1
|
Zhang P, Yang Q, Xu X, Feng H, Du B, Xu J, Liu B, Mu X, Wang J, Tong Z. Fluorescence excitation-emission matrix spectroscopy combined with machine learning for the classification of viruses for respiratory infections. Talanta 2025; 286:127462. [PMID: 39753074 DOI: 10.1016/j.talanta.2024.127462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 03/03/2025]
Abstract
Significant efforts were currently being made worldwide to develop a tool capable of distinguishing between various harmful viruses through simple analysis. In this study, we utilized fluorescence excitation-emission matrix (EEM) spectroscopy as a rapid and specific tool with high sensitivity, employing a straightforward methodological approach to identify spectral differences between samples of respiratory infection viruses. To achieve this goal, the fluorescence EEM spectral data from eight virus samples was divided into training and test sets, which were then analyzed using random forest and support vector machine classification models. We proposed a novel strategy for data fusion based on fast Fourier transform (FFT) and wavelet transform (WT) methods, which significantly enhanced classification accuracy from 45 % to 75 %. This approach improved the classification capability for similar spectral characteristics of viruses. Rhinovirus was further differentiated from rotavirus, while influenza A virus was distinguished from inactivated poliovirus vaccines and rhinovirus. This study demonstrated that the integration of fluorescence EEM spectroscopy with machine learning algorithms presented significant potential for the detection of unidentified harmful substances in the ambient environment.
Collapse
Affiliation(s)
- Pengjie Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Qianyu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xinrui Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Huiping Feng
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bin Du
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiwei Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xihui Mu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jiang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
2
|
Hu L, Yu W, Yang Y, Hao J, Xu L. Surfactant additives in water-based metalworking fluids lead to strong biophysical inhibition of pulmonary surfactant film. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138358. [PMID: 40273855 DOI: 10.1016/j.jhazmat.2025.138358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 04/26/2025]
Abstract
As a class of very common and important industrial liquid materials, metalworking fluids (MWFs) are easy to be vaporized into the air and cause pulmonary toxic effects. The inhaled MWF aerosols should first interact with the pulmonary surfactant (PS) film that plays an essential role in maintaining the normal respiratory mechanics and pulmonary immunology in a human body. Here, to probe any potential adverse impacts of airborne MWFs on the biophysical and physiological functions of PS film that may help achieve a deep and comprehensive understanding of the pulmonary toxicology of MWFs, a systematic study on the interaction between an animal-derived natural PS (i.e., Calsurf) film and the aerosols of water-based MWFs and their different constituents is conducted using constrained drop surfactometry (CDS) capable of closely simulating normal tidal breathing and lung-related physiological conditions in vitro. It was found that the airborne MWFs can induce strong PS inhibitions once their accumulated amount in the environment attains 0.2 mg/cm3. And their inhibitory effects are demonstrated to mainly originate from the surfactant additives such as polyethylene glycol monooleate (PEGMO) that can desorb PS film from the air/water interface via competitive interfacial adsorption, although it has normally been regarded as an eco-friendly commercial reagent.
Collapse
Affiliation(s)
- Lulin Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China
| | - Weiyan Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China
| | - Yi Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China.
| | - Jingcheng Hao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Jinan 250100, PR China
| | - Lu Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China.
| |
Collapse
|
3
|
Zheng S, Sarker P, Gursoy D, Wei T, Hsiao BS. Molecular Mechanisms of Perfluoroalkyl Substances Integration into Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:9369-9376. [PMID: 40173325 DOI: 10.1021/acs.langmuir.5c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Understanding the molecular interactions of per- and polyfluoroalkyl substances (PFAS) with phospholipids is crucial for elucidating their pathological mechanisms and developing PFAS remediation strategies. In this study, we employ atomistic molecular dynamics simulations to examine PFAS insertion into phospholipid bilayers, including anionic perfluorooctanesulfonic acid (PFOS), perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), and perfluorododecanoic acid (PFDoA), as well as neutral polytetrafluoroethylene (PTFE). Our study shows that PFAS insertion into lipid bilayers is driven by the free energy gradient between bulk water and the lipid membrane. Positively charged trimethylammonium groups of phospholipids attract negatively charged PFAS, overcoming the surface hydration barrier. Hydrophobic interactions between PFAS fluoroalkyl tails and lipid chains generate a significant driving force for PFAS reorientation and insertion. The increase in electrostatic potential across the lipid surface aids anionic PFAS insertion, but their dehydration hinders further movement. PFAS insertion enhances membrane ordering and decreases lipid fluidity, potentially affecting cellular functions by modifying membrane rigidity. The extended chain length of PFAS facilitates its interactions with the lipid membrane, resulting in a more pronounced influence on altering its structural and dynamic properties.
Collapse
Affiliation(s)
- Size Zheng
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Pranab Sarker
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Deniz Gursoy
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Tao Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
4
|
Jiang T, Guo C, Yu H, Wang Z, Zheng K, Zhang X, Tang S, Wang C, Shao H, Zhang C, Liang Y, Kong L, Gao H, McMinn A, Wang M. Habitat-Dependent DNA viral communities in atmospheric aerosols: Insights from terrestrial and marine ecosystems in East Asia. ENVIRONMENT INTERNATIONAL 2025; 197:109359. [PMID: 40054346 DOI: 10.1016/j.envint.2025.109359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
The transmission of viruses through aerosols is of growing public health concern, yet research on aerosol-associated viral communities lags behind that of terrestrial and aquatic ecosystems. Here, DNA viral diversity in natural aerosols from both over land and ocean in the East Asia region was examined. The results showed that atmospheric environments harbor a distinct viral community that differs from those present in terrestrial and aquatic ecosystems. A comparison of aerosol samples from different locations revealed that aerosol viruses are strongly influenced by altitude and their sources. Fragments of viruses that can infect pathogenic bacteria, as well as pathogenic viruses (such as herpesviruses, Inoviruses, and Iridovirus) were detected. Anthropogenically-influenced land aerosol samples contained viral communities with greater richness and diversity as well as a higher relative abundance of pathogenic and lytic viruses compared to pristine marine airborne samples. Furthermore, habitat-specific auxiliary metabolic genes (AMGs) were observed, such as the phosphate regulon (phoH), which was more prevalent in ocean aerosol samples and regulates phosphate uptake under low-phosphate conditions, thereby assisting viral hosts in overcoming metabolic challenges in different environmental conditions. This study highlights the ecological distinctness of the airborne viral community and the interconnectedness between those from land, sea, and atmosphere, underscoring the importance of evaluating their potential pathogenicity in future research.
Collapse
Affiliation(s)
- Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao, China; Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China.
| | - Hao Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Siyuan Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Chuxiao Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China; Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Chao Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China; Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Liangliang Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, China; Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, Qingdao, China; Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China; Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, China; HaideCollege, Ocean University of China, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Qiu Y, Hu G. Lung-on-a-chip: From design principles to disease applications. BIOMICROFLUIDICS 2025; 19:021501. [PMID: 40161998 PMCID: PMC11954643 DOI: 10.1063/5.0257908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 04/02/2025]
Abstract
To address the growing need for accurate lung models, particularly in light of respiratory diseases, lung cancer, and the COVID-19 pandemic, lung-on-a-chip technology is emerging as a powerful alternative. Lung-on-a-chip devices utilize microfluidics to create three-dimensional models that closely mimic key physiological features of the human lung, such as the air-liquid interface, mechanical forces associated with respiration, and fluid dynamics. This review provides a comprehensive overview of the fundamental components of lung-on-a-chip systems, the diverse fabrication methods used to construct these complex models, and a summary of their wide range of applications in disease modeling and aerosol deposition studies. Despite existing challenges, lung-on-a-chip models hold immense potential for advancing personalized medicine, drug development, and disease prevention, offering a transformative approach to respiratory health research.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Tene T, Bonilla García N, Marcatoma Tixi JA, Dávalos Villegas MX, Vacacela Gomez C, Bellucci S. Mathematical modeling of a MoSe₂-based SPR biosensor for detecting SARS-CoV-2 at nM concentrations. Front Bioeng Biotechnol 2025; 13:1547248. [PMID: 40092372 PMCID: PMC11907102 DOI: 10.3389/fbioe.2025.1547248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
The rapid and accurate detection of SARS-CoV-2 remains a critical challenge in biosensing technology, necessitating the development of highly sensitive and selective platforms. In this study, we present a mathematical modeling approach to optimize a MoSe₂-based Surface Plasmon Resonance (SPR) biosensor for detecting the novel coronavirus at nM scale. Using the Transfer Matrix Method (TMM), we systematically optimize the biosensor's structural parameters, including silver (Ag), silicon nitride (Si₃N₄), molybdenum diselenide (MoSe₂), and thiol-tethered single-stranded DNA (ssDNA) layers, to enhance sensitivity, detection accuracy, and optical performance. The results indicate that an optimized 45 nm Ag layer, 10 nm Si₃N₄ layer, and monolayer MoSe₂ configuration achieves a resonance shift (Δθ) of 0.3° at 100 nM, with a sensitivity of 197.70°/RIU and a detection accuracy of 5.24 × 10⁻2. Additionally, the incorporation of a 10 nm ssDNA functionalization layer significantly enhances molecular recognition, lowering the limit of detection (LoD) to 2.53 × 10⁻5 and improving overall biosensing efficiency. Sys₅ (MoSe₂ + ssDNA) outperforms Sys₄ (MoSe₂ without ssDNA) in terms of specificity and reliability, making it more suitable for practical applications. These findings establish the MoSe₂-based SPR biosensor as a highly promising candidate for SARS-CoV-2 detection, offering a balance between high sensitivity, optical stability, and molecular selectivity, crucial for effective viral diagnostics.
Collapse
Affiliation(s)
- Talia Tene
- Department of Chemistry, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Nataly Bonilla García
- Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo (ESPOCH), Riobamba, Ecuador
| | | | | | | | | |
Collapse
|
7
|
Zhang G, Zhou J, Lv Q, Yang R, Zhang Y, Chu J, Zhang H, Han Y, Sun K, Yuan C, Tao K. Rapid virus inactivation by nanoparticles-embedded photodynamic surfaces. J Colloid Interface Sci 2025; 679:609-618. [PMID: 39471589 DOI: 10.1016/j.jcis.2024.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
The persistent threat of viral epidemics poses significant risks to human health, highlighting the urgent need for antiviral surfaces to mitigate viral transmission through bioaerosols and surface contamination. However, there is still a scarcity of readily accessible antiviral coatings to address this critical concern. In this study, we demonstrate that photodynamic nanoparticle-embedded surfaces can swiftly inactivate both enveloped and non-enveloped viruses. We prepared core-shell structured methylene blue (MB)-loaded SiO2 nanoparticles with a high reactive oxygen species (ROS) yield (0.47 ± 0.02). The superior ROS production was maintained after modifying these nanoparticles onto air filter fibers, likely due to the prevention of aggregation-caused quenching effects. Three viruses, including both enveloped and non-enveloped types, were rapidly inactivated within just 12 min (>6 log units) under medium light intensity (660 nm, 30 mW/cm2). Mechanistic studies revealed that envelope glycoproteins are the primary targets for this rapid inactivation. Thus, photodynamic nanoparticle-embedded surfaces offer a straightforward and adaptable strategy in the fight against viral epidemics.
Collapse
Affiliation(s)
- Gengxin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiewen Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Quanjie Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ruihao Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuhan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jing Chu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haoran Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yijun Han
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Kang Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Congli Yuan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Ke Tao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
8
|
Kwak N, Tsameret S, Gaire TN, Mendoza KM, Cortus EL, Cardona C, Noyes N, Li J. Influence of rainfall on size-resolved bioaerosols around a livestock farm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176184. [PMID: 39276997 DOI: 10.1016/j.scitotenv.2024.176184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Bioaerosols, capable of transporting microorganisms, can impact human health and agriculture by spreading to nearby communities. Their transmissions are influenced by various factors, including weather conditions and human activities. However, the scarcity of detailed, taxon-specific data on bioaerosols' sizes limits our ability to assess risks associated with bioaerosols' generation and spread. This study examined the composition and size of bioaerosols at a livestock farm and a non-agricultural site, focusing on how bioaerosols evolve at different locations and meteorological conditions. The location had an impact on bioaerosol samples. We conducted 16S rRNA gene amplicon sequencing to identify bacteria genera in bioaerosols. We observed consistently higher concentrations of bioaerosols across all sizes at the livestock farm, and samples from the livestock farm exhibited greater bacterial diversity, where we identified Staphylococcus and Corynebacterium as the most abundant species. The effects of rainfall on bioaerosol diversity are complex, suggesting a dynamic interplay between bioaerosol removal and generation. After rainfall, the bioaerosol fraction of particles larger than 2.5 μm increased by nearly 400% compared to post-rain levels. Conversely, for bioaerosols below 1 μm size, the fraction decreased by 50%. Furthermore, the sequencing results showed that precipitation differentially responded to the abundance of various genera in the bioaerosols. Moreover, even for the same genus, the response to precipitation varied depending on the size of the bioaerosols. Our research reveals how size, location, and environmental conditions influence bioaerosol dynamics, enhancing our understanding of bioaerosol formation and transmission.
Collapse
Affiliation(s)
- Nohhyeon Kwak
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA
| | - Shahar Tsameret
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA
| | - Tara N Gaire
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108, USA
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | - Erin L Cortus
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Carol Cardona
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | - Noelle Noyes
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108, USA
| | - Jiayu Li
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA.
| |
Collapse
|
9
|
Qin X, Chen AA, Fang J, Sarker P, Uline MJ, Wei T. Atomistic Simulations of Hydration and Antibiofouling Behavior of Amphiphilic Polymer Brush Surfaces Functionalized with TMAO and Short Fluorocarbon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23994-24001. [PMID: 39471246 DOI: 10.1021/acs.langmuir.4c03218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Developing fouling-resistant materials is of paramount interest in marine industries and biomedical applications. In this work, we studied the interfacial hydration and surface-protein interactions of the amphiphilic brush surface functionalized with hybrid hydrophilic trimethylamine N-oxide (TMAO) and hydrophobic pentafluoroethyl groups using a combination of atomistic molecular dynamics simulations and free-energy computations. Our results show that while the interfacial hydration density of the amphiphilic surface slightly decreases with the introduction of small fluorocarbons compared to that of the pure TMAO-functionalized surface, the amphiphilic surface remains relatively strong in resisting protein adsorption. The nanosized clustering of hydrophobic fluorine atoms on the top of the amphiphilic brush surface introduces weak protein adsorption; however, due to the strong interfacial hydration and weak hydrophobic interaction, the amphiphilic surface exhibits sufficient antibiofouling activities. Our fundamental studies will be critical for the discovery of marine fouling-resistant coating surfaces.
Collapse
Affiliation(s)
- Xiaoxue Qin
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Jiahuiyu Fang
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Pranab Sarker
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mark J Uline
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Tao Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
10
|
Gao H, Liu F, Han C, Liu X, Zhou L, Zhang J, Wang R, Zou N, Zhang D, Mu W, Zhang Y, Liu F. A novel approach to managing facility airborne diseases: suppressing air pathogens with smoke aerosols generated from fungicide phase transition. PEST MANAGEMENT SCIENCE 2024; 80:5918-5928. [PMID: 39032156 DOI: 10.1002/ps.8321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Environmental microorganisms are major contributors to the development and spread of disease. Chemical disinfection can inhibit pathogens and play a preventive role against diseases. In agriculture, prolonging the floating time of chemical pesticides in the air has a positive effect on the control of airborne diseases. However, the interaction of chemical pesticides with airborne pathogens is not yet known. RESULTS Here, triazole fungicide was transformed into stable smoke aerosols in order to assess the feasibility of employing phase transition release pesticides for air disinfection. The phase transition had a minimal impact on hexaconazole (Hexa) and myclobutanil (Mycl), with their smoke formation rates remaining consistently >90%. In microscopic morphology, triadimenol (Tria) and epoxiconazole (Epox) are solid, and tebuconazole (Tebu), Hexa, Mycl and difenoconazole (Dife) are liquid. Liquid smoke has advantages over solid smoke in the inhibition of environmental pathogens. The floatability and spatial distribution of fungicide aerosol were optimized by the combination of smoke particles with different properties, so that the fungicide aerosol could meet the conditions of practical application. In practical applications, smoke exhibits a gentler deposition process at the target interface compared to spray, along with a more homogeneous distribution of fungicides. Moreover, fungicide smoke demonstrates superior control efficacy and leaves behind lower residual amounts on fruit. CONCLUSION In conclusion, the implementation of fungicide phase transition as a smoke aerosol offers a viable approach to effectively suppress pathogen aerosols and enhance the control of airborne diseases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haojie Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Fengqi Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Chong Han
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Xiaochi Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Li Zhou
- Shandong Province Institute for the Control of Agrochemicals, Jinan, People's Republic of China
| | - Jingzhi Zhang
- Shandong Siyuan Agricultural Development Co., Ltd, Zibo, People's Republic of China
| | - Ranran Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Nan Zou
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Daxia Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Yaozhong Zhang
- Shandong Province Institute for the Control of Agrochemicals, Jinan, People's Republic of China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, People's Republic of China
| |
Collapse
|
11
|
Thirugnanasampanthar M, Tian L, Rhem RG, Libera DD, Gomez M, Jackson K, Fox-Robichaud AE, Dolovich MB, Hosseinidoust Z. Unraveling the impact of operational parameters and environmental conditions on the quality of viable bacterial aerosols. PNAS NEXUS 2024; 3:pgae473. [PMID: 39529911 PMCID: PMC11551483 DOI: 10.1093/pnasnexus/pgae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Viable pathogen-laden droplets of consistent quality are essential for reliably assessing the protection offered by facemasks against airborne infections. We identified a significant gap in guidance within standardized tests for evaluating the filtration efficiencies of facemask materials using viable bacteria-laden aerosol droplets. An aerosol platform, built according to the American Society for Testing and Materials standard F2101-19, was used to validate and standardize facemask filtration test procedures. We utilized this platform to investigate the impact of varying five operating parameters, namely suspension media composition, relative humidity, pathogen concentration, and atomizer airflow and feed flow rates, on the aerosol quality of viable bacteria-laden aerosols. We achieved consistent generation of 1,700 to 3,000 viable bacteria-laden droplets sized between 2.7 and 3.3 µm under the following optimized test conditions: 1.5% w/v peptone water concentration, ≥80% relative humidity at 24 ± 2 °C, 1 × 105 CFU/mL bacterial concentration, 1.5 L/min atomizer airflow rate, and 170 μL/min feed flow rate. We also explored the consequence of deviating from these optimized test parameters on viable bacteria-laden aerosol quality. These results highlight the importance of controlling these parameters when studying airborne transmission and control.
Collapse
Affiliation(s)
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Rod G Rhem
- Affiliate, Research Institute of St Joseph's Hospital and Firestone Institute for Respiratory Health, 50 Charlton Ave East, Hamilton, ON, L8N 4A6, Canada
| | - Danielle D Libera
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Mellissa Gomez
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Kyle Jackson
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Alison E Fox-Robichaud
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
- Centre of Excellence in Protective Equipment and Materials, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Myrna B Dolovich
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
- Centre of Excellence in Protective Equipment and Materials, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Centre of Excellence in Protective Equipment and Materials, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
12
|
Creppy JR, Delache B, Lemaitre J, Horvat B, Vecellio L, Ducancel F. Administration of airborne pathogens in non-human primates. Inhal Toxicol 2024; 36:475-500. [PMID: 39388247 DOI: 10.1080/08958378.2024.2412685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system. MATERIALS AND METHODS The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies. RESULTS We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs. CONCLUSION The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.
Collapse
Affiliation(s)
- Justina R Creppy
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Benoit Delache
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université de Lyon, Lyon, France
| | - Laurent Vecellio
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Frédéric Ducancel
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
13
|
Nam KS, Piri A, Choi S, Jung J, Hwang J. Air sampling and simultaneous detection of airborne influenza virus via gold nanorod-based plasmonic PCR. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135180. [PMID: 39067289 DOI: 10.1016/j.jhazmat.2024.135180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Reliable and sensitive virus detection is essential to prevent airborne virus transmission. The polymerase chain reaction (PCR) is one of the most compelling and effective diagnostic techniques for detecting airborne pathogens. However, most PCR diagnostics rely on thermocycling, which involves a time-consuming Peltier block heating methodology. Plasmonic PCR is based on light-driven photothermal heating of plasmonic nanostructures to address the key drawbacks of traditional PCR. This study introduces a methodology for plasmonic PCR detection of air-sampled influenza virus (H1N1). An electrostatic air sampler was used to collect the aerosolized virus in a carrier liquid for 10 min. Simultaneously, the viruses collected in the liquid were transferred to a tube containing gold (Au) nanorods (aspect ratio = 3.6). H1N1 viruses were detected in 12 min, which is the total time required for reverse transcription, fast thermocycling via plasmonic heating through gold nanorods, and in situ fluorescence detection. This methodology showed a limit of detection of three RNA copies/μL liquid for H1N1 influenza virus, which is comparable to that of commercially available PCR devices. This methodology can be used for the rapid and precise identification of pathogens on-site, while significantly reducing the time required for monitoring airborne viruses.
Collapse
Affiliation(s)
- Kang Sik Nam
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Amin Piri
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea; Institute of Engineering Research, Yonsei University, Seoul 03722, Republic of Korea
| | - Sangsoo Choi
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwoo Jung
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungho Hwang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
14
|
Shen X, Xu Y, Ye Y, Huai S, Wu P, Huang J, Zhou W, Li C, Chen Y. Aerosolization ocular surface microorganisms accumulation effect during non-contact tonometer measurements. BMC Ophthalmol 2024; 24:392. [PMID: 39227827 PMCID: PMC11373106 DOI: 10.1186/s12886-024-03664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024] Open
Abstract
PURPOSE This study aimed to verify that aerosolization ocular surface microorganisms (AOSMs) accumulated during non-contact tonometry (NCT) measurements. METHODS A total of 508 participants (740 eyes) were enrolled in the study. In Experiment 1, before NCT was performed on each eye, the air was disinfected, and environment air control samples were collected via Air ideal® 3P (Bio Merieux). During NCT measurements, microbial aerosol samples were collected once from each eye. In Experiment 2, we collected initial blank control samples and then repeated Experiment 1. Finally, in Experiment 3, after the background microbial aerosol investigation, we cumulatively sampled AOSMs from each 10 participants then culture once, without any interventions to interrupt the accumulation. The collected samples were incubated and identified using matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS). RESULTS Pathogenic Aerococcus viridans and other microorganisms from human eyes can spread and accumulate in the air during NCT measurements. The species and quantity of AOSMs produced by NCT measurements can demonstrate an accumulation effect. CONCLUSION AOSMs generated during NCT measurements are highly likely to spread and accumulate in the air, thereby may increase the risk of exposure to and transmission of bio-aerosols.
Collapse
Affiliation(s)
- Xinyi Shen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuee Ye
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuo Huai
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peiyu Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinzhi Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weihe Zhou
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chunchun Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanyan Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
15
|
Demongeot J, Magal P. Data-driven mathematical modeling approaches for COVID-19: A survey. Phys Life Rev 2024; 50:166-208. [PMID: 39142261 DOI: 10.1016/j.plrev.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
In this review, we successively present the methods for phenomenological modeling of the evolution of reported and unreported cases of COVID-19, both in the exponential phase of growth and then in a complete epidemic wave. After the case of an isolated wave, we present the modeling of several successive waves separated by endemic stationary periods. Then, we treat the case of multi-compartmental models without or with age structure. Eventually, we review the literature, based on 260 articles selected in 11 sections, ranging from the medical survey of hospital cases to forecasting the dynamics of new cases in the general population. This review favors the phenomenological approach over the mechanistic approach in the choice of references and provides simulations of the evolution of the number of observed cases of COVID-19 for 10 states (California, China, France, India, Israel, Japan, New York, Peru, Spain and United Kingdom).
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, AGEIS EA7407, La Tronche, F-38700, France.
| | - Pierre Magal
- Department of Mathematics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; Univ. Bordeaux, IMB, UMR 5251, Talence, F-33400, France; CNRS, IMB, UMR 5251, Talence, F-33400, France
| |
Collapse
|
16
|
Zhao J, Yuan Y, Xue J, Hou A, Song S, Guan J, Zhang X, Mao S. Exploring the influence of microstructure and phospholipid type of liposomes on their interaction with lung. Eur J Pharm Biopharm 2024; 198:114271. [PMID: 38537907 DOI: 10.1016/j.ejpb.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
Liposome is a promising carrier for pulmonary drug delivery and the nano-sized liposomes have been widely investigated in the treatment of lung diseases. However, there still lack the knowledge of micron-sized liposomes for lung delivery, which have more advantages in terms of drug loading and sustained drug release capacity. The micron-sized liposomes can be classified into multilamellar liposome (MLL) and multivesicular liposome (MVL) according to their microstructure, thus, this study focused on exploring how the micron-sized liposomes with different microstructure and phospholipid composition influence their interaction with the lung. The MLL and MVL were prepared from different types of phospholipids (including soya phosphatidylcholine (SPC), egg yolk phosphatidylcholine (EPC), and dipalmitoyl phosphatidylcholine (DPPC)) with geometric diameter around 5 μm, and their in vitro pulmonary cell uptake, in vivo lung retention and organ distribution were investigated. The results showed that the microstructure of liposomes didn't affect pulmonary cellular uptake, in vivo lung retention and organ distribution. MLL and MVL prepared with the same phospholipid had similar cellular uptake in both NR8383 cells and A549 cells, and both of them possessed prolonged lung retention and limited distribution in other organs during 72 h. Notably, the phospholipid type presented remarkable influence on liposomes' interaction with the lung. SPC-based liposomes exhibited higher cellular uptake than the DPPC-based ones in both NR8383 cells and A549 cells, also possessed a better lung retention behavior. In conclusion, this study might provide theoretical knowledge for designing micron-sized liposomes intended for lung delivery.
Collapse
Affiliation(s)
- Jing Zhao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Yuan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingwen Xue
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anyue Hou
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shimeng Song
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
17
|
Munteanu I, Starodub E, Bazgan S, Turcan M, Paslari T, Podoleanu D, Enaki NA. Ultraviolet C intensity dependence of decontamination efficiency for pathogens as function of repacked metamaterials with screw channels. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:133-145. [PMID: 38418765 DOI: 10.1007/s00249-024-01702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
A new method for repackaging optical metamaterials formed from quartz spheres (fibers) of various diameters is proposed for ultraviolet C disinfection of infected liquids by pathogens (viruses and bacteria). The main idea of the new equipment is connected with the rotation of a contaminated fluid by screw channels within a metamaterial matrix prepared from UVC fibers/spherical optics, to improve the decontamination efficiency. In demonstration of the viability of this approach, dynamic and static inactivation of Baker's yeast via Ultraviolet C radiation regimes are used in this paper to show the efficacy of decontamination within the screw channels.
Collapse
Affiliation(s)
- Ion Munteanu
- Quantum Optics and Kinetic Processes Lab, Institute of Applied Physics, Moldova State University, 5 Academiei Street, Chișinău, 2028, Republic of Moldova.
| | - Elena Starodub
- Quantum Optics and Kinetic Processes Lab, Institute of Applied Physics, Moldova State University, 5 Academiei Street, Chișinău, 2028, Republic of Moldova
| | - Sergiu Bazgan
- Quantum Optics and Kinetic Processes Lab, Institute of Applied Physics, Moldova State University, 5 Academiei Street, Chișinău, 2028, Republic of Moldova
| | - Marina Turcan
- Quantum Optics and Kinetic Processes Lab, Institute of Applied Physics, Moldova State University, 5 Academiei Street, Chișinău, 2028, Republic of Moldova
| | - Tatiana Paslari
- Quantum Optics and Kinetic Processes Lab, Institute of Applied Physics, Moldova State University, 5 Academiei Street, Chișinău, 2028, Republic of Moldova
| | - Diana Podoleanu
- Quantum Optics and Kinetic Processes Lab, Institute of Applied Physics, Moldova State University, 5 Academiei Street, Chișinău, 2028, Republic of Moldova
| | - Nicolae A Enaki
- Quantum Optics and Kinetic Processes Lab, Institute of Applied Physics, Moldova State University, 5 Academiei Street, Chișinău, 2028, Republic of Moldova
| |
Collapse
|
18
|
Fleckenstein F, Stephan S, Hasse H. Elucidating the behavior of the SARS-CoV-2 virus surface at vapor-liquid interfaces using molecular dynamics simulation. Proc Natl Acad Sci U S A 2024; 121:e2317194121. [PMID: 38502700 PMCID: PMC10990154 DOI: 10.1073/pnas.2317194121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/15/2024] [Indexed: 03/21/2024] Open
Abstract
Aerosols play a major role in the transmission of the SARS-CoV-2 virus. The behavior of the virus within aerosols is therefore of fundamental importance. On the surface of a SARS-CoV-2 virus, there are about 40 spike proteins, which each have a length of about 20 nm. They are glycosylated trimers, which are highly flexible, due to their structure. These spike proteins play a central role in the intrusion of the virus into human host cells and are, therefore, a focus of vaccine development. In this work, we have studied the behavior of spike proteins of the SARS-CoV-2 virus in the presence of a vapor-liquid interface by molecular dynamics (MD) simulations. Systematically, the behavior of the spike protein at different distances to a vapor-liquid interface were studied. The results reveal that the spike protein of the SARS-CoV-2 virus is repelled from the vapor-liquid interface and has a strong affinity to stay inside the bulk liquid phase. Therefore, the spike protein bends when a vapor-liquid interface approaches the top of the protein. This has important consequences for understanding the behavior of the virus during the dry-out of aerosol droplets.
Collapse
Affiliation(s)
- Florian Fleckenstein
- Laboratory of Engineering Thermodynamics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Kaiserslautern67663, Germany
| | - Simon Stephan
- Laboratory of Engineering Thermodynamics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Kaiserslautern67663, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Kaiserslautern67663, Germany
| |
Collapse
|
19
|
Zhang N, Yang X, Su B, Dou Z. Analysis of SARS-CoV-2 transmission in a university classroom based on real human close contact behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170346. [PMID: 38281642 DOI: 10.1016/j.scitotenv.2024.170346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Due to high-population density, frequent close contact, possible poor ventilation, university classrooms are vulnerable for transmission of respiratory infectious diseases. Close contact and long-range airborne are possibly main routes for SARS-CoV-2 transmission. In this study, taking a university classroom in Beijing for example, close contact behaviors of students were collected through a depth-detection device, which could detect depth to each pixel of the image, based on semi-supervised learning. Finally, >23 h of video data were obtained. Using Computational Fluid Dynamics, the relationship between viral exposure and close contact behaviors (e.g. interpersonal distance, relative facial orientations, and relative positions) was established. A multi-route transmission model (short-range airborne, mucous deposition, and long-range airborne) of infectious diseases considering real close contact behaviors was developed. In the case of Omicron, the risk of infection in university classrooms and the efficacy of different interventions were assessed based on dose-response model. The average interpersonal distance in university classrooms is 0.9 m (95 % CI, 0.5 m-1.4 m), with the highest proportion of face-to-back contact at 87.0 %. The risk of infection of susceptible students per 45-min lesson was 1 %. The relative contributions of short-range airborne and long-range airborne transmission were 40.5 % and 59.5 %, respectively, and the mucous deposition was basically negligible. When all students are wearing N95 respirators, the infection risk could be reduced by 96 %, the relative contribution of long-range airborne transmission increases to 95.6 %. When the fresh air per capita in the classroom is 24 m3/h/person, the virus exposure could be decreased by 81.1 % compared to the real situation with 1.02 m3/h/person. In a classroom with an occupancy rate of 50 %, after optimized arrangement of student distribution, the infection risk could be decreased by 62 %.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Xueze Yang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Boni Su
- China Electric Power Planning & Engineering Institute, Beijing, China
| | - Zhiyang Dou
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Wei Y, Chen AX, Lin Y, Wei T, Qiao B. Allosteric regulation in SARS-CoV-2 spike protein. Phys Chem Chem Phys 2024; 26:6582-6589. [PMID: 38329233 DOI: 10.1039/d4cp00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Allosteric regulation is common in protein-protein interactions and is thus promising in drug design. Previous experimental and simulation work supported the presence of allosteric regulation in the SARS-CoV-2 spike protein. Here the route of allosteric regulation in SARS-CoV-2 spike protein is examined by all-atom explicit solvent molecular dynamics simulations, contrastive machine learning, and the Ohm approach. It was found that peptide binding to the polybasic cleavage sites, especially the one at the first subunit of the trimeric spike protein, activates the fluctuation of the spike protein's backbone, which eventually propagates to the receptor-binding domain on the third subunit that binds to ACE2. Remarkably, the allosteric regulation routes starting from the polybasic cleavage sites share a high fraction (39-67%) of the critical amino acids with the routes starting from the nitrogen-terminal domains, suggesting the presence of an allosteric regulation network in the spike protein. Our study paves the way for the rational design of allosteric antibody inhibitors.
Collapse
Affiliation(s)
- Yong Wei
- Department of Computer Science, High Point University, High Point, NC 27268, USA
| | - Amy X Chen
- Thomas Jefferson High School for Science and Technology, Alexandria, VA 22312, USA
| | - Yuewei Lin
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Tao Wei
- Department of Chemical Engineering and Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA.
| | - Baofu Qiao
- Department of Natural Sciences, Baruch College, City University of New York, New York, NY 10010, USA.
| |
Collapse
|
21
|
Xu X, Goros RA, Dong Z, Meng X, Li G, Chen W, Liu S, Ma J, Zuo YY. Microplastics and Nanoplastics Impair the Biophysical Function of Pulmonary Surfactant by Forming Heteroaggregates at the Alveolar-Capillary Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21050-21060. [PMID: 38055865 DOI: 10.1021/acs.est.3c06668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental pollutants produced through the degradation of plastic products. Nanoplastics (NPs), commonly coexisting with MPs in the environment, are submicrometer debris incidentally produced from fragmentation of MPs. We studied the biophysical impacts of MPs/NPs derived from commonly used commercial plastic products on a natural pulmonary surfactant extracted from calf lung lavage. It was found that in comparison to MPs/NPs derived from lunch boxes made of polypropylene or from drinking water bottles made of poly(ethylene terephthalate), the MP/NP derived from foam packaging boxes made of polystyrene showed the highest adverse impact on the biophysical function of the pulmonary surfactant. Accordingly, intranasal exposure of MP/NP derived from the foam boxes also induced the most serious proinflammatory responses and lung injury in mice. Atomic force microscopy revealed that NP particles were adsorbed on the air-water surface and heteroaggregated with the pulmonary surfactant film. These results indicate that although the incidentally formed NPs only make up a small mass fraction, they likely play a predominant role in determining the nano-bio interactions and the lung toxicity of MPs/NPs by forming heteroaggregates at the alveolar-capillary interface. These findings may provide novel insights into understanding the health impact of MPs and NPs on the respiratory system.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Ria A Goros
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Xin Meng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, P. R. China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| |
Collapse
|
22
|
Hu X, Wang S, Fu S, Qin M, Lyu C, Ding Z, Wang Y, Wang Y, Wang D, Zhu L, Jiang T, Sun J, Ding H, Wu J, Chang L, Cui Y, Pang X, Wang Y, Huang W, Yang P, Wang L, Ma G, Wei W. Intranasal mask for protecting the respiratory tract against viral aerosols. Nat Commun 2023; 14:8398. [PMID: 38110357 PMCID: PMC10728126 DOI: 10.1038/s41467-023-44134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/01/2023] [Indexed: 12/20/2023] Open
Abstract
The spread of many infectious diseases relies on aerosol transmission to the respiratory tract. Here we design an intranasal mask comprising a positively-charged thermosensitive hydrogel and cell-derived micro-sized vesicles with a specific viral receptor. We show that the positively charged hydrogel intercepts negatively charged viral aerosols, while the viral receptor on vesicles mediates the entrapment of viruses for inactivation. We demonstrate that when displaying matched viral receptors, the intranasal masks protect the nasal cavity and lung of mice from either severe acute respiratory syndrome coronavirus 2 or influenza A virus. With computerized tomography images of human nasal cavity, we further conduct computational fluid dynamics simulation and three-dimensional printing of an anatomically accurate human nasal cavity, which is connected to human lung organoids to generate a human respiratory tract model. Both simulative and experimental results support the suitability of intranasal masks in humans, as the likelihood of viral respiratory infections induced by different variant strains is dramatically reduced.
Collapse
Affiliation(s)
- Xiaoming Hu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shaotong Fu
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zhaowen Ding
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yishu Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071, Beijing, China
| | - Tao Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100029, Beijing, China
| | - Hui Ding
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 518035, Shenzhen, China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lingqian Chang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, 100034, Beijing, China
- Institute of Clinical Pharmacology, Peking University, 100191, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, 100034, Beijing, China
- Institute of Clinical Pharmacology, Peking University, 100191, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 102629, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, 102629, Beijing, China
| | - Peidong Yang
- Department of Breast Surgery, Affiliated Quanzhou First Hospital of Fujian Medical University, 362000, Quanzhou, China
| | - Limin Wang
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
23
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
24
|
Takeda A, Ando Y, Tomio J. Long- and Short-Term Trends in Outpatient Attendance by Speciality in Japan: A Joinpoint Regression Analysis in the Context of the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7133. [PMID: 38063563 PMCID: PMC10705918 DOI: 10.3390/ijerph20237133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
The COVID-19 pandemic resulted in a decline in outpatient attendance. Therefore, this study aimed to clarify long- and short-term clinic attendance trends by speciality in Japan between 2009 and 2021. A retrospective observational study of Japan's claims between 2009 and 2021 was conducted using the Estimated Medical Expenses Database. The number of monthly outpatient claims in clinics was used as a proxy indicator for monthly outpatient attendance, and specialities were categorised into internal medicine, paediatrics, surgery, orthopaedics, dermatology, obstetrics and gynaecology, ophthalmology, otolaryngology, and dentistry. The annually summarised age-standardised proportions and the percentage of change were calculated. Joinpoint regression analysis was used to evaluate long-term secular trends. The data set included 4,975,464,894 outpatient claims. A long-term statistically significant decrease was observed in outpatient attendance in internal medicine, paediatrics, surgery, ophthalmology, and otolaryngology during the pandemic. From March 2020 to December 2021, which includes the COVID-19 pandemic period, outpatient attendance in paediatrics, surgery, and otolaryngology decreased in all months compared with that of the corresponding months in 2019. For some specialities, the impact of the pandemic was substantial, even in the context of long-term trends. Speciality-specific preparedness is required to ensure essential outpatient services in future public health emergencies.
Collapse
Affiliation(s)
- Asuka Takeda
- Department of Health Crisis Management, National Institute of Public Health, Wako-shi, Saitama 3510197, Japan
| | - Yuichi Ando
- Department of Health Promotion, National Institute of Public Health, Wako-shi, Saitama 3510197, Japan
| | - Jun Tomio
- Department of Health Crisis Management, National Institute of Public Health, Wako-shi, Saitama 3510197, Japan
| |
Collapse
|
25
|
Ijaz MK, Sattar SA, Nims RW, Boone SA, McKinney J, Gerba CP. Environmental dissemination of respiratory viruses: dynamic interdependencies of respiratory droplets, aerosols, aerial particulates, environmental surfaces, and contribution of viral re-aerosolization. PeerJ 2023; 11:e16420. [PMID: 38025703 PMCID: PMC10680453 DOI: 10.7717/peerj.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Syed A. Sattar
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Stephanie A. Boone
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Charles P. Gerba
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
26
|
Goros RA, Xu X, Li G, Zuo YY. Adverse Biophysical Impact of e-Cigarette Flavors on Pulmonary Surfactant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15882-15891. [PMID: 37824199 DOI: 10.1021/acs.est.3c05896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The attractiveness and abundance of flavors are primary factors eliciting youth to use e-cigarettes. Emerging studies in recent years revealed the adverse health impact of e-cigarette flavoring chemicals, including disruption of the biophysical function of pulmonary surfactants in the lung. Nevertheless, a comprehensive understanding of the biophysical impact of various flavoring chemicals is still lacking. We used constrained drop surfactometry as a new alternative method to study the biophysical impact of flavored e-cigarette aerosols on an animal-derived natural pulmonary surfactant. The dose of exposure to e-cigarette aerosols was quantified with a quartz crystal microbalance, and alterations to the ultrastructure of the surfactant film were visualized using atomic force microscopy. We have systematically studied eight representative flavoring chemicals (benzyl alcohol, menthol, maltol, ethyl maltol, vanillin, ethyl vanillin, ethyl acetate, and ethyl butyrate) and six popular recombinant flavors (coffee, vanilla, tobacco, cotton candy, menthol/mint, and chocolate). Our results suggested a flavor-dependent inhibitory effect of e-cigarette aerosols on the biophysical properties of the pulmonary surfactant. A qualitative phase diagram was proposed to predict the hazardous potential of various flavoring chemicals. These results provide novel implications in understanding the environmental, health, and safety impacts of e-cigarette aerosols and may contribute to better regulation of e-cigarette products.
Collapse
Affiliation(s)
- Ria A Goros
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Xiaojie Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| |
Collapse
|
27
|
Xu X, Li G, Zuo YY. Constrained drop surfactometry for studying adsorbed pulmonary surfactant at physiologically relevant high concentrations. Am J Physiol Lung Cell Mol Physiol 2023; 325:L508-L517. [PMID: 37642656 DOI: 10.1152/ajplung.00101.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/15/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Exogenous surfactant therapy has been used as a standard clinical intervention for treating premature newborns with respiratory distress syndrome. The phospholipid concentrations of exogenous surfactants used in clinical practice are consistently higher than 25 mg/mL; while it was estimated that the phospholipid concentration of endogenous surfactant is approximately in the range between 15 and 50 mg/mL. However, most in vitro biophysical simulations of pulmonary surfactants were only capable of studying surfactant concentrations up to 3 mg/mL, one order of magnitude lower than the physiologically relevant concentration. Using a new in vitro biophysical model, called constrained drop surfactometry, in conjunction with atomic force microscopy and other technological advances, we have investigated the biophysical properties, ultrastructure, and topography of the pulmonary surfactant film adsorbed from the subphase at physiologically relevant high surfactant concentrations of 10-35 mg/mL. It was found that the effect of surfactant concentration on the dynamic surface activity of the surfactant film was only important when the surface area of the surfactant film varied no more than 15%, mimicking normal tidal breathing. The adsorbed surfactant film depicts a multilayer conformation consisting of a layer-by-layer assembly of stacked bilayers with the height of the multilayers proportional to the surfactant concentration. Our experimental data suggest that the biophysical function of these multilayer structures formed after de novo adsorption is to act as a buffer zone to store surface-active materials ejected from the interfacial monolayer under extreme conditions such as deep breathing.NEW & NOTEWORTHY An in vitro biophysical model, called constrained drop surfactometry, was developed to study the biophysical properties, ultrastructure, and topography of the pulmonary surfactant film adsorbed from the subphase at physiologically relevant high surfactant concentrations of 10-35 mg/mL. These results suggest that the biophysical function of multilayers formed after de novo adsorption is to act as a buffer zone to store surface-active materials ejected from the interfacial monolayer under extreme conditions such as deep breathing.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States
| |
Collapse
|
28
|
Liu Z, Li H, Chu J, Huang Z, Xiao X, Wang Y, He J. The impact of high background particle concentration on the spatiotemporal distribution of Serratia marcescens bioaerosol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131863. [PMID: 37354722 DOI: 10.1016/j.jhazmat.2023.131863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Airborne transmission is a well-established mode of dissemination for infectious diseases, particularly in closed environments. However, previous research has often overlooked the potential impact of background particle concentration on bioaerosol characteristics. We compared the spatial and temporal distributions of bioaerosols under two levels of background particle concentration: heavily polluted (150-250 μg/m3) and excellent (0-35 μg/m3) in a typical ward. Serratia marcescens bioaerosol was adopted as a bioaerosol tracer, and the bioaerosol concentrations were quantified using six-stage Andersen cascade impactors. The results showed a significant reduction (over at least 62.9%) in bioaerosol concentration under heavily polluted levels compared to excellent levels at all sampling points. The temporal analysis also revealed that the decay rate of bioaerosols was higher (at least 0.654 min-1) under heavily polluted levels compared to excellent levels. These findings suggest that background particles can facilitate bioaerosol removal, contradicting the assumption made in previous research that background particle has no effect on bioaerosol characteristics. Furthermore, we observed differences in the size distribution of bioaerosols between the two levels of background particle concentration. The average bioaerosols size under heavily polluted levels was found to be higher than that under excellent levels, and the average particle size under heavily polluted levels gradually increased with time. In conclusion, these results highlight the importance of considering background particle concentration in future research on bioaerosol characteristics.
Collapse
Affiliation(s)
- Zhijian Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Haochuan Li
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jiaqi Chu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhenzhe Huang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Xia Xiao
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Yongxin Wang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Junzhou He
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China.
| |
Collapse
|
29
|
Xu X, Xia T. Recent Advances in Site-Specific Lipid Nanoparticles for mRNA Delivery. ACS NANOSCIENCE AU 2023; 3:192-203. [PMID: 37360845 PMCID: PMC10288611 DOI: 10.1021/acsnanoscienceau.2c00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 06/28/2023]
Abstract
The success of mRNA vaccines during the COVID-19 pandemic has greatly accelerated the development of mRNA therapy. mRNA is a negatively charged nucleic acid that serves as a template for protein synthesis in the ribosome. Despite its utility, the instability of mRNA requires suitable carriers for in vivo delivery. Lipid nanoparticles (LNPs) are employed to protect mRNA from degradation and enhance its intracellular delivery. To further optimize the therapeutic efficacy of mRNA, site-specific LNPs have been developed. Through local or systemic administration, these site-specific LNPs can accumulate in specific organs, tissues, or cells, allowing for the intracellular delivery of mRNA to specific cells and enabling the exertion of local or systemic therapeutic effects. This not only improves the efficiency of mRNA therapy but also reduces off-target adverse effects. In this review, we summarize recent site-specific mRNA delivery strategies, including different organ- or tissue-specific LNP after local injection, and organ-specific or cell-specific LNP after intravenous injection. We also provide an outlook on the prospects of mRNA therapy.
Collapse
Affiliation(s)
- Xiao Xu
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Tian Xia
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Xu Q, Xiao F, Xu H. Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application. Trends Analyt Chem 2023; 161:116999. [PMID: 36852170 PMCID: PMC9946731 DOI: 10.1016/j.trac.2023.116999] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/26/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
The spread of COVID-19 has caused huge economic losses and irreversible social impact. Therefore, to successfully prevent the spread of the virus and solve public health problems, it is urgent to develop detection methods with high sensitivity and accuracy. However, existing detection methods are time-consuming, rely on instruments, and require skilled operators, making rapid detection challenging to implement. Biosensors based on fluorescent nanoparticles have attracted interest in the field of detection because of their advantages, such as high sensitivity, low detection limit, and simple result readout. In this review, we systematically describe the synthesis, intrinsic advantages, and applications of organic dye-doped fluorescent nanoparticles, metal nanoclusters, up-conversion particles, quantum dots, carbon dots, and others for virus detection. Furthermore, future research initiatives are highlighted, including green production of fluorescent nanoparticles with high quantum yield, speedy signal reading by integrating with intelligent information, and error reduction by coupling with numerous fluorescent nanoparticles.
Collapse
Affiliation(s)
- Qian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
31
|
He T, Jin L, Li X. On the triad of air PM pollution, pathogenic bioaerosols, and lower respiratory infection. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1067-1077. [PMID: 34236582 PMCID: PMC8264819 DOI: 10.1007/s10653-021-01025-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/24/2021] [Indexed: 05/21/2023]
Abstract
Airborne particulate matter (PM) pollution, as a leading environmental health risk, causes millions of premature deaths globally every year. Lower respiratory infection (LRI) is a sensitive response to short-term exposure to outdoor PM pollution. The airborne transmission of etiological agents of LRI, as an important pathway for infection and morbidity, bridges the public health issues of air quality and pathogen infectivity, virulence, resistance, and others. Enormous efforts are underway to identify common pathogens and substances that are etiological agents for LRI and to understand the underlying toxicological and clinical basis of health effects by identifying mechanistic pathways. Seasonal variations and geographical disparities in the survival and infectivity of LRI pathogens are unsolved mysteries. Weather conditions in geographical areas may have a key effect, but also potentially connect LRI with short-term increases in ambient air PM pollution. Statistical associations show that short-term elevations in fine and coarse PM lead to increases in respiratory infections, but the causative agents could be chemical or microbiological and be present individually or in mixtures, and the interactions between chemical and microbiological agents remain undefined. Further investigations on high-resolution monitoring of airborne pathogens in relation to PM pollution for an integrated exposure-response assessment and mechanistic study are warranted. Improving our understanding of the spatiotemporal features of pathogenic bioaerosols and air pollutants and translating scientific evidence into effective policies is vital to reducing the health risks and devastating death toll from PM pollution.
Collapse
Affiliation(s)
- Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
32
|
Desai G, Ramachandran G, Goldman E, Esposito W, Galione A, Lal A, Choueiri TK, Fay A, Jordan W, Schaffner DW, Caravanos J, Grignard E, Mainelis G. Efficacy of Grignard Pure to Inactivate Airborne Phage MS2, a Common SARS-CoV-2 Surrogate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4231-4240. [PMID: 36853925 PMCID: PMC10001433 DOI: 10.1021/acs.est.2c08632] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Grignard Pure (GP) is a unique and proprietary blend of triethylene glycol (TEG) and inert ingredients designed for continuous antimicrobial treatment of air. TEG has been designated as a ″Safer Chemical" by the US EPA. GP has already received approval from the US EPA under its Section 18 Public Health Emergency Exemption program for use in seven states. This study characterizes the efficacy of GP for inactivating MS2 bacteriophage─a nonenveloped virus widely used as a surrogate for SARS-CoV-2. Experiments measured the decrease in airborne viable MS2 concentration in the presence of different concentrations of GP from 60 to 90 min, accounting for both natural die-off and settling of MS2. Experiments were conducted both by introducing GP aerosol into air containing MS2 and by introducing airborne MS2 into air containing GP aerosol. GP is consistently able to rapidly reduce viable MS2 bacteriophage concentration by 2-3 logs at GP concentrations of 0.04-0.5 mg/m3 (corresponding to TEG concentrations of 0.025 to 0.287 mg/m3). Related GP efficacy experiments by the US EPA, as well as GP (TEG) safety and toxicology, are also discussed.
Collapse
Affiliation(s)
- Grishma Desai
- Grignard
Company, LLC, Rahway, New Jersey 07065, United States
| | - Gurumurthy Ramachandran
- Department
of Environmental Health and Engineering, Johns Hopkins Education and
Research Center for Occupational Safety and Health, Bloomberg School
of Public Health, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Emanuel Goldman
- Department
of Microbiology, Biochemistry, and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, New Jersey 07103, United States
| | - William Esposito
- Founder, Ambient Group, Inc., New York, New York 10018, United States
| | - Antony Galione
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Altaf Lal
- Former Chief,
Molecular Vaccine Section, CDC. Former Health Attaché and HHS
Regional Representative for South Asia, Former US FDA Country Director
- India, Atlanta, Georgia 30345, United States
| | - Toni K. Choueiri
- Dana-Farber
Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Andre Fay
- Pontifícia
Universidade Católica do Rio Grande do Sul, School of Medicine, Porto Alegre, Rio Grande
do Sul 90619-900, Brazil
| | - William Jordan
- Former Deputy
Director, Office of Pesticide Programs, Environmental Protection Agency, William Jordan Consulting, Washington, District of
Columbia 20016, United States
| | - Donald W. Schaffner
- Department
of Food Science, School of Environmental and Biological Sciences,
Rutgers, The State University of NJ, New Brunswick, New Jersey 08902, United States
| | - Jack Caravanos
- Clinical
Professor
of Environmental Public Health Services, New York University, New York, New York 10012, United States
| | - Etienne Grignard
- Founder, CEO, Grignard
Pure, LLC, Rahway, New Jersey 07065, United States
| | - Gediminas Mainelis
- Department
of Environmental Sciences, School of Environmental and Biological
Sciences, Rutgers, The State University
of NJ, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
33
|
Yang WW, Hsu CW, Chan YJ, Su SB, Feng IJ, Hou CY, Huang CY. Using Real-Time PCR Fluorescence Reaction Values to Improve SARS-CoV-2 Virus Detection and Benefit Clinical Decision-Making. Life (Basel) 2023; 13:life13030683. [PMID: 36983837 PMCID: PMC10057560 DOI: 10.3390/life13030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/05/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
This study aimed to compare the SARS-CoV-2 nucleic acid detection results of the BD MAX™ System and other platforms to formulate an optimized laboratory verification process. The re-examination of 400 samples determined as positive by BD MAX™ indicated that the inconsistency rate between BD MAX™ and the other platforms was 65.8%; the inconsistency rate of single-gene-positive results was as high as 99.2%. A receiver operating characteristic curve was drawn for the relative light unit (RLU) values of samples positive for a single gene, and RLU 800 was used as the cutoff. After setting the retest standard as single-gene positive and RLU ≥ 800, the number of the 260 BD MAX™ single-gene positives that needed to be confirmed again was 36 (13.8%) and the number that could be directly reported as negative was 224 (86.2%). This verification process can shorten the reporting period and speed up the epidemic adjustment time and turnover rate of special wards, thereby improving SARS-CoV-2 detection efficiency and clinical decision-making.
Collapse
Affiliation(s)
- Wan-Wen Yang
- Department of Clinical Pathology, Chi-Mei Medical Center, Liouying, Tainan 736402, Taiwan
| | - Chin-Wen Hsu
- Department of Family Medicine, Chi-Mei Medical Center, Liouying, Tainan 736402, Taiwan
| | - Yu-Ju Chan
- Department of Family Medicine, Chi-Mei Medical Center, Liouying, Tainan 736402, Taiwan
| | - Shih-Bin Su
- Division of Occupational Medicine, Chi-Mei Medical Center, Liouying, Tainan 736402, Taiwan
- Division of Occupational Medicine, Chi-Mei Medical Center, Tainan 710402, Taiwan
| | - I-Jung Feng
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chia-Yi Hou
- Department of Clinical Pathology, Chi-Mei Medical Center, Liouying, Tainan 736402, Taiwan
- Correspondence: (C.-Y.H.); (C.-Y.H.)
| | - Chien-Yuan Huang
- Division of Occupational Medicine, Chi-Mei Medical Center, Liouying, Tainan 736402, Taiwan
- Division of Occupational Medicine, Chi-Mei Medical Center, Tainan 710402, Taiwan
- Correspondence: (C.-Y.H.); (C.-Y.H.)
| |
Collapse
|
34
|
Liu Z, Wu J, Yang G, Zhang X, Dai Z. A numerical study of COVID-19-laden droplets dispersion in aircraft cabin ventilation system. Heliyon 2023; 9:e13920. [PMID: 36851973 PMCID: PMC9946782 DOI: 10.1016/j.heliyon.2023.e13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Ventilation systems for aircraft cabins are mainly used to maintain a comfortable environment in the cabin and ensure the health of passengers. This study evaluates the decontamination performance of two cabin ventilation systems, the displacement ventilation (DV) system and the mixing ventilation (MV) system, in preventing contamination by virus (COVID-19)-laden droplets. The Euler-Lagrange method was used to computationally model droplet dispersion of different diameters and their behavior in the two systems was contrastively analyzed. Statistics on droplet suspension ratios and duration as well as the infection probability of each passenger were also computed. It was found that11.07% fewer droplet remained suspended in the DV system were than those in the MV system 10s from droplet release. In addition, the number of droplets extracted from the exhausts in the DV system was 13.15% more than the MV system at the 400s mark. In the DV system, higher ambient wind velocities were also found to locally increase infection probability for passengers in certain locations.
Collapse
Affiliation(s)
- Zhuxun Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyi Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China,Corresponding author.
| | - Guang Yang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xintai Zhang
- COMAC Shanghai Aircraft Design & Research Institute, Shanghai 201203, China
| | - Zheng Dai
- COMAC Shanghai Aircraft Design & Research Institute, Shanghai 201203, China
| |
Collapse
|
35
|
Glass A, Klinkhammer KE, Christofferson RC, Mores CN. Efficacy of copper blend coatings in reducing SARS-CoV-2 contamination. Biometals 2023; 36:217-225. [PMID: 36474101 PMCID: PMC9735165 DOI: 10.1007/s10534-022-00473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 is a highly infectious virus and etiologic agent of COVID-19, which is spread by respiratory droplets, aerosols, and contaminated surfaces. Copper is a known antiviral agent, and has resulted in successful reduction of pathogens and infections by 83-99.9% when coated on surfaces in intensive care units. Additionally, copper has been shown to inactivate pathogens such as Coronavirus 226E, a close relative of SARS-CoV-2. Here, we examine the ability of two copper blends with differing compositions to inactivate SARS-CoV-2 virus at different time points. Copper Blend 2 (75.07% pure copper) was found to significantly reduce (over 50%) the viability of SARS-CoV-2 at 5 min of contact, with at least 98% reduction in recovered virus at 20 min (vs. plastic control). However, Copper Blend 1 (48.26% pure copper), was not found to significantly reduce viability of SARS-CoV-2 at any time point when compared to plastic. This may indicate that there is an important percentage of copper content in materials that is needed to effectively inactivate SARS-CoV-2. Overall, this study shows that over the course of 20 min, coatings made of copper materials can significantly reduce the recovery of infectious SARS-CoV-2 compared to uncoated controls, indicating the effective use of copper for viral inactivation on surfaces. Furthermore, it may suggest higher copper content has stronger antiviral properties. This could have important implications when short turnaround times are needed for cleaning and disinfecting rooms or equipment, especially in strained healthcare settings which are struggling to keep up with demand.
Collapse
Affiliation(s)
- Arielle Glass
- Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Katharina E Klinkhammer
- Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | | | - Christopher N Mores
- Milken Institute School of Public Health, The George Washington University, Washington, DC, USA.
| |
Collapse
|
36
|
Cralley AL, Vigneshwar N, Moore EE, Dubose J, Brenner ML, Sauaia A. Zone 1 Endovascular Balloon Occlusion of the Aorta vs Resuscitative Thoracotomy for Patient Resuscitation After Severe Hemorrhagic Shock. JAMA Surg 2023; 158:140-150. [PMID: 36542395 PMCID: PMC9856952 DOI: 10.1001/jamasurg.2022.6393] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/27/2022] [Indexed: 12/24/2022]
Abstract
Importance Aortic occlusion (AO) is a lifesaving therapy for the treatment of severe traumatic hemorrhagic shock; however, there remains controversy whether AO should be accomplished via resuscitative thoracotomy (RT) or via endovascular balloon occlusion of the aorta (REBOA) in zone 1. Objective To compare outcomes of AO via RT vs REBOA zone 1. Design, Setting, and Participants This was a comparative effectiveness research study using a multicenter registry of postinjury AO from October 2013 to September 2021. AO via REBOA zone 1 (above celiac artery) was compared with RT performed in the emergency department of facilities experienced in both procedures and documented in the prospective multicenter Aortic Occlusion for Resuscitation in Trauma and Acute Care Surgery (AORTA) registry. Propensity score matching (PSM) with exact institution matching was used, in addition to subgroup multivariate analysis to control for confounders. The study setting included the ED, where AO via RT or REBOA was performed, and participants were adult trauma patients 16 years or older. Exposures AO via REBOA zone 1 vs RT. Main Outcomes and Measures The primary outcome was survival. Secondary outcomes were ventilation-free days (VFDs), intensive care unit (ICU)-free days, discharge Glasgow Coma Scale score, and Glasgow Outcome Score (GOS). Results A total of 991 patients (median [IQR] age, 32 [25-48] years; 808 male individuals [81.9%]) with a median (IQR) Injury Severity Score of 29 (18-50) were included. Of the total participants, 306 (30.9%) had AO via REBOA zone 1, and 685 (69.1%) had AO via RT. PSM selected 112 comparable patients (56 pairs). REBOA zone 1 was associated with a statistically significant lower mortality compared with RT (78.6% [44] vs 92.9% [52]; P = .03). There were no significant differences in VFD greater than 0 (REBOA, 18.5% [10] vs RT, 7.1% [4]; P = .07), ICU-free days greater than 0 (REBOA, 18.2% [10] vs RT, 7.1% [4]; P = .08), or discharge GOS of 5 or more (REBOA, 7.5% [4] vs RT, 3.6% [2]; P = .38). Multivariate analysis confirmed the survival benefit of REBOA zone 1 after adjustment for significant confounders (relative risk [RR], 1.25; 95% CI, 1.15-1.36). In all subgroup analyses (cardiopulmonary resuscitation on arrival, traumatic brain injury, chest injury, pelvic injury, blunt/penetrating mechanism, systolic blood pressure ≤60 mm Hg on AO initiation), REBOA zone 1 offered an either similar or superior survival. Conclusions and Relevance Results of this comparative effectiveness research suggest that REBOA zone 1 provided better or similar survival than RT for patients requiring AO postinjury. These findings provide the ethically necessary equipoise between these therapeutic approaches to allow the planning of a randomized controlled trial to establish the safety and effectiveness of REBOA zone 1 for AO in trauma resuscitation.
Collapse
Affiliation(s)
- Alexis L. Cralley
- Department of Surgery, School of Medicine, University of Colorado, Denver
| | - Navin Vigneshwar
- Department of Surgery, School of Medicine, University of Colorado, Denver
| | - Ernest E. Moore
- Department of Surgery, School of Medicine, University of Colorado, Denver
- Ernest E. Moore Shock Trauma Center at Denver Health, Denver, Colorado
| | - Joseph Dubose
- Department of Surgery, School of Medicine, University of Texas, Austin
| | - Megan L. Brenner
- Department of Surgery, University of California, Riverside School of Medicine, Moreno Valley
| | - Angela Sauaia
- Department of Surgery, School of Medicine, University of Colorado, Denver
- Department of Health Systems, Management and Policy, School of Public Health, University of Colorado Denver, Aurora
| |
Collapse
|
37
|
Vohra SB, Kumar CM. International survey of ophthalmic anaesthesia service provision, protection of anaesthesia providers and patients during COVID-19 pandemic: a wake-up call. Eye (Lond) 2023; 37:548-553. [PMID: 35220400 PMCID: PMC8881697 DOI: 10.1038/s41433-022-01979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
AIMS This international survey was conducted to study the impact of Covid-19 pandemic on the provision and practices of ophthalmic anaesthesia, evaluate the methods employed by parent ophthalmic units for safeguarding their anaesthesia providers and patients during lockdown, and to assess pandemic's effect on anaesthesia providers as individuals. The study was done with the hope that the results will help in protecting patients and safeguarding precious human resource by better management if this pandemic was to continue or there was to be another pandemic. METHODS An anonymous questionnaire survey was distributed electronically between December 2020-January 2021 to the practicing ophthalmic anaesthesia providers in different parts of the world. RESULTS The survey identified that apart from reducing elective operating services, the ophthalmic units were ill prepared for the pandemic and the overall management was lacklustre. There was a definite lack of effective peri-operative patient screening, and, streaming processes. Measures for personal protection of staff were not optimal especially during regional/local ophthalmic anaesthesia. Severity of the pandemic, sudden job plan changes, and redeployment to intensive care units/acute covid wards had an adverse psychological impact on the affected staff. CONCLUSION Ophthalmic anaesthesia services worldwide have had poor attentiveness to the life-threatening menace and reality of Covid-19 pandemic. A review of the institutional practices to address correctible deficiencies is urgently required. Robust, mandatory, elective, timely preventative strategies need to be implemented to protect patients, and, the precious ophthalmic workforce from potential adverse physical and psychological injuries.
Collapse
Affiliation(s)
- Shashi B Vohra
- Department of Anaesthesia, Critical Care and Pain Management, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham Midland Eye Centre, City Hospital, Dudley Road, Birmingham, B18 7QH, UK.
| | - Chandra M Kumar
- Newcastle University, Gelang Patah, Johor, Malaysia
- Department of Anaesthesia, Khoo Teck Puat Hospital, Yishun Central 90, Singapore, 768828, Singapore
| |
Collapse
|
38
|
Pan Z, Ou Q, Romay FJ, Chen W, You T, Liang Y, Wang J, Pui DY. Study of structural factors of structure-resolved filter media on the particle loading performance with microscale simulation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
39
|
Li G, Liu D, Zuo YY. Nano-bio Interactions in the Lung. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Lu HL, Su ZM, Li L, Li X. Airborne Microbial Aerosol Detection by Combining Single Particle Mass Spectrometry and a Fluorescent Aerosol Particle Sizer. Anal Chem 2022; 94:17861-17867. [PMID: 36519630 DOI: 10.1021/acs.analchem.2c03636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Detection methods for microbiological aerosols based on single particle mass spectrometry (SPAMS) and a fluorescent aerosol particle sizer (FLAPS) have been developed progressively. However, they encounter interference and inefficiency issues. By merging FLAPS and SPAMS technologies, the majority of inorganic ambient aerosols may be eliminated by the FLAPS, thus resolving SPAMS' large data volume. SPAMS, on the other hand, may eliminate the secondary fluorescence interference that plagues the FLAPS. With the addition of the enhanced machine learning classifier, it is possible to extract microbial aerosol signals more precisely. In this work, a FLAPS-SPAMS instrument and a Random Forest classifier based on Kendall's correlation expansion training set approach were built. In addition to analyzing the outdoor microbial proportions, the interference components of non-microbial fluorescent particles were also examined. Results indicate that the fraction of outdoor microbial aerosols in fluorescent particles is 25.72% or roughly 2.57% of total particles. Traditional ART-2A algorithm and semi-empirical feature clustering approaches were used to identify the interference categories of abiotic fluorescent particles, which were mostly constituted of EC/OC, LPG/LNG exhaust, heavy metal organics, nicotine, vinylpyridine, polycyclic aromatic hydrocarbons (PAHs), and polymers, accounting for 68.51% of fluorescent particles.
Collapse
Affiliation(s)
- Han Lun Lu
- Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| | - Zhan Min Su
- Guangdong MS Institute of Scientific Instrument Innovation, Guangzhou 510530, PR China
| | - Lei Li
- Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| | - Xuan Li
- Guangdong Provincial Engineering Research Center for Online Source Apportionment System of Air Pollution, Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
41
|
Sheraz M, Mir KA, Anus A, Le VCT, Kim S, Nguyen VQ, Lee WR. SARS-CoV-2 airborne transmission: a review of risk factors and possible preventative measures using air purifiers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2191-2216. [PMID: 36278886 DOI: 10.1039/d2em00333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting worldwide death toll have prompted worries regarding its transmission mechanisms. Direct, indirect, and droplet modes are the basic mechanisms of transmission. SARS-CoV-2 spreads by respiratory droplets (size range >10 μm size ranges), aerosols (5 μm), airborne, and particulate matter. The rapid transmission of SARS-CoV-2 is due to the involvement of tiny indoor air particulate matter (PM2.5), which functions as a vector. SARS-CoV-2 is more contagious in the indoor environment where particulate matter floats for a longer period and greater distances. Extended residence time in the environment raises the risk of SARS-CoV-2 entering the lower respiratory tract, which may cause serious infection and possibly death. To decrease viral transmission in the indoor environment, it is essential to catch and kill the SARS-CoV-2 virus and maintain virus-free air, which will significantly reduce viral exposure concerns. Therefore, effective air filters with anti-viral, anti-bacterial, and anti-air-pollutant characteristics are gaining popularity recently. It is essential to develop cost-effective materials based on nanoparticles and metal-organic frameworks in order to lower the risk of airborne transmission in developing countries. A diverse range of materials play an important role in the manufacturing of effective air filters. We have summarized in this review article the basic concepts of the transmission routes of SARS-CoV-2 virus and precautionary measures using air purifiers with efficient materials-based air filters for the indoor environment. The performance of air-filter materials, challenges and alternative approaches, and future perspectives are also presented. We believe that air purifiers fabricated with highly efficient materials can control various air pollutants and prevent upcoming pandemics.
Collapse
Affiliation(s)
- Mahshab Sheraz
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Kaleem Anwar Mir
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Global Change Impact Studies Centre, Ministry of Climate Change, Government of Pakistan, Islamabad, 44000, Pakistan
| | - Ali Anus
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Van Cam Thi Le
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Seungdo Kim
- Research Centre for Climate Change and Energy, Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon-si, 24252, Republic of Korea
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
- Environment Strategy Development Institute, Hallym University, Chuncheon-si 24252, South Korea
| | - Van Quyet Nguyen
- Nano-Innotek Corporation, 123, Digital-ro 26 Gil, Guro-gu, Seoul, South Korea
| | - Woo Ram Lee
- Department of Chemistry, School of Future Convergence, Hallym University, Engineering Building# 1348, 1 Hallymdaehak-gil, Chuncheon-si 24252, Gangwon-do, South Korea.
| |
Collapse
|
42
|
Ghaffari HR, Farshidi H, Alipour V, Dindarloo K, Azad MH, Jamalidoust M, Madani A, Aghamolaei T, Hashemi Y, Fazlzadeh M, Fakhri Y. Detection of SARS-CoV-2 in the indoor air of intensive care unit (ICU) for severe COVID-19 patients and its surroundings: considering the role of environmental conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85612-85618. [PMID: 34482469 PMCID: PMC8418690 DOI: 10.1007/s11356-021-16010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/13/2021] [Indexed: 04/15/2023]
Abstract
There is ambiguity about the airborne transmission of the SARS-CoV-2. While a distance of 6 feet is considered a safe physical distance, new findings show that the virus can be transmitted more than that distance and cause infection. In hospitals, this may cause the virus to be transmitted from the treatment wards of COVID-19 patients to adjacent wards and infect medical staff, non-COVID-19 patients, and patient companions. The aim of this study was to investigate the presence of coronavirus in the air of ICU and adjacent wards. The low volume sampler (LVS) with two separate inlets for PM2.5 and PM10 was applied to collect indoor air of intensive care unit (ICU) with confirmed COVID- 19 patients and its surroundings. The samples were collected on 0.3μ PTFE filter fitted to the holder. Sampling was done at flow rate of 16.7 l/min for 24 h. The SRAS-CoV-2 virus was isolated using a SinaPure™ Virus Extraction Kit (SINACLON, Iran). The presence of SARS-CoV-2 genome was assessed using a commercially available SARS-CoV-2 Test Kit (Pishtaz-Iran), according to the manufacturer's instructions using One Step plus Real-Time PCR system tool (Applied Biosystems, USA). A total of sixteen samples were taken, and the positive test rate for SRAS-CoV-2 was 12.5 % (2/16). All samples from surrounding (rest room and hallway) were negative, but two air samples from indoor of ICU (next to the patient bed and nursing station) were found to be positive. The results support the possibility of transmitting the SRAS-CoV-2 through the air at a greater distance than what is known as a safe physical distance. Therefore, in addition to maintaining a safe physical distance, other precautions including wearing a face mask, preventing air recirculation, and maximizing the use of natural ventilation should be considered, especially in crowded and enclosed environments.
Collapse
Affiliation(s)
- Hamid Reza Ghaffari
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Vali Alipour
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kavoos Dindarloo
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Hassani Azad
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Marzieh Jamalidoust
- Department of Virology, Clinical Microbiology Research Center, Namazi Hospital, Shiraz, Iran.
| | - Abdolhossein Madani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Teamour Aghamolaei
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Yaser Hashemi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Fazlzadeh
- Department of Environmental Health Engineering, Faculty of Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Faculty of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
43
|
Qin L, Cui Z, Wu Y, Wang H, Zhang X, Guan J, Mao S. Challenges and Strategies to Enhance the Systemic Absorption of Inhaled Peptides and Proteins. Pharm Res 2022; 40:1037-1055. [DOI: 10.1007/s11095-022-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
|
44
|
Iwanaga M, Tangkawsakul W. Two-Way Detection of COVID-19 Spike Protein and Antibody Using All-Dielectric Metasurface Fluorescence Sensors. BIOSENSORS 2022; 12:981. [PMID: 36354490 PMCID: PMC9688339 DOI: 10.3390/bios12110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
COVID-19 (or SARS-CoV-2) has deeply affected human beings worldwide for over two years, and its flexible mutations indicate the unlikeliness of its termination in a short time. Therefore, it is important to develop a quantitative platform for direct COVID-19 detection and human status monitoring. Such a platform should be simpler than nucleic acid amplification techniques such as polymerase chain reaction, and more reliable than the disposable test kits that are based on immunochromatography. To fulfill these requirements, we conducted proof-of-concept experiments for the quantitative detection of spike glycoprotein peptides and antibodies in one platform, i.e., all-dielectric metasurface fluorescence (FL) sensors. The high capability to enhance FL intensity enabled us to quantitatively measure the glycoproteins and antibodies more efficiently compared with the previous methods reported to date. Furthermore, the intrinsic limit of detection in the metasurface FL sensors was examined via confocal microscopy and found to be less than 0.64 pg/mL for glycoprotein peptides. Moreover, the sensors had a dynamic range more than five orders that of the target concentrations, indicating extremely high sensitivity. These two-way functions of the metasurface FL sensors can be helpful in reducing daily loads in clinics and in providing quantitative test values for proper diagnosis and cures.
Collapse
|
45
|
Sun J, Bai Y, Yu EY, Ding G, Zhang H, Duan M, Huang P, Zhang M, Jin H, Kwok RT, Li Y, Shan GG, Tang BZ, Wang H. Self-cleaning wearable masks for respiratory infectious pathogen inactivation by type I and type II AIE photosensitizer. Biomaterials 2022; 291:121898. [PMID: 36379162 PMCID: PMC9647237 DOI: 10.1016/j.biomaterials.2022.121898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Although face masks as personal protective equipment (PPE) are recommended to control respiratory diseases with the on-going COVID-19 pandemic, improper handling and disinfection increase the risk of cross-contamination and compromise the effectiveness of PPE. Here, we prepared a self-cleaning mask based on a highly efficient aggregation-induced emission photosensitizer (TTCP-PF6) that can destroy pathogens by generating Type I and Type II reactive oxygen species (ROS). The respiratory pathogens, including influenza A virus H1N1 strain and Streptococcus pneumoniae (S. pneumoniae) can be inactivated within 10 min of ultra-low power (20 W/m2) white light or simulated sunlight irradiation. This TTCP-PF6-based self-cleaning strategy can also be used against other airborne pathogens, providing a strategy for dealing with different microbes.
Collapse
Affiliation(s)
- Jingxuan Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Eric Y Yu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | - Guanyu Ding
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ming Duan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengyao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ryan Tk Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
46
|
Liu Y, Zheng X, Guan D, Jiang X, Hu G. Heterogeneous Nanostructures Cause Anomalous Diffusion in Lipid Monolayers. ACS NANO 2022; 16:16054-16066. [PMID: 36149751 DOI: 10.1021/acsnano.2c04089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The diffusion and mobility in biomembranes are crucial for various cell functions; however, the mechanisms involved in such processes remain ambiguous due to the complex membrane structures. Herein, we investigate how the heterogeneous nanostructures cause anomalous diffusion in dipalmitoylphosphatidylcholine (DPPC) monolayers. By identifying the existence of condensed nanodomains and clarifying their impact, our findings renew the understanding of the hydrodynamic description and the statistical feature of the diffusion in the monolayers. We find a universal characteristic of the multistage mean square displacement (MSD) with an intermediate crossover, signifying two membrane viscosities at different scales: the short-time scale describes the local fluidity and is independent of the nominal DPPC density, and the long-time scale represents the global continuous phase taking into account nanodomains and increases with DPPC density. The constant short-time viscosity reflects a dynamic equilibrium between the continuous fluid phase and the condensed nanodomains in the molecular scale. Notably, we observe an "anomalous yet Brownian" phenomenon exhibiting an unusual double-peaked displacement probability distribution (DPD), which is attributed to the net dipolar repulsive force from the heterogeneous nanodomains around the microdomains. The findings provide physical insights into the transport of membrane inclusions that underpin various biological functions and drug deliveries.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Frontier Scientific Research Centre for Fluidized Mining of Deep Underground Resources, China University of Mining & Technology, Xuzhou 221116, People's Republic of China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xikai Jiang
- State Key Laboratory of Nonlinear Mechanics (LNM), Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
47
|
Xu X, Li G, Sun B, Zuo YY. S2 Subunit of SARS-CoV-2 Spike Protein Induces Domain Fusion in Natural Pulmonary Surfactant Monolayers. J Phys Chem Lett 2022; 13:8359-8364. [PMID: 36043851 PMCID: PMC9454269 DOI: 10.1021/acs.jpclett.2c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pulmonary surfactant has been attempted as a supportive therapy to treat COVID-19. Although it is mechanistically accepted that the fusion peptide in the S2 subunit of the S protein plays a predominant role in mediating viral fusion with the host cell membrane, it is still unknown how the S2 subunit interacts with the natural surfactant film. Using combined bio-physicochemical assays and atomic force microscopy imaging, it was found that the S2 subunit inhibited the biophysical properties of the surfactant and induced microdomain fusion in the surfactant monolayer. The surfactant inhibition has been attributed to membrane fluidization caused by insertion of the S2 subunit mediated by its fusion peptide. These findings may provide novel insight into the understanding of bio-physicochemical mechanisms responsible for surfactant interactions with SARS-CoV-2 and may have translational implications in the further development of surfactant replacement therapy for COVID-19 patients.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department
of Mechanical Engineering, University of
Hawaii at Manoa, Honolulu 96822, Hawaii, United States
| | - Guangle Li
- Department
of Mechanical Engineering, University of
Hawaii at Manoa, Honolulu 96822, Hawaii, United States
| | - Bingbing Sun
- State
Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Y. Zuo
- Department
of Mechanical Engineering, University of
Hawaii at Manoa, Honolulu 96822, Hawaii, United States
- Department
of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu 96826, Hawaii, United States
| |
Collapse
|
48
|
Severe COVID-19 ARDS Treated by Bronchoalveolar Lavage with Diluted Exogenous Pulmonary Surfactant as Salvage Therapy: In Pursuit of the Holy Grail? J Clin Med 2022; 11:jcm11133577. [PMID: 35806862 PMCID: PMC9267619 DOI: 10.3390/jcm11133577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Severe pneumonia caused by coronavirus disease 2019 (COVID-19) is characterized by inflammatory lung injury, progressive parenchymal stiffening and consolidation, alveolar and airway collapse, altered vascular permeability, diffuse alveolar damage, and surfactant deficiency. COVID-19 causes both pneumonia and acute respiratory distress syndrome (COVID-19 ARDS). COVID-19 ARDS is characterized by severe refractory hypoxemia and high mortality. Despite extensive research, the treatment of COVID-19 ARDS is far from satisfactory. Some treatments are recommended for exhibiting some clinically positive impacts on COVID-19 patients although there are already several drugs in clinical trials, some of which are already demonstrating promising results in addressing COVID-19. Few studies have demonstrated beneficial effects in non-COVID-19 ARDS treatment of exogenous surfactant, and there is no evidence-based, proven method for the procedure of surfactant administration. Aim: The aim of this work is to underline the key role of ATII cells and reduced surfactant levels in COVID-19 ARDS and to emphasize the rational basis for exogenous surfactant therapy in COVID-19 ARDS, providing insights for future research. Methods: In this article, we describe and support via the literature the decision to administer large volumes of surfactant to two patients via bronchoalveolar lavage to maximize its distribution in the respiratory tract. Results: In this study, we report on two cases of COVID-19 ARDS in patients who have been successfully treated with diluted surfactants by bronchoalveolar lavage, followed by a low-dose bolus of surfactant. Conclusion: Combining the administration of diluted, exogenous pulmonary surfactant via bronchoalveolar lavage along with the standard therapy for SARS-CoV-2-induced ARDS may be a promising way of improving the management of ARDS.
Collapse
|
49
|
High-quality and easy-to-regenerate personal filter. PLoS One 2022; 17:e0268542. [PMID: 35675288 PMCID: PMC9176855 DOI: 10.1371/journal.pone.0268542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Proper respiratory tract protection is the key factor to limiting the rate of COVID-19 spread and providing a safe environment for health care workers. Traditional N95 (FFP2) respirators are not easy to regenerate and thus create certain financial and ecological burdens; moreover, their quality may vary significantly. A solution that would overcome these disadvantages is desirable. In this study a commercially available knit polyester fleece fabric was selected as the filter material, and a total of 25 filters of different areas and thicknesses were prepared. Then, the size-resolved filtration efficiency (40–400 nm) and pressure drop were evaluated at a volumetric flow rate of 95 L/min. We showed the excellent synergistic effect of expanding the filtration area and increasing the number of filtering layers on the filtration efficiency; a filter cartridge with 8 layers of knit polyester fabric with a surface area of 900 cm2 and sized 25 × 14 × 8 cm achieved filtration efficiencies of 98% at 95 L/min and 99.5% at 30 L/min. The assembled filter kit consists of a filter cartridge (14 Pa) carried in a small backpack connected to a half mask with a total pressure drop of 84 Pa at 95 L/min. In addition, it is reusable, and the filter material can be regenerated at least ten times by simple methods, such as boiling. We have demonstrated a novel approach for creating high-quality and easy-to-breathe-through respiratory protective equipment that reduces operating costs and is a green solution because it is easy to regenerate.
Collapse
|
50
|
Guzmán E, Santini E, Ferrari M, Liggieri L, Ravera F. Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial Properties of Lung Surfactant Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7308-7318. [PMID: 35078318 PMCID: PMC9178919 DOI: 10.1021/acs.est.1c06885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The interaction of hydrophobic silicon dioxide particles (fumed silicon dioxide), as model air pollutants, and Langmuir monolayers of a porcine lung surfactant extract has been studied in order to try to shed light on the physicochemical bases underlying the potential adverse effects associated with pollutant inhalation. The surface pressure-area isotherms of lung surfactant (LS) films including increasing amounts of particles revealed that particle incorporation into LS monolayers modifies the organization of the molecules at the water/vapor interface, which alters the mechanical resistance of the interfacial films, hindering the ability of LS layers for reducing the surface tension, and reestablishing the interface upon compression. This influences the normal physiological function of LS as is inferred from the analysis of the response of the Langmuir films upon the incorporation of particles against harmonic changes of the interfacial area (successive compression-expansion cycles). These experiments evidenced that particles alter the relaxation mechanisms of LS films, which may be correlated to a modification of the transport of material within the interface and between the interface and the adjacent fluid during the respiratory cycle.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Eva Santini
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| | - Michele Ferrari
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| | - Libero Liggieri
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| | - Francesca Ravera
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| |
Collapse
|