1
|
Zheng K, Ouyang X, Xie H, Peng S. Responsive Zwitterionic Materials for Enhanced Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3744-3756. [PMID: 39907524 DOI: 10.1021/acs.langmuir.4c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Zwitterionic materials have traditionally been recognized as exceptional antifouling agents, imparting nanocarriers with extended circulation times in vivo. Despite much studies on antifouling ability, the responsive zwitterionic materials that change physicochemical properties stimulated by mild signals are much less explored. As is known, there are multiple biological barriers in antitumor drug delivery, including the blood circulation barrier, non-specific organ distribution, elevated tumor interstitial pressure, tumor cytomembrane barrier, and lysosomal barrier. Multiple biological barriers restrict the delivery efficiency of nanocarriers to tumors, leading to a reduced therapeutic effect and increased side effects. Therefore, it is far from satisfactory to overcome the blood circulation barrier alone for classical zwitterionic antitumor materials. To address this challenge, recently developed responsive zwitterionic materials have been engineered to overcome multiple biological barriers, thereby enabling more effective antitumor drug delivery. Furthermore, responsive zwitterionic materials could respond to signals by themselves without the need of incorporating extra stimuli-responsive groups, which maintains the simplicity of the molecular structure. In this mini-review, the recent progress of antitumor zwitterionic materials responding to pH, temperature, enzyme, or reactive oxygen species is summarized. Furthermore, prospects and challenges of responsive zwitterionic materials are provided to promote better development of this field.
Collapse
Affiliation(s)
- Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Xumei Ouyang
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Hong Xie
- Department of Veterinary Medicine, Faculty of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaojun Peng
- Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| |
Collapse
|
2
|
Arif M, Rauf A, Akhter T. A review on Ag nanoparticles fabricated in microgels. RSC Adv 2024; 14:19381-19399. [PMID: 38887640 PMCID: PMC11182451 DOI: 10.1039/d4ra02467b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
In recent years, there has been growing interest in the composites of multi-responsive microgels and silver nanoparticles. This innovative hybrid system harnesses the responsive qualities of microgels while capitalizing on the optical and electronic attributes of silver nanoparticles. This combined system demonstrates a rapid response to minor changes in pH, temperature, ionic strength of the medium, and the concentration of specific biological substances. This review article presents an overview of the recent advancements in the synthesis, classification, characterization methods, and properties of microgels loaded with silver nanoparticles. Furthermore, it explores the diverse applications of these responsive microgels containing silver nanoparticles in catalysis, the biomedical field, nanotechnology, and the mitigation of harmful environmental pollutants.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University Seongnam-13120 Republic of Korea
| |
Collapse
|
3
|
Liang S, Fu K, Li X, Wang Z. Unveiling the spatiotemporal dynamics of membrane fouling: A focused review on dynamic fouling characterization techniques and future perspectives. Adv Colloid Interface Sci 2024; 328:103179. [PMID: 38754212 DOI: 10.1016/j.cis.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Membrane technology has emerged as a crucial method for obtaining clean water from unconventional sources in the face of water scarcity. It finds wide applications in wastewater treatment, advanced treatment, and desalination of seawater and brackish water. However, membrane fouling poses a huge challenge that limits the development of membrane-based water treatment technologies. Characterizing the dynamics of membrane fouling is crucial for understanding its development, mechanisms, and effective mitigation. Instrumental techniques that enable in situ or real-time characterization of the dynamics of membrane fouling provide insights into the temporal and spatial evolution of fouling, which play a crucial role in understanding the fouling mechanism and the formulation of membrane control strategies. This review consolidates existing knowledge about the principal advanced instrumental analysis technologies employed to characterize the dynamics of membrane fouling, in terms of membrane structure, morphology, and intermolecular forces. Working principles, applications, and limitations of each technique are discussed, enabling researchers to select appropriate methods for their specific studies. Furthermore, prospects for the future development of dynamic characterization techniques for membrane fouling are discussed, underscoring the need for continued research and innovation in this field to overcome the challenges posed by membrane fouling.
Collapse
Affiliation(s)
- Shuling Liang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Kunkun Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China.
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Sommerfeld IK, Malyaran H, Neuss S, Demco DE, Pich A. Multiresponsive Core-Shell Microgels Functionalized by Nitrilotriacetic Acid. Biomacromolecules 2024; 25:903-923. [PMID: 38170471 DOI: 10.1021/acs.biomac.3c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Stimuli-responsive microgels with ionizable functional groups offer versatile applications, e.g., by the uptake of oppositely charged metal ions or guest molecules such as drugs, dyes, or proteins. Furthermore, the incorporation of carboxylic groups enhances mucoadhesive properties, crucial for various drug delivery applications. In this work, we successfully synthesized poly{N-vinylcaprolactam-2,2'-[(5-acrylamido-1-carboxypentyl)azanediyl]diacetic acid} [p(VCL/NTAaa)] microgels containing varying amounts of nitrilotriacetic acid (NTA) using precipitation polymerization. We performed fundamental characterization by infrared (IR) spectroscopy and dynamic and electrophoretic light scattering. Despite their potential multiresponsiveness, prior studies on NTA-functionalized microgels lack in-depth analysis of their stimuli-responsive behavior. This work addresses this gap by assessing the microgel responsiveness to temperature, ionic strength, and pH. Morphological investigations were performed via NMR relaxometry, nanoscale imaging (AFM and SEM), and reaction calorimetry. Finally, we explored the potential application of the microgels by conducting cytocompatibility experiments and demonstrating the immobilization of the model protein cytochrome c in the microgels.
Collapse
Affiliation(s)
- Isabel K Sommerfeld
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Hanna Malyaran
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Department of Orthodontics, University Hospital of RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Dan E Demco
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
5
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Lai J, Sun J, Li C, Lu J, Tian Y, Liu Y, Zhao C, Zhang M. H-bond-type thermo-responsive schizophrenic copolymers: The phase transition correlation with their parent polymers and the improved protein co-assembly ability. J Colloid Interface Sci 2023; 650:1881-1892. [PMID: 37517188 DOI: 10.1016/j.jcis.2023.07.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Schizophrenic copolymers are one type of the popular smart polymers that show invertible colloidal structures in response to temperature stimulus. However, the lack of principles to predict the phase transition temperature of a schizophrenic copolymer from its corresponding parent thermo-responsive polymers limits their development. Additionally, studies on their applications remain scarce. Herein, a series of schizophrenic copolymers were synthesized by polymerization of a RAFT-made polymer precursor poly(acrylamide-co-N-acryloxysuccinimide-co-acrylic acid) (P(AAm-co-NAS-co-AAc)) with the mixture of N-isopropylmethacrylamide (NIPAm) and acrylamide (AAm) in varying molar ratios. In aqueous solution, the block P(AAm-co-NAS-co-AAc) and the block poly(NIPAm-co-AAm) exhibited upper and lower critical solution temperature (UCST and LCST) behavior, respectively. The schizophrenic copolymers featured either UCST-LCST, LCST-UCST, or only LCST thermo-responsive transition. A preliminary correlation of phase transition between the schizophrenic copolymers and their parent polymers was summarized. Furthermore, the co-assembly of the schizophrenic copolymers and proteins were conducted and the kinetics of protein loading and protein activity were investigated, which showed that the schizophrenic copolymers were efficient platforms for protein co-assembly with ultra-high protein loading while preserving the protein bioactivities. Additionally, all the materials were non-toxic towards NIH 3T3 and MCF-7 cells. This work offers the prospects of the schizophrenic polymers in soft colloidal and assembly systems, particularly in guiding the design of new materials and their use in biomedical applications.
Collapse
Affiliation(s)
- Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianlei Lu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yuting Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
7
|
Coats JP, Cochereau R, Dinu IA, Messmer D, Sciortino F, Palivan CG. Trends in the Synthesis of Polymer Nano- and Microscale Materials for Bio-Related Applications. Macromol Biosci 2023; 23:e2200474. [PMID: 36949011 DOI: 10.1002/mabi.202200474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/24/2023] [Indexed: 03/24/2023]
Abstract
Polymeric nano- and microscale materials bear significant potential in manifold applications related to biomedicine. This is owed not only to the large chemical diversity of the constituent polymers, but also to the various morphologies these materials can achieve, ranging from simple particles to intricate self-assembled structures. Modern synthetic polymer chemistry permits the tuning of many physicochemical parameters affecting the behavior of polymeric nano- and microscale materials in the biological context. In this Perspective, an overview of the synthetic principles underlying the modern preparation of these materials is provided, aiming to demonstrate how advances in and ingenious implementations of polymer chemistry fuel a range of applications, both present and prospective.
Collapse
Affiliation(s)
- John Peter Coats
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Rémy Cochereau
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Daniel Messmer
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Flavien Sciortino
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, Universitat Basel, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- National Centre for Competence in Research - Molecular Systems Engineering, Mattenstrasse 24a, Basel, CH-4058, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel, CH-4056, Switzerland
| |
Collapse
|
8
|
Pei Q, Jiang B, Hao D, Xie Z. Self-assembled nanoformulations of paclitaxel for enhanced cancer theranostics. Acta Pharm Sin B 2023; 13:3252-3276. [PMID: 37655323 PMCID: PMC10465968 DOI: 10.1016/j.apsb.2023.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity. The self-assembled PTX nanoparticles possess a high drug content and could incorporate various functional molecules for enhancing the therapeutic index. In this work, we summarize the self-assembly strategy for diverse nanodrugs of PTX. Then, the advancement of nanodrugs for tumor therapy, especially emphasis on mono-chemotherapy, combinational therapy, and theranostics, have been outlined. Finally, the challenges and potential improvements have been briefly spotlighted.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Walkowiak JJ, van Duijnhoven C, Boeschen P, Wolter NA, Michalska-Walkowiak J, Dulle M, Pich A. Multicompartment polymeric colloids from functional precursor Microgel: Synthesis in continuous process. J Colloid Interface Sci 2023; 634:243-254. [PMID: 36535162 DOI: 10.1016/j.jcis.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Raspberry-like poly(oligoethylene methacrylate-b-N-vinylcaprolactam)/polystyrene (POEGMA-b-PVCL/PS) patchy particles (PPs) and complex colloidal particle clusters (CCPCs) were fabricated in two-, and one-step (cascade) flow process. Surfactant-free, photo-initiated reversible addition-fragmentation transfer (RAFT) precipitation polymerization (Photo-RPP) was used to develop internally cross-linked POEGMA-b-PVCL microgels with narrow size distribution. Resulting microgel particles were then used to stabilize styrene seed droplets in water, producing raspberry-like PPs. In the cascade process, different hydrophobicity between microgel and PS induced the self-assembly of the first formed raspberry particles that then polymerized continuously in a Pickering emulsion to form the CCPCs. The internal structure as well as the surface morphology of PPs and CCPCs were studied as a function of polymerization conditions such as flow rate/retention time (Rt), temperature and the amount of used cross-linker. By performing Photo-RPP in tubular flow reactor we were able to gained advantages over heat dissipation and homogeneous light distribution in relation to thermally-, and photo-initiated bulk polymerizations. Tubular reactor also enabled detailed studies over morphological evolution of formed particles as a function of flow rate/Rt.
Collapse
Affiliation(s)
- Jacek J Walkowiak
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Casper van Duijnhoven
- Zuyd University of Applied Sciences, Nieuw Eyckholt 300, 6419 DJ Heerlen, The Netherlands.
| | - Pia Boeschen
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Nadja A Wolter
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| | - Joanna Michalska-Walkowiak
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straβe, 52428 Jülich, Germany; CNRS, UMR 8232 - IPCM - Institut Parisien de Chimie Moléculaire - Polymer Chemistry Team, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France.
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straβe, 52428 Jülich, Germany.
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|
10
|
Kim D, Hayashi S, Matsuoka H, Saruwatari Y. Effect of Hydrophobicity and Salt on the Temperature Responsiveness of Polymeric Micelles Consisting of Hydrophobic and Sulfobetaine Chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1444-1455. [PMID: 36648154 DOI: 10.1021/acs.langmuir.2c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The effect of the hydrophobicity of the core part and salt on the temperature responsiveness of polymeric micelles composed of sulfobetaine and hydrophobic blocks was investigated. Poly(sulfopropyl dimethylammonium propylacrylamide) (PSPP) was used as the sulfobetaine; poly(2-ethylhexyl acrylate) (PEHA), poly(n-butyl acrylate) (PnBA), poly(ethyl acrylate) (PEA), or poly(n-hexyl acrylate) (PnHA) was used as the hydrophobic polymer. Measurement of the transmittance revealed that the transition temperature of the sulfobetaine homopolymer could be controlled by adjusting the concentration, the degree of polymerization (DP), and the concentration of the added salt. The effect of the anionic species of the added salt due to the chemical structural properties of the sulfobetaine chain was consistent with the order of ionic species with strong structural destruction in the Hofmeister series. The temperature response and micelle formation behavior of the polymeric micelles according to the hydrophobicity of the core part and the preparation method were examined by static light scattering (SLS), fluorescence measurement with pyrene, dynamic light scattering (DLS), transmittance, and atomic force microscopy (AFM). Micelles that had EHA (solubility in water was 0.01 g/100 mL) as the core and did not show temperature responsiveness expressed temperature responsiveness at a lower hydrophobicity (solubility of nBA in water was 0.14 g/100 mL). nBA-b-SPP did not show temperature responsiveness due to the block ratio. However, when micelles were prepared by dialysis, smaller and more stable micelles could be formed in an equilibrium state, and temperature responsiveness was observed. Their transition temperature can be controlled by adjusting the ratio of the sulfobetaine blocks, the hydrophobicity of the core part, the concentration of the polymer aqueous solution, and the concentration of the added salt. Furthermore, like the sulfobetaine homopolymer, the effect depended on the anionic species of the added salt.
Collapse
Affiliation(s)
- Dongwook Kim
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Shinya Hayashi
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industries Ltd., 7-20 Azuchi-Machi, 1-Chome, Chuo-ku, Osaka 541-0052, Japan
| |
Collapse
|
11
|
Yang Y, Sha L, Zhao H, Guo Z, Wu M, Lu P. Recent advances in cellulose microgels: Preparations and functionalized applications. Adv Colloid Interface Sci 2023; 311:102815. [PMID: 36427465 DOI: 10.1016/j.cis.2022.102815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Microgels are soft, deformable, permeable, and stimuli-responsive microscopic polymeric particles that are now emerging as prospective multifunctional soft materials for delivery systems, interface stabilization, cell cultures and tissue engineering. Cellulose microgels are emerging biopolymeric microgels with unique characteristics such as abound hydroxyl structure, admirable designability, multiscale pore network and excellent biocompatibility. This review summarizes the fabrication strategies for microgel, then highlights the fabrication routes for cellulose microgels, and finally elaborates cellulose microgels' bright application prospects with unique characteristics in the fields of controlled release, interface stabilization, coating, purification, nutrition/drug delivery, and bio-fabrication. The challenges to be addressed for further applications and considerable scope for development in future of cellulose microgels are also discussed.
Collapse
Affiliation(s)
- Yang Yang
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Lishan Sha
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Han Zhao
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhaojun Guo
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
12
|
Phunpee S, Ruktanonchai UR, Chirachanchai S. Tailoring a UCST-LCST-pH Multiresponsive Window through a Single Polymer Complex of Chitosan-Hyaluronic Acid. Biomacromolecules 2022; 23:5361-5372. [PMID: 36456928 DOI: 10.1021/acs.biomac.2c01226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Multistimuli-responsive polymers are important for controlled release. Owing to the fact that these polymers are derived from vinyl-based monomers, their decoration with other molecules is limited. Polysaccharides, especially chitosan (CS) and hyaluronic acid (HA), are pH-responsive biopolymers, whose chemical structures contain reactive functional groups for feasible chemical modifications to obtain add-on functions. The present work demonstrates the introduction of polymers with upper critical solution temperature (UCST) and lower critical solution temperature (LCST) performances onto CS and HA, respectively. By simply varying the mole ratio between the CS-containing UCST polymer and the HA-containing LCST polymer along with adjusting the pH, a polymer system with a UCST-LCST-pH multiresponsive window can be obtained. This multiresponsive window enables us to control the encapsulation and release with repeatability as evidenced from a model study on lysozyme. The present work, for the first time, shows a simple approach to obtain multiresponsive biodegradable polymers through the formation of a single polymer complex to tailor a specific multiresponsive window.
Collapse
Affiliation(s)
- Sarunya Phunpee
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Uracha R Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Suwabun Chirachanchai
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Wang Z, Debuigne A. Multi-responsive γ-methylene-γ-butyrolactone/ N-vinyl caprolactam copolymers involving pH-dependent reversible lactonization. Polym Chem 2022. [DOI: 10.1039/d2py00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copolymerization of γ-methylene-γ-butyrolactone with N-vinyl caprolactam leads to a peculiar multi-responsive NVCL-based system involving a unique reversible pH-dependent ring opening/closure of the pendant lactones.
Collapse
Affiliation(s)
- Zhuoqun Wang
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, Sart-Tilman B6a, 4000 Liege, Belgium
| |
Collapse
|
14
|
Wang H, Gao L, Fan T, Zhang C, Zhang B, Al-Hartomy OA, Al-Ghamdi A, Wageh S, Qiu M, Zhang H. Strategic Design of Intelligent-Responsive Nanogel Carriers for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54621-54647. [PMID: 34767342 DOI: 10.1021/acsami.1c13634] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the distinctive constituents of tumor tissue from those healthy organs, nanomedicine strategies show significant potentials in smart drug delivery. Nowadays, stimuli-responsive nanogels are playing increasingly important roles in the application of cancer therapy because of their sensitivity to various internal or external physicochemical stimuli, which exhibit site-specific and markedly enhanced drug release. Besides, nanogels are promising as drug carriers because of their porous structures, good biocompatibility, large surface area, and excellent capability with drugs. Taking advantage of multiresponsiveness, recent years have witnessed the rapid evolution of stimulus-responsive nanogels from monoresponsive to multiresponsive systems; however, there lacks a comprehensive review summarizing these reports. In this Review, we discuss the properties, synthesis, and characterization of nanogels. Moreover, tumor microenvironment and corresponding designing strategies for stimuli-response nanogels, both exogenous (temperature, magnetic field, light) and endogenous (pH, biomolecular, redox, ROS, pressure, hypoxia) are summarized on the basis of the recent advances in multistimuli-responsive nanogel systems. Nanogel and two-dimensional material composites show excellent performance in the field of constructing multistimulus-responsive nanoparticles and precise intelligent drug release integrated system for multimodal cancer diagnosis and therapy. Finally, potential progresses and suggestions are provided for the further design of hybrid nanogels based on emerging two-dimensional materials.
Collapse
Affiliation(s)
- Hao Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd., Cangqian, Yuhang District, Hangzhou 311121, China
| | - Taojian Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Chen Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Institute of Microscale Optoelectronics, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
16
|
Ganguly R, Saha P, Banerjee SL, Pich A, Singha NK. Stimuli-Responsive Block Copolymer Micelles Based on Mussel-Inspired Metal-Coordinated Supramolecular Networks. Macromol Rapid Commun 2021; 42:e2100312. [PMID: 34347312 DOI: 10.1002/marc.202100312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/16/2021] [Indexed: 12/21/2022]
Abstract
Amphiphilic diblock copolymers containing dopamine and zwitterions are synthesized via the RAFT polymerization method, which undergo temperature-mediated micellization in aqueous media. The presence of catechol moiety in dopamine is exploited to form pH-responsive cross-links with ferric ions (Fe3+ ) at different pH value. Herein, a comprehensive study of the effect of pH as well as temperature on the size and solution behavior of these cross-linked micelles is presented. These micelles cross-linked via metal-catechol coordination bonds can have several important biomedical applications such as degradable scaffolds for payload delivery.
Collapse
Affiliation(s)
- Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, India
| | - Pabitra Saha
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Germany
| | - Sovan Lal Banerjee
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, India
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52074, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, 6167, The Netherlands
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, 721302, India.,School of Nanosciences and Technology, Indian Institute of Technology Kharagpur, 721302, India
| |
Collapse
|
17
|
Saha P, Ganguly R, Li X, Das R, Singha NK, Pich A. Zwitterionic Nanogels and Microgels: An Overview on Their Synthesis and Applications. Macromol Rapid Commun 2021; 42:e2100112. [PMID: 34021658 DOI: 10.1002/marc.202100112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/24/2021] [Indexed: 12/12/2022]
Abstract
Zwitterionic polymers by virtue of their unique chemical and physical attributes have attracted researchers in recent years. The simultaneous presence of positive and negative charges in the same repeat unit renders them of various interesting properties such as superhydrophilicity, which has significantly broadened their scope for being used in different applications. Among polyzwitterions of different architectures, micro- and/or nano-gels have started receiving attention only until recently. These 3D cross-linked colloidal structures show peculiar characteristics in context to their solution properties, which are attributable either to the comonomers present or the presence of different electrolytes and biological specimens. In this review, a concise yet detailed account is provided of the different synthetic techniques and application domains of zwitterion-based micro- and/or nanogels that have been explored in recent years. Here, the focus is kept solely on the "polybetaines," which have garnered maximum research interest and remain the extensively studied polyzwitterions in literature. While their vast application potential in the biomedical sector is being detailed here, some other areas of scope such as using them as microreactors for the synthesis of metal nanoparticles or making smart membranes for water-treatment are discussed in this minireview as well.
Collapse
Affiliation(s)
- Pabitra Saha
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52062, Aachen, Germany
| | - Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Xin Li
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52062, Aachen, Germany
| | - Rohan Das
- Luxembourg Institute of Science and Technology (LIST), Avenue des Hauts-Fourneaux, Esch-sur-Alzette, 4362, Luxembourg
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, Kharagpur, 721302, India
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany.,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52062, Aachen, Germany.,Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, 6167, The Netherlands
| |
Collapse
|
18
|
Banerjee SL, Saha P, Ganguly R, Bhattacharya K, Kalita U, Pich A, Singha NK. A dual thermoresponsive and antifouling zwitterionic microgel with pH triggered fluorescent “on-off” core. J Colloid Interface Sci 2021; 589:110-126. [DOI: 10.1016/j.jcis.2020.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022]
|
19
|
Wu Y, Zhang Y, Wang K, Luo Z, Xue Z, Gao H, Cao Z, Cheng J, Liu C, Zhang L. Construction of Self-Assembled Polyelectrolyte/Cationic Microgel Multilayers and Their Interaction with Anionic Dyes Using Quartz Crystal Microbalance and Atomic Force Microscopy. ACS OMEGA 2021; 6:5764-5774. [PMID: 33681615 PMCID: PMC7931438 DOI: 10.1021/acsomega.0c06181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/03/2021] [Indexed: 05/05/2023]
Abstract
This study aimed to reveal the interaction between self-assembled multilayers and dye molecules in the environment, which is closely related to the multilayers' stable performance and service life. In this work, the pH-responsive poly (N-isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate) microgels were prepared by free-radical copolymerization and self-assembled with sodium alginate (SA) into multilayers by the layer-by-layer deposition method. Quartz crystal microbalance (QCM) and atomic force microscopy (AFM) results confirmed the construction of multilayers and the absorbed mass, resulting in a decrease in the frequency shift of the QCM sensor and the deposition of microgel particles on its surface. The interaction between the self-assembled SA/microgel multilayers and anionic dyes in the aqueous solution was further investigated by QCM, and it was found that the electrostatic attraction between dyes and microgels deposited on the QCM sensor surface was much larger than that of the microgels with SA in multilayers, leading to the release of the microgels from the self-assembled structure and a mass loss ratio of 27.6%. AFM observation of the multilayer morphology exposed to dyes showed that 29% of the microgels was peeled off, and the corresponding microgel imprints were generated on the surface. In contrast, the shape and size of the remaining self-assembled microgel particles did not change.
Collapse
Affiliation(s)
- Yinqiu Wu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Yang Zhang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Kailun Wang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zili Luo
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zhiyu Xue
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Hongxin Gao
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zheng Cao
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
- Changzhou
University Huaide College, Jingjiang 214500, P. R. China
- National
Experimental Demonstration Center for Materials Science and Engineering
(Changzhou University), Changzhou 213164, P. R. China
| | - Junfeng Cheng
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Chunlin Liu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
- Changzhou
University Huaide College, Jingjiang 214500, P. R. China
| | - Lei Zhang
- Key
Laboratory of Optic-electric Sensing and Analytical Chemistry for
Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao 266042, P. R. China
| |
Collapse
|
20
|
Saha P, Palanisamy AR, Santi M, Ganguly R, Mondal S, Singha NK, Pich A. Thermoresponsive zwitterionic poly(phosphobetaine) microgels: Effect of
macro‐RAFT
chain length and cross‐linker molecular weight on their antifouling properties. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pabitra Saha
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Aachen Germany
| | - Anand Raj Palanisamy
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Rubber Technology Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Marta Santi
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Aachen Germany
| | - Ritabrata Ganguly
- Rubber Technology Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Somashree Mondal
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Nikhil K. Singha
- Rubber Technology Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Andrij Pich
- DWI – Leibniz‐Institute for Interactive Materials e.V Aachen Germany
- Institute of Technical and Macromolecular Chemistry RWTH Aachen University Aachen Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM) Maastricht University Geleen the Netherlands
| |
Collapse
|
21
|
Lu D, Zhu M, Jin J, Saunders BR. Triply-responsive OEG-based microgels and hydrogels: regulation of swelling ratio, volume phase transition temperatures and mechanical properties. Polym Chem 2021. [DOI: 10.1039/d1py00695a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile methods to coordinate swelling ratio, volume-phase transition temperatures and mechanical properties for pH-, thermal-, and cationic-responsive microgels and hydrogels.
Collapse
Affiliation(s)
- Dongdong Lu
- Department of Materials
- University of Manchester
- Manchester
- UK
| | - Mingning Zhu
- Department of Materials
- University of Manchester
- Manchester
- UK
| | - Jing Jin
- Department of Materials
- University of Manchester
- Manchester
- UK
| | | |
Collapse
|
22
|
Saha P, Santi M, Emondts M, Roth H, Rahimi K, Großkurth J, Ganguly R, Wessling M, Singha NK, Pich A. Stimuli-Responsive Zwitterionic Core-Shell Microgels for Antifouling Surface Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58223-58238. [PMID: 33331763 DOI: 10.1021/acsami.0c17427] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fouling on filtration membranes is induced by the nonspecific interactions between the membrane surface and the foulants, and effectively hinders their efficient use in various applications. Here, we established a facile method for the coating of membrane surface with a dual stimuli-responsive antifouling microgel system enriched with a high polyzwitterion content. Different poly(sulfobetaine) (PSB) zwitterionic polymers with defined molecular weights and narrow dispersities were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and integrated onto poly(N-vinylcaprolactam) (PVCL) microgels via a controlled dosage of a cross-linker, adapting a precipitation polymerization technique to obtain a core-shell microstructure. Increasing the PSB macro-RAFT concentration resulted in a shift of both upper critical solution temperature and lower critical solution temperature toward higher temperatures. Cryogenic transmission electron microscopy at different temperatures suggested the formation of a core-shell morphology with a PVCL-rich core and a PSB-rich shell. On the other hand, the significant variations of different characteristic proton signals and reversible phase transitions of the microgel constituents were confirmed by temperature-dependent 1H NMR studies. Utilizing a quartz crystal microbalance with dissipation monitoring, we have been able to observe and quantitatively describe the antipolyelectrolyte behavior of the zwitterionic microgels. The oscillation frequency of the sensor proved to change reversibly according to the variations of the NaCl concentration, showing, in fact, the effect of the interaction between the salt and the opposite charges present in the microgel deposited on the sensor. Poly(ethersulfone) membranes, chosen as the model surface, when functionalized with zwitterionic microgel coatings, displayed protein-repelling property, stimulated by different transition temperatures, and showed even better performances at increasing NaCl concentration. These kinds of stimuli-responsive zwitterionic microgel can act as temperature-triggered drug delivery systems and as potential coating materials to prevent bioadhesion and biofouling as well.
Collapse
Affiliation(s)
- Pabitra Saha
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Marta Santi
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Meike Emondts
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | - Hannah Roth
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Khosrow Rahimi
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
| | | | - Ritabrata Ganguly
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Matthias Wessling
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Aachen 52074, Germany
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Aachen 52056, Germany
- Institute of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Maastricht 6229 GT, The Netherlands
| |
Collapse
|
23
|
Keskin D, Tromp L, Mergel O, Zu G, Warszawik E, van der Mei HC, van Rijn P. Highly Efficient Antimicrobial and Antifouling Surface Coatings with Triclosan-Loaded Nanogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57721-57731. [PMID: 33320528 PMCID: PMC7775744 DOI: 10.1021/acsami.0c18172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 05/11/2023]
Abstract
Multifunctional nanogel coatings provide a promising antimicrobial strategy against biomedical implant-associated infections. Nanogels can create a hydrated surface layer to promote antifouling properties effectively. Further modification of nanogels with quaternary ammonium compounds (QACs) potentiates antimicrobial activity owing to their positive charges along with the presence of a membrane-intercalating alkyl chain. This study effectively demonstrates that poly(N-isopropylacrylamide-co-N-[3(dimethylamino)propyl]methacrylamide) (P(NIPAM-co-DMAPMA)-based nanogel coatings possess antifouling behavior against S. aureus ATCC 12600, a Gram-positive bacterium. Through the tertiary amine in the DMAPMA comonomer, nanogels are quaternized with a 1-bromo-dodecane chain via an N-alkylation reaction. The alkylation introduces the antibacterial activity due to the bacterial membrane binding and the intercalating ability of the aliphatic QAC. Subsequently, the quaternized nanogels enable the formation of intraparticle hydrophobic domains because of intraparticle hydrophobic interactions of the aliphatic chains allowing for Triclosan incorporation. The coating with Triclosan-loaded nanogels shows a killing efficacy of up to 99.99% of adhering bacteria on the surface compared to nonquaternized nanogel coatings while still possessing an antifouling activity. This powerful multifunctional coating for combating biomaterial-associated infection is envisioned to greatly impact the design approaches for future clinically applied coatings.
Collapse
Affiliation(s)
- Damla Keskin
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lisa Tromp
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Olga Mergel
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Guangyue Zu
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Eliza Warszawik
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C. van der Mei
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- University of Groningen and University
Medical Center Groningen, Department of
Biomedical Engineering, W. J. Kolff Institute for Biomedical Engineering
and Materials Science, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|