1
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
2
|
Esposito D, Monti SM, Supuran CT, Winum JY, De Simone G, Alterio V. Exploring the binding mode of phenyl and vinyl boronic acids to human carbonic anhydrases. Int J Biol Macromol 2024; 282:136873. [PMID: 39454912 DOI: 10.1016/j.ijbiomac.2024.136873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Boronic acids are an interesting but still poorly studied class of carbonic anhydrase inhibitors. Previous investigations proved that derivatives incorporating aromatic, arylalkyl, and arylalkenyl moieties are low micromolar to millimolar inhibitors for several α- and β-CAs involved in pathologic states. Here we report a high-resolution X-ray study on two classes of boronic acids (phenyl and vinyl) in complex with hCA II. Our results unambiguously clarify the binding mode of these molecules to the human carbonic anhydrase active site, which occurs through their tetrahedral anionic form, regardless of the nature of the organic scaffold. Data here presented contribute to the understanding of the inhibition mechanism of boronic acids that can be fruitfully used for the rational design of novel and effective isozyme-specific carbonic anhydrase inhibitors.
Collapse
Affiliation(s)
- Davide Esposito
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (IBB-CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (IBB-CNR), Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Jean-Yves Winum
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (IBB-CNR), Via Pietro Castellino, 111, 80131 Naples, Italy.
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche (IBB-CNR), Via Pietro Castellino, 111, 80131 Naples, Italy.
| |
Collapse
|
3
|
Rasheed S, Huda NU, Fisher SZ, Falke S, Gul S, Ahmad MS, Choudhary MI. Identification, crystallization, and first X-ray structure analyses of phenyl boronic acid-based inhibitors of human carbonic anhydrase-II. Int J Biol Macromol 2024; 267:131268. [PMID: 38580011 DOI: 10.1016/j.ijbiomac.2024.131268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Human carbonic anhydrases (hCAs) play a central role in various physiological processes in the human body. HCAs catalyze the reversible hydration of CO2 into HCO3-, and hence maintains the fluid and pH balance. Overexpression of CA II is associated with diseases, such as glaucoma, and epilepsy. Therefore, CAs are important clinical targets and inhibition of different isoforms, especially hCA II is used in treatment of glaucoma, altitude sickness, and epilepsy. Therapeutically used CA inhibitors (CAI) are sulfonamide-based, such as acetazolamide, dichlorphenamide, methazolamide, ethoxzolamide, etc. However, they exhibit several undesirable effects such as numbness, tingling of extremities, malaise, metallic taste, fatigue, renal calculi, and metabolic acidosis. Therefore, there is an urgent need to identify safe and effective inhibitors of the hCAs. In this study, different phenyl boronic acids 1-5 were evaluated against bovine (bCA II) and hCA II. Among all, compound 1 (4-acetylphenyl boronic acid) was found to be active against bCAII and hCA II with IC50 values of 246 ± 0.48 and 281.40 ± 2.8 μM, respectively, while the remaining compounds were found in-active. Compound 1 was identified as competitive inhibitor of hCA II enzyme (Ki = 283.7 ± 0.002 μM). Additionally, compound 1 was found to be non-toxic against BJ Human fibroblast cell line. The X-ray crystal structure for hCA II in-complex with compound 1 was evaluated to a resolution of 2.6 Å. In fact, this the first structural analysis of a phenyl boron-based inhibitor bound to hCA II, allowing an additional structure-activity analysis of the compounds. Compound 1 was found to be directly bound in the active site of hCA II by interacting with His94, His119, and Thr199 residues. In addition, a bond of 3.11 Å between the zinc ion and coordinated boron atom of the boronic acid moiety of compound 1 was also observed, contributing to binding affinity of compound 1 for hCA II. PDB ID: 8IGF.
Collapse
Affiliation(s)
- Saima Rasheed
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Noor Ul Huda
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - S Zoë Fisher
- European Spallation Source ERIC, P.O. Box 176, SE-221 00 Lund, Sweden
| | - Sven Falke
- Deutsches Elektronen-Synchrotron, Center for Free-Electron Laser Science (CFEL), Notkestraße 85, 22607 Hamburg, Germany
| | - Sadaf Gul
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Malik Shoaib Ahmad
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center of Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21412, Saudi Arabia
| |
Collapse
|
4
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
5
|
Giovannuzzi S, Nikitjuka A, Pereira Resende BR, Smietana M, Nocentini A, Supuran CT, Winum JY. Boron-containing carbonic anhydrases inhibitors. Bioorg Chem 2024; 143:106976. [PMID: 38000350 DOI: 10.1016/j.bioorg.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Over the last decades, the medicinal chemistry of boron-based compounds has been extensively explored, designing valuable small molecule drugs to tackle diseases and conditions, such as cancer, infections, inflammatory and neurological disorders. Notably, boron has proven to also be a valuable element for the development of inhibitors of the metalloenzymes carbonic anhydrases (CAs), a class of drug targets with significant potential in medicinal chemistry. Incorporating boron into carbonic anhydrase inhibitors (CAIs) can modulate the ligand ability to recognize the target and/or influence selectivity towards different CA isoforms, using the tail approach and boron-based tails. The electron-deficient nature of boron and its associated properties have also led to the discovery of novel zinc-binding CAIs, such as boronic acids and the benzoxaboroles, capable of inhibiting the CAs upon a Lewis acid-base mechanism of action. The present manuscript reviews the state-of-the-art of boron-based CAIs. As research in the applications of boron compounds in medicinal chemistry continues, it is anticipated that new boron-based CAIs will soon expand the current array of such compounds. However, further research is imperative to fully unlock the potential of boron-based CAIs and to advance them towards clinical applications.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Anna Nikitjuka
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Bruna Rafaela Pereira Resende
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | |
Collapse
|
6
|
Tekeli T, Akocak S, Petreni A, Lolak N, Çete S, Supuran CT. Potent carbonic anhydrase I, II, IX and XII inhibition activity of novel primary benzenesulfonamides incorporating bis-ureido moieties. J Enzyme Inhib Med Chem 2023; 38:2185762. [PMID: 36880350 PMCID: PMC9987750 DOI: 10.1080/14756366.2023.2185762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
A novel series of twelve aromatic bis-ureido-substituted benzenesulfonamides was synthesised by conjugation of aromatic aminobenzenesulfonamides with aromatic bis-isocyanates. The obtained bis-ureido-substituted derivatives were tested against four selected human carbonic anhydrase isoforms (hCA I, hCA II, hCA IX and hCA XII). Most of the new compounds showed an effective inhibitory profile against isoforms hCA IX and hCA XII, also having some selectivity with respect to hCA I and hCA II. The inhibition constants of these compounds against isoforms hCA IX and XII were in the range of 6.73-835 and 5.02-429 nM, respectively. Since hCA IX and hCA XII are important drug targets for anti-cancer/anti-metastatic drugs, these effective inhibitors reported here may be considered of interest for cancer related studies in which these enzymes are involved.
Collapse
Affiliation(s)
- Tuba Tekeli
- Vocational School of Technical Science, Department of Chemistry and Chemical Processing Technologies, Adıyaman University, Adıyaman, Türkiye.,Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Andrea Petreni
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Nebih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Servet Çete
- Department of Chemistry, Faculty of Science, Gazi University, Ankara, Türkiye
| | - Claudiu T Supuran
- NEUROFARBA Dept., Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
7
|
Krajewska J, Chyży P, Durka K, Wińska P, Krzyśko KA, Luliński S, Laudy AE. Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors. Molecules 2023; 28:7362. [PMID: 37959781 PMCID: PMC10648349 DOI: 10.3390/molecules28217362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Over 30 compounds, including para-, meta-, and ortho-phenylenediboronic acids, ortho-substituted phenylboronic acids, benzenetriboronic acids, di- and triboronated thiophenes, and pyridine derivatives were investigated as potential β-lactamase inhibitors. The highest activity against KPC-type carbapenemases was found for ortho-phenylenediboronic acid 3a, which at the concentration of 8/4 mg/L reduced carbapenems' MICs up to 16/8-fold, respectively. Checkerboard assays revealed strong synergy between carbapenems and 3a with the fractional inhibitory concentrations indices of 0.1-0.32. The nitrocefin hydrolysis test and the whole cell assay with E. coli DH5α transformant carrying blaKPC-3 proved KPC enzyme being its molecular target. para-Phenylenediboronic acids efficiently potentiated carbapenems against KPC-producers and ceftazidime against AmpC-producers, whereas meta-phenylenediboronic acids enhanced only ceftazidime activity against the latter ones. Finally, the statistical analysis confirmed that ortho-phenylenediboronic acids act synergistically with carbapenems significantly stronger than other groups. Since the obtained phenylenediboronic compounds are not toxic to MRC-5 human fibroblasts at the tested concentrations, they can be considered promising scaffolds for the future development of novel KPC/AmpC inhibitors. The complexation of KPC-2 with the most representative isomeric phenylenediboronic acids 1a, 2a, and 3a was modeled by quantum mechanics/molecular mechanics calculations. Compound 3a reached the most effective configuration enabling covalent binding to the catalytic Ser70 residue.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Piotr Chyży
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | | | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
8
|
Ourdjini Z, Kraim K, Winum JY, Benoist E, Seridi A. A combined DFT and molecular docking study on novel tricarbonylrhenium(I) complexes bearing mono- and bivalent benzenesulfonamide scaffolds as human carbonic anhydrase IX and XII inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
9
|
Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. Int J Mol Sci 2022; 23:ijms23147685. [PMID: 35887037 PMCID: PMC9318203 DOI: 10.3390/ijms23147685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.
Collapse
|
10
|
Das BC, Adil Shareef M, Das S, Nandwana NK, Das Y, Saito M, Weiss LM. Boron-Containing heterocycles as promising pharmacological agents. Bioorg Med Chem 2022; 63:116748. [PMID: 35453036 DOI: 10.1016/j.bmc.2022.116748] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
The incorporation of the "magic" boron atom has been established as an important new strategy in the field of medicinal chemistry as boron compounds have been shown to form various bonds with their biological targets. Currently, a number of boron-based drugs (e.g. bortezomib, crisaborole, and tavaborole) have been FDA approved and are in the clinic, and several other boron-containing compounds are in clinical trials. Boron-based heterocycles have an incredible potential in the ongoing quest for new therapeutic agents owing to their plethora of biological activities and useful pharmacokinetic profiles. The present perspective is intended to review the pharmacological applications of boron-based heterocycles that have been published. We have classified these compounds into groups exhibiting shared pharmacological activities and discussed their corresponding biological targets focusing mainly on the most potent therapeutic compounds.
Collapse
Affiliation(s)
- Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA; Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Nitesh K Nandwana
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Yogarupa Das
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Mariko Saito
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Louis M Weiss
- Department of Medicine, Division of Infectious Diseases and Department of Pathology Division of Parasitology and Tropical Medicine, Albert Einstein College of Medicine, Bronx NY-10461, USA
| |
Collapse
|
11
|
Debiais M, Vasseur JJ, Smietana M. Applications of the Reversible Boronic Acids/Boronate Switch to Nucleic Acids. CHEM REC 2022; 22:e202200085. [PMID: 35641415 DOI: 10.1002/tcr.202200085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Over the last decades, boron and nucleic acids chemistries have gained a lot of attention for biological, medicinal and analytical applications. Our laboratory has a long-standing interest in both chemistries and owing to the ability of boronic acids to react with cis-diol function in aqueous media we developed over the years a variety of applications ranging from molecular recognition and sensing to the development of reversible dynamic systems in which the natural phosphodiester linkage was replaced by a boronate. In this account, we summarize research results from our group from our preliminary studies on molecular recognition of ribonucleosides to the dynamic assembly of functional DNAzymes. In particular, the various parameters influencing the dynamic nature of these reversible covalent bonds able to respond to external stimuli are discussed. Finally, current challenges and opportunities for boron-based nucleic acids are also addressed.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095, Montpellier, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095, Montpellier, France
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095, Montpellier, France
| |
Collapse
|
12
|
Bangalore PK, Pedapati RK, Pranathi AN, Batchu UR, Misra S, Estharala M, Sriram D, Kantevari S. Aryl-n-hexanamide linked enaminones of usnic acid as promising antimicrobial agents. Mol Divers 2022; 27:811-836. [PMID: 35608808 DOI: 10.1007/s11030-022-10456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Lichen secondary metabolites are well explored medicinal agents with diverse pharmacological properties. One of the important antibiotic lichen secondary metabolites is usnic acid. Its diverse medicinal profiles prompted us to explore it as a potential antitubercular molecule. Towards this direction, continuing our efforts on the discovery and development of new analogs with potent antitubercular properties we designed, synthesized, and evaluated a set of 37 usnic acid enaminone-coupled aryl-n-hexanamides (3-39). The study yielded a 3,4-dimethoxyphenyl compound (13, 5.3 µM) as the most active anti-TB molecule. The docking studies were performed on 7 different enzymes to better understand the binding modes, where it was observed that compound 13 bound strongly with glucose dehydrogenase (Gscore: - 9.03). Further antibacterial investigations revealed compound 2 with potent inhibition on Salmonella typhi and Bacillus subtilis (MIC 3 µM) and MIC values of 7 and 14 µM on Streptococcus mutans and Escherichia coli respectively. Compound 19 (3-F-5-CF3-phenyl) displayed encouraging antibacterial profiles against E. coli, S. typhi and S. mutans with MIC values of 10 µM respectively. Interestingly, compound 20 (2,6-difluorophenyl) also displayed good antibacterial activity against E. coli with an MIC value of 6 µM. These encouraging pharmacological results will help for better designing and developing usnic acid-based semi-synthetic derivatives as potential antimicrobial agents. A set of 37 new usnic acid enaminone-coupled aryl-n-hexanamides were synthesized and evaluated as potential antimicrobial agents. Compound 13 was identified as the most active antitubercular molecule. 13 was further docked against 7 different enzymes of tuberculosis. The molecule displayed maximum binding energy with the enzyme Glucose dehydrogenase (Gscore: - 9.03), indicating that these hexanamides possibly act by inhibiting the glucose metabolic pathway of the bacterium. Surprisingly, the intermediate hexanoic acid 2 was identified as potent antibacterial agent, acting on both gram-positive and gram-negative bacterial strains (3-14 μM). The active compounds may be subjected to structural iterations to develop further leads.
Collapse
Affiliation(s)
- Pavan Kumar Bangalore
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Ravi Kumar Pedapati
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Abburi Naga Pranathi
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Uma Rajeswari Batchu
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Sunil Misra
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Madhurekha Estharala
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Srinivas Kantevari
- Fluoro and Agrochemicals Division, CSIR- Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
13
|
Messner K, Vuong B, Tranmer GK. The Boron Advantage: The Evolution and Diversification of Boron’s Applications in Medicinal Chemistry. Pharmaceuticals (Basel) 2022; 15:ph15030264. [PMID: 35337063 PMCID: PMC8948683 DOI: 10.3390/ph15030264] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
In this review, the history of boron’s early use in drugs, and the history of the use of boron functional groups in medicinal chemistry applications are discussed. This includes diazaborines, boronic acids, benzoxaboroles, boron clusters, and carboranes. Furthermore, critical developments from these functional groups are highlighted along with recent developments, which exemplify potential prospects. Lastly, the application of boron in the form of a prodrug, softdrug, and as a nanocarrier are discussed to showcase boron’s emergence into new and exciting fields. Overall, we emphasize the evolution of organoboron therapeutic agents as privileged structures in medicinal chemistry and outline the impact that boron has had on drug discovery and development.
Collapse
Affiliation(s)
- Katia Messner
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Billy Vuong
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
| | - Geoffrey K. Tranmer
- Rady Faculty of Health Science, College of Pharmacy, University of Manitoba, Winnipeg, MB R3E 0T5, Canada; (K.M.); (B.V.)
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
- Correspondence:
| |
Collapse
|
14
|
G AC, Gondru R, Li Y, Banothu J. Coumarin-benzimidazole hybrids: A review of developments in medicinal chemistry. Eur J Med Chem 2022; 227:113921. [PMID: 34715585 DOI: 10.1016/j.ejmech.2021.113921] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Coumarin and benzimidazole are privileged structures in medicinal chemistry and are widely used in drug discovery and development due to their vast biological properties. The pharmacokinetic and pharmacodynamic properties of the individual scaffolds can be improved by developing coumarin-benzimidazole chimeric molecules via molecular hybridization approach. The three major classes of coumarin-benzimidazole hybrids are merged, fused and spacer-linked hybrids. Depending on the substitution position, fused hybrids and spacer-linked hybrids can be further classified as coumarin-C3 hybrids, coumarin-C4 hybrids and coumarin-C5/6/7/8 hybrids. Most of the coumarin-benzimidazole hybrid molecules exhibited potent anticancer, antiviral, antimicrobial, antitubercular, anthelmintic, anti-inflammatory, antioxidant, anticonvulsant and carbonic anhydrase inhibitory activities. The fused coumarin-C3 hybrid (2), thiomethylene-linked coumarin-C3 hybrid (45), N-glucoside substituted thiomethylene-linked coumarin-C3 hybrid (37c), amide-linked coumarin-C3 hybrid (50a), and sulfonylmethylene-linked coumarin-C4 hybrid (63) were identified as the representative potent anticancer, antimicrobial, antiviral, antioxidant and antitubercular agents respectively. The biological properties of the different classes of coumarin-benzimidazole hybrids with their structure-activity relationship studies and the mechanism of action studies were presented in this review, aiming to help the researchers across the globe to generate future hybrid molecules as potential drug candidates.
Collapse
Affiliation(s)
- Arya C G
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India
| | - Ramesh Gondru
- Environmental Monitoring & Exposure Assessment (Air) Laboratory, ICMR-NIREH, Bhopal, 462030, Madhya Pradesh, India
| | - Yupeng Li
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, United States.
| | - Janardhan Banothu
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, 673601, Kerala, India.
| |
Collapse
|
15
|
Xiao YC, Yu JL, Dai QQ, Li G, Li GB. Targeting Metalloenzymes by Boron-Containing Metal-Binding Pharmacophores. J Med Chem 2021; 64:17706-17727. [PMID: 34875836 DOI: 10.1021/acs.jmedchem.1c01691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metalloenzymes have critical roles in a wide range of biological processes and are directly involved in many human diseases; hence, they are considered as important targets for therapeutic intervention. The specific characteristics of metal ion(s)-containing active sites make exploitation of metal-binding pharmacophores (MBPs) critical to inhibitor development targeting metalloenzymes. This Perspective focuses on boron-containing MBPs, which display unique binding modes with metalloenzyme active sites, particularly via mimicking native substrates or tetrahedral transition states. The design concepts regarding boron-containing MBPs are highlighted through the case analyses on five distinct classes of clinically relevant nucleophilic metalloenzymes from medicinal chemistry perspectives. The challenges (e.g., selectivity) faced by some boron-containing MBPs and possible strategies (e.g., bioisosteres) for metalloenzyme inhibitor transformation are also discussed.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jun-Lin Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing-Qing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Gen Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Bonardi A, Nocentini A, Cadoni R, del Prete S, Dumy P, Capasso C, Gratteri P, Supuran CT, Winum JY. Benzoxaboroles: New Potent Inhibitors of the Carbonic Anhydrases of the Pathogenic Bacterium Vibrio cholerae. ACS Med Chem Lett 2020; 11:2277-2284. [PMID: 33214840 DOI: 10.1021/acsmedchemlett.0c00403] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 01/22/2023] Open
Abstract
A series of urea/thiourea substituted benzoxaboroles was investigated for the inhibition of the three carbonic anhydrases encoded by Vibrio cholerae (VchCAα, VchCAβ, and VchCAγ). In particular, benzoxaborole derivatives were here first assayed for the inhibition of a γ-class CA, extending the panel of CA classes that benzoxaboroles efficiently target beyond α and β. Inhibition profiles demonstrated that VchCAα was significantly more inhibited compared to VchCAγ and, in turn, more efficiently modulated than VchCAβ. Among the many selective benzoxaborole ligands detected against VchCAα over the off-target hCA II, compound 18, a p-NO2-phenylthiourea derivative, even exhibited a fully selective inhibition profile against the three VchCAs over hCA II. A comprehensive ligand/target interaction study was performed in silico for all three VchCA isoforms providing the first molecular modeling investigation with inhibitors of a γ-class CA to the best of our knowledge. The present study reinforces the rationale behind the use of benzoxaboroles as innovative antibacterial agents with a new mechanism of action, furnishing suggestions for the rational design of new potent and selective inhibitors targeting V. cholerae CAs over human off-target ones.
Collapse
Affiliation(s)
- Alessandro Bonardi
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50121 Florence, Italy
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, 50121 Florence, Italy
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, 50121 Florence, Italy
- IBMM, Univ Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - Roberta Cadoni
- IBMM, Univ Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - Sonia del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Pascal Dumy
- IBMM, Univ Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse, CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, 50121 Florence, Italy
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, 50121 Florence, Italy
| | - Jean-Yves Winum
- IBMM, Univ Montpellier, CNRS, ENSCM, 34296 Montpellier, France
| |
Collapse
|
17
|
Borys KM, Wieczorek D, Tarkowska M, Jankowska A, Lipok J, Adamczyk-Woźniak A. Mechanochemical synthesis of antifungal bis(benzoxaboroles). RSC Adv 2020; 10:37187-37193. [PMID: 35521242 PMCID: PMC9057134 DOI: 10.1039/d0ra07767d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/15/2020] [Indexed: 11/21/2022] Open
Abstract
Several piperazine bis(benzoxaboroles) have been obtained both in solution as well as in the solid state. The environmentally friendly mechanochemical approach – hitherto not applied for the preparation of benzoxaboroles – was particularly beneficial in the case of two products afforded in low yields in solution. The in vitro studies showed high potential of the studied bis(fluorobenzoxaboroles) as antifungal agents, highlighting also the influence of the fluorine substituent position on their microbiological activity. The highest activity against A. niger, A. terreus, P. ochrochloron, C. tenuis and C. albicans was displayed by the analogue of the known benzoxaborole antifungal drug Kerydin® (Tavaborole). Several piperazine bis(benzoxaboroles) have been obtained mechanochemically – two of them have been shown to display high antifungal activity.![]()
Collapse
Affiliation(s)
- Krzysztof M Borys
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Dorota Wieczorek
- Faculty of Chemistry, University of Opole Oleska 48 45-052 Opole Poland
| | - Magdalena Tarkowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Agnieszka Jankowska
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland
| | - Jacek Lipok
- Faculty of Chemistry, University of Opole Oleska 48 45-052 Opole Poland
| | | |
Collapse
|
18
|
Design and discovery of boronic acid drugs. Eur J Med Chem 2020; 195:112270. [DOI: 10.1016/j.ejmech.2020.112270] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/15/2022]
|
19
|
Guy CS, Murray K, Gibson MI, Fullam E. Dimeric benzoboroxoles for targeted activity against Mycobacterium tuberculosis. Org Biomol Chem 2019; 17:9524-9528. [PMID: 31659363 DOI: 10.1039/c9ob02222h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dimeric benzoboroxoles that are covalently linked by a short scaffold enhance selective anti-tubercular activity. These multimeric benzoboroxole compounds are capable of engaging the specific extracellular Mycobacterium tuberculosis glycans, do not lead to the evolution of resistance and bypass the need to cross the impermeable mycobacterial cell envelope barrier.
Collapse
Affiliation(s)
- Collette S Guy
- School of Life Sciences, University of Warwick, CV4 7AL, UK.
| | | | | | | |
Collapse
|