1
|
Shen K, Lv Z, Yang Y, Wang H, Liu J, Chen Q, Liu Z, Zhang M, Liu J, Cheng Y. A Wet-Adhesion and Swelling-Resistant Hydrogel for Fast Hemostasis, Accelerated Tissue Injury Healing and Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414092. [PMID: 39713944 DOI: 10.1002/adma.202414092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/01/2024] [Indexed: 12/24/2024]
Abstract
Hydrogel bioadhesives with adequate wet adhesion and swelling resistance are urgently needed in clinic. However, the presence of blood or body fluid usually weakens the interfacial bonding strength, and even leads to adhesion failure. Herein, profiting from the unique coupling structure of carboxylic and phenyl groups in one component (N-acryloyl phenylalanine) for interfacial drainage and matrix toughening as well as various electrostatic interactions mediated by zwitterions, a novel hydrogel adhesive (PAAS) is developed with superior tissue adhesion properties and matrix swelling resistance in challenging wet conditions (adhesion strength of 85 kPa, interfacial toughness of 450 J m-2, burst pressure of 514 mmHg, and swelling ratio of <4%). The PAAS hydrogel can not only realize fast hemostasis of liver, heart, artery rupture, and sealing of pulmonary air-leakage but also accelerate the recovery of stomach and liver defects in rat, rabbit, and pig models. Moreover, PAAS hydrogel can precisely and durably monitor various physiological activities (pulse, electrocardiogram, and electromyogram) even under humid environments (immersion in water for 3 days), and can be employed for the evaluation of in vivo sealing efficiency for artery rupture. The work provides a promising hydrogel adhesive for clinical hemostasis, tissue injury repair, and bioelectronics.
Collapse
Affiliation(s)
- Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuting Lv
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuxuan Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haoyue Wang
- Institute of High Voltage Physics and Engineering, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiancheng Liu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qifei Chen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zheng Liu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mengyuan Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaying Liu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
2
|
Liu Q, Ou X, Niu Y, Li L, Xing D, Zhou Y, Yan F. Flexible Zn-ion Electrochromic Batteries with Multiple-color Variations. Angew Chem Int Ed Engl 2024; 63:e202317944. [PMID: 38332681 DOI: 10.1002/anie.202317944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Electrochromic batteries as emerging smart energy devices are highly sought after owing to their real-time energy monitoring through visual color conversion. However, their large-scale applicability is hindered by insufficient capacity, inadequate cycling stability, and limited color variation. Herein, a flexible Zn-ion electrochromic battery (ZIEB) was assembled with sodium vanadate (VONa+) cathode, ion-redistributing hydrogel electrolyte, and Zn anode to address these challenges. The electrolyte contains anchored -SO3 - and -NH3 +, which facilitates ionic transportation and prevents Zn dendrite formation by promoting orientated Zn2+ deposition on the Zn (002) surface. The ZIEB exhibits a continuous reversible color transition, ranging from fully charged orange to mid-charged brown and drained green. It also demonstrates a high specific capacity of 302.4 mAh ⋅ g-1 at 0.05 A ⋅ g-1 with a capacity retention of 96.3 % after 500 cycles at 3 A ⋅ g-1. Additionally, the ZIEB maintains stable energy output even under bending, rolling, knotting, and twisting. This work paves a new strategy for the design of smart energy devices in wearable electronics.
Collapse
Affiliation(s)
- Qinbo Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xu Ou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yajuan Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Legeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Doudou Xing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feng Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
4
|
Wang J, Sawut A, Simayi R, Song H, Jiao X. Preparation of high strength, self-healing conductive hydrogel based on polysaccharide and its application in sensor. J Mech Behav Biomed Mater 2024; 150:106246. [PMID: 38006795 DOI: 10.1016/j.jmbbm.2023.106246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
The development of cost-effective, eco-friendly conductive hydrogels with excellent mechanical properties, self-healing capabilities, and non-toxicity holds immense significance in the realm of biosensors. The biosensors demonstrate promising applications in the fields of biomedical engineering and human motion detection. A unique double-network hydrogel was prepared through physical-chemical crosslinking using chitosan (CS), polyacrylic acid (AA), and sodium alginate (SA) as raw materials. The prepared double-network hydrogels exhibited exceptional mechanical properties, as well as self-healing and conductive capabilities. Polyacrylic acid as the first layer network, while chitosan and sodium alginate were incorporated to establish the second layer network through electrostatic interactions, thereby imparting self-healing and self-recovery properties. The hydrogel was subsequently immersed in the salt solution to induce network winding. The mechanical robustness of the hydrogel was significantly enhanced through synergistic coordination of covalent and non-covalent interactions. When the concentration of sodium alginate was 20 g/L, the double-network hydrogel exhibits enhanced mechanical properties, with a tensile fracture stress of up to 1.31 MPa and a strength of 4.17 MPa under 80% compressive deformation. Furthermore, the recovery rate of this double-network hydrogel reached an impressive 89.63% within a span of 30 min. After 24 h without any external forces, the self-healing rate reached 26.11%, demonstrating remarkable capabilities in terms of self-recovery and self-healing. Furthermore, this hydrogel exhibited consistent conductivity properties and was capable of detecting human finger movements. Hence, this study presents a novel approach for designing and synthesizing environmentally friendly conductive hydrogels for biosensors.
Collapse
Affiliation(s)
- Junxiao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Amatjan Sawut
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Rena Simayi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China.
| | - Huijun Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Xueying Jiao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| |
Collapse
|
5
|
Li T, Li X, Yang J, Sun H, Sun J. Healable Ionic Conductors with Extremely Low-Hysteresis and High Mechanical Strength Enabled by Hydrophobic Domain-Locked Reversible Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307990. [PMID: 37820715 DOI: 10.1002/adma.202307990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Extremely low hysteresis, high mechanical strength, superior toughness, and excellent healability are essential for stretchable ionic conductors to enhance their reliability and meet for cutting-edge applications. However, the fabrication of stretchable ionic conductors with such mutually exclusive properties remains challenging. Herein, extremely low-hysteresis and healable ionic conductors with a tensile strength of ≈8.9 MPa and toughness of ≈23.2 MJ m-3 are fabricated through the complexation of 4-carboxybenzaldehyde (CBA) grafted poly(vinyl alcohol) (PVA) (denoted as PVA-CBA) and poly (allylamine hydrochloride) (PAH) followed by acidification and ion-loading steps. The acidification step generates the PVA-CBA/PAH ionic conductors with in situ formed dynamic hydrophobic domains that lock and stabilize noncovalent interactions. This significantly minimizes the energy dissipation of the ionic conductors during cyclic mechanical loading (≤200% strain), resulting in ionic conductors with extremely low hysteresis (≈5%). The fractured ionic conductors can be healed at 60 °C to restore their original properties. Because of the extremely low hysteresis, the PVA-CBA/PAH ionic conductors show a highly stable and reproducible electrical response over 5000 uninterrupted loading-unloading cycles at a strain of 200%. The ionic conductor based sensors exhibit a high sensitivity to a wide range of strains (1-500%).
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jiaming Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haoxiang Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
6
|
Wang Y, Li P, Cao S, Liu Y, Gao C. Nanoarchitectonics composite hydrogels with high toughness, mechanical strength, and self-healing capability for electrical actuators with programmable shape memory properties. NANOSCALE 2023; 15:18667-18677. [PMID: 37921452 DOI: 10.1039/d3nr03578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Hydrogel materials show promise in various fields, including flexible electronic devices, biological tissue engineering and wound dressing. Nevertheless, the inadequate mechanical properties, recovery performance, and self-healing speed still constrain the development of intelligent hydrogel materials. To tackle these challenges, we designed a composite hydrogel with high mechanical strength, rapid self-recovery and efficient self-healing ability based on multiple synergistic effects. With the synergistic effect of hydrogen bonds, metal coordination bonds and electrostatic interaction, the synthesized hydrogel could reach a maximum tensile strength of 6.2 MPa and a toughness of 50 MJ m-3. The interaction between the weak polyelectrolyte polyethyleneimine and polyacrylic acid aided in improving the elasticity of the hydrogel, thereby endowing it with prompt self-recovery attributes. The multiple reversible effects also endowed the hydrogel with excellent self-healing ability, and the fractured hydrogel could achieve 95% self-healing within 4 h at room temperature. By the addition of glycerol, the hydrogel could also cope with a variety of extreme environments in terms of moisture retention (12 h, maintaining 80% of its water content) and freeze protection (-36.8 °C) properties. In addition, the composite hydrogels applied in the field of shape memory possessed programmable and reversible shape transformation properties. The polymer chains were entangled at high temperatures to achieve shape fixation, and shape memory was eliminated at low temperatures, which allowed the hydrogels to be reprogrammed and achieve multiple shape transitions. In addition, we also assemble composite hydrogels as actuators and robotic arms for intelligent applications.
Collapse
Affiliation(s)
- Yanqing Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Pengcheng Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shuting Cao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yuetao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
7
|
Wang H, Wu C, Zhu J, Cheng Y, Yang Y, Qiao S, Jiao B, Ma L, Fu Y, Chen H, Dai H, Zhang Y. Stabilization of capsanthin in physically-connected hydrogels: Rheology property, self-recovering performance and syringe/screw-3D printing. Carbohydr Polym 2023; 319:121209. [PMID: 37567685 DOI: 10.1016/j.carbpol.2023.121209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023]
Abstract
This work presented a facile way of stabilizing capsanthin by physically-connected soft hydrogels via utilizing specially-structured polysaccharides, and investigated rheological properties, self-recovering mechanism and 3D printability. The functionalized hydrogels demonstrated excellent color quality including redness, yellowness index and hue with great storage stability and visual perception. The soft hydrogels fabricated with properly sequenced polyglyceryl fatty acid esters, β-cyclodextrin, chitosan, and low-content capsanthin possessed outstanding extrudability, appropriate yield stress, reasonable mechanical strength, rational elasticity and structure sustainability. Furthermore, the self-recovering properties based on hydrogen bonds, host-guest interactions and electrostatic interactions were revealed and verified by structural, zeta potential, micro-morphological, zeta potential, thixotropic, creep-recovery, and macroscopic/microscopic characterizations. Along with excellent antioxidant performance, the subsequent 3D printing onto bread with complex models elucidated the high geometry accuracy and great sensory characters. The sequenced physically-connected hydrogels incorporated with capsanthin can provide new insights on stabilizing hydrophobic biomaterials and developing the 3D printed exquisite, innovative food.
Collapse
Affiliation(s)
- Hongxia Wang
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, PR China
| | - Chaoyang Wu
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Juncheng Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yang Cheng
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuxin Yang
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Shihao Qiao
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, P.O. Box 5109, Beijing 100193, PR China
| | - Liang Ma
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yu Fu
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hai Chen
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Hongjie Dai
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Shen K, Liu Z, Xie R, Zhang Y, Yang Y, Zhao X, Zhang Y, Yang A, Cheng Y. Nanocomposite conductive hydrogels with Robust elasticity and multifunctional responsiveness for flexible sensing and wound monitoring. MATERIALS HORIZONS 2023; 10:2096-2108. [PMID: 36939051 DOI: 10.1039/d3mh00192j] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Flexible biosensors made from conductive hydrogels have shown tremendous potential in health management and human-machine interfaces. Nevertheless, it remains challenging to fabricate conductive hydrogels with robust resilience and long-term stability. Herein, we report a nanocomposite conductive hydrogel prepared through one-pot radical polymerization of 3-acrylamidophenylboronic acid (APBA) and acrylamide (AM) in the presence of LAPONITE® XLG nanosheet (XLG) stabilized carbon nanotubes (CNTs). Owing to the existence of various non-covalent interactions within the network (B-N coordination, hydrogen bond, and polymer chain entanglement), the hydrogels feature splendid mechanical properties with a tensile strength of 252-323 kPa, fracture strain of 880-1200%, Young's modulus of 48-50 kPa and fracture energy of 911-1078 J m-2, and exhibit robust elasticity and fatigue resistance during 1000 consecutive tensile and compressive cycles. The hydrogels show remarkable sensing performances (gauge factor up to 9.43) and a broad sensing range of strain (1-300%) and pressure (1-80 kPa), enabling reliable and accurate monitoring of large and tiny motions in daily human life. Moreover, the conductive hydrogels could not only accelerate skin incision healing but also act as smart wearable sensors to monitor the skin wound healing process by detection of local temperature changes.
Collapse
Affiliation(s)
- Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zheng Liu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ruilin Xie
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuxuan Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaodan Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanfeng Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Aimin Yang
- Department of Nuclear Medicine, the First Affiliated Hospital of China, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China.
- Department of Nuclear Medicine, the First Affiliated Hospital of China, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Yu J, Xie R, Zhang M, Shen K, Yang Y, Zhao X, Zhang X, Zhang Y, Cheng Y. Molecular architecture regulation for the design of instant and robust underwater adhesives. SCIENCE ADVANCES 2023; 9:eadg4031. [PMID: 37267351 PMCID: PMC10413663 DOI: 10.1126/sciadv.adg4031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Development of underwater adhesives with instant and robust adhesion to diverse substrates remains challenging. A strategy taking the structural advantage of phenylalanine derivative, N-acryloyl phenylalanine (APA), is proposed to facilely prepare a series of underwater polymeric glue-type adhesives (UPGAs) through one-pot radical polymerization with commonly used hydrophilic vinyl monomers. The adjacent phenyl and carboxyl groups in APA realize the synergy between interfacial interactions and cohesion strength, by which the UPGAs could achieve instant (~5 seconds) and robust wet tissue adhesion strength (173 kilopascal). The polymers with varied hydrophobicity and substitutional groups as well as carboxyl and phenyl groups in separated components are designed to investigate the underwater adhesion mechanism. The universality of APA for the construction of UPGAs is also verified by the copolymerization with different hydrophilic monomers, and the applications of the UPGAs have been validated in diverse hemorrhage models and distinct substrates. Our work may give a promising solution to design potent underwater adhesives.
Collapse
Affiliation(s)
- Jing Yu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ruilin Xie
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Mengyuan Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yuxuan Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaodan Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanfeng Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
10
|
Wang Y, Fang X, Li S, Pan H, Sun J. Complexation of Sulfonate-Containing Polyurethane and Polyacrylic Acid Enables Fabrication of Self-Healing Hydrogel Membranes with High Mechanical Strength and Excellent Elasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25082-25090. [PMID: 34935339 DOI: 10.1021/acsami.1c21002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Artificial hydrogel membranes with good biocompatibility are strongly needed in biological fields. The preparation of biocompatible hydrogel membranes simultaneously possessing high mechanical strength, excellent elasticity, and satisfactory self-healing properties remains a challenge. Herein, we demonstrate the preparation of such hydrogel membranes by complexation of sulfonate-containing polyurethane (SPU) and poly(acrylic acid) (PAA) in the presence of Zn2+ ions followed by swelling in water (denoted as SPU-PAA/Zn). Originating from the synergy of the coordination and hydrogen-bonding interactions and the reinforcement effect of the in situ formed hydrophobic domains, the SPU-PAA/Zn hydrogel membrane exhibits a high tensile strength of ∼7.1 MPa and a toughness of ∼30.4 MJ m-3. Moreover, the hydrogel membrane is highly elastic, which can restore to its initial state from an ∼500% strain within 40 min rest at room temperature without any external assistance. The dynamic noncovalent interactions and hydrophobic domains allow the fractured hydrogel membrane to heal and completely regain its original integrity and mechanical properties at room temperature. Both in vitro and in vivo tests confirm that the hydrogel membrane exhibits satisfactory biocompatibility and could be potentially used as a biological barrier membrane in surgical operations or artificial organs.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Siheng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
11
|
Li B, Cao PF, Saito T, Sokolov AP. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem Rev 2023; 123:701-735. [PMID: 36577085 DOI: 10.1021/acs.chemrev.2c00575] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Self-healing materials open new prospects for more sustainable technologies with improved material performance and devices' longevity. We present an overview of the recent developments in the field of intrinsically self-healing polymers, the broad class of materials based mostly on polymers with dynamic covalent and noncovalent bonds. We describe the current models of self-healing mechanisms and discuss several examples of systems with different types of dynamic bonds, from various hydrogen bonds to dynamic covalent bonds. The recent advances indicate that the most intriguing results are obtained on the systems that have combined different types of dynamic bonds. These materials demonstrate high toughness along with a relatively fast self-healing rate. There is a clear trade-off relationship between the rate of self-healing and mechanical modulus of the materials, and we propose design principles of polymers toward surpassing this trade-off. We also discuss various applications of intrinsically self-healing polymers in different technologies and summarize the current challenges in the field. This review intends to provide guidance for the design of intrinsic self-healing polymers with required properties.
Collapse
Affiliation(s)
- Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee37996, United States.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, China
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States.,Department of Chemistry, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
12
|
Ren M, Cai Z, Chen L, Wahia H, Zhang L, Wang Y, Yu X, Zhou C. Preparation of zein/chitosan/eugenol/curcumin active films for blueberry preservation. Int J Biol Macromol 2022; 223:1054-1066. [PMID: 36395925 DOI: 10.1016/j.ijbiomac.2022.11.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
This study aimed to develop zein/chitosan-based films formulated with curcumin and eugenol to improve the quality of postharvest blueberries. First, the film-forming solutions were characterized (rheological property and water distribution), and the mechanical, structural properties and bioactivity of active films fabricated by casting were evaluated. Further, the active film was coated with blueberry stored at 4 °C, and physicochemical properties (weight loss, hardness, microbial counts, and appearance changes) were measured. The film-forming solutions exhibited non-Newtonian behavior. The incorporation of curcumin and eugenol improved the tensile strength and elongation at the break of films, reaching 17.86 MPa and 92.80 %, respectively. The antioxidant capacity was enhanced, and DPPH and ABTS radical scavenging rates were up to 90.60 ± 0.06 % and 86.34 ± 0.39 %, respectively. Meanwhile, the prepared active films possessed good anti-UV and sensitive pH-response color-shifting ability. Compared to the uncoated blueberry, blueberry coated with zein/chitosan/curcumin/eugenol showed lower weight loss and higher hardness, indicating that the prepared active films played a vital role in delaying the deterioration of blueberry and extending its shelf life. Overall, the zein-chitosan incorporated with curcumin and eugenol films could be a promising candidate to prolong the shelf life of food products due to their excellent bioactive capacity.
Collapse
Affiliation(s)
- Manni Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| | - Zhe Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Wang X, Fang X, Gao X, Wang H, Li S, Li C, Qing Y, Qin Y. Strong adhesive and drug-loaded hydrogels for enhancing bone-implant interface fixation and anti-infection properties. Colloids Surf B Biointerfaces 2022; 219:112817. [PMID: 36084513 DOI: 10.1016/j.colsurfb.2022.112817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/19/2022]
Abstract
The bonding strength of the bone-titanium (Ti) implant interface is critical for patients undergoing joint replacement. However, current bone adhesives used in clinic have shortcomings, such as biological inertness, cytotoxicity, and lack of osteogenic ability. In this study, a simple and low-cost hydrogel-based bone adhesive was prepared to improve the osseointegration ability and anti-infection ability of the bone-implant interface. A multifunctional hydrogel was prepared by incorporating nano-hydroxyapatite (HA) on polyethyleneimine (PEI) and polyacrylic acid (PAA) (PEI/PAA-HA). It was shown that PEI/PAA-HA hydrogel exhibited good self-healing and strong adhesive ability. The adhesive strengths of bone-Ti and Ti-Ti were measured as 2.30 ± 0.15 MPa and 1.07 ± 0.07 MPa, respectively. Vancomycin (VAN) was loaded into the PEI/PAA-HA hydrogel (PEI/PAA-HA-VAN) via a simple immersion method. The PEI/PAA-HA-VAN showed excellent antibacterial effect by sustained release of VAN. In addition, the PEI/PAA-HA-VAN hydrogel exhibited excellent cytocompatibility promoting the expression of osteogenic genes and the deposition of mineralized matrix. Collectively, this strong adhesive hydrogel showed great potential in enhancing bone-implant interface fixation.
Collapse
Affiliation(s)
- Xingyue Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xin Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Hao Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shihuai Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Chen Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yunan Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
14
|
Lu J, Hu O, Hou L, Ye D, Weng S, Jiang X. Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. Int J Biol Macromol 2022; 221:1002-1011. [PMID: 36113584 DOI: 10.1016/j.ijbiomac.2022.09.083] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
High-performance hydrogels with favorable mechanical strength, high modulus, sufficient ionic conductivity and freezing resistance have far-ranging applications in flexible electronic equipment. Nevertheless, it is challenging to combine admirable mechanical properties and high ionic conductivity into one hydrogel. Herein, a facile strategy was developed for the preparation of the hydrogel with excellent strength (1.45 MPa), super Young's modulus (8.85 MPa) and high conductivity (1.47 S/m) using starch and poly(vinyl alcohol) (PVA) as raw materials. The starch/PVA/Gly/Na3Cit (SPGN) gel was firstly cross-linked by crystalline regions of PVA upon freezing-thawing cycles. It was further immersed in the saturated Na3Cit solution to enhance the interaction between the substrates through the salting-out effect. The effect of soaking time on the crystallinity, intermolecular interactions, mechanical and electrical properties of SPGN gel was demonstrated by X-ray diffraction, Fourier transform infrared spectroscopy, tensile and impedance testing measurements. The introduction of glycerol and Na3Cit also endowed SPGN gels with favorable anti-freezing properties. The SPGN gel could maintain high mechanical flexibility and ionic conductivity at -15 °C.
Collapse
Affiliation(s)
- Jing Lu
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Oudong Hu
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Linxi Hou
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - DeZhan Ye
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, No. 1 Yangguang Avenue, Jiangxia District, Wuhan, Hubei 430200, China.
| | - Sen Weng
- Qingyuan Innovation Laboratory, Quanzhou 362114, China
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362114, China.
| |
Collapse
|
15
|
Li J, Krishna B A, van Ewijk G, van Dijken DJ, de Vos WM, van der Gucht J. A comparison of complexation induced brittleness in PEI/PSS and PEI/NaPSS single-step coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Zhang K, He N, Zhang C, Wang X. Erasable polymer hydrogel wells. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Wu Y, Jiang W, Zhang X, Wang J, Chen D, Ma Y, Yang W. Highly conductive, Transparent, Adhesive and Self-healable Ionogel Based on a Deep Eutectic Solvent with Widely Adjustable Mechanical Strength. Macromol Rapid Commun 2022; 43:e2200480. [PMID: 35946394 DOI: 10.1002/marc.202200480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Ionogels have attracted intensive attentions as promising flexible conductive materials. However, simultaneous integration of excellent mechanical properties, high conductivity, outstanding self-healing ability and strong adhesiveness is still challenging. Here, an ingenious composition design is proposed to address this long-standing challenge of ionogels. High-performance PEI/PAA/CMC ionogels, consisted of a loosely cross-linked poly(acrylic acid) (PAA) network, dynamically cross-linked network based on polycationic polyethyleneimine (PEI) and polyanionic PAA, and carboxymethyl cellulose (CMC) reinforcing filler, are formed in a deep eutectic solvent (DES) composed of choline chloride and urea. Benefiting from the loose PAA network and dynamic noncovalent interactions, ionogels with both highly enhanced mechanical robustness and excellent conductivity are obtained at high loading of DES, overcoming the strength-ductility/conductivity trade-off dilemma. By adjusting PEI/PAA mass ratio, the tensile strength and strain of PEI/PAA/CMC ionogels are effectively controlled in a wide range of 0.15-7.9 MPa and 232-1161%, respectively, while maintaining the desirable conductivity of ∼10-4 S cm-1 . Besides, healed tensile strength over 2.1 MPa and adhesion strength up to 0.2 MPa are achieved for the PEI0.06 /PAA0.25 /CMC0.01 ionogel. The delicate design strategy provides a feasible approach to prepare ionogels with outstanding comprehensive performance, which have potential for applications in flexible electronics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yingxue Wu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenxing Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xianhong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiadong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
18
|
Li Y, Wang X, Fang X, Sun J. Noncovalently Cross-Linked Polymeric Materials Reinforced by Well-Designed In Situ-Formed Nanofillers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9050-9063. [PMID: 35863752 DOI: 10.1021/acs.langmuir.2c01380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noncovalently cross-linked polymeric materials generally exhibit lower mechanical robustness than traditional polymeric materials. Therefore, it is important to improve the mechanical properties of noncovalently cross-linked polymeric materials using an efficient and generalized approach. In this Perspective, we systematically summarized the recent development of noncovalently cross-linked polymeric materials reinforced by in situ-formed nanofillers. The synergy of high-density noncovalent interactions and in situ-formed rigid nanofillers provided an effective means for the fabrication of noncovalently cross-linked plastics with high mechanical strength. The design of in situ-formed tough nanofillers, which could deform and dissociate, endowed the noncovalently cross-linked hydrogels and elastomers with high toughness, excellent stretchability, elasticity, damage resistance, and damage tolerance. Benefiting from the well-designed in situ-formed nanofillers, these noncovalently cross-linked polymeric materials with enhanced mechanical strength still exhibited satisfactory healing, recycling, and reprocessing properties. Outlooks were provided to envision the remaining challenges to the further development and practical application of noncovalently cross-linked polymeric materials reinforced with in situ-formed nanofillers.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
19
|
Feng C, Zhang YJ, Ren CL. pH-Regulated Single and Double Charge Inversions on PEI-Coated Surfaces. ACS Macro Lett 2022; 11:773-779. [PMID: 35653775 DOI: 10.1021/acsmacrolett.2c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pH-regulated charge inversions on polyethylenimine (PEI)-coated surfaces are indispensable to their applications in biomaterials and nanomaterials. Various PEI-coated surfaces, where single charge inversion happens, have been extensively investigated, while the surfaces where double charge inversion appears are less reported. Here, using a molecular theory, we systematically study the pH-regulated charge density of PEI-coated surfaces. The results suggest whether single or double charge inversion happens depends on PEI affinity to the surface and the bare surface charge density. The region of double charge inversion is much smaller than that of single charge inversion, revealing the reason why double charge inversion is less observed in experiments. Besides, the charge inversions are significantly influenced by the solution condition. The present work provides a useful guideline to the selection of the coated materials and the parameters of PEI solution in the design of PEI-coated surfaces aiming to promote their applications in multifunctional nanomaterials.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Yun-jian Zhang
- State Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Chun-lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
20
|
Xie J, Yu P, Wang Z, Li J. Recent Advances of Self-Healing Polymer Materials via Supramolecular Forces for Biomedical Applications. Biomacromolecules 2022; 23:641-660. [PMID: 35199999 DOI: 10.1021/acs.biomac.1c01647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Noncovalent interactions can maintain the three-dimensional structures of biomacromolecules (e.g., polysaccharides and proteins) and control specific recognition in biological systems. Supramolecular chemistry was gradually developed as a result, and this led to design and application of self-healing materials. Self-healing materials have attracted attention in many fields, such as coatings, bionic materials, elastomers, and flexible electronic devices. Nevertheless, self-healing materials for biomedical applications have not been comprehensively summarized, even though many reports have been focused on specific areas. In this Review, we first introduce the different categories of supramolecular forces used in preparing self-healing materials and then describe biological applications developed in the last 5 years, including antibiofouling, smart drug/protein delivery, wound healing, electronic skin, cartilage lubrication protection, and tissue engineering scaffolds. Finally, the limitations of current biomedical applications are indicated, key design points are offered for new biological self-healing materials, and potential directions for biological applications are highlighted.
Collapse
Affiliation(s)
- Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
21
|
Dong L, Wang M, Wu J, Zhu C, Shi J, Morikawa H. Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9126-9137. [PMID: 35157422 DOI: 10.1021/acsami.1c23176] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogels that combine the integrated attributes of being adhesive, self-healable, deformable, and conductive show great promise for next-generation soft robotic/energy/electronic applications. Herein, we reported a dual-network polyacrylamide (PAAM)/poly(acrylic acid) (PAA)/graphene (GR)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) (MAGP) conductive hydrogel composed of dual-cross-linked PAAM and PAA as well as PEDOT:PSS and GR as a conducting component that combines these features. A wearable strain sensor is fabricated by sandwiching the MAGP hydrogels between two dielectric carbon nanotubes (CNTs)/poly(dimethylsiloxane) (PDMS) layers, which can be utilized to monitor delicate and vigorous human motion. In addition, the hydrogel-based sensor can act as a deformable triboelectric nanogenerator (D-TENG) for harvesting mechanical energy. The D-TENG demonstrates a peak output voltage and current of 141 V and 0.8 μA, respectively. The D-TENG could easily light 52 yellow-light-emitting diodes (LEDs) simultaneously and demonstrated the capability to power small electronics, such as a hygrometer thermometer. This work provides a potential approach for the development of deformable energy sources and self-powered strain sensors.
Collapse
Affiliation(s)
- Li Dong
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Mingxu Wang
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Jiajia Wu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Chunhong Zhu
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Interdisciplinary Cluster for Cutting Edge Research (ICCER), Institute for Fiber Engineering (IFES), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Jian Shi
- Faculty of Systems Science and Technology, Akita Prefectural University, 84-4 Aza Ebinokuchi Tsuchiya, Yurihonjo, Akita 015-0055, Japan
| | - Hideaki Morikawa
- Graduate School of Medicine, Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Interdisciplinary Cluster for Cutting Edge Research (ICCER), Institute for Fiber Engineering (IFES), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
22
|
Su Y, Feng X, Zheng R, Lv Y, Wang Z, Zhao Y, Shi L, Yuan S. Binary Network of Conductive Elastic Polymer Constraining Nanosilicon for a High-Performance Lithium-Ion Battery. ACS NANO 2021; 15:14570-14579. [PMID: 34432428 DOI: 10.1021/acsnano.1c04240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silicon-based anodes are attracting more interest in both science and industry due to their high energy density. However, the traditional polymeric binder and carbon additive mixture cannot successfully accommodate the huge volume change and maintain good conductivity when cycling. Herein, we report a multifunctional polymeric binder (PPTU) synthesized by the cross-linking of conducting polymer (PEDOT:PSS) and stretchable polymer poly(ether-thioureas) (PETU). The multifunctional polymeric binder could be curved on the surfaces of nanosilicon particles, forming an interweaving continuous three-dimensional network, which is beneficial to electron transfer and the mechanical stability. Furthermore, the binder is elastic and adhesive, and which can accommodate the huge volume change of silicon to keep its integrity. Utilizing this multifunctional polymeric binder instead of commercial poly(acrylic acid) binder and carbon black mixtures, the nanosilicon anode demonstrates enhanced cycling stability (2081 mAhg-1 after 300 cycles) and rate performance (908 mAhg-1 at 8 Ag-1). The multifunctional polymeric binder has high conductivity, elasticity, and self-healing properties is a promising binder to promote progress toward a high performance lithium-ion battery.
Collapse
Affiliation(s)
- Yongxiang Su
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
| | - Xin Feng
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
| | - Ruibing Zheng
- Zhejiang Kaihua Yuantong Silicon Industry Co., LTD, Zhejiang 311600, China
| | - Yingying Lv
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
| | - Zhuyi Wang
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
| | - Yin Zhao
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute, Shanghai University, Jiaxing 314006, Zhejiang, China
| | - Shuai Yuan
- Research Centre of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China
- Emerging Industries Institute, Shanghai University, Jiaxing 314006, Zhejiang, China
| |
Collapse
|
23
|
Wang X, Wang R, Wu F, Yue H, Cui Z, Zhou X, Lu Y. Mussel-inspired layer-by-layer assembled polymeric films with fast growing and NIR light triggered healing capabilities. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Kumar A, Nutan B, Jewrajka SK. Modulation of Properties through Covalent Bond Induced Formation of Strong Ion Pairing between Polyelectrolytes in Injectable Conetwork Hydrogels. ACS APPLIED BIO MATERIALS 2021; 4:3374-3387. [PMID: 35014422 DOI: 10.1021/acsabm.0c01673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In situ simultaneous formation of both covalent linkages and ion pair is challenging yet necessary to control the biological properties of a hydrogel. We report that the generation of covalent linkages (+N-C) facilitates the simultaneous formation of ion pairs between polyelectrolytes (PEs) in a hydrogel network. Co-injection of tertiary amine functional macromolecules and reactive poly(ethylene glycol) (PEG) containing negatively charged PE leads to the formation of hydrogel conetworks consisting of covalent junctions and ion pairs. Our design is based on the gradual appearance of +N-C junctions followed by formation of ion pairs. This strategy provides an easy access to hydrogel networks bearing a predetermined proportion of ion pair and covalent cross-linking junction. The proportion of ion pair could be varied by introducing a precalculated proportion of mono- and difunctional reactive PEG in the hydrogel system. The topology of the prepolymer and the hydrogel could be modulated (graft) during hydrogel formation. This approach is applicable to obtain covalent/ionic, covalent bond induced purely ionic, and purely covalent hydrogels of several macromolecular entities. The effect of ion pairing in the hydrogels is strongly reflected in the modulus, strain bearing, degradation, free volume, swelling, and drug release properties. The hydrogels exhibit microscopic recovery of modulus after application of high amplitude strain depending on the prepolymer concentration (chain entanglement) and nature of hydrogel network. The hydrogels are hemocompatible, and the covalent/ionic hydrogels show a slower release of methotrexate than that of the purely covalent hydrogel. This work provides an understanding for the in situ construction and manipulation of biological properties of hydrogels through the covalent bond induced formation of a strong ion pair.
Collapse
Affiliation(s)
- Avinash Kumar
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhingaradiya Nutan
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh K Jewrajka
- Membrane Science and Separation Technology Division, Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G.B. Marg, Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
25
|
|
26
|
Hydrogels based on physically cross-linked network with high mechanical property and recasting ability. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Xing C, Wu H, Du R, Zhang Q, Jia X. Extremely tough and healable elastomer realized via reducing the crystallinity of its rigid domain. Polym Chem 2021. [DOI: 10.1039/d1py00870f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We propose a new concept, called “toughening the rigidity”, for the field of self-healing materials.
Collapse
Affiliation(s)
- Chong Xing
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P.R. China
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Haomin Wu
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P.R. China
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Ruichun Du
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P.R. China
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Qiuhong Zhang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P.R. China
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xudong Jia
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P.R. China
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
28
|
Jin X, Jiang H, Zhang Z, Yao Y, Bao X, Hu Q. Ultrastretchable, self-adhesive, strain-sensitive and self-healing GO@DA/Alginate/P(AAc-co-AAm) multifunctional hydrogels via mussel-inspired chemistry. Carbohydr Polym 2020; 254:117316. [PMID: 33357879 DOI: 10.1016/j.carbpol.2020.117316] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
For conductive hydrogels applied in biosensors, wearable devices and so forth, multifunctionality is an inevitable trend of development to meet various practical requirements and enhance human experience. Herein, inspired by nanocomposite, double-network (DN) and mussel chemistry, a new Graphene oxide@Dopamine/Alginate/Poly(acrylic acid-co-acrylamide) [GO@DA/Alginate/P(AAc-co-AAm)] hydrogel was fabricated through one-pot in-situ radical copolymerization. GO@DA nanofillers, prepared via GO confined DA polymerization, imparted the hydrogel with remarkable adhesiveness. Alginate/P(AAc-co-AAm) DN matrix, physically and chemically crosslinked by Fe3+ and N,N'-Methylenebisacrylamide, made hydrogels ultrastretchable, self-healing and biocompatible. With contents of DA and alginate accurately regulated, the tensile strength, elongation, adhesion strength and conductivity of the optimal hydrogel could reach 320.2 kPa, 1198 %, 36.9 kPa and 3.24 ± 0.12 S/m, respectively. What's more notable was that the synergistic integration of repeatable adhesiveness, strain sensitivity, use stability, self-healing ability and biocompatibility provided such hydrogels with tremendous possibility of practical application for strain sensors.
Collapse
Affiliation(s)
- Xiaoqiang Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huihong Jiang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiming Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaojiong Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
29
|
Li P, Zhong Y, Wang X, Hao J. Enzyme-Regulated Healable Polymeric Hydrogels. ACS CENTRAL SCIENCE 2020; 6:1507-1522. [PMID: 32999926 PMCID: PMC7517121 DOI: 10.1021/acscentsci.0c00768] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 05/11/2023]
Abstract
The enzyme-regulated healable polymeric hydrogels are a kind of emerging soft material capable of repairing the structural defects and recovering the hydrogel properties, wherein their fabrication, self-healing, or degradation is mediated by enzymatic reactions. Despite achievements that have been made in controllable cross-linking and de-cross-linking of hydrogels by utilizing enzyme-catalyzed reactions in the past few years, this substrate-specific strategy for regulating healable polymeric hydrogels remains in its infancy, because both the intelligence and practicality of current man-made enzyme-regulated healable materials are far below the levels of living organisms. A systematic summary of current achievements and a reasonable prospect at this point can play positive roles for the future development in this field. This Outlook focuses on the emerging and rapidly developing research area of bioinspired enzyme-regulated self-healing polymeric hydrogel systems. The enzymatic fabrication and degradation of healable polymeric hydrogels, as well as the enzymatically regulated self-healing of polymeric hydrogels, are reviewed. The functions and applications of the enzyme-regulated healable polymeric hydrogels are discussed.
Collapse
Affiliation(s)
- Panpan Li
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuanbo Zhong
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xu Wang
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key
Laboratory of Colloid and Interface Chemistry and Key Laboratory of
Special Aggregated Materials of the Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
30
|
Zhang Y, Ji S, Jian N, Zhang K, He X, Duan H. Caudicles in vandoid orchids: A carotenoid-based soft material with unique properties. Acta Biomater 2020; 113:478-487. [PMID: 32652229 DOI: 10.1016/j.actbio.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022]
Abstract
130 years ago, Darwin observed that caudicles in vandoid orchids possess considerable elasticity and further hypothesized that their elasticity serves to improve pollination efficiency. However, there has been no study that seeks to either quantitatively backup Darwin's hypothesis or characterize this natural material for practical use. Here we show that vandoid caudicles are a novel kind of soft material with extremely high extensibility (1190%), low modulus (160 kPa) and density lower than that of water. Vandoid caudicles contain carotenoids that attach to basal polymers through noncovalent interactions. Inspired by the chemical structure of caudicles, we synthesize calcium-alginate/polyacrylamide hydrogels supplemented with carotenoids and demonstrate that their strength as well as stretchability are enhanced two-fold. Our findings identify a new carotenoid-based material system with unique properties that approach the current boundaries of the Ashby chart, demonstrating potential application of carotenoids as biocompatible reinforcing agent for hydrogels. STATEMENT OF SIGNIFICANCE: We have investigated the microstructure, mechanical properties and chemical components of vandoid caudicles as an elastic plant tissue and demonstrated a bio-inspired design that can enhance the elasticity of hydrogels. Existing research on vandoid caudicles are very few and mainly focus on their phylogenetics and developmental process, and the potential application of caudicles in the field of material sciences remains unexplored. Our results showed that caudicles are more stretchable than most natural and synthetic elastomers and have a modulus similar to hydrogels. Carotenoids, an important chemical component of caudicles, can be used as supplements to hydrogels to improve their strength and stretchability.
Collapse
|
31
|
Li Z, Meng X, Xu W, Zhang S, Ouyang J, Zhang Z, Liu Y, Niu Y, Ma S, Xue Z, Song A, Zhang S, Ren C. Single network double cross-linker (SNDCL) hydrogels with excellent stretchability, self-recovery, adhesion strength, and conductivity for human motion monitoring. SOFT MATTER 2020; 16:7323-7331. [PMID: 32677629 DOI: 10.1039/d0sm00375a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hydrogels, as a kind of soft materials, are good candidates for smart skin-like materials. A double network is usually fabricated to improve the mechanical properties of hydrogels, and involves two different kinds of networks. In this work, a novel strategy for preparing single network double cross-linker (SNDCL) hydrogels was proposed and the prepared hydrogels exhibited excellent mechanical properties, including stretchability, compressibility, self-recovery, adhesion, shape memory and mechanical strength. N,N'-Methylenebisacrylamide forms covalent bonds with the network, while citric acid can form multiple weak interactions due to the polycarboxylic structure. This improves the tensile properties (6564%) and compressive properties of the hydrogel, and the hydrogels also exhibit long-lasting self-adhesion ability on various substrates. In addition, the hydrogels with multiple properties can be used as flexible strain sensors, allowing the monitoring of body movements. The hydrogels can hopefully be used in wearable electronic sensor devices and for healthcare monitoring.
Collapse
Affiliation(s)
- Zhenghao Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Xiangxin Meng
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Shiqiang Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Jiahui Ouyang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Zhuo Zhang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Yihan Liu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Zhongxin Xue
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, China
| | - Shaohua Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, China.
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai, 264000, China.
| |
Collapse
|
32
|
Yang Y, Zhao X, Yu J, Chen X, Chen X, Cui C, Zhang J, Zhang Q, Zhang Y, Wang S, Cheng Y. H-Bonding Supramolecular Hydrogels with Promising Mechanical Strength and Shape Memory Properties for Postoperative Antiadhesion Application. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34161-34169. [PMID: 32631044 DOI: 10.1021/acsami.0c07753] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Development of a physical barrier with mechanical properties similar to human smooth muscle and an on-demand degradation profile is crucial for the clinical prevention of postoperative adhesion. Herein, a series of supramolecular hydrogels (PMI hydrogels) composed of poly(ethylene glycol) (PEG), methylenediphenyl 4, 4-diisocyanate (MDI), and imidazolidinyl urea (IU, hydrogen bonding reinforced factor) with biodegradability and high toughness are reported to serve as physical barriers for abdominal adhesion prevention. The tensile fracture strength and strain of the PMI hydrogels could be adjusted in the ranges of 0.6-2.3 MPa and 100-440%, respectively, and their Young's moduli (0.2-1.6 MPa) are close to that of human soft tissues like smooth muscle and skin tissue as well as they have outstanding shape memory properties. The PMI hydrogels show good cell and tissue biocompatibility, and the in vivo retention time is in accord with the needs for the postoperative antiadhesion physical barriers. Through an abdominal defect model on mice, this study shows that the PMI hydrogel can completely prevent tissue adhesion compared to the commercialized Seprafilm with high safety. Owing to the promising mechanical properties and good biocompatibility, the PMI hydrogels may be extended for various biomedical applications and the development of advanced flexible electronic devices.
Collapse
Affiliation(s)
- Yuxuan Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049 China
| | - Xiaodan Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049 China
| | - Jing Yu
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049 China
| | - Xiaojing Chen
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049 China
| | - Xingxing Chen
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049 China
| | - Chenhui Cui
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049 China
| | - Junjie Zhang
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049 China
| | - Qiang Zhang
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049 China
| | - Yanfeng Zhang
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049 China
| | - Shuang Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049 China
| | - Yilong Cheng
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Lab for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049 China
| |
Collapse
|
33
|
Shahbazi MA, Shrestha N, Pierchala MK, Kadumudi FB, Mehrali M, Hasany M, Préat V, Leeuwenburgh S, Dolatshahi-Pirouz A. A self-healable, moldable and bioactive biomaterial gum for personalised and wearable drug delivery. J Mater Chem B 2020; 8:4340-4356. [PMID: 32363370 DOI: 10.1039/c9tb02156f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
One of the long-standing challenges in materials science involves synthesizing biomaterials that recapitulate important features of native biological tissues. Even though, the number of available biomaterials at the moment are virtually limitless, few of them has unlocked all the secrets of the human body by mimicking the combinatorial-like material properties of our tissues and organs. Inspired by the human body, we have developed a polymeric gum, which combines stretchability, toughness, strength, flexibility, and self-healing. It also exhibits a high bioactivity that can target and eliminate bacterial infections fast and reliably. Notably, this material is moldable into almost any complex shape, and therefore suitable as a building block for wearables designed to conform directly with the curved and personalized anatomy of patients. It also exhibits excellent drug retention and release capacity, which altogether makes it suitable for applications in personalized wearable drug-delivery devices.
Collapse
Affiliation(s)
- Mohammad-Ali Shahbazi
- Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs, Lyngby, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zha XJ, Zhang ST, Pu JH, Zhao X, Ke K, Bao RY, Bai L, Liu ZY, Yang MB, Yang W. Nanofibrillar Poly(vinyl alcohol) Ionic Organohydrogels for Smart Contact Lens and Human-Interactive Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23514-23522. [PMID: 32329606 DOI: 10.1021/acsami.0c06263] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogel bioelectronics as one of the next-generation wearable and implantable electronics ensures excellent biocompatibility and softness to link the human body and electronics. However, volatile, opaque, and fragile features of hydrogels due to the sparse and microscale three-dimensional network seriously limit their practical applications. Here, we report a type of smart and robust nanofibrillar poly(vinyl alcohol) (PVA) organohydrogels fabricated via one-step physical cross-linking. The nanofibrillar network cross-linked by numerous PVA nanocrystallites enables the formation of organohydrogels with high transparency (90%), drying resistance, high toughness (3.2 MJ/m3), and tensile strength (1.4 MPa). For strain sensor application, the PVA ionic organohydrogel after soaking in NaCl solution shows excellent linear sensitivity (GF = 1.56, R2 > 0.998) owing to the homogeneous nanofibrillar PVA network. We demonstrate the potential applications of the nanofibrillar PVA-based organohydrogel in smart contact lens and emotion recognition. Such a strategy paves an effective way to fabricate strong, tough, biocompatible, and ionically conductive organohydrogels, shedding light on multifunctional sensing applications in next-generation flexible bioelectronics.
Collapse
Affiliation(s)
- Xiang-Jun Zha
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shu-Ting Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Jun-Hong Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xing Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Lu Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
35
|
Zhan S, Wang X, Sun J. Rediscovering Surlyn: A Supramolecular Thermoset Capable of Healing and Recycling. Macromol Rapid Commun 2020; 41:e2000097. [PMID: 32400939 DOI: 10.1002/marc.202000097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/26/2020] [Indexed: 01/26/2023]
Abstract
Surlyn consists of ionomers of poly(ethylene-co-methacrylic acid) (PEMA) partially neutralized with metal ions. Considering its huge consumption every year, it is highly desirable to realize efficient healing and recycling of Surlyn through an easily available method. Herein, healable and recyclable Surlyn materials are fabricated by complexation of PEMA with Zn2+ ions followed by a hot-pressing process. The PEMA/Zn composites exhibit a tensile strength of ≈37 MPa, Young's modulus of ≈343 MPa, and toughness of ≈95 MJ m-3 . Structural analysis discloses that the PEMA/Zn composites are dynamically cross-linked with coordination interactions and reinforced with polyethylene nanocrystals, and have the typical structure of supramolecular thermosets. As supramolecular thermosets, the reversibility of coordination interactions endows the PEMA/Zn composites with good healing and recycling capacities. The PEMA/Zn composites can fully heal mechanical damage to restore their original mechanical strength when heated at 90 °C. Under a pressure of 3 MPa at 100 °C, the PEMA/Zn composites can be recycled multiple times to regain their structural integrity and mechanical properties.
Collapse
Affiliation(s)
- Shengnan Zhan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
36
|
Deng Y, Zhang Q, Feringa BL, Tian H, Qu D. Toughening a Self‐Healable Supramolecular Polymer by Ionic Cluster‐Enhanced Iron‐Carboxylate Complexes. Angew Chem Int Ed Engl 2020; 59:5278-5283. [DOI: 10.1002/anie.201913893] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/17/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
37
|
Liu L, Lyu D, Xiang M, Men Y. Side chain packing states of chitosan‐based supramolecular derivatives containing long alkyl side chains. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lingzhi Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
| | - Dong Lyu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
| | - Mingyue Xiang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
| | - Yongfeng Men
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun People's Republic of China
| |
Collapse
|
38
|
Deng Y, Zhang Q, Feringa BL, Tian H, Qu D. Toughening a Self‐Healable Supramolecular Polymer by Ionic Cluster‐Enhanced Iron‐Carboxylate Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913893] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Centre for Systems ChemistryStratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
39
|
Yu J, Chen X, Yang Y, Zhao X, Chen X, Jing T, Zhou Y, Xu J, Zhang Y, Cheng Y. Construction of supramolecular hydrogels using imidazolidinyl urea as hydrogen bonding reinforced factor. J Mater Chem B 2020; 8:3058-3063. [DOI: 10.1039/d0tb00331j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new hydrogen bonding reinforced factor was introduced into polymer design for the preparation of supramolecular hydrogels with advanced properties.
Collapse
|
40
|
Duan N, Sun Z, Ren Y, Liu Z, Liu L, Yan F. Imidazolium-based ionic polyurethanes with high toughness, tunable healing efficiency and antibacterial activities. Polym Chem 2020. [DOI: 10.1039/c9py01620a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ionic polyurethanes (PUs) with high toughness, fast self-healing ability, antibacterial activity and shape memory behaviors are synthesized.
Collapse
Affiliation(s)
- Ning Duan
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Zhe Sun
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Yongyuan Ren
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Ziyang Liu
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Lili Liu
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Feng Yan
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
41
|
Cui C, Shao C, Meng L, Yang J. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39228-39237. [PMID: 31550132 DOI: 10.1021/acsami.9b15817] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As a promising functional material, hydrogels have attracted extensive attention, especially in flexible wearable sensor fields, but it remains a great challenge to facilely integrate excellent mechanical properties, self-adhesion, and strain sensitivity into a single hydrogel. In this work, we present high in strength, stretchable, conformable, and self-adhesive chitosan/poly(acrylic acid) double-network nanocomposite hydrogels for application in epidermal strain sensor via in situ polymerization of acrylic acid in chitosan acid aqueous solution with tannic acid-coated cellulose nanocrystal (TA@CNC) acting as nanofillers to reinforce tensile properties, followed by a soaking process in a saturated NaCl solution to cross-link chitosan chains. With addition of a small amount of TA@CNC, the double-network nanocomposite hydrogels became highly adhesive and mechanically compliant, which were critical factors for the development of conformable and resilient wearable epidermal sensors. The salt-soaking process was applied to cross-link chitosan chains by shielded electrostatic repulsions between positively charged amino groups, drastically enhancing the mechanical properties of the hydrogels. The obtained double-network nanocomposite hydrogels exhibited excellent tunable mechanical properties that could be conveniently tailored with fracture stress and fracture strain ranging from 0.39 to 1.2 MPa and 370 to 800%, respectively. Besides, the hydrogels could be tightly attached onto diverse substrates, including wood, glass, plastic, polytetrafluoroethylene, glass, metal, and skin, demonstrating high adhesion strength and compliant adhesion behavior. In addition, benefiting from the abundant free ions from strong electrolytes, the flexible hydrogel sensors demonstrated stable conductivity and strain sensitivity, which could monitor both large human motions and subtle motions. Furthermore, the antibacterial property originating from chitosan made the hydrogels suitable for wearable epidermal sensors. The facile soaking strategy proposed in this work would be promising in fabricating high-strength multifunctional conductive hydrogels used for wearable epidermal devices.
Collapse
Affiliation(s)
- Chen Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| | - Changyou Shao
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| | - Lei Meng
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| | - Jun Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry , Beijing Forestry University , Beijing 100083 , China
| |
Collapse
|