1
|
Zhou X, Zhang N, Ouyang S, Liu N, Zheng Z, You Y, An Y, Lu L, Zhao P, Wang Y, Tao J. Diagnosis of Metastatic Breast Tumor with an Iron-Based Hydrogen-Bonded Organic Framework via T2-Weighted Magnetic Resonance Imaging. Anal Chem 2025; 97:6718-6726. [PMID: 40106834 DOI: 10.1021/acs.analchem.4c06942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Magnetic resonance imaging (MRI) often employs contrast agents (CAs) to improve the visualization of lesions. Although iron-based oxides have been clinically approved as T2 CAs, various obstacles have hindered their widespread commercial use. Consequently, there is a pressing demand for innovative T2-type CAs. Herein, we synthesized an iron-based hydrogen-bonded organic framework (Fe-HOF) from Fe-TCPP and explored its potential as a T2-weighted MRI CA. The Fe-HOF demonstrated a superior relaxivity (r2) of 32.067 mM-1 s-1 and a higher r2/r1 ratio of 45.25 compared to Fe-TCPP. This enhancement may be attributed to the combination of the single-atom form of Fe3+ with its increased radius. Our findings indicate that a 6 μmol [Fe]/kg dose of Fe-HOF significantly improves lesion contrast in T2-weighted MRI scans of subcutaneous tumor model mice and liver metastasis model mice of breast tumor. The simplicity of Fe-HOF' s structure ensures the absence of complex metal ions or ligands during synthesis, and the iron component can be metabolized into the endogenous iron pool, resulting in remarkable biocompatibility and biosafety. These findings pave the way for the design of novel T2-weighted MRI probes tailored for cancer characterization at various stages.
Collapse
Affiliation(s)
- Xiang Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Nan Zhang
- Guangzhou National Laboratory, 510005 Guangzhou, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Ningxuan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yida An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yang Wang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
2
|
Ro J, Kim J, Park J, Choi Y, Cho Y. ODSEI Chip: An Open 3D Microfluidic Platform for Studying Tumor Spheroid-Endothelial Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410659. [PMID: 39805002 PMCID: PMC11967799 DOI: 10.1002/advs.202410659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis. As proof of concept, the crosstalk between breast cancer spheroids and vasculature is monitored, validating the roles of endothelial cells in acquired tamoxifen resistance. Cancer spheroids exhibited reduced sensitivity to tamoxifen in the presence of vasculature. Further analysis through single-cell RNA sequencing of extracted spheroids and protein arrays elucidated gene expression profiles and cytokines associated with acquired tamoxifen resistance, particularly involving the TNF-α pathway via NF-κB and mTOR signaling. By targeting the highly expressed cytokines (IL-8, TIMP1) identified, tamoxifen resistance in cancer spheroid can be effectively reversed. In summary, the ODSEI chip allows to study spheroid and endothelial interaction in various contexts, leading to improved insights into tumor biology and therapeutic strategies.
Collapse
Affiliation(s)
- Jooyoung Ro
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Junyoung Kim
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Juhee Park
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Yongjun Choi
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| | - Yoon‐Kyoung Cho
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)Ulsan44919South Korea
- Center for Algorithmic and Robotized SynthesisInstitute for Basic Science (IBS)Ulsan44919South Korea
| |
Collapse
|
3
|
Yang S, Fang Y, Ma Y, Wang F, Wang Y, Jia J, Yang Y, Sun W, Zhou Q, Li Z. Angiogenesis and targeted therapy in the tumour microenvironment: From basic to clinical practice. Clin Transl Med 2025; 15:e70313. [PMID: 40268524 PMCID: PMC12017902 DOI: 10.1002/ctm2.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Angiogenesis, as a core marker of cancer survival and growth, is integral to the processes of tumour growth, invasion and metastasis. In recent years, targeted angiogenesis treatment strategies have gradually become an important direction in cancer treatment. Single-cell sequencing technology can provide new insights into targeted angiogenesis by providing a deeper understanding of the heterogeneity of tumour endothelial cells and exploring the interactions between endothelial cells and surrounding cells in the tumour microenvironment. Here, we systematically review the research progress in endothelial cell pathophysiology and its endothelial‒mesenchymal transition and illustrate the heterogeneity of endothelial cells from a single-cell perspective. Finally, we examine the contributions of different cell types within the tumour microenvironment in relation to tumour angiogenesis, as well as the latest progress and strategies in targeted angiogenesis therapy, hoping to provide useful insights into the clinical application of antiangiogenic treatment. Furthermore, a summary of the present progress in the development of potential angiogenesis inhibitors and the ongoing clinical trials for combination therapies is provided. KEY POINTS: Angiogenesis plays a key role in tumour progression, invasion and metastasis, so strategies targeting angiogenesis are gradually becoming an important direction in cancer therapy. Interactions between endothelial cells and stromal cells and immune cells in the tumour microenvironment are significant in angiogenesis. The application of antiangiogenic immunotherapy and nanotechnology in antiangiogenic therapy provides a vital strategy for prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingshuai Fang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yangcheng Ma
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Fuqi Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhang Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiachi Jia
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yabing Yang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Weipeng Sun
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quanbo Zhou
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhen Li
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
4
|
Huang X, Cai M, Yan L, Xiao R, Mu Y, Ren Y. Assessment of air pollutant O 3 pulmonary exposure using a bronchus-on-chip model coupling with atmospheric simulation chamber. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137106. [PMID: 39764952 DOI: 10.1016/j.jhazmat.2025.137106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 03/12/2025]
Abstract
Heavy air pollution is now a serious public health issue. Many studies have shown strong connections between ozone (O3) with the occurrence and development of various respiratory diseases. However, the exact mechanism is still a matter of debate. In this work, we developed a human bronchial epithelial cells (HBECs) chip that differentiates different functional cell groups of ciliated, goblet, and club cells to model the pulmonary bronchial barrier function. Concurrently, we designed an Atmospheric-Biochemical-Chip reactor (ABC-reactor), a system that could simulate different levels of O3 and particle matter. Coupling the HBECs-on-chip model with ABC-reactor, we investigated the effects of O3 at 400 ppbv and 200 ppbv on the pulmonary bronchial barrier. Our results showed that O3 at 400 ppbv severely disrupted the bronchial barrier and upregulated the expression of pro-inflammatory cytokines. However, 200 ppbv of O3 did not cause severe barrier impairment but induced cellular dysfunction, apoptosis, and reduced immune response. These suggest that bronchial trauma does exist at 200 ppbv of O3 but is not easily detected by the body due to the reduced inflammatory response. However, more research is needed to understand if the trauma induced by 200 ppbv of O3 is reversible and the interaction mechanism between O3 and PM2.5.
Collapse
Affiliation(s)
- Xuanming Huang
- Laboratory of Atmospheric Environment and Pollution Control (LAEPC), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Cai
- Laboratory of Atmospheric Environment and Pollution Control (LAEPC), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yan
- Beijing Daxiang Biotech Co., Ltd, Beijing 100191, China
| | - Rongrong Xiao
- Beijing Daxiang Biotech Co., Ltd, Beijing 100191, China
| | - Yujing Mu
- Laboratory of Atmospheric Environment and Pollution Control (LAEPC), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangang Ren
- Laboratory of Atmospheric Environment and Pollution Control (LAEPC), Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Daaboul O, Arman G, Alom M, Swied A. Diagnostic Dilemma: Metastatic Breast Adenocarcinoma Presenting With a Cholestatic Liver Injury Without Radiological Findings of Liver Metastases. Cureus 2025; 17:e81368. [PMID: 40291193 PMCID: PMC12034330 DOI: 10.7759/cureus.81368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Cholestasis refers to a reduction in bile flow caused by either impaired secretion or obstruction. Cancers may manifest with cholestasis due to metastasis (either obstruction or infiltration), paraneoplastic syndromes, or as a side effect of treatment (chemotherapy, immunotherapy, or radiation). Various imaging techniques, including ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, are typically used to assess the obstruction, its location, and the underlying cause. We are presenting a complex and challenging case of metastatic breast cancer in the liver that presented as cholestatic liver injury without corresponding radiological findings. We aim to highlight the importance of considering liver metastasis as a differential diagnosis, even in the absence of supporting radiological evidence.
Collapse
Affiliation(s)
- Obada Daaboul
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Genan Arman
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Mulham Alom
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| | - Aman Swied
- Internal Medicine, Southern Illinois University School of Medicine, Springfield, USA
| |
Collapse
|
6
|
Wan X, Yang L, Wu L, Lei J, Li J. Role of Triple-Negative Breast Cancer-Derived Extracellular Vesicles in Metastasis: Implications for Therapeutics and Biomarker Development. J Cell Mol Med 2025; 29:e70448. [PMID: 40032646 PMCID: PMC11875785 DOI: 10.1111/jcmm.70448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer with a poor prognosis and high mortality. The chemotherapeutic regimen remains the predominant treatment modality for TNBC in current clinical practice. However, chemotherapy resistance significantly complicates the development of an effective treatment regimen. Furthermore, the immunosuppressive microenvironment of TNBC contributes to enhanced tumour aggressiveness. Consequently, understanding its mechanisms of progression and finding effective therapeutic interventions is crucial. Recent evidence has identified extracellular vesicles (EVs) as key mediators of cell-to-cell communication in TNBC progression and immune regulation. In view of the remarkable ability of EVs to transfer active molecules, such as proteins and nucleic acids, from parental to recipient cells, they are regarded as a promising biomarker and novel drug delivery system. In this review, we provide an overview of how EVs derived from TNBC cells and tumour microenvironment cells play a role in regulating tumour progression. We also discuss the potential of EVs for immune regulation and their application as novel therapeutic strategies and tumour markers in TNBC. The knowledge gained from studying EV-mediated communication in TNBC could lead to the development of targeted therapies and improve patient outcomes.
Collapse
Affiliation(s)
- Xue Wan
- Department of Laboratory MedicineLeshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Liqi Yang
- Department of Laboratory MedicineLeshan Maternal and Child Health HospitalLeshanChina
| | - Linjun Wu
- Department of Laboratory MedicineLeshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Jiandong Lei
- Department of Laboratory MedicineLeshan Hospital of Traditional Chinese MedicineLeshanChina
| | - Jintao Li
- Department of Laboratory MedicineLeshan Maternal and Child Health HospitalLeshanChina
| |
Collapse
|
7
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
8
|
Wang Y, Yung P, Lu G, Liu Y, Ding C, Mao C, Li ZA, Tuan RS. Musculoskeletal Organs-on-Chips: An Emerging Platform for Studying the Nanotechnology-Biology Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401334. [PMID: 38491868 PMCID: PMC11733728 DOI: 10.1002/adma.202401334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Nanotechnology-based approaches are promising for the treatment of musculoskeletal (MSK) disorders, which present significant clinical burdens and challenges, but their clinical translation requires a deep understanding of the complex interplay between nanotechnology and MSK biology. Organ-on-a-chip (OoC) systems have emerged as an innovative and versatile microphysiological platform to replicate the dynamics of tissue microenvironment for studying nanotechnology-biology interactions. This review first covers recent advances and applications of MSK OoCs and their ability to mimic the biophysical and biochemical stimuli encountered by MSK tissues. Next, by integrating nanotechnology into MSK OoCs, cellular responses and tissue behaviors may be investigated by precisely controlling and manipulating the nanoscale environment. Analysis of MSK disease mechanisms, particularly bone, joint, and muscle tissue degeneration, and drug screening and development of personalized medicine may be greatly facilitated using MSK OoCs. Finally, future challenges and directions are outlined for the field, including advanced sensing technologies, integration of immune-active components, and enhancement of biomimetic functionality. By highlighting the emerging applications of MSK OoCs, this review aims to advance the understanding of the intricate nanotechnology-MSK biology interface and its significance in MSK disease management, and the development of innovative and personalized therapeutic and interventional strategies.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Yuwei Liu
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- The First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhenGuangdong518037P. R. China
| | - Changhai Ding
- Clinical Research CentreZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510260China
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmania7000Australia
| | - Chuanbin Mao
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| | - Zhong Alan Li
- Department of Biomedical EngineeringThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Key Laboratory of Regenerative MedicineMinistry of EducationSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongShenzhen518172P. R. China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkNTHong Kong SAR999077P. R. China
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
- School of Biomedical SciencesThe Chinese University of Hong KongNTHong Kong SAR999077P. R. China
| |
Collapse
|
9
|
Xu J, Fang W, Zhou H, Jiang R, Chen Z, Wang X. Application and progress of 3D tumor models in breast cancer. Biotechnol Bioeng 2025; 122:30-43. [PMID: 39402769 DOI: 10.1002/bit.28860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 12/12/2024]
Abstract
Due to its high heterogeneity and significant impact on women's health globally, breast cancer necessitates robust preclinical models to understand tumor biology and guide personalized treatment strategies. Three-dimensional (3D) in vitro tumor models hold immense promise in this regard. These tumor models not only mimic the spatial structure and growth environment of tumors in vivo, but also retain the pathological and genetic characteristics of solid tumors. This fidelity makes them powerful tools for accelerating advancements in fundamental research and translational medicine. The diversity, modularity, and efficacy of 3D tumor models are driving a biotechnological revolution. As these technologies become increasingly sophisticated, 3D tumor models are poised to become powerful weapons in the fight against breast cancer. This article expounds on the progress made in utilizing 3D tumor models for breast cancer research.
Collapse
Affiliation(s)
- Jiaojiao Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wanxia Fang
- The Department of Colorectal Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Huanhuan Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiyuan Jiang
- The Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhanhong Chen
- The Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiaojia Wang
- The Department of Breast Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
10
|
Rabas N, Ferreira RMM, Di Blasio S, Malanchi I. Cancer-induced systemic pre-conditioning of distant organs: building a niche for metastatic cells. Nat Rev Cancer 2024; 24:829-849. [PMID: 39390247 DOI: 10.1038/s41568-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
From their early genesis, tumour cells integrate with the surrounding normal cells to form an abnormal structure that is tightly integrated with the host organism via blood and lymphatic vessels and even neural associations. Using these connections, emerging cancers send a plethora of mediators that efficiently perturb the entire organism and induce changes in distant tissues. These perturbations serendipitously favour early metastatic establishment by promoting a more favourable tissue environment (niche) that supports the persistence of disseminated tumour cells within a foreign tissue. Because the establishment of early metastatic niches represents a key limiting step for metastasis, the creation of a more suitable pre-conditioned tissue strongly enhances metastatic success. In this Review, we provide an updated view of the mechanisms and mediators of primary tumours described so far that induce a pro-metastatic conditioning of distant organs, which favours early metastatic niche formation. We reflect on the nature of cancer-induced systemic conditioning, considering that non-cancer-dependent perturbations of tissue homeostasis are also able to trigger pro-metastatic conditioning. We argue that a more holistic view of the processes catalysing metastatic progression is needed to identify preventive or therapeutic opportunities.
Collapse
Affiliation(s)
- Nicolas Rabas
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Rute M M Ferreira
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Stefania Di Blasio
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Giacomini F, Rho HS, Eischen‐Loges M, Tahmasebi Birgani Z, van Blitterswijk C, van Griensven M, Giselbrecht S, Habibović P, Truckenmüller R. Enthesitis on Chip - A Model for Studying Acute and Chronic Inflammation of the Enthesis and its Pharmacological Treatment. Adv Healthc Mater 2024; 13:e2401815. [PMID: 39188199 PMCID: PMC11650547 DOI: 10.1002/adhm.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Enthesitis, the inflammation of the enthesis, which is the point of attachment of tendons and ligaments to bones, is a common musculoskeletal disease. The inflammation often originates from the fibrocartilage region of the enthesis as a consequence of mechanical overuse or -load and consequently tissue damage. During enthesitis, waves of inflammatory cytokines propagate in(to) the fibrocartilage, resulting in detrimental, heterotopic bone formation. Understanding of human enthesitis and its treatment options is limited, also because of lacking in vitro model systems that can closely mimic the pathophysiology of the enthesis and can be used to develop therapies. In this study, an enthes(it)is-on-chip model is developed. On opposite sides of a porous culture membrane separating the chip's two microfluidic compartments, human mesenchymal stromal cells are selectively differentiated into tenocytes and fibrochondrocytes. By introducing an inflammatory cytokine cocktail into the fibrochondrocyte compartment, key aspects of acute and chronic enthesitis, measured as increased expression of inflammatory markers, can be recapitulated. Upon inducing chronic inflammatory conditions, hydroxyapatite deposition, enhanced osteogenic marker expression and reduced secretion of tissue-related extracellular matrix components are observed. Adding the anti-inflammatory drug celecoxib to the fibrochondrocyte compartment mitigates the inflammatory state, demonstrating the potential of the enthesitis-on-chip model for drug testing.
Collapse
Affiliation(s)
- Francesca Giacomini
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Hoon Suk Rho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Maria Eischen‐Loges
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Martijn van Griensven
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| |
Collapse
|
12
|
Zhu B, Xiang K, Li T, Li X, Shi F. The signature of extracellular vesicles in hypoxic breast cancer and their therapeutic engineering. Cell Commun Signal 2024; 22:512. [PMID: 39434182 PMCID: PMC11492701 DOI: 10.1186/s12964-024-01870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Breast cancer (BC) currently ranks second in the global cancer incidence rate. Hypoxia is a common phenomenon in BC. Under hypoxic conditions, cells in the tumor microenvironment (TME) secrete numerous extracellular vesicles (EVs) to achieve intercellular communication and alter the metabolism of primary and metastatic tumors that shape the TME. In addition, emerging studies have indicated that hypoxia can promote resistance to tumor treatment. Engineered EVs are expected to become carriers for cancer treatment due to their high biocompatibility, low immunogenicity, high drug delivery efficiency, and ease of modification. In this review, we summarize the mechanisms of EVs in the primary TME and distant metastasis of BC under hypoxic conditions. Additionally, we highlight the potential applications of engineered EVs in mitigating the malignant phenotypes of BC cells under hypoxia.
Collapse
Affiliation(s)
- Baiheng Zhu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kehao Xiang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tanghua Li
- The First Clinical Medical School, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
13
|
Neagu AN, Whitham D, Bruno P, Versaci N, Biggers P, Darie CC. Tumor-on-chip platforms for breast cancer continuum concept modeling. Front Bioeng Biotechnol 2024; 12:1436393. [PMID: 39416279 PMCID: PMC11480020 DOI: 10.3389/fbioe.2024.1436393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Our previous article entitled "Proteomics and its applications in breast cancer", proposed a Breast Cancer Continuum Concept (BCCC), including a Breast Cancer Cell Continuum Concept as well as a Breast Cancer Proteomic Continuum Concept. Breast cancer-on-chip (BCoC), breast cancer liquid biopsy-on-chip (BCLBoC), and breast cancer metastasis-on-chip (BCMoC) models successfully recapitulate and reproduce in vitro the principal mechanisms and events involved in BCCC. Thus, BCoC, BCLBoC, and BCMoC platforms allow for multiple cell lines co-cultivation to reproduce BC hallmark features, recapitulating cell proliferation, cell-to-cell communication, BC cell-stromal crosstalk and stromal activation, effects of local microenvironmental conditions on BC progression, invasion/epithelial-mesenchymal transition (EMT)/migration, intravasation, dissemination through blood and lymphatic circulation, extravasation, distant tissues colonization, and immune escape of cancer cells. Moreover, tumor-on-chip platforms are used for studying the efficacy and toxicity of chemotherapeutic drugs/nano-drugs or nutraceuticals. Therefore, the aim of this review is to summarize and analyse the main bio-medical roles of on-chip platforms that can be used as powerful tools to study the metastatic cascade in BC. As future direction, integration of tumor-on-chip platforms and proteomics-based specific approaches can offer important cues about molecular profile of the metastatic cascade, alowing for novel biomarker discovery. Novel microfluidics-based platforms integrating specific proteomic landscape of human milk, urine, and saliva could be useful for early and non-invasive BC detection. Also, risk-on-chip models may improve BC risk assessment and prevention based on the identification of biomarkers of risk. Moreover, multi-organ-on-chip systems integrating patient-derived BC cells and patient-derived scaffolds have a great potential to study BC at integrative level, due to the systemic nature of BC, for personalized and precision medicine. We also emphasized the strengths and weaknesses of BCoC and BCMoC platforms.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Nicholas Versaci
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Peter Biggers
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
14
|
Ni X, Wei Y, Li X, Pan J, Fang B, Zhang T, Lu Y, Ye D, Zhu Y. From biology to the clinic - exploring liver metastasis in prostate cancer. Nat Rev Urol 2024; 21:593-614. [PMID: 38671281 DOI: 10.1038/s41585-024-00875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Liver metastases from prostate cancer are associated with an aggressive disease course and poor prognosis. Results from autopsy studies indicate a liver metastasis prevalence of up to 25% in patients with advanced prostate cancer. Population data estimate that ~3-10% of patients with metastatic castration-resistant prostate cancer harbour liver metastases at the baseline, rising to 20-30% in post-treatment cohorts, suggesting that selective pressure imposed by novel therapies might promote metastatic spread to the liver. Liver metastases are associated with more aggressive tumour biology than lung metastases. Molecular profiling of liver lesions showed an enrichment of low androgen receptor, neuroendocrine phenotypes and high genomic instability. Despite advancements in molecular imaging modalities such as prostate-specific membrane antigen PET-CT, and liquid biopsy markers such as circulating tumour DNA, early detection of liver metastases from prostate cancer remains challenging, as both approaches are hampered by false positive and false negative results, impeding the accurate identification of early liver lesions. Current therapeutic strategies showed limited efficacy in this patient population. Emerging targeted radionuclide therapies, metastasis-directed therapy, and novel systemic agents have shown preliminary activity against liver metastases, but require further validation. Treatment with various novel prostate cancer therapies might lead to an increase in the prevalence of liver metastasis, underscoring the urgent need for coordinated efforts across preclinical and clinical researchers to improve characterization, monitoring, and management of liver metastases from prostate cancer. Elucidating molecular drivers of liver tropism and interactions with the liver microenvironment might ultimately help to identify actionable targets to enhance survival in this high-risk patient group.
Collapse
Affiliation(s)
- Xudong Ni
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
| |
Collapse
|
15
|
Gaebler D, Hachey SJ, Hughes CCW. Improving tumor microenvironment assessment in chip systems through next-generation technology integration. Front Bioeng Biotechnol 2024; 12:1462293. [PMID: 39386043 PMCID: PMC11461320 DOI: 10.3389/fbioe.2024.1462293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
The tumor microenvironment (TME) comprises a diverse array of cells, both cancerous and non-cancerous, including stromal cells and immune cells. Complex interactions among these cells play a central role in driving cancer progression, impacting critical aspects such as tumor initiation, growth, invasion, response to therapy, and the development of drug resistance. While targeting the TME has emerged as a promising therapeutic strategy, there is a critical need for innovative approaches that accurately replicate its complex cellular and non-cellular interactions; the goal being to develop targeted, personalized therapies that can effectively elicit anti-cancer responses in patients. Microfluidic systems present notable advantages over conventional in vitro 2D co-culture models and in vivo animal models, as they more accurately mimic crucial features of the TME and enable precise, controlled examination of the dynamic interactions among multiple human cell types at any time point. Combining these models with next-generation technologies, such as bioprinting, single cell sequencing and real-time biosensing, is a crucial next step in the advancement of microfluidic models. This review aims to emphasize the importance of this integrated approach to further our understanding of the TME by showcasing current microfluidic model systems that integrate next-generation technologies to dissect cellular intra-tumoral interactions across different tumor types. Carefully unraveling the complexity of the TME by leveraging next generation technologies will be pivotal for developing targeted therapies that can effectively enhance robust anti-tumoral responses in patients and address the limitations of current treatment modalities.
Collapse
Affiliation(s)
- Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Stephanie J. Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
16
|
Jia J, Wang Y, Li M, Wang F, Peng Y, Hu J, Li Z, Bian Z, Yang S. Neutrophils in the premetastatic niche: key functions and therapeutic directions. Mol Cancer 2024; 23:200. [PMID: 39277750 PMCID: PMC11401288 DOI: 10.1186/s12943-024-02107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Metastasis has been one of the primary reasons for the high mortality rates associated with tumours in recent years, rendering the treatment of current malignancies challenging and representing a significant cause of recurrence in patients who have undergone surgical tumour resection. Halting tumour metastasis has become an essential goal for achieving favourable prognoses following cancer treatment. In recent years, increasing clarity in understanding the mechanisms underlying metastasis has been achieved. The concept of premetastatic niches has gained widespread acceptance, which posits that tumour cells establish a unique microenvironment at distant sites prior to their migration, facilitating their settlement and growth at those locations. Neutrophils serve as crucial constituents of the premetastatic niche, actively shaping its microenvironmental characteristics, which include immunosuppression, inflammation, angiogenesis and extracellular matrix remodelling. These characteristics are intimately associated with the successful engraftment and subsequent progression of tumour cells. As our understanding of the role and significance of neutrophils in the premetastatic niche deepens, leveraging the presence of neutrophils within the premetastatic niche has gradually attracted the interest of researchers as a potential therapeutic target. The focal point of this review revolves around elucidating the involvement of neutrophils in the formation and shaping of the premetastatic niche (PMN), alongside the introduction of emerging therapeutic approaches aimed at impeding cancer metastasis.
Collapse
Affiliation(s)
- Jiachi Jia
- Zhengzhou University, Zhengzhou, 450000, China
| | - Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengjia Li
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingnan Peng
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhilei Bian
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
17
|
Zhang X, Su R, Wang H, Wu R, Fan Y, Bin Z, Gao C, Wang C. The promise of Synovial Joint-on-a-Chip in rheumatoid arthritis. Front Immunol 2024; 15:1408501. [PMID: 39324139 PMCID: PMC11422143 DOI: 10.3389/fimmu.2024.1408501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Rheumatoid arthritis (RA) affects millions of people worldwide, but there are limited drugs available to treat it, so acquiring a more comprehensive comprehension of the underlying reasons and mechanisms behind inflammation is crucial, as well as developing novel therapeutic approaches to manage it and mitigate or forestall associated harm. It is evident that current in vitro models cannot faithfully replicate all aspects of joint diseases, which makes them ineffective as tools for disease research and drug testing. Organ-on-a-chip (OoC) technology is an innovative platform that can mimic the microenvironment and physiological state of living tissues more realistically than traditional methods by simulating the spatial arrangement of cells and interorgan communication. This technology allows for the precise control of fluid flow, nutrient exchange, and the transmission of physicochemical signals, such as bioelectrical, mechanical stimulation and shear force. In addition, the integration of cutting-edge technologies like sensors, 3D printing, and artificial intelligence enhances the capabilities of these models. Here, we delve into OoC models with a particular focus on Synovial Joints-on-a-Chip, where we outline their structure and function, highlighting the potential of the model to advance our understanding of RA. We integrate the actual evidence regarding various OoC models and their possible integration for multisystem disease study in RA research for the first time and introduce the prospects and opportunities of the chip in RA etiology and pathological mechanism research, drug research, disease prevention and human precision medicine. Although many challenges remain, OoC holds great promise as an in vitro model that approaches physiology and dynamics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Yuxin Fan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Zexuan Bin
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
- Shanxi Province Engineering Research Center of Precision Medicine for Rheumatology, Taiyuan, Shanxi, China
| |
Collapse
|
18
|
Kim J, Ro J, Cho YK. Vascularized platforms for investigating cell communication via extracellular vesicles. BIOMICROFLUIDICS 2024; 18:051504. [PMID: 39323481 PMCID: PMC11421861 DOI: 10.1063/5.0220840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The vascular network plays an essential role in the maintenance of all organs in the body via the regulated delivery of oxygen and nutrients, as well as tissue communication via the transfer of various biological signaling molecules. It also serves as a route for drug administration and affects pharmacokinetics. Due to this importance, engineers have sought to create physiologically relevant and reproducible vascular systems in tissue, considering cell-cell and extracellular matrix interaction with structural and physical conditions in the microenvironment. Extracellular vesicles (EVs) have recently emerged as important carriers for transferring proteins and genetic material between cells and organs, as well as for drug delivery. Vascularized platforms can be an ideal system for studying interactions between blood vessels and EVs, which are crucial for understanding EV-mediated substance transfer in various biological situations. This review summarizes recent advances in vascularized platforms, standard and microfluidic-based techniques for EV isolation and characterization, and studies of EVs in vascularized platforms. It provides insights into EV-related (patho)physiological regulations and facilitates the development of EV-based therapeutics.
Collapse
|
19
|
Arya DK, Deshpande H, Kumar A, Chidambaram K, Pandey P, Anjum S, Deepak P, Kumar V, Kumar S, Pandey G, Srivastava S, Rajinikanth PS. HER-2 Receptor and αvβ3 Integrin Dual-Ligand Surface-Functionalized Liposome for Metastatic Breast Cancer Therapy. Pharmaceutics 2024; 16:1128. [PMID: 39339166 PMCID: PMC11435421 DOI: 10.3390/pharmaceutics16091128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Human epidermal growth factor receptor-2 (HER2)-positive breast cancer metastasis remains the primary cause of mortality among women globally. Targeted therapies have revolutionized treatment efficacy, with Trastuzumab (Trast), a monoclonal antibody, targeting HER2-positive advanced breast cancer. The tumor-homing peptide iRGD enhances the intratumoral accumulation and penetration of therapeutic agents. Liposomes serve as versatile nanocarriers for both hydrophilic and hydrophobic drugs. Gefitinib (GFB) is a potential anticancer drug against HER2-positive breast cancer, while Lycorine hydrochloride (LCH) is a natural compound with anticancer and anti-inflammatory properties. This study developed TPGS-COOH-coated liposomes co-loaded with GFB and LCH, prepared by the solvent injection method, and surface-functionalized with Trast and iRGD. The dual surface-decorated liposomes (DSDLs) were characterized for their particle size (PS), polydispersity index (PDI), zeta potential (ZP), surface chemistry, surface morphology, and their crystallinity during in-vitro drug release, drug encapsulation, and in-vitro cell line studies on SK-BR-3 and MDA-MB-231 breast cancer cells. The half-maximum inhibitory concentration (IC-50) values of single decorated liposomes (SDLs), iRGD-LP, and Trast-LP, as well as DSDLs (iRGD-Trast-LP) on SK-BR-3 cells, were 6.10 ± 0.42, 4.98 ± 0.36, and 4.34 ± 0.32 μg/mL, respectively. Moreover, the IC-50 values of SDLs and DSDLs on MDA-MB-231 cells were 15.12 ± 0.68, 13.09 ± 0.59, and 11.08 ± 0.48 μg/mL, respectively. Cellular uptake studies using confocal laser scanning microscopy (CLSM) showed that iRGD and Trast functionalization significantly enhanced cellular uptake in both cell lines. The wound-healing assay demonstrated a significant reduction in SDL and DSDL-treated MDA-MB-231 cell migration compared to the control. Additionally, the blood compatibility study showed minimal hemolysis (less than 5% RBC lysis), indicating good biocompatibility and biosafety. Overall, these findings suggest that TPGS-COOH-coated, GFB and LCH co-loaded, dual-ligand (iRGD and Trast) functionalized, multifunctional liposomes could be a promising therapeutic strategy for treating HER2-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Hemali Deshpande
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Ashish Kumar
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Shabnam Anjum
- School of Dentistry, Health Science Center, Shenzhen University, Shenzhen 518015, China
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518015, China
| | - Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Giriraj Pandey
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | | |
Collapse
|
20
|
Streutker EM, Devamoglu U, Vonk MC, Verdurmen WPR, Le Gac S. Fibrosis-on-Chip: A Guide to Recapitulate the Essential Features of Fibrotic Disease. Adv Healthc Mater 2024; 13:e2303991. [PMID: 38536053 DOI: 10.1002/adhm.202303991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Fibrosis, which is primarily marked by excessive extracellular matrix (ECM) deposition, is a pathophysiological process associated with many disorders, which ultimately leads to organ dysfunction and poor patient outcomes. Despite the high prevalence of fibrosis, currently there exist few therapeutic options, and importantly, there is a paucity of in vitro models to accurately study fibrosis. This review discusses the multifaceted nature of fibrosis from the viewpoint of developing organ-on-chip (OoC) disease models, focusing on five key features: the ECM component, inflammation, mechanical cues, hypoxia, and vascularization. The potential of OoC technology is explored for better modeling these features in the context of studying fibrotic diseases and the interplay between various key features is emphasized. This paper reviews how organ-specific fibrotic diseases are modeled in OoC platforms, which elements are included in these existing models, and the avenues for novel research directions are highlighted. Finally, this review concludes with a perspective on how to address the current gap with respect to the inclusion of multiple features to yield more sophisticated and relevant models of fibrotic diseases in an OoC format.
Collapse
Affiliation(s)
- Emma M Streutker
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Utku Devamoglu
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Madelon C Vonk
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Wouter P R Verdurmen
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, Nijmegen, 6525 GA, The Netherlands
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnoloygy and TechMed Centre, Organ-on-Chip Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| |
Collapse
|
21
|
Nuckhir M, Withey D, Cabral S, Harrison H, Clarke RB. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We? J Mammary Gland Biol Neoplasia 2024; 29:14. [PMID: 39012440 PMCID: PMC11252219 DOI: 10.1007/s10911-024-09567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.
Collapse
Affiliation(s)
- Mia Nuckhir
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - David Withey
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Sara Cabral
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Hannah Harrison
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
22
|
Zhu L, Yu X, Tang X, Hu C, Wu L, Liu Y, Zhou Q. Evolving landscape of treatments targeting the microenvironment of liver metastases in non-small cell lung cancer. Chin Med J (Engl) 2024; 137:1019-1032. [PMID: 38251678 PMCID: PMC11062672 DOI: 10.1097/cm9.0000000000002981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
ABSTRACT Liver metastases (LMs) are common in lung cancer. Despite substantial advances in diagnosis and treatment, the survival rate of patients with LM remains low as the immune-suppressive microenvironment of the liver allows tumor cells to evade the immune system. The impact of LMs on the outcomes of immune checkpoint inhibitors in patients with solid tumors has been the main focus of recent translational and clinical research. Growing evidence indicates that the hepatic microenvironment delivers paracrine and autocrine signals from non-parenchymal and parenchymal cells. Overall, these microenvironments create pre- and post-metastatic conditions for the progression of LMs. Herein, we reviewed the epidemiology, physiology, pathology and immunology, of LMs associated with non-small cell lung cancer and the role and potential targets of the liver microenvironment in LM in each phase of metastasis. Additionally, we reviewed the current treatment strategies and challenges that should be overcome in preclinical and clinical investigations. These approaches target liver elements as the basis for future clinical trials, including combinatorial interventions reported to resolve hepatic immune suppression, such as immunotherapy plus chemotherapy, immunotherapy plus radiotherapy, immunotherapy plus anti-angiogenesis therapy, and surgical resection.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan 610041, China
| | - Xiaojun Tang
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qinghua Zhou
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
23
|
Ko J, Song J, Lee Y, Choi N, Kim HN. Understanding organotropism in cancer metastasis using microphysiological systems. LAB ON A CHIP 2024; 24:1542-1556. [PMID: 38192269 DOI: 10.1039/d3lc00889d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Cancer metastasis, the leading cause of cancer-related deaths, remains a complex challenge in medical science. Stephen Paget's "seed and soil theory" introduced the concept of organotropism, suggesting that metastatic success depends on specific organ microenvironments. Understanding organotropism not only offers potential for curbing metastasis but also novel treatment strategies. Microphysiological systems (MPS), especially organ-on-a-chip models, have emerged as transformative tools in this quest. These systems, blending microfluidics, biology, and engineering, grant precise control over cell interactions within organ-specific microenvironments. MPS enable real-time monitoring, morphological analysis, and protein quantification, enhancing our comprehension of cancer dynamics, including tumor migration, vascularization, and pre-metastatic niches. In this review, we explore innovative applications of MPS in investigating cancer metastasis, particularly focusing on organotropism. This interdisciplinary approach converges the field of science, engineering, and medicine, thereby illuminating a path toward groundbreaking discoveries in cancer research.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Jiyoung Song
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Yedam Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Yoon H, Sabaté Del Río J, Cho SW, Park TE. Recent advances in micro-physiological systems for investigating tumor metastasis and organotropism. LAB ON A CHIP 2024; 24:1351-1366. [PMID: 38303676 DOI: 10.1039/d3lc01033c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor metastasis involves complex processes that traditional 2D cultures and animal models struggle to fully replicate. Metastatic tumors undergo a multitude of transformations, including genetic diversification, adaptation to diverse microenvironments, and modified drug responses, contributing significantly to cancer-related mortality. Micro-physiological systems (MPS) technology emerges as a promising approach to emulate the metastatic process by integrating critical biochemical, biomechanical, and geometrical cues at a microscale. These systems are particularly advantageous simulating metastasis organotropism, the phenomenon where tumors exhibit a preference for metastasizing to particular organs. Organotropism is influenced by various factors, such as tumor cell characteristics, unique organ microenvironments, and organ-specific vascular conditions, all of which can be effectively examined using MPS. This review surveys the recent developments in MPS research from the past five years, with a specific focus on their applications in replicating tumor metastasis and organotropism. Furthermore, we discuss the current limitations in MPS-based studies of organotropism and propose strategies for more accurately replicating and analyzing the intricate aspects of organ-specific metastasis, which is pivotal in the development of targeted therapeutic approaches against metastatic cancers.
Collapse
Affiliation(s)
- Heejeong Yoon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jonathan Sabaté Del Río
- Center for Algorithmic and Robotized Synthesis (CARS), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seung Woo Cho
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
25
|
Wei YN, Yan CY, Zhao ML, Zhao XH. The role and application of vesicles in triple-negative breast cancer: Opportunities and challenges. Mol Ther Oncolytics 2023; 31:100752. [PMID: 38130701 PMCID: PMC10733704 DOI: 10.1016/j.omto.2023.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Extracellular vesicles (EVs) carry DNA, RNA, protein, and other substances involved in intercellular crosstalk and can be used for the targeted delivery of drugs. Triple-negative breast cancer (TNBC) is rich in recurrent and metastatic disease and lacks therapeutic targets. Studies have proved the role of EVs in the different stages of the genesis and development of TNBC. Cancer cells actively secrete various biomolecules, which play a significant part establishing the tumor microenvironment via EVs. In this article, we describe the roles of EVs in the tumor immune microenvironment, metabolic microenvironment, and vascular remodeling, and summarize the application of EVs for objective delivery of chemotherapeutic drugs, immune antigens, and cancer vaccine adjuvants. EVs-based therapy may represent the next-generation tool for targeted drug delivery for the cure of a variety of diseases lacking effective drug treatment.
Collapse
Affiliation(s)
- Ya-Nan Wei
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Meng-Lu Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| | - Xi-He Zhao
- Department of Clinical Oncology, Sheng jing Hospital of China Medical University, Shenyang 110022, People’s Republic of China
| |
Collapse
|
26
|
Yin Z, Wang L. Endothelial-to-mesenchymal transition in tumour progression and its potential roles in tumour therapy. Ann Med 2023; 55:1058-1069. [PMID: 36908260 PMCID: PMC10795639 DOI: 10.1080/07853890.2023.2180155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Tumour-associated endothelial cells (TECs) are a critical stromal cell type in the tumour microenvironment and play central roles in tumour angiogenesis. Notably, TECs have phenotypic plasticity, as they have the potential to transdifferentiate into cells with a mesenchymal phenotype through a process termed endothelial-to-mesenchymal transition (EndoMT). Many studies have reported that EndoMT influences multiple malignant biological properties of tumours, such as abnormal angiogenesis and tumour metabolism, growth, metastasis and therapeutic resistance. Thus, the value of targeting EndoMT in tumour treatment has received increased attention. In this review, we comprehensively explore the phenomenon of EndoMT in the tumour microenvironment and identify influencing factors and molecular mechanisms responsible for EndoMT induction. Furthermore, the pathological functions of EndoMT in tumour progression and potential therapeutic strategies for targeting EndoMT in tumour treatment are also discussed to highlight the pivotal roles of EndoMT in tumour progression and therapy.
Collapse
Affiliation(s)
- Zeli Yin
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, Liaoning, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, Liaoning, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
27
|
Du X, Zou R, Du K, Huang D, Miao C, Qiu B, Ding W, Li C. Modeling Colorectal Cancer-Induced Liver Portal Vein Microthrombus on a Hepatic Lobule Chip. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38033197 DOI: 10.1021/acsami.3c14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Colorectal cancer is one of the most common malignant tumors. At the advanced stage of colorectal cancer, cancer cells migrate with the blood to the liver from the hepatic portal vein, eventually resulting in a portal vein tumor thrombus (PVTT). To date, the progression of the early onset of PVTT [portal vein microthrombus (PVmT) induced by tumors] is unclear. Herein, we developed an on-chip PVmT model by loading the spheroid of colorectal cancer cells into the portal vein of a hepatic lobule chip (HLC). On the HLC, the progression of PVmT was presented, and early changes in metabolites of hepatic cells and in structures of hepatic plates and sinusoids induced by PVmT were analyzed. We replicated intrahepatic angiogenesis, thickened blood vessels, an increased number of hepatocytes, disordered hepatic plates, and decreased concentrations of biomarkers of hepatic cell functions in PVmT progression on a microfluidic chip for the first time. In addition, the combined therapy of thermo-ablation and chemo-drug for PVmT was preliminarily demonstrated. This study provides a promising method for understanding PVTT evolution and offers a valuable reference for PVTT therapy.
Collapse
Affiliation(s)
- Xiaofang Du
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rong Zou
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kun Du
- Department of Medical Equipment, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Dabing Huang
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chunguang Miao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Bensheng Qiu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chengpan Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
- Department of Oncology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
28
|
Zhou K, Ding R, Tao X, Cui Y, Yang J, Mao H, Gu Z. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models. Acta Biomater 2023; 169:243-255. [PMID: 37572980 DOI: 10.1016/j.actbio.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Despite 3D bioprinting having emerged as an advanced method for fabricating complex in vitro models, developing suitable bioinks that fulfill the opposing requirements for the biofabrication window still remains challenging. Although naturally derived hydrogels can better mimic the extracellular matrix (ECM) of numerous tissues, their weak mechanical properties usually result in architecturally simple shapes and patchy functions of in vitro models. Here, this limitation is addressed by a peptide-dendrimer-reinforced bioink (HC-PDN) which contained the peptide-dendrimer branched PEG with end-grafted norbornene (PDN) and the cysteamine-modified HA (HC). The extensive introduction of ethylene end-groups facilitates the grafting of sufficient moieties and enhances thiol-ene-induced crosslinking, making HC-PDN exhibits improved mechanical and rheological properties, as well as a significant reduction in reactive oxygen species (ROS) accumulation than that of methacrylated hyaluronic acid (HAMA). In addition, HC-PDN can be applied for the bioprinting of numerous complex structures with superior shape fidelity and soft matrix microenvironment. A heterogeneous and biomimetic hepatic tissue is concretely constructed in this work. The HepG2-C3As, LX-2s, and EA.hy.926s utilized with HC-PDN and assisted GelMA bioinks closely resemble the parenchymal and non-parenchymal counterparts of the native liver. The bioprinted models show the endothelium barrier function, hepatic functions, as well as increased activity of drug-metabolizing enzymes, which are essential functions of liver tissue in vivo. All these properties make HC-PDN a promising bioink to open numerous opportunities for in vitro model biofabrication. STATEMENT OF SIGNIFICANCE: In this manuscript, we introduced a peptide dendrimer system, which belongs to the family of hyperbranched 3D nanosized macromolecules that exhibit high molecular structure regularity and various biological advantages. Specifically, norbornene-modified peptide dendrimer was grafted onto PEG, and hyaluronic acid (HA) was selected as a base material for bioink formulation because it is a component of the ECM. Peptide dendrimers confer the following advantages to bioinks: (a) Geometric symmetry can facilitate construction of bioinks with homogeneous networks; (b) abundant surface functional groups allow for abundant crosslinking points; (c) the biological origin can promote biocompatibility. This study shows conceptualization to application of a peptide-dendrimer bioink to extend the Biofabrication Window of natural bioinks and will expand use of 3D bioprinting of in vitro models.
Collapse
Affiliation(s)
- Ke Zhou
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Rongjian Ding
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Xiwang Tao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Yuwen Cui
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China
| | - Jiquan Yang
- Jiangsu Key Lab of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210046, China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
29
|
Li S, Qu Y, Liu L, Wang C, Yuan L, Bai H, Wang J. Tumour-derived exosomes in liver metastasis: A Pandora's box. Cell Prolif 2023; 56:e13452. [PMID: 36941028 PMCID: PMC10542622 DOI: 10.1111/cpr.13452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The liver is a common secondary metastasis site of many malignant tumours, such as the colorectum, pancreas, stomach, breast, prostate, and lung cancer. The clinical management of liver metastases is challenging because of their strong heterogeneity, rapid progression, and poor prognosis. Now, exosomes, small membrane vesicles that are 40-160 nm in size, are released by tumour cells, namely, tumour-derived exosomes (TDEs), and are being increasingly studied because they can retain the original characteristics of tumour cells. Cell-cell communication via TDEs is pivotal for liver pre-metastatic niche (PMN) formation and liver metastasis; thus, TDEs can provide a theoretical basis to intensively study the potential mechanisms of liver metastasis and new insights into the diagnosis and treatment of liver metastasis. Here, we systematically review current research progress about the roles and possible regulatory mechanisms of TDE cargos in liver metastasis, focusing on the functions of TDEs in liver PMN formation. In addition, we discuss the clinical utility of TDEs in liver metastasis, including TDEs as potential biomarkers, and therapeutic approaches for future research reference in this field.
Collapse
Affiliation(s)
- Sini Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lihui Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chao Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
30
|
Liu X, Huangfu Y, Wang J, Kong P, Tian W, Liu P, Fang C, Li S, Nie Y, Feng Z, Huang P, Shi S, Zhang C, Dong A, Wang W. Supramolecular Polymer-Nanomedicine Hydrogel Loaded with Tumor Associated Macrophage-Reprogramming polyTLR7/8a Nanoregulator for Enhanced Anti-Angiogenesis Therapy of Orthotopic Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300637. [PMID: 37229748 PMCID: PMC10401096 DOI: 10.1002/advs.202300637] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Indexed: 05/27/2023]
Abstract
Anti-angiogenic therapies targeting inhibition of vascular endothelial growth factor (VEGF) pathway show clinical benefit in hypervascular hepatocellular carcinoma (HCC) tumors. However, HCC expresses massive pro-angiogenic factors in the tumor microenvironment (TME) in response to anti-angiogenic therapy, recruiting tumor-associated macrophages (TAMs), leading to revascularization and tumor progression. To regulate cell types in TME and promote the therapeutic efficiency of anti-angiogenic therapy, a supramolecular hydrogel drug delivery system (PLDX-PMI) co-assembled by anti-angiogenic nanomedicines (PCN-Len nanoparticles (NPs)) and oxidized dextran (DX), and loaded with TAMs-reprogramming polyTLR7/8a nanoregulators (p(Man-IMDQ) NRs) is developed for orthotopic liver cancer therapy. PCN-Len NPs target tyrosine kinases of vascular endothelial cells and blocked VEGFR signaling pathway. p(Man-IMDQ) NRs repolarize pro-angiogenic M2-type TAMs into anti-angiogenic M1-type TAMs via mannose-binding receptors, reducing the secretion of VEGF, which further compromised the migration and proliferation of vascular endothelial cells. On highly malignant orthotopic liver cancer Hepa1-6 model, it is found that a single administration of the hydrogel formulation significantly decreases tumor microvessel density, promotes tumor vascular network maturation, and reduces M2-subtype TAMs, thereby effectively inhibiting tumor progression. Collectively, findings in this work highlight the great significance of TAMs reprogramming in enhancing anti-angiogenesis treatment for orthotopic HCC, and provides an advanced hydrogel delivery system-based synergistic approach for tumor therapy.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Polymer Science and EngineeringKey Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Yini Huangfu
- Department of Polymer Science and EngineeringKey Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Jingrong Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| | - Pengxu Kong
- Department of Structural Heart DiseaseFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Weijun Tian
- Department of General SurgeryTianjin Medical University General HospitalTianjin300052P. R. China
| | - Peng Liu
- Department of General SurgeryTianjin Medical University General HospitalTianjin300052P. R. China
| | - Chuang Fang
- Department of General SurgeryTianjin Medical University General HospitalTianjin300052P. R. China
| | - Shuangyang Li
- Department of Polymer Science and EngineeringKey Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Yu Nie
- Department of Gastrointestinal OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| | - Shengbin Shi
- Department of Gastrointestinal OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| | - Anjie Dong
- Department of Polymer Science and EngineeringKey Laboratory of Systems Bioengineering (Ministry of Education)School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072P. R. China
- Frontiers Science Center for Synthetic BiologyKey Laboratory of Systems Bioengineering (MOE)Tianjin UniversityTianjin300072P. R. China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192P. R. China
| |
Collapse
|
31
|
Buskin A, Scott E, Nelson R, Gaughan L, Robson CN, Heer R, Hepburn AC. Engineering prostate cancer in vitro: what does it take? Oncogene 2023; 42:2417-2427. [PMID: 37438470 PMCID: PMC10403358 DOI: 10.1038/s41388-023-02776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
A key challenge in the clinical management and cause of treatment failure of prostate cancer (PCa) is its molecular, cellular and clinical heterogeneity. Modelling systems that fully recapitulate clinical diversity and resistant phenotypes are urgently required for the development of successful personalised PCa therapies. The advent of the three-dimensional (3D) organoid model has revolutionised preclinical cancer research through reflecting heterogeneity and offering genomic and environmental manipulation that has opened up unparalleled opportunities for applications in disease modelling, high-throughput drug screening and precision medicine. Despite these remarkable achievements of organoid technology, several shortcomings in emulating the complex tumor microenvironment and dynamic process of metastasis as well as the epigenome profile limit organoids achieving true in vivo functionality. Technological advances in tissue engineering have enabled the development of innovative tools to facilitate the design of improved 3D cancer models. In this review, we highlight the current in vitro 3D PCa models with a special focus on organoids and discuss engineering approaches to create more physiologically relevant PCa organoid models and maximise their translational relevance that ultimately will help to realise the transformational power of precision medicine.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Scott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ryan Nelson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig N Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| | - Anastasia C Hepburn
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
32
|
Bucci-Muñoz M, Gola AM, Rigalli JP, Ceballos MP, Ruiz ML. Extracellular Vesicles and Cancer Multidrug Resistance: Undesirable Intercellular Messengers? Life (Basel) 2023; 13:1633. [PMID: 37629489 PMCID: PMC10455762 DOI: 10.3390/life13081633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer multidrug resistance (MDR) is one of the main mechanisms contributing to therapy failure and mortality. Overexpression of drug transporters of the ABC family (ATP-binding cassette) is a major cause of MDR. Extracellular vesicles (EVs) are nanoparticles released by most cells of the organism involved in cell-cell communication. Their cargo mainly comprises, proteins, nucleic acids, and lipids, which are transferred from a donor cell to a target cell and lead to phenotypical changes. In this article, we review the scientific evidence addressing the regulation of ABC transporters by EV-mediated cell-cell communication. MDR transfer from drug-resistant to drug-sensitive cells has been identified in several tumor entities. This was attributed, in some cases, to the direct shuttle of transporter molecules or its coding mRNA between cells. Also, EV-mediated transport of regulatory proteins (e.g., transcription factors) and noncoding RNAs have been indicated to induce MDR. Conversely, the transfer of a drug-sensitive phenotype via EVs has also been reported. Additionally, interactions between non-tumor cells and the tumor cells with an impact on MDR are presented. Finally, we highlight uninvestigated aspects and possible approaches to exploiting this knowledge toward the identification of druggable processes and molecules and, ultimately, the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- María Bucci-Muñoz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Aldana Magalí Gola
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany;
| | - María Paula Ceballos
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| | - María Laura Ruiz
- Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Instituto de Fisiología Experimental (CONICET), Rosario 2000, Argentina; (M.B.-M.); (A.M.G.); (M.P.C.)
| |
Collapse
|
33
|
Banerjee M, Devi Rajeswari V. A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer. Med Oncol 2023; 40:245. [PMID: 37454033 DOI: 10.1007/s12032-023-02112-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The microenvironment role is very important in cancer development. The epithelial-mesenchymal transition of the cancer cells depends upon specific signaling and microenvironmental conditions, such as hypoxic conditions. The crosstalk between hypoxia and Wnt signaling through some molecular mechanism in TNBC is related. Cross-communication between hypoxia and Wnt signaling in cancer cells is known, but the detailed mechanism in TNBC is unknown. This review includes the role of the hypoxia microenvironment in TNBC and the novel crosstalk of the Wnt signaling and hypoxia. When targeted, the new pathway and crosstalk link may be a solution for metastatic TNBC and chemoresistance. The microenvironment influences cancer's metastasis, which changes from person to person. Therefore, organ-on-a-chip is a very novel model to test the drugs clinically before going for human trials, focusing on personalized medications can be done. The effect of the hypoxia microenvironment on breast cancer stem cells is still unknown. Apart from all the published papers, this paper mainly focuses only on the hypoxic microenvironment and its association with the growth of TNBC. The medicines or small proteins, drugs, mimics, and inhibitors targeting wnt and hypoxia genes are consolidated in this review paper.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
34
|
Zhao Y, Wang EY, Lai FBL, Cheung K, Radisic M. Organs-on-a-chip: a union of tissue engineering and microfabrication. Trends Biotechnol 2023; 41:410-424. [PMID: 36725464 PMCID: PMC9985977 DOI: 10.1016/j.tibtech.2022.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 02/03/2023]
Abstract
We review the emergence of the new field of organ-on-a-chip (OOAC) engineering, from the parent fields of tissue engineering and microfluidics. We place into perspective the tools and capabilities brought into the OOAC field by early tissue engineers and microfluidics experts. Liver-on-a-chip and heart-on-a-chip are used as two case studies of systems that heavily relied on tissue engineering techniques and that were amongst the first OOAC models to be implemented, motivated by the need to better assess toxicity to human tissues in preclinical drug development. We review current challenges in OOAC that often stem from the same challenges in the parent fields, such as stable vascularization and drug absorption.
Collapse
Affiliation(s)
- Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fook B L Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Krisco Cheung
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
35
|
Qiu L, Kong B, Kong T, Wang H. Recent advances in liver-on-chips: Design, fabrication, and applications. SMART MEDICINE 2023; 2:e20220010. [PMID: 39188562 PMCID: PMC11235950 DOI: 10.1002/smmd.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
The liver is a multifunctional organ and the metabolic center of the human body. Most drugs and toxins are metabolized in the liver, resulting in varying degrees of hepatotoxicity. The damage of liver will seriously affect human health, so it is very important to study the prevention and treatment of liver diseases. At present, there are many research studies in this field. However, most of them are based on animal models, which are limited by the time-consuming processes and species difference between human and animals. In recent years, liver-on-chips have emerged and developed rapidly and are expected to replace animal models. Liver-on-chips refer to the use of a small number of liver cells on the chips to simulate the liver microenvironment and ultrastructure in vivo. They hold extensive applications in multiple fields by reproducing the unique physiological functions of the liver in vitro. In this review, we first introduced the physiology and pathology of liver and then described the cell system of liver-on-chips, the chip-based liver models, and the applications of liver-on-chips in liver transplantation, drug screening, and metabolic evaluation. Finally, we discussed the currently encountered challenges and future trends in liver-on-chips.
Collapse
Affiliation(s)
- Linjie Qiu
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
- School of MedicineSun Yat‐Sen UniversityShenzhenChina
| | - Bin Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingDepartment of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenChina
| | - Huan Wang
- The Eighth Affiliated HospitalSun Yat‐Sen UniversityShenzhenChina
| |
Collapse
|
36
|
Huang CBX, Tu TY. Recent advances in vascularized tumor-on-a-chip. Front Oncol 2023; 13:1150332. [PMID: 37064144 PMCID: PMC10099572 DOI: 10.3389/fonc.2023.1150332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
The vasculature plays a critical role in cancer progression and metastasis, representing a pivotal aspect in the creation of cancer models. In recent years, the emergence of organ-on-a-chip technology has proven to be a robust tool, capable of replicating in vivo conditions with exceptional spatiotemporal resolution, making it a significant asset in cancer research. This review delves into the latest developments in 3D microfluidic vascularized tumor models and their applications in vitro, focusing on heterotypic cellular interactions, the mechanisms of metastasis, and therapeutic screening. Additionally, the review examines the benefits and drawbacks of these models, as well as the future prospects for their advancement.
Collapse
Affiliation(s)
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Ting-Yuan Tu,
| |
Collapse
|
37
|
Rahimnejad M, Rasouli F, Jahangiri S, Ahmadi S, Rabiee N, Ramezani Farani M, Akhavan O, Asadnia M, Fatahi Y, Hong S, Lee J, Lee J, Hahn SK. Engineered Biomimetic Membranes for Organ-on-a-Chip. ACS Biomater Sci Eng 2022; 8:5038-5059. [PMID: 36347501 DOI: 10.1021/acsbiomaterials.2c00531] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Organ-on-a-chip (OOC) systems are engineered nanobiosystems to mimic the physiochemical environment of a specific organ in the body. Among various components of OOC systems, biomimetic membranes have been regarded as one of the most important key components to develop controllable biomimetic bioanalysis systems. Here, we review the preparation and characterization of biomimetic membranes in comparison with the features of the extracellular matrix. After that, we review and discuss the latest applications of engineered biomimetic membranes to fabricate various organs on a chip, such as liver, kidney, intestine, lung, skin, heart, vasculature and blood vessels, brain, and multiorgans with perspectives for further biomedical applications.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Biomedical Engineering Institute, School of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Fariba Rasouli
- Bioceramics and Implants Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14174-66191, Iran
| | - Sepideh Jahangiri
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-14411, Iran
| | - Sanghoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jungho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
38
|
Kaur S, Kidambi S, Ortega-Ribera M, Thuy LTT, Nieto N, Cogger VC, Xie WF, Tacke F, Gracia-Sancho J. In Vitro Models for the Study of Liver Biology and Diseases: Advances and Limitations. Cell Mol Gastroenterol Hepatol 2022; 15:559-571. [PMID: 36442812 PMCID: PMC9868680 DOI: 10.1016/j.jcmgh.2022.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
In vitro models of liver (patho)physiology, new technologies, and experimental approaches are progressing rapidly. Based on cell lines, induced pluripotent stem cells or primary cells derived from mouse or human liver as well as whole tissue (slices), such in vitro single- and multicellular models, including complex microfluidic organ-on-a-chip systems, provide tools to functionally understand mechanisms of liver health and disease. The International Society of Hepatic Sinusoidal Research (ISHSR) commissioned this working group to review the currently available in vitro liver models and describe the advantages and disadvantages of each in the context of evaluating their use for the study of liver functionality, disease modeling, therapeutic discovery, and clinical applicability.
Collapse
Affiliation(s)
- Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska
| | - Martí Ortega-Ribera
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Victoria C Cogger
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jordi Gracia-Sancho
- Liver Vascular Biology, IDIBAPS Biomedical Research Institute, CIBEREHD, Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland; Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland.
| |
Collapse
|
39
|
Tumor-Derived Exosomes and Their Role in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232213993. [PMID: 36430471 PMCID: PMC9693078 DOI: 10.3390/ijms232213993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer has been the most common cancer in women worldwide, and metastasis is the leading cause of death from breast cancer. Even though the study of breast cancer metastasis has been extensively carried out, the molecular mechanism is still not fully understood, and diagnosis and prognosis need to be improved. Breast cancer metastasis is a complicated process involving multiple physiological changes, and lung, brain, bone and liver are the main metastatic targets. Exosomes are membrane-bound extracellular vesicles that contain secreted cellular constitutes. The biogenesis and functions of exosomes in cancer have been intensively studied, and mounting studies have indicated that exosomes play a crucial role in cancer metastasis. In this review, we summarize recent findings on the role of breast cancer-derived exosomes in metastasis organotropism and discuss the potential promising clinical applications of targeting exosomes as novel strategies for breast cancer diagnosis and therapy.
Collapse
|
40
|
Kim S, Wan Z, Jeon JS, Kamm RD. Microfluidic vascular models of tumor cell extravasation. Front Oncol 2022; 12:1052192. [PMID: 36439519 PMCID: PMC9698448 DOI: 10.3389/fonc.2022.1052192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging microfluidic disease models have amply demonstrated their value in many fields of cancer research. These in vitro technologies recapitulate key aspects of metastatic cancer, including the process of tumor cell arrest and extravasation at the site of the metastatic tumor. To date, extensive efforts have been made to capture key features of the microvasculature to reconstitute the pre-metastatic niche and investigate dynamic extravasation behaviors using microfluidic systems. In this mini-review, we highlight recent microfluidic vascular models of tumor cell extravasation and explore how this approach contributes to development of in vitro disease models to enhance understanding of metastasis in vivo.
Collapse
Affiliation(s)
- Seunggyu Kim
- Mechanobiology Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Biomicrofluidics Lab, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Zhengpeng Wan
- Mechanobiology Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jessie S. Jeon
- Biomicrofluidics Lab, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Roger D. Kamm
- Mechanobiology Lab, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
41
|
Bai J, Wei X, Zhang X, Wu C, Wang Z, Chen M, Wang J. Microfluidic strategies for the isolation and profiling of exosomes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Liu M, Xiang Y, Yang Y, Long X, Xiao Z, Nan Y, Jiang Y, Qiu Y, Huang Q, Ai K. State-of-the-art advancements in Liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosens Bioelectron 2022; 218:114758. [DOI: 10.1016/j.bios.2022.114758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 12/12/2022]
|
43
|
The Hepatic Pre-Metastatic Niche. Cancers (Basel) 2022; 14:cancers14153731. [PMID: 35954395 PMCID: PMC9367402 DOI: 10.3390/cancers14153731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The pre-metastatic niche is a recently established concept that could lead to targeted therapies that prevent metastasis before ever occurring. Considering that 90% of cancer mortality results from metastasis, the PMN is thus a salient opportunity for intervention. The purpose of the current review is to cover what is known specifically about the hepatic pre-metastatic niche, a topic that has garnered increasing research focus within the last decade. We discuss the methods of communication between primary tumors and the liver, the involved cell populations, the key changes within liver tissue, and perspectives on the future of the field. Abstract Primary tumors can communicate with the liver to establish a microenvironment that favors metastatic colonization prior to dissemination, forming what is termed the “pre-metastatic niche” (PMN). Through diverse signaling mechanisms, distant malignancies can both influence hepatic cells directly as well as recruit immune cells into the PMN. The result is a set of changes within the hepatic tissue that increase susceptibility of tumor cell invasion and outgrowth upon dissemination. Thus, the PMN offers a novel step in the traditional metastatic cascade that could offer opportunities for clinical intervention. The involved signaling molecules also offer promise as biomarkers. Ultimately, while the existence of the hepatic PMN is well-established, continued research effort and use of innovative models are required to reach a functional knowledge of PMN mechanisms that can be further targeted.
Collapse
|
44
|
Nairon KG, DePalma TJ, Zent JM, Leight JL, Skardal A. Tumor cell-conditioned media drives collagen remodeling via fibroblast and pericyte activation in an in vitro premetastatic niche model. iScience 2022; 25:104645. [PMID: 35811850 PMCID: PMC9257340 DOI: 10.1016/j.isci.2022.104645] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Primary tumors secrete large quantities of cytokines and exosomes into the bloodstream, which are uptaken at downstream sites and induce a pro-fibrotic, pro-inflammatory premetastatic niche. Niche development is associated with later increased metastatic burden, but the cellular and matrix changes in the niche that facilitate metastasis are yet unknown. Furthermore, there is no current standard model to study this phenomenon. Here, biofabricated collagen and hyaluronic acid hydrogel models were employed to identify matrix changes elicited by pericytes and fibroblasts after exposure to colorectal cancer-secreted factors. Focusing on myofibroblast activation and collagen remodeling, we report fibroblast activation and pericyte stunting in response to tumor signaling. In addition, we characterize contributions of both cell types to matrix dysregulation via collagen degradation, deposition, and architectural remodeling. With these findings, we discuss potential impacts on tissue stiffening and vascular leakiness and suggest pathways of interest for future mechanistic studies of metastatic cell-premetastatic niche interactions.
Collapse
Affiliation(s)
- Kylie G. Nairon
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. DePalma
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua M. Zent
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jennifer L. Leight
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
- Center for Cancer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
- Center for Cancer Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
45
|
Kim J, Sunkara V, Kim J, Ro J, Kim CJ, Clarissa EM, Jung SW, Lee HJ, Cho YK. Prediction of tumor metastasis via extracellular vesicles-treated platelet adhesion on a blood vessel chip. LAB ON A CHIP 2022; 22:2726-2740. [PMID: 35763032 DOI: 10.1039/d2lc00364c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In preclinical and clinical studies, it has been demonstrated that tumor-educated platelets play a critical role in tumorigenesis, cancer development, and metastasis. Unlike the role of cancer-derived chemokines in platelet activation, the role of cancer-derived extracellular vesicles (EVs) has remained elusive. Here, we found that interleukin-8 (IL-8) in cancer-derived EVs contributed to platelet activation by increasing P-selectin expression and ligand affinity, resulting in increased platelet adhesion on the human vessel-mimicking microfluidic system. Furthermore, platelet adhesion levels on vessels treated with human plasma-derived EVs demonstrated good discrimination between breast cancer patients with metastasis and those without, with the area under the curve (AUC) value of 0.88. While EpCAM expression on EVs could detect the existence of a tumor (AUC = 0.89), it performed poorly in predicting metastasis (AUC = 0.42). We believe that these findings shed light on the role of the interaction between cancer-derived EVs and platelets in pre-metastatic niche formation and tumor metastasis, potentially leading to the development of platelet-tumor interaction-based novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Junyoung Kim
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Vijaya Sunkara
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jungmin Kim
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jooyoung Ro
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Chi-Ju Kim
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Elizabeth Maria Clarissa
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Sung Wook Jung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
46
|
Shi Q, Arefin A, Ren L, Papineau KS, Barnette DA, Schnackenberg LK, Hawes JJ, Avigan M, Mendrick DL, Ewart L, Ronxhi J. Co-Culture of Human Primary Hepatocytes and Nonparenchymal Liver Cells in the Emulate® Liver-Chip for the Study of Drug-Induced Liver Injury. Curr Protoc 2022; 2:e478. [PMID: 35790095 DOI: 10.1002/cpz1.478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a significant public health issue, but standard animal tests and clinical trials sometimes fail to predict DILI due to species differences and the relatively low number of human subjects involved in preapproval studies of a new drug, respectively. In vitro models have long been used to aid DILI prediction, with primary human hepatocytes (PHHs) being generally considered the gold standard. However, despite many efforts and decades of work, traditional culture methods have been unsuccessful in either fully preserving essential liver functions after isolation of PHHs or in emulating interactions between PHHs and hepatic nonparenchymal cells (NPCs), both of which are essential for the development of DILI under in vivo conditions. Recently, various liver-on-a-chip (Liver-Chip) systems have been developed to co-culture hepatocytes and NPCs in a three-dimensional environment on microfluidic channels, enabling better maintenance of primary liver cells and thus improved DILI prediction. The Emulate® Liver-Chip is a commercially available system that can recapitulate some in vivo DILI responses associated with certain compounds whose liver safety profile cannot be accurately evaluated using conventional approaches involving PHHs or animal models due to a lack of innate immune responses or species-dependent toxicity, respectively. Here, we describe detailed procedures for the use of Emulate® Liver-Chips for co-culturing PHHs and NPCs for the purpose of DILI evaluation. First, we describe the procedures for preparing the Liver-Chip. We then outline the steps needed for sequential seeding of PHHs and NPCs in the prepared Liver-Chips. Lastly, we provide a protocol for utilizing cells maintained in perfusion culture in the Liver-Chips to evaluate DILI, using acetaminophen as an example. In all, use of this system and the procedures described here allow better preservation of the functions of human primary liver cells, resulting in an improved in vitro model for DILI assessment. © 2022 Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Basic Protocol 1: Liver-Chip preparation Basic Protocol 2: Seeding primary human hepatocytes and nonparenchymal cells on Liver-Chips Basic Protocol 3: Perfusion culture for the study of acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Qiang Shi
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Ayesha Arefin
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Lijun Ren
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Katy S Papineau
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Dustyn A Barnette
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Laura K Schnackenberg
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Jessica J Hawes
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Mark Avigan
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration, Silver Spring, Maryland
| | - Donna L Mendrick
- National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration, Jefferson, Arkansas
| | | | | |
Collapse
|
47
|
Rima XY, Zhang J, Nguyen LTH, Rajasuriyar A, Yoon MJ, Chiang CL, Walters N, Kwak KJ, Lee LJ, Reátegui E. Microfluidic harvesting of breast cancer tumor spheroid-derived extracellular vesicles from immobilized microgels for single-vesicle analysis. LAB ON A CHIP 2022; 22:2502-2518. [PMID: 35579189 PMCID: PMC9383696 DOI: 10.1039/d1lc01053k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Investigating cellular and vesicular heterogeneity in breast cancer remains a challenge, which encourages the development of controllable in vitro systems that mimic the tumor microenvironment. Although three-dimensional cell culture better recapitulates the heterogeneity observed in tumor growth and extracellular vesicle (EV) biogenesis, the physiological relevance is often contrasted with the control offered by two-dimensional cell culture. Therefore, to challenge this misconception we developed a novel microfluidic system harboring highly tunable three-dimensional EV microbioreactors (EVμBRs) to model micrometastatic EV release in breast cancer while capitalizing on the convenient, low-volume, and sterile interface provided by microfluidics. The diameter and cellular occupancy of the EVμBRs could be precisely tailored to various configurations, supporting the formation of breast cancer tumor spheroids. To immobilize the EVμBRs within a microchannel and facilitate EV extraction, oxygen inhibition in free-radical polymerization was repurposed to rapidly generate two-layer hydrodynamic traps in situ using a digital-micromirror device (DMD)-based ultraviolet (UV) projection system. Breast cancer tumor spheroid-derived EVs were harvested with as little as 20 μL from the microfluidic system and quantified by single-EV immunofluorescence for CD63 and CD81. Despite the low-volume extraction, differences in biomarker expression and coexpression of the tetraspanins on single EVs were observed. Furthermore, the EVμBRs were capable of recapitulating heterogeneity at a cellular and vesicular degree, indicating the utility and robustness of the microfluidic system to investigate physiologically relevant EVs in breast cancer and other disease models.
Collapse
Affiliation(s)
- Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Aaron Rajasuriyar
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Min Jin Yoon
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Chi-Ling Chiang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | | | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Spot Biosystems Ltd., Palo Alto, CA 94301, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
48
|
Ronaldson-Bouchard K, Baldassarri I, Tavakol DN, Graney PL, Samaritano M, Cimetta E, Vunjak-Novakovic G. Engineering complexity in human tissue models of cancer. Adv Drug Deliv Rev 2022; 184:114181. [PMID: 35278521 PMCID: PMC9035134 DOI: 10.1016/j.addr.2022.114181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Major progress in the understanding and treatment of cancer have tremendously improved our knowledge of this complex disease and improved the length and quality of patients' lives. Still, major challenges remain, in particular with respect to cancer metastasis which still escapes effective treatment and remains responsible for 90% of cancer related deaths. In recent years, the advances in cancer cell biology, oncology and tissue engineering converged into the engineered human tissue models of cancer that are increasingly recapitulating many aspects of cancer progression and response to drugs, in a patient-specific context. The complexity and biological fidelity of these models, as well as the specific questions they aim to investigate, vary in a very broad range. When selecting and designing these experimental models, the fundamental question is "how simple is complex enough" to accomplish a specific goal of cancer research. Here we review the state of the art in developing and using the human tissue models in cancer research and developmental drug screening. We describe the main classes of models providing different levels of biological fidelity and complexity, discuss their advantages and limitations, and propose a framework for designing an appropriate model for a given study. We close by outlining some of the current needs, opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Maria Samaritano
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Elisa Cimetta
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; Department of Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; College of Dental Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| |
Collapse
|
49
|
Lin L, Wang X, Niu M, Wu Q, Wang H, Zu Y, Wang W. Biomimetic epithelium/endothelium on chips. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
50
|
Lai WH, Mu H, Lu Y, Chen H, Wen JW, Wu HJ, Cheng CM, Huang J. Dual-cell culture system with identical culture environment for comparison of anti-cancer drug toxicity. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|