia. .,Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Tanaka Y, Tanabe E, Nonaka Y, Uemura M, Tajima T, Ochiai K. Ionophore Antibiotics Inhibit Type II Feline Coronavirus Proliferation In Vitro. Viruses 2022; 14:v14081734. [PMID: 36016355 PMCID: PMC9415497 DOI: 10.3390/v14081734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
Feline coronaviruses (FCoVs) infect cats worldwide and cause severe systemic diseases, such as feline infectious peritonitis (FIP). FIP has a high mortality rate, and drugs approved by the Food and Drug Administration have been ineffective for the treatment of FIP. Investigating host factors and the functions required for FCoV replication is necessary to develop effective drugs for the treatment of FIP. FCoV utilizes an endosomal trafficking system for cellular entry after binding between the viral spike (S) protein and its receptor. The cellular enzymes that cleave the S protein of FCoV to release the viral genome into the cytosol require an acidic pH optimized in the endosomes by regulating cellular ion concentrations. Ionophore antibiotics are compounds that form complexes with alkali ions to alter the endosomal pH conditions. This study shows that ionophore antibiotics, including valinomycin, salinomycin, and nigericin, inhibit FCoV proliferation in vitro in a dose-dependent manner. These results suggest that ionophore antibiotics should be investigated further as potential broad-spectrum anti-FCoV agents.
Collapse
Affiliation(s)
- Yoshikazu Tanaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
- Research Center for Animal Life Science, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
- Correspondence: ; Tel.: +81-422-31-4151
| | - Eri Tanabe
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Yuki Nonaka
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Mitsuki Uemura
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Tsuyoshi Tajima
- Department of Veterinary Pharmacology, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Hygiene, Veterinary School, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
- Research Center for Animal Life Science, Nippon Veterinary & Life Science University, 1-7-1 Kyounan, Musashino 180-8602, Japan
| |
Collapse
|
29
|
Humer C, Berlansky S, Grabmayr H, Sallinger M, Bernhard A, Fahrner M, Frischauf I. Science CommuniCa 2+tion Developing Scientific Literacy on Calcium: The Involvement of CRAC Currents in Human Health and Disease. Cells 2022; 11:1849. [PMID: 35681544 PMCID: PMC9179999 DOI: 10.3390/cells11111849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 02/05/2023] Open
Abstract
All human life starts with a calcium (Ca2+) wave. This ion regulates a plethora of cellular functions ranging from fertilisation and birth to development and cell death. A sophisticated system is responsible for maintaining the essential, tight concentration of calcium within cells. Intricate components of this Ca2+ network are store-operated calcium channels in the cells' membrane. The best-characterised store-operated channel is the Ca2+ release-activated Ca2+ (CRAC) channel. Currents through CRAC channels are critically dependent on the correct function of two proteins: STIM1 and Orai1. A disruption of the precise mechanism of Ca2+ entry through CRAC channels can lead to defects and in turn to severe impacts on our health. Mutations in either STIM1 or Orai1 proteins can have consequences on our immune cells, the cardiac and nervous system, the hormonal balance, muscle function, and many more. There is solid evidence that altered Ca2+ signalling through CRAC channels is involved in the hallmarks of cancer development: uncontrolled cell growth, resistance to cell death, migration, invasion, and metastasis. In this work we highlight the importance of Ca2+ and its role in human health and disease with focus on CRAC channels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Frischauf
- Life Science Center, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (C.H.); (S.B.); (H.G.); (M.S.); (A.B.); (M.F.)
| |
Collapse
|
30
|
Singh P, Mukherji S, Basak S, Hoffmann M, Das DK. Dynamic Ca 2+ sensitivity stimulates the evolved SARS-CoV-2 spike strain-mediated membrane fusion for enhanced entry. Cell Rep 2022; 39:110694. [PMID: 35397208 PMCID: PMC8993541 DOI: 10.1016/j.celrep.2022.110694] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in the spike protein generated a highly infectious and transmissible D614G variant, which is present in newly evolved fast-spreading variants. The D614G, Alpha, Beta, and Delta spike variants of SARS-CoV-2 appear to expedite membrane fusion process for entry, but the mechanism of spike-mediated fusion is unknown. Here, we reconstituted an in vitro pseudovirus-liposome fusion reaction and report that SARS-CoV-2 wild-type spike is a dynamic Ca2+ sensor, and D614G mutation enhances dynamic calcium sensitivity of spike protein for facilitating membrane fusion. This dynamic calcium sensitivity for fusion is found to be higher in Alpha and Beta variants and highest in Delta spike variant. We find that efficient fusion is dependent on Ca2+ concentration at low pH, and the fusion activity of spike dropped as the Ca2+ level rose beyond physiological levels. Thus, evolved spike variants may control the high fusion probability for entry by increasing Ca2+ sensing ability.
Collapse
Affiliation(s)
- Puspangana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shreya Mukherji
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Swarnendu Basak
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Dibyendu Kumar Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
31
|
di Filippo L, Doga M, Frara S, Giustina A. Hypocalcemia in COVID-19: Prevalence, clinical significance and therapeutic implications. Rev Endocr Metab Disord 2022; 23:299-308. [PMID: 33846867 PMCID: PMC8041474 DOI: 10.1007/s11154-021-09655-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 extra-pulmonary features include several endocrine manifestations and these are becoming strongly clinically relevant in patients affected influencing disease severity and outcomes.At the beginning of COVID-19 pandemic no population data on calcium levels in patients affected were available and in April 2020 a first case of severe acute hypocalcemia in an Italian patient with SARS-CoV-2 infection was reported. Subsequently, several studies reported hypocalcemia as a highly prevalent biochemical abnormality in COVID-19 patients with a marked negative influence on disease severity, biochemical inflammation and thrombotic markers, and mortality. Also a high prevalence of vertebral fractures with worse respiratory impairment in patients affected and a widespread vitamin D deficiency have been frequently observed, suggesting an emerging "Osteo-Metabolic Phenotype" in COVID-19.To date, several potential pathophysiological factors have been hypothesized to play a role in determining hypocalcemia in COVID-19 including calcium dependent viral mechanisms of action, high prevalence of hypovitaminosis D in general population, chronic and acute malnutrition during critical illness and high levels of unbound and unsaturated fatty acids in inflammatory responses.Since hypocalcemia is a frequent biochemical finding in hospitalized COVID-19 patients possibly predicting worse outcomes and leading to acute cardiovascular and neurological complications if severe, it is reasonable to assess, monitor and, if indicated, replace calcium at first patient hospital evaluation and during hospitalization.
Collapse
Affiliation(s)
- Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mauro Doga
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
32
|
Pechlivanidou E, Vlachakis D, Tsarouhas K, Panidis D, Tsitsimpikou C, Darviri C, Kouretas D, Bacopoulou F. The prognostic role of micronutrient status and supplements in COVID-19 outcomes: A systematic review. Food Chem Toxicol 2022; 162:112901. [PMID: 35227861 PMCID: PMC8873042 DOI: 10.1016/j.fct.2022.112901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022]
Abstract
Micronutrients constitute an adjuvant treatment for respiratory viral infections. Since there is no effective antiviral therapy for COVID-19 yet, adjuvant intervention for the survival of critically ill patients may be significant. Search of the PubMed, CINAHL and Cochrane databases was carried out to find human studies investigating the prognostic role of micronutrient status and the effects of micronutrient supplementation intervention in COVID-19 outcomes of adult patients. Patients with certain comorbidities (diabetes mellitus type 2, obesity, renal failure, liver dysfunction etc.) or pregnant women were excluded. 31 studies (27 observational studies and 4 clinical trials) spanning the years 2020-2021, pertaining to 8624 COVID-19 patients (mean age±SD, 61 ± 9 years) were included in this systematic review. Few studies provided direct evidence on the association of serum levels of vitamin D, calcium, zinc, magnesium, phosphorus and selenium to patients' survival or death. Vitamin D and calcium were the most studied micronutrients and those with a probable promising favorable impact on patients. This review highlights the importance of a balanced nutritional status for a favorable outcome in COVID-19. Micronutrients' deficiency on admission to hospital seems to be related to a high risk for ICU admission, intubation and even death. Nevertheless, evidence for intervention remains unclear.
Collapse
Affiliation(s)
- Evmorfia Pechlivanidou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, 11855, Greece
| | - Konstantinos Tsarouhas
- Department of Cardiology, University Hospital of Larissa, Mezourlo, Larissa, 41110, Greece
| | | | | | - Christina Darviri
- Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527, Athens, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece; Postgraduate Program "The Science of Stress and Health Promotion", School of Medicine, National and Kapodistrian University of Athens, 4 Soranou Ephessiou Street, 11527, Athens, Greece.
| |
Collapse
|
33
|
Gunaratne GS, Marchant JS. The ins and outs of virus trafficking through acidic Ca 2+ stores. Cell Calcium 2022; 102:102528. [PMID: 35033909 PMCID: PMC8860173 DOI: 10.1016/j.ceca.2022.102528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Many viruses exploit host-cell Ca2+ signaling processes throughout their life cycle. This is especially relevant for viruses that translocate through the endolysosomal system, where cellular infection is keyed to the microenvironment of these acidic Ca2+ stores and Ca2+-dependent trafficking pathways. As regulators of the endolysosomal ionic milieu and trafficking dynamics, two families of endolysosomal Ca2+-permeable cation channels - two pore channels (TPCs) and transient receptor potential mucolipins (TRPMLs) - have emerged as important host-cell factors in viral entry. Here, we review: (i) current evidence implicating Ca2+ signaling in viral translocation through the endolysosomal system, (ii) the roles of these ion channels in supporting cellular infection by different viruses, and (iii) areas for future research that will help define the potential of TPC and TRPML ligands as progressible antiviral agents.
Collapse
Affiliation(s)
- Gihan S Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA.
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA
| |
Collapse
|
34
|
Amrita J, Singh AP. Role of arterial blood gas (ABG) as a valuable assessment tool of disease severity in SARS-CoV-2 patients. J Med Biochem 2022; 41:47-52. [PMID: 35611244 PMCID: PMC9069244 DOI: 10.5937/jomb0-30927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/10/2021] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND COVID-19 is caused by a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The foremost predominant complication of SARS-CoV-2 is arterial hypoxemia thereby disturbing lung compliance, requiring mechanical ventilation. The aim of the current research study is to analyze role of ABG as a valuable assessment tool of disease severity in SARS-CoV-2 patients. METHODS 170 arterial blood samples were collected from patients admitted in Intensive Care Unit (ICU) of Sri Guru Ram Das Charitable Hospital, Amritsar. They were analyzed for arterial blood gas using ABG analyzer. Parameters of ABG such as pH, pCO2, HCO3, O2 saturation, ionized calcium (iCa) and calculated ionized calcium (at pH 7.4) was calculated for all the samples. RESULTS Continuous variables were described as medians with interquartile ranges (IQRs) and categorical variables as percentages and frequencies. Spearman correlation test was done for calculation of correlation between pH and other ABG parameters. Analysis of arterial blood gas revealed significant negative correlation (p<0.05) between pH and pCO2 and significant positive correlation (p<0.05) between pH and HCO3 and between pH and delta ionized calcium. Low levels (98.2%) of ionized calcium were observed while monitoring the ABG findings though weak negative correlation (p<0.05) was observed between pH and iCa. CONCLUSIONS Our study suggests that ABG analysis acts as a momentous indicator for critically ill patients admitted in Intensive Care Unit (ICU). Estimation of iCa in this critical care setting acts as a distinctive biochemical feature of SARS-CoV-2 disease, as an initial assessment tool, for hypocalcemia.
Collapse
Affiliation(s)
- Jyot Amrita
- Sri Guru Ram Das University of Health Sciences, Department of Biochemistry, Amritsar, Punjab, India
| | - Arvinder Pal Singh
- Sri Guru Ram Das University of Health Sciences, Department of Anesthesia, Amritsar, Punjab, India
| |
Collapse
|
35
|
Lai AL, Freed JH. Negatively charged residues in the membrane ordering activity of SARS-CoV-1 and -2 fusion peptides. Biophys J 2022; 121:207-227. [PMID: 34929193 PMCID: PMC8683214 DOI: 10.1016/j.bpj.2021.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Entry of coronaviruses into host cells is mediated by the viral spike protein. Previously, we identified the bona fide fusion peptides (FPs) for severe acute respiratory syndrome coronavirus ("SARS-1") and severe acute respiratory syndrome coronavirus-2 ("SARS-2") using electron spin resonance spectroscopy. We also found that their FPs induce membrane ordering in a Ca2+-dependent fashion. Here we study which negatively charged residues in SARS-1 FP are involved in this binding, to build a topological model and clarify the role of Ca2+. Our systematic mutation study on the SARS-1 FP shows that all six negatively charged residues contribute to the FP's membrane ordering activity, with D812 the dominant residue. The corresponding SARS-2 residue D830 plays an equivalent role. We provide a topological model of how the FP binds Ca2+ ions: its two segments FP1 and FP2 each bind one Ca2+. The binding of Ca2+, the folding of FP (both studied by isothermal titration calorimetry experiments), and the ordering activity correlate very well across the mutants, suggesting that the Ca2+ helps the folding of FP in membranes to enhance the ordering activity. Using a novel pseudotyped viral particle-liposome methodology, we monitored the membrane ordering induced by the FPs in the whole spike protein in its trimer form in real time. We found that the SARS-1 and SARS-2 pseudotyped viral particles also induce membrane ordering to the extent that separate FPs do, and mutations of the negatively charged residues also significantly suppress the membrane ordering activity. However, the slower kinetics of the FP ordering activity versus that of the pseudotyped viral particle suggest the need for initial trimerization of the FPs.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
36
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
37
|
Batishchev OV. Physico-Chemical Mechanisms of the Functioning of Membrane-Active Proteins of Enveloped Viruses. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES A, MEMBRANE AND CELL BIOLOGY 2022; 16:247-260. [PMCID: PMC9734521 DOI: 10.1134/s1990747822050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
Over the past few years, the attention of the whole world has been riveted to the emergence of new dangerous strains of viruses, among which a special place is occupied by coronaviruses that have overcome the interspecies barrier in the past 20 years: SARS viruses (SARS), Middle East respiratory syndrome (MERS), as well as a new coronavirus infection (SARS-CoV-2), which caused the largest pandemic since the Spanish flu in 1918. Coronaviruses are members of a class of enveloped viruses that have a lipoprotein envelope. This class also includes such serious pathogens as human immunodeficiency virus (HIV), hepatitis, Ebola virus, influenza, etc. Despite significant differences in the clinical picture of the course of disease caused by enveloped viruses, they themselves have a number of characteristic features, which determine their commonality. Regardless of the way of penetration into the cell—by endocytosis or direct fusion with the cell membrane—enveloped viruses are characterized by the following stages of interaction with the target cell: binding to receptors on the cell surface, interaction of the surface glycoproteins of the virus with the membrane structures of the infected cell, fusion of the lipid envelope of the virion with plasma or endosomal membrane, destruction of the protein capsid and its dissociation from the viral nucleoprotein. Subsequently, within the infected cell, the newly synthesized viral proteins must self-assemble on various membrane structures to form a progeny virion. Thus, both the initial stages of viral infection and the assembly and release of new viral particles are associated with the activity of viral proteins in relation to the cell membrane and its organelles. This review is devoted to the analysis of physicochemical mechanisms of functioning of the main structural proteins of a number of enveloped viruses in order to identify possible strategies for the membrane activity of such proteins at various stages of viral infection of the cell.
Collapse
Affiliation(s)
- O. V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
38
|
Garg A, Agrawal A, Behera A, Mohapatra E, Sakale H, Shah S, Kar B, Ojha M, Nayak B. Correlation of Vitamin D levels with markers of bone metabolism in COVID-19 patients. JOURNAL OF ORTHOPEDICS, TRAUMATOLOGY AND REHABILITATION 2022. [DOI: 10.4103/jotr.jotr_115_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
39
|
Zhao H, Yuen KY. Broad-spectrum Respiratory Virus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:137-153. [DOI: 10.1007/978-981-16-8702-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Azhir A, Talebi S, Merino LH, Lukasiewicz T, Argulian E, Narula J, Mihaylova B. Using Shapes of COVID-19 Positive Patient-Specific Trajectories for Mortality Prediction. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2022:130-139. [PMID: 35854727 PMCID: PMC9285142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Machine learning can be used to identify relevant trajectory shape features for improved predictive risk modeling, which can help inform decisions for individualized patient management in intensive care during COVID-19 outbreaks. We present explainable random forests to dynamically predict next day mortality risk in COVID -19 positive and negative patients admitted to the Mount Sinai Health System between March 1st and June 8th, 2020 using patient time-series data of vitals, blood and other laboratory measurements from the previous 7 days. Three different models were assessed by using time series with: 1) most recent patient measurements, 2) summary statistics of trajectories (min/max/median/first/last/count), and 3) coefficients of fitted cubic splines to trajectories. AUROC and AUPRC with cross-validation were used to compare models. We found that the second and third models performed statistically significantly better than the first model. Model interpretations are provided at patient-specific level to inform resource allocation and patient care.
Collapse
Affiliation(s)
| | - Soheila Talebi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Edgar Argulian
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
41
|
Epidemiological Characteristics of Hospitalized Patients with Moderate versus Severe COVID-19 Infection: A Retrospective Cohort Single Centre Study. Diseases 2021; 10:diseases10010001. [PMID: 35076497 PMCID: PMC8788538 DOI: 10.3390/diseases10010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has a devastating impact worldwide. Recognizing factors that cause its progression is important for the utilization of appropriate resources and improving clinical outcomes. In this study, we aimed to identify the epidemiological and clinical characteristics of patients who were hospitalized with moderate versus severe COVID-19 illness. A single-center, retrospective cohort study was conducted between 3 March and 9 September 2020. Following the CDC guidelines, a two-category variable for COVID-19 severity (moderate versus severe) based on length of stay, need for intensive care or mechanical ventilation and mortality was developed. Data including demographic, clinical characteristics, laboratory parameters, therapeutic interventions and clinical outcomes were assessed using descriptive and inferential analysis. A total of 1002 patients were included, the majority were male (n = 646, 64.5%), Omani citizen (n = 770, 76.8%) and with an average age of 54.2 years. At the bivariate level, patients classified as severe were older (Mean = 55.2, SD = 16) than the moderate patients (Mean = 51.5, SD = 15.8). Diabetes mellitus was the only significant comorbidity potential factor that was more prevalent in severe patients than moderate (n = 321, 46.6%; versus n = 178, 42.4%; p < 0.001). Under the laboratory factors; total white cell count (WBC), C-reactive protein (CRP), Lactate dehydrogenase (LDH), D-dimer and corrected calcium were significant. All selected clinical characteristics and therapeutics were significant. At the multivariate level, under demographic factors, only nationality was significant and no significant comorbidity was identified. Three clinical factors were identified, including; sepsis, Acute respiratory disease syndrome (ARDS) and requirement of non-invasive ventilation (NIV). CRP and steroids were also identified under laboratory and therapeutic factors, respectively. Overall, our study identified only five factors from a total of eighteen proposed due to their significant values (p < 0.05) from the bivariate analysis. There are noticeable differences in levels of COVID-19 severity among nationalities. All the selected clinical and therapeutic factors were significant, implying that they should be a key priority when assessing severity in hospitalized COVID-19 patients. An elevated level of CRP may be a valuable early marker in predicting the progression in non-severe patients with COVID-19. Early recognition and intervention of these factors could ease the management of hospitalized COVID-19 patients and reduce case fatalities as well medical expenditure.
Collapse
|
42
|
Lai AL, Freed JH. Critical Negatively Charged Residues Are Important for the Activity of SARS-CoV-1 and SARS-CoV-2 Fusion Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.03.467161. [PMID: 34909776 PMCID: PMC8669843 DOI: 10.1101/2021.11.03.467161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coronaviruses are a major infectious disease threat, and include the human pathogens of zoonotic origin SARS-CoV ("SARS-1"), SARS-CoV-2 ("SARS-2") and MERS-CoV ("MERS"). Entry of coronaviruses into host cells is mediated by the viral spike (S) protein. Previously, we identified that the domain immediately downstream of the S2' cleavage site is the bona fide FP (amino acids 798-835) for SARS-1 using ESR spectroscopy technology. We also found that the SARS-1 FP induces membrane ordering in a Ca 2+ dependent fashion. In this study, we want to know which residues are involved in this Ca 2+ binding, to build a topological model and to understand the role of the Ca2+. We performed a systematic mutation study on the negatively charged residues on the SARS-1 FP. While all six negatively charged residues contributes to the membrane ordering activity of the FP to some extent, D812 is the most important residue. We provided a topological model of how the FP binds Ca 2+ ions: both FP1 and FP2 bind one Ca 2+ ion, and there are two binding sites in FP1 and three in FP2. We also found that the corresponding residue D830 in the SARS-2 FP plays a similar critical role. ITC experiments show that the binding energies between the FP and Ca 2+ as well as between the FP and membranes also decreases for all mutants. The binding of Ca 2+ , the folding of FP and the ordering activity correlated very well across the mutants, suggesting that the function of the Ca 2+ is to help to folding of FP in membranes to enhance its activity. Using a novel pseudotyped virus particle (PP)-liposome methodology, we monitored the membrane ordering induced by the FPs in the whole S proteins in its trimer form in real time. We found that the SARS-1 and SARS-2 PPs also induce membrane ordering as the separate FPs do, and the mutations of the negatively charged residues also greatly reduce the membrane ordering activity. However, the difference in kinetic between the PP and FP indicates a possible role of FP trimerization. This finding could lead to therapeutic solutions that either target the FP-calcium interaction or block the Ca 2+ channel to combat the ongoing COVID-19 pandemic.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| |
Collapse
|
43
|
Alemzadeh E, Alemzadeh E, Ziaee M, Abedi A, Salehiniya H. The effect of low serum calcium level on the severity and mortality of Covid patients: A systematic review and meta-analysis. Immun Inflamm Dis 2021; 9:1219-1228. [PMID: 34534417 PMCID: PMC8589360 DOI: 10.1002/iid3.528] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Imbalances of various electrolytes, including calcium, are associated with the prognosis of Covid disease. This study investigated the relationship between serum calcium and clinical outcomes in patients with COVID-19. METHOD This study is a systematic review and meta-analysis by searching PubMed, Scopus, web of sciences until August 2021 using the keywords COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), COVID, coronavirus disease, SARS-COV-infection. 2, SARS-COV-2, COVID19, calcium, calcium isotopes, calcium radioisotopes, hypercalcemia, and hypocalcemia were performed. Heterogeneity of studies was investigated using I2 index, data were analyzed using meta-analysis (random effects model) with Comprehensive Meta-Analysis Software software. RESULTS Finally, 25 articles were included in the study. Clinical data from 12 articles showed that 59% (95% confidence interval [CI]: 0.49-0.68) of people with COVID-19 have hypocalcemia. The results of meta-analysis showed that hypocalcemia was significantly associated with severity of the disease (p = .002), mortality in patients with COVID-19 (odds ratio [OR] = 6.99, 95% CI: 2.71-17.99), number of hospitalization days (p < .001) and admission to the intensive care unit (OR = 5.09, 95% CI: 2.14-12.10). The results also showed that there is a direct relationship between low serum calcium levels with increasing D-dimer levels (p = .02) and decreasing lymphocyte counts (p = .007). CONCLUSION Based on the results of meta-analysis in people with lower calcium, mortality and complications are higher, therefore, serum calcium is a prognostic factor in determining the severity of the disease. Consequently, it is suggested that serum calcium levels should be considered in initial assessments.
Collapse
Affiliation(s)
- Effat Alemzadeh
- Infectious Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Esmat Alemzadeh
- Department of Medical Biotechnology, Faculty of MedicineBirjand University of Medical ScienceBirjandIran
- Cellular and Molecular Research CenterBirjand University of Medical SciencesBirjandIran
| | - Masood Ziaee
- Infectious Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Ali Abedi
- Zahedan University of Medical SciencesZahedanIran
| | - Hamid Salehiniya
- Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
44
|
Basso LGM, Zeraik AE, Felizatti AP, Costa-Filho AJ. Membranotropic and biological activities of the membrane fusion peptides from SARS-CoV spike glycoprotein: The importance of the complete internal fusion peptide domain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183697. [PMID: 34274319 PMCID: PMC8280623 DOI: 10.1016/j.bbamem.2021.183697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022]
Abstract
Fusion peptides (FP) are prominent hydrophobic segments of viral fusion proteins that play critical roles in viral entry. FPs interact with and insert into the host lipid membranes, triggering conformational changes in the viral protein that leads to the viral-cell fusion. Multiple membrane-active domains from the severe acute respiratory syndrome (SARS) coronavirus (CoV) spike protein have been reported to act as the functional fusion peptide such as the peptide sequence located between the S1/S2 and S2' cleavage sites (FP1), the S2'-adjacent fusion peptide domain (FP2), and the internal FP sequence (cIFP). Using a combined biophysical approach, we demonstrated that the α-helical coiled-coil-forming internal cIFP displayed the highest membrane fusion and permeabilizing activities along with membrane ordering effect in phosphatidylcholine (PC)/phosphatidylglycerol (PG) unilamellar vesicles compared to the other two N-proximal fusion peptide counterparts. While the FP1 sequence displayed intermediate membranotropic activities, the well-conserved FP2 peptide was substantially less effective in promoting fusion, leakage, and membrane ordering in PC/PG model membranes. Furthermore, Ca2+ did not enhance the FP2-induced lipid mixing activity in PC/phosphatidylserine/cholesterol lipid membranes, despite its strong erythrocyte membrane perturbation. Nonetheless, we found that the three putative SARS-CoV membrane-active fusion peptide sequences here studied altered the physical properties of model and erythrocyte membranes to different extents. The importance of the distinct membranotropic and biological activities of all SARS-CoV fusion peptide domains and the pronounced effect of the internal fusion peptide sequence to the whole spike-mediated membrane fusion process are discussed.
Collapse
Affiliation(s)
- Luis Guilherme Mansor Basso
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Grupo de Biofísica e Biologia Estrutural "Sérgio Mascarenhas", Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil
| | - Ana Paula Felizatti
- Laboratório de Produtos Naturais, Departamento de Química, Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, Monjolinho, 13565905, São Carlos, SP, Brazil; Grupo de Biofísica e Biologia Estrutural "Sérgio Mascarenhas", Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil
| | - Antonio José Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
45
|
Birtles D, Lee J. Identifying Distinct Structural Features of the SARS-CoV-2 Spike Protein Fusion Domain Essential for Membrane Interaction. Biochemistry 2021; 60:2978-2986. [PMID: 34570469 PMCID: PMC8491435 DOI: 10.1021/acs.biochem.1c00543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 spike protein is the primary antigenic determinant of the virus and has been studied extensively, yet the process of membrane fusion remains poorly understood. The fusion domain (FD) of viral glycoproteins is well established as facilitating the initiation of membrane fusion. An improved understanding of the structural plasticity associated with these highly conserved regions aids in our knowledge of the molecular mechanisms that drive viral fusion. Within the spike protein, the FD of SARS-CoV-2 exists immediately following S2' cleavage at the N-terminus of the S2 domain. Here we have shown that following the introduction of a membrane at pH 7.4, the FD undergoes a transition from a random coil to a more structurally well-defined postfusion state. Furthermore, we have classified the domain into two distinct regions, a fusion peptide (FP, S816-G838) and a fusion loop (FL, D839-F855). The FP forms a helix-turn-helix motif upon association with a membrane, and the favorable entropy gained during this transition from a random coil is likely the driving force behind membrane insertion. Membrane depth experiments then revealed the FP is found inserted within the membrane below the lipid headgroups, while the interaction of the FL with the membrane is shallower in nature. Thus, we propose a structural model relevant to fusion at the plasma membrane in which the FP inserts itself just below the phospholipid headgroups and the FL lays upon the lipid membrane surface.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
46
|
Straus MR, Bidon MK, Tang T, Jaimes JA, Whittaker GR, Daniel S. Inhibitors of L-Type Calcium Channels Show Therapeutic Potential for Treating SARS-CoV-2 Infections by Preventing Virus Entry and Spread. ACS Infect Dis 2021; 7:2807-2815. [PMID: 34498840 PMCID: PMC8442615 DOI: 10.1021/acsinfecdis.1c00023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 01/06/2023]
Abstract
COVID-19 is caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus (CoV)-2 (SARS-CoV-2). The virus is responsible for an ongoing pandemic and concomitant public health crisis around the world. While vaccine development is proving to be highly successful, parallel drug development approaches are also critical in the response to SARS-CoV-2 and other emerging viruses. Coronaviruses require Ca2+ ions for host cell entry, and we have previously shown that Ca2+ modulates the interaction of the viral fusion peptide with host cell membranes. In an attempt to accelerate drug repurposing, we tested a panel of L-type calcium channel blocker (CCB) drugs currently developed for other conditions to determine whether they would inhibit SARS-CoV-2 infection in cell culture. All the CCBs tested showed varying degrees of inhibition, with felodipine and nifedipine strongly limiting SARS-CoV-2 entry and infection in epithelial lung cells at concentrations where cell toxicity was minimal. Further studies with pseudotyped particles displaying the SARS-CoV-2 spike protein suggested that inhibition occurs at the level of virus entry. Overall, our data suggest that certain CCBs have the potential to treat SARS-CoV-2 infections and are worthy of further examination for possible treatment of COVID-19.
Collapse
Affiliation(s)
- Marco R. Straus
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Miya K. Bidon
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Tiffany Tang
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Javier A. Jaimes
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Gary R. Whittaker
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
- Master of Public Health Program, Cornell
University, Ithaca, New York 14853, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| |
Collapse
|
47
|
Saurav S, Tanwar J, Ahuja K, Motiani RK. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Mol Aspects Med 2021; 81:101004. [PMID: 34304899 PMCID: PMC8299155 DOI: 10.1016/j.mam.2021.101004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.
Collapse
Affiliation(s)
- Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi-110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
48
|
Machado MC, Zamani M, Daniel S, Furst AL. Bioelectrochemical platforms to study and detect emerging pathogens. MRS BULLETIN 2021; 46:840-846. [PMID: 34483472 PMCID: PMC8407123 DOI: 10.1557/s43577-021-00172-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has emphasized the importance of technologies to rapidly detect emerging pathogens and understand their interactions with hosts. Platforms based on the combination of biological recognition and electrochemical signal transduction, generally termed bioelectrochemical platforms, offer unique opportunities to both sense and study pathogens. Improved bio-based materials have enabled enhanced control over the biotic-abiotic interface in these systems. These improvements have generated platforms with the capability to elucidate biological function rather than simply detect targets. This advantage is a key feature of recent bioelectrochemical platforms applied to infectious disease. Here, we describe developments in materials for bioelectrochemical platforms to study and detect emerging pathogens. The incorporation of host membrane material into electrochemical devices has provided unparalleled insights into the interaction between viruses and host cells, and new capture methods have enabled the specific detection of bacterial pathogens, such as those that cause secondary infections with SARS-CoV-2. As these devices continue to improve through the merging of hi-tech materials and biomaterials, the scalability and commercial viability of these devices will similarly improve.
Collapse
Affiliation(s)
- Mary C. Machado
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, USA
| | - Marjon Zamani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Susan Daniel
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, USA
| | - Ariel L. Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
49
|
Thorsen MK, Lai A, Lee MW, Hoogerheide DP, Wong GCL, Freed JH, Heldwein EE. Highly Basic Clusters in the Herpes Simplex Virus 1 Nuclear Egress Complex Drive Membrane Budding by Inducing Lipid Ordering. mBio 2021; 12:e0154821. [PMID: 34425706 PMCID: PMC8406295 DOI: 10.1128/mbio.01548-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 02/01/2023] Open
Abstract
During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. IMPORTANCE Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.
Collapse
Affiliation(s)
- Michael K. Thorsen
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex Lai
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Michelle W. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Zhao F, Yang Z, Wang N, Jin K, Luo Y. Traditional Chinese Medicine and Western Medicine Share Similar Philosophical Approaches to Fight COVID-19. Aging Dis 2021; 12:1162-1168. [PMID: 34341699 PMCID: PMC8279530 DOI: 10.14336/ad.2021.0512] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Though disciplines in the same field, modern medicine (Western medicine) and traditional medicine (Traditional Chinese medicine, TCM) have been viewed as two distinct and divergent fields of medicine and thus differ greatly in their ways of diagnosing, treating, and preventing disease. In brief, Western medicine is primarily an evidence (laboratory)-based science, whereas TCM is more of a healing art based on the theory of Yin and Yang and the five elements in the human body. Therefore, whether TCM and Western medicine could use similar philosophical approaches to treat disease remains unclear. It is well-known that vitamin D enhances immune function and reduces the spread of some viruses. Indeed, recent evidence shows that the blood calcium level is strongly associated with COVID-19 severity, and vitamin D supplementation has shown favorable effects in viral infections. According to TCM theory, the pathogenesis of COVID-19 is closely associated with cold-dampness, an etiological factor in TCM. Cold-dampness could be attenuated by sun exposure and Wenyang herbs, both of which can restore the vitamin D level in the blood in Western medicine. Therefore, TCM and Western medicine could share similar philosophical methods to fight COVID-19 and understanding their philosophical theories could achieve the maximum benefits for treatment of COVID-19 and other diseases.
Collapse
Affiliation(s)
- Fangfang Zhao
- 1Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Zhenhong Yang
- 1Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ningqun Wang
- 1Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Kunlin Jin
- 2Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, TX 76107, USA
| | - Yumin Luo
- 1Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.,3 Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|