1
|
Rein V, Gao H, Heenen HH, Sghaier W, Manikas AC, Tsakonas C, Saedi M, Margraf JT, Galiotis C, Renaud G, Konovalov OV, Groot IMN, Reuter K, Jankowski M. Operando Characterization and Molecular Simulations Reveal the Growth Kinetics of Graphene on Liquid Copper During Chemical Vapor Deposition. ACS NANO 2024; 18:12503-12511. [PMID: 38688475 PMCID: PMC11100484 DOI: 10.1021/acsnano.4c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
In recent years, liquid metal catalysts have emerged as a compelling choice for the controllable, large-scale, and high-quality synthesis of two-dimensional materials. At present, there is little mechanistic understanding of the intricate catalytic process, though, of its governing factors or what renders it superior to growth at the corresponding solid catalysts. Here, we report on a combined experimental and computational study of the kinetics of graphene growth during chemical vapor deposition on a liquid copper catalyst. By monitoring the growing graphene flakes in real time using in situ radiation-mode optical microscopy, we explore the growth morphology and kinetics over a wide range of CH4-to-H2 pressure ratios and deposition temperatures. Constant growth rates of the flakes' radius indicate a growth mode limited by precursor attachment, whereas methane-flux-dependent flake shapes point to limited precursor availability. Large-scale free energy simulations enabled by an efficient machine-learning moment tensor potential trained to density functional theory data provide quantitative barriers for key atomic-scale growth processes. The wealth of experimental and theoretical data can be consistently combined into a microkinetic model that reveals mixed growth kinetics that, in contrast to the situation at solid Cu, is partly controlled by precursor attachment alongside precursor availability. Key mechanistic aspects that directly point toward the improved graphene quality are a largely suppressed carbon dimer attachment due to the facile incorporation of this precursor species into the liquid surface and a low-barrier ring-opening process that self-heals 5-membered rings resulting from remaining dimer attachments.
Collapse
Affiliation(s)
- Valentina Rein
- ESRF
− The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Hao Gao
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4−6, 14195 Berlin, Germany
| | - Hendrik H. Heenen
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4−6, 14195 Berlin, Germany
| | - Wissal Sghaier
- University
of Grenoble Alpes and CEA, IRIG/MEM/NRS, 38000 Grenoble, France
| | - Anastasios C. Manikas
- FORTH/ICE-HT
and Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Christos Tsakonas
- FORTH/ICE-HT
and Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Mehdi Saedi
- Leiden Institute
of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Physics
Department, Shahid Beheshti University, Evin, Tehran, 1983969411, Iran
| | - Johannes T. Margraf
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4−6, 14195 Berlin, Germany
- University
of Bayreuth, Bavarian Center
for Battery Technology (BayBatt), Weiherstraße 26, 95448 Bayreuth, Germany
| | - Costas Galiotis
- FORTH/ICE-HT
and Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Gilles Renaud
- University
of Grenoble Alpes and CEA, IRIG/MEM/NRS, 38000 Grenoble, France
| | - Oleg V. Konovalov
- ESRF
− The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Irene M. N. Groot
- Leiden Institute
of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Karsten Reuter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maciej Jankowski
- ESRF
− The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| |
Collapse
|
2
|
Wang H, Zhu X, Zhao Z, Wang X, Qian Z, Jiao L, Wang K, Li Y, Qi JJ, Asif M, Zheng Q, Xie L. In Situ Imaging of Two-Dimensional Crystal Growth Using a Heat-Resistant Optical Microscope. NANO LETTERS 2024; 24:5498-5505. [PMID: 38619556 DOI: 10.1021/acs.nanolett.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Revealing low-dimensional material growth dynamics is critical for crystal growth engineering. However, in a practical high-temperature growth system, the crystal growth process is a black box because of the lack of heat-resistant imaging tools. Here, we develop a heat-resistant optical microscope and embed it in a chemical vapor deposition (CVD) system to investigate two-dimensional (2D) crystal growth dynamics. This in situ optical imaging CVD system can tolerate temperatures of ≤900 °C with a spatial resolution of ∼1 μm. The growth of monolayer MoS2 crystals was studied as a model for 2D crystal growth. The nucleation and growth process have been imaged. Model analysis and simulation have revealed the growth rate, diffusion coefficient, and spatial distribution of the precursor. More importantly, a new vertex-kink-ledge model has been suggested for monolayer crystal growth. This work provides a new technique for in situ microscopic imaging at high temperatures and fundamental insight into 2D crystal growth.
Collapse
Affiliation(s)
- Honggang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaokai Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinsheng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Ziyue Qian
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liying Jiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kangkang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun-Jie Qi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Muhammad Asif
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Konovalov O, Rein V, Saedi M, Groot IMN, Renaud G, Jankowski M. Tripling of the scattering vector range of X-ray reflectivity on liquid surfaces using a double-crystal deflector. J Appl Crystallogr 2024; 57:258-265. [PMID: 38596733 PMCID: PMC11001415 DOI: 10.1107/s1600576724000657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
The maximum range of perpendicular momentum transfer (q z) has been tripled for X-ray scattering from liquid surfaces when using a double-crystal deflector setup to tilt the incident X-ray beam. This is achieved by employing a higher-energy X-ray beam to access Miller indices of reflecting crystal atomic planes that are three times higher than usual. The deviation from the exact Bragg angle condition induced by misalignment between the X-ray beam axis and the main rotation axis of the double-crystal deflector is calculated, and a fast and straightforward procedure to align them is deduced. An experimental method of measuring scattering intensity along the q z direction on liquid surfaces up to q z = 7 Å-1 is presented, with liquid copper serving as a reference system for benchmarking purposes.
Collapse
Affiliation(s)
- Oleg Konovalov
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Valentina Rein
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- Univ. Grenoble Alpes, CEA, IRIG/MEM/NR, 38000 Grenoble, France
| | - Mehdi Saedi
- Physics Department, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Irene M. N. Groot
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Gilles Renaud
- Univ. Grenoble Alpes, CEA, IRIG/MEM/NR, 38000 Grenoble, France
| | - Maciej Jankowski
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
4
|
Narayanan T. Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids. Adv Colloid Interface Sci 2024; 325:103114. [PMID: 38452431 DOI: 10.1016/j.cis.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Recent progress in synchrotron based X-ray scattering methods applied to colloid science is reviewed. An important figure of merit of these techniques is that they enable in situ investigations of colloidal systems under the desired thermophysical and rheological conditions. An ensemble averaged simultaneous structural and dynamical information can be derived albeit in reciprocal space. Significant improvements in X-ray source brilliance and advances in detector technology have overcome some of the limitations in the past. Notably coherent X-ray scattering techniques have become more competitive and they provide complementary information to laboratory based real space methods. For a system with sufficient scattering contrast, size ranges from nm to several μm and time scales down to μs are now amenable to X-ray scattering investigations. A wide variety of sample environments can be combined with scattering experiments further enriching the science that could be pursued by means of advanced X-ray scattering instruments. Some of these recent progresses are illustrated via representative examples. To derive quantitative information from the scattering data, rigorous data analysis or modeling is required. Development of powerful computational tools including the use of artificial intelligence have become the emerging trend.
Collapse
|
5
|
Zhang J, Zhai T, Arifurrahman F, Wang Y, Hitt A, He Z, Ai Q, Liu Y, Lin CY, Zhu Y, Tang M, Lou J. Toward Controlled Synthesis of 2D Crystals by CVD: Learning from the Real-Time Crystal Morphology Evolutions. NANO LETTERS 2024; 24:2465-2472. [PMID: 38349857 DOI: 10.1021/acs.nanolett.3c04016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The rich morphology of 2D materials grown through chemical vapor deposition (CVD), is a distinctive feature. However, understanding the complex growth of 2D crystals under practical CVD conditions remains a challenge due to various intertwined factors. Real-time monitoring is crucial to providing essential data and enabling the use of advanced tools like machine learning for unraveling these complexities. In this study, we present a custom-built miniaturized CVD system capable of observing and recording 2D MoS2 crystal growth in real time. Image processing converts the real-time footage into digital data, and machine learning algorithms (ML) unveil the significant factors influencing growth. The machine learning model successfully predicts CVD growth parameters for synthesizing ultralarge monolayer MoS2 crystals. It also demonstrates the potential to reverse engineer CVD growth parameters by analyzing the as-grown 2D crystal morphology. This interdisciplinary approach can be integrated to enhance our understanding of controlled 2D crystal synthesis through CVD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Tianshu Zhai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Faizal Arifurrahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Yuguo Wang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Andrew Hitt
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Zelai He
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Qing Ai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Yifeng Liu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chen-Yang Lin
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Yifan Zhu
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Ming Tang
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jun Lou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Pradeepkumar A, Cortie D, Smyth E, Le Brun AP, Iacopi F. Epitaxial graphene growth on cubic silicon carbide on silicon with high temperature neutron reflectometry: an operando study. RSC Adv 2024; 14:3232-3240. [PMID: 38249665 PMCID: PMC10797600 DOI: 10.1039/d3ra08289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The growth of graphene on silicon carbide on silicon offers a very attractive route towards novel wafer-scale photonic and electronic devices that are easy to fabricate and can be integrated in silicon manufacturing. Using a Ni/Cu catalyst for the epitaxial growth of graphene has been successful in the mitigation of the very defective nature of the underlying silicon carbide on silicon, leading to a consistent graphene coverage over large scales. A more detailed understanding of this growth mechanism is warranted in order to further optimise the catalyst composition, preferably via the use of operando characterization measurements. Here, we report in situ neutron reflectometry measurements of (Ni, Cu)/SiC films on silicon wafers, annealed from room temperature to 1100 °C, which initiates graphene formation at the buried (Ni, Cu)/SiC interface. Detailed modelling of the high temperature neutron reflectometry and corresponding scattering length density profiles yield insights into the distinct physical mechanisms within the different temperature regimes. The initially smooth solid metallic layers undergo intermixing and roughening transitions at relatively low temperatures below 500 °C, and then metal silicides begin to form above 600 °C from interfacial reactions with the SiC, releasing atomic carbon. At the highest temperature range of 600-1100 °C, the low neutron scattering length density at high temperature is consistent with a silicon-rich, liquid surface phase corresponding to molten nickel silicides and copper. This liquid catalyst layer promotes the liquid-phase epitaxial growth of a graphene layer by precipitating the excess carbon available at the SiC/metal interface.
Collapse
Affiliation(s)
- Aiswarya Pradeepkumar
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney Sydney New South Wales 2007 Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney New South Wales 2007 Australia
| | - David Cortie
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization New Illawarra Road Lucas Heights New South Wales 2234 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies Melbourne Victoria 3800 Australia
| | - Erin Smyth
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization New Illawarra Road Lucas Heights New South Wales 2234 Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization New Illawarra Road Lucas Heights New South Wales 2234 Australia
| | - Francesca Iacopi
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney Sydney New South Wales 2007 Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney New South Wales 2007 Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies Melbourne Victoria 3800 Australia
| |
Collapse
|
7
|
Zhu X, Wang H, Wang K, Xie L. Progress on the in situ imaging of growth dynamics of two-dimensional materials. NANOSCALE 2023; 15:11746-11758. [PMID: 37366323 DOI: 10.1039/d3nr01475d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
One key issue to promote the industrialization of two-dimensional (2D) materials is to grow high-quality and large-scale 2D materials. Investigations of the growth mechanism and growth dynamics are of fundamental importance for the growth of 2D material, in which in situ imaging is highly needed. By applying different in situ imaging techniques, details for growth process, including nucleation and morphology evolution, can be obtained. This review summarizes the recent progress on the in situ imaging of 2D material growth, in which the growth rate, kink dynamics, domain coalescence, growth across the substrate steps, single-atom catalysis, and intermediates have been revealed.
Collapse
Affiliation(s)
- Xiaokai Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Honggang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kangkang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
8
|
Komlenok M, Pivovarov P, Popovich A, Cheverikin V, Romshin A, Rybin M, Obraztsova E. Crystallization of Copper Films on Sapphire Substrate for Large-Area Single-Crystal Graphene Growth. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101694. [PMID: 37242110 DOI: 10.3390/nano13101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Chemical vapor deposition synthesis of graphene on polycrystalline copper substrates from methane is a promising technique for industrial production and application. However, the quality of grown graphene can be improved by using single-crystal copper (111). In this paper, we propose to synthesize graphene on epitaxial single-crystal Cu film deposited and recrystallized on a basal-plane sapphire substrate. The effect of film thickness, temperature, and time of annealing on the size of copper grains and their orientation is demonstrated. Under optimized conditions, the copper grains with the (111) orientation and a record size of several millimeters are obtained, and the single-crystal graphene is grown over their entire area. The high quality of synthesized graphene has been confirmed by Raman spectroscopy, scanning electron microscopy, and the sheet resistance measurements by the four point probe method.
Collapse
Affiliation(s)
- Maxim Komlenok
- Prokhorov General Physics Institute of the Russian Academy of Sciences, St. Vavilova 38, Moscow 119991, Russia
| | - Pavel Pivovarov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, St. Vavilova 38, Moscow 119991, Russia
| | - Alexey Popovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, St. Vavilova 38, Moscow 119991, Russia
| | - Vladimir Cheverikin
- Department of Physical Metallurgy of Non-Ferrous Metals, National University of Science and Technology "MISiS", Leninskiy Avenue 4, Moscow 119049, Russia
| | - Alexey Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, St. Vavilova 38, Moscow 119991, Russia
| | - Maxim Rybin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, St. Vavilova 38, Moscow 119991, Russia
| | - Elena Obraztsova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, St. Vavilova 38, Moscow 119991, Russia
| |
Collapse
|
9
|
Bai H, Feng J, Liu D, Zhou P, Wu R, Kwok CT, Ip WF, Feng W, Sui X, Liu H, Pan H. Advances in Spin Catalysts for Oxygen Evolution and Reduction Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205638. [PMID: 36417556 DOI: 10.1002/smll.202205638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Searching for high effective catalysts has been an endless effort to improve the efficiency of green energy harvesting and degradation of pollutants. In the past decades, tremendous strategies are explored to achieve high effective catalysts, and various theoretical understandings are proposed for the improved activity. As the catalytic reaction occurs at the surface or edge, the unsaturated ions may lead to the fluctuation of spin. Meanwhile, transition metals in catalysts have diverse spin states and may yield the spin effects. Therefore, the role of spin or magnetic moment should be carefully examined. In this review, the recent development of spin catalysts is discussed to give an insightful view on the origins for the improved catalytic activity. First, a brief introduction on the applications and advances in spin-related catalytic phenomena, is given, and then the fundamental principles of spin catalysts and magnetic fields-radical reactions are introduced in the second part. The spin-related catalytic performance reported in oxygen evolution/reduction reaction (OER/ORR) is systematically discussed in the third part, and general rules are summarized accordingly. Finally, the challenges and perspectives are given. This review may provide an insightful understanding of the microscopic mechanisms of catalytic phenomena and guide the design of spin-related catalysts.
Collapse
Affiliation(s)
- Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Rucheng Wu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Chi Tat Kwok
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| | - Wenlin Feng
- School of Science, Chongqing University of Technology, Chongqing, 400054, China
| | - Xulei Sui
- Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advance Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hongchao Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P.R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, 999078, P. R. China
| |
Collapse
|
10
|
Gao H, Belova V, La Porta F, Cingolani JS, Andersen M, Saedi M, Konovalov OV, Jankowski M, Heenen HH, Groot IMN, Renaud G, Reuter K. Graphene at Liquid Copper Catalysts: Atomic-Scale Agreement of Experimental and First-Principles Adsorption Height. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204684. [PMID: 36351774 PMCID: PMC9798965 DOI: 10.1002/advs.202204684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Liquid metal catalysts have recently attracted attention for synthesizing high-quality 2D materials facilitated via the catalysts' perfectly smooth surface. However, the microscopic catalytic processes occurring at the surface are still largely unclear because liquid metals escape the accessibility of traditional experimental and computational surface science approaches. Hence, numerous controversies are found regarding different applications, with graphene (Gr) growth on liquid copper (Cu) as a prominent prototype. In this work, novel in situ and in silico techniques are employed to achieve an atomic-level characterization of the graphene adsorption height above liquid Cu, reaching quantitative agreement within 0.1 Å between experiment and theory. The results are obtained via in situ synchrotron X-ray reflectivity (XRR) measurements over wide-range q-vectors and large-scale molecular dynamics simulations based on efficient machine-learning (ML) potentials trained to first-principles density functional theory (DFT) data. The computational insight is demonstrated to be robust against inherent DFT errors and reveals the nature of graphene binding to be highly comparable at liquid Cu and solid Cu(111). Transporting the predictive first-principles quality via ML potentials to the scales required for liquid metal catalysis thus provides a powerful approach to reach microscopic understanding, analogous to the established computational approaches for catalysis at solid surfaces.
Collapse
Affiliation(s)
- Hao Gao
- Fritz‐Haber‐Institut der Max‐Planck‐GesellschaftFaradayweg 4–614195BerlinGermany
| | - Valentina Belova
- The European Synchrotron‐ ESRF71 Avenue des Martyrs, CS 40220Grenoble Cedex 938043France
| | - Francesco La Porta
- The European Synchrotron‐ ESRF71 Avenue des Martyrs, CS 40220Grenoble Cedex 938043France
| | - Juan Santiago Cingolani
- Chair for Theoretical Chemistry and Catalysis Research CenterTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Mie Andersen
- Aarhus Institute of Advanced Studies & Center for Interstellar CatalysisDepartment of Physics and AstronomyAarhus UniversityAarhus CDK‐8000Denmark
| | - Mehdi Saedi
- Leiden Institute of ChemistryLeiden UniversityP.O. Box 9502RA Leiden2300The Netherlands
| | - Oleg V. Konovalov
- The European Synchrotron‐ ESRF71 Avenue des Martyrs, CS 40220Grenoble Cedex 938043France
| | - Maciej Jankowski
- The European Synchrotron‐ ESRF71 Avenue des Martyrs, CS 40220Grenoble Cedex 938043France
| | - Hendrik H. Heenen
- Fritz‐Haber‐Institut der Max‐Planck‐GesellschaftFaradayweg 4–614195BerlinGermany
| | - Irene M. N. Groot
- Leiden Institute of ChemistryLeiden UniversityP.O. Box 9502RA Leiden2300The Netherlands
| | - Gilles Renaud
- Université Grenoble AlpesCEA, IRIG/MEM/NRSGrenoble38000France
| | - Karsten Reuter
- Fritz‐Haber‐Institut der Max‐Planck‐GesellschaftFaradayweg 4–614195BerlinGermany
| |
Collapse
|
11
|
Dimitropoulos M, Trakakis G, Androulidakis C, Kotsidi M, Galiotis C. Wrinkle-mediated CVD synthesis of wafer scale Graphene/h-BN heterostructures. NANOTECHNOLOGY 2022; 34:025601. [PMID: 36215949 DOI: 10.1088/1361-6528/ac98d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The combination of two-dimensional materials (2D) into heterostructures enables their integration in tunable ultrathin devices. For applications in electronics and optoelectronics, direct growth of wafer-scale and vertically stacked graphene/hexagonal boron nitride (h-BN) heterostructures is vital. The fundamental problem, however, is the catalytically inert nature of h-BN substrates, which typically provide a low rate of carbon precursor breakdown and consequently a poor rate of graphene synthesis. Furthermore, out-of-plane deformations such as wrinkles are commonly seen in 2D materials grown by chemical vapor deposition (CVD). Herein, a wrinkle-facilitated route is developed for the fast growth of graphene/h-BN vertical heterostructures on Cu foils. The key advantage of this synthetic pathway is the exploitation of the increased reactivity from inevitable line defects arising from the CVD process, which can act as active sites for graphene nucleation. The resulted heterostructures are found to exhibit superlubric properties with increased bending stiffness, as well as directional electronic properties, as revealed from atomic force microscopy measurements. This work offers a brand-new route for the fast growth of Gr/h-BN heterostructures with practical scalability, thus propelling applications in electronics and nanomechanical systems.
Collapse
Affiliation(s)
- Marinos Dimitropoulos
- Department of Chemical Engineering, University of Patras, GR-26500 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| | - George Trakakis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| | - Charalampos Androulidakis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| | - Maria Kotsidi
- Department of Chemical Engineering, University of Patras, GR-26500 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| | - Costas Galiotis
- Department of Chemical Engineering, University of Patras, GR-26500 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation of Research and Technology Hellas, PO Box 1414, GR-26504 Patras, Greece
| |
Collapse
|
12
|
Sartori A, Giri RP, Fujii H, Hövelmann SC, Warias JE, Jordt P, Shen C, Murphy BM, Magnussen OM. Role of chemisorbing species in growth at liquid metal-electrolyte interfaces revealed by in situ X-ray scattering. Nat Commun 2022; 13:5421. [PMID: 36109498 PMCID: PMC9477831 DOI: 10.1038/s41467-022-32932-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Liquid-liquid interfaces offer intriguing possibilities for nanomaterials growth. Here, fundamental interface-related mechanisms that control the growth behavior in these systems are studied for Pb halide formation at the interface between NaX + PbX2 (X = F, Cl, Br) and liquid Hg electrodes using in situ X-ray scattering and complementary electrochemical and microscopy measurements. These studies reveal a decisive role of the halide species in nucleation and growth of these compounds. In Cl- and Br-containing solution, deposition starts by rapid formation of well-defined ultrathin (∼7 Å) precursor adlayers, which provide a structural template for the subsequent quasi-epitaxial growth of c-axis oriented Pb(OH)X bulk crystals. In contrast, growth in F-containing solution proceeds by slow formation of a more disordered deposit, resulting in random bulk crystal orientations on the Hg surface. These differences can be assigned to the interface chemistry, specifically halide chemisorption, which steers the formation of these highly textured deposits at the liquid-liquid interface. Growth at liquid-liquid interfaces differ inherently from that on solids, making it attractive for nanomaterial formation. Here, the authors use X-ray scattering to derive a detailed microscopic picture of lead-halide growth on liquid mercury that reveals the key importance of anion adsorption.
Collapse
|
13
|
Choi M, Baek J, Ryu H, Lee H, Byen J, Hong SG, Kim BJ, Cho S, Song JY, Lee GH, Shin H, Choi JY, Jeon S. Improved Crystallinity of Graphene Grown on Cu/Ni (111) through Sequential Mobile Hot-Wire Heat Treatment. NANO LETTERS 2022; 22:5198-5206. [PMID: 35728001 DOI: 10.1021/acs.nanolett.2c00927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past few years, many efforts have been devoted to growing single-crystal graphene due to its great potential in future applications. However, a number of issues remain for single-crystal graphene growth, such as control of nanoscale defects and the substrate-dependent nonuniformity of graphene quality. In this work, we demonstrate a possible route toward single-crystal graphene by combining aligned nucleation of graphene nanograins on Cu/Ni (111) and sequential heat treatment over pregrown graphene grains. By use of a mobile hot-wire CVD system, prealigned grains were stitched into one continuous film with up to ∼97% single-crystal domains, compared to graphene grown on polycrystalline Cu, which was predominantly high-angle tilt boundary (HATB) domains. The single-crystal-like graphene showed remarkably high thermal conductivity and carrier mobility of ∼1349 W/mK at 350 K and ∼33 600 (38 400) cm2 V-1 s-1 for electrons (holes), respectively, which indicates that the crystallinity is high due to suppression of HATB domains.
Collapse
Affiliation(s)
- Myungwoo Choi
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jinwook Baek
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Huije Ryu
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyejeong Lee
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Jicheol Byen
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seong-Gu Hong
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bum Jun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sooheon Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Yong Song
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Hosun Shin
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Konovalov OV, Belova V, La Porta F, Saedi M, Groot IMN, Renaud G, Snigireva I, Snigirev A, Voevodina M, Shen C, Sartori A, Murphy BM, Jankowski M. X-ray reflectivity from curved surfaces as illustrated by a graphene layer on molten copper. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:711-720. [PMID: 35511004 PMCID: PMC9070704 DOI: 10.1107/s1600577522002053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The X-ray reflectivity technique can provide out-of-plane electron-density profiles of surfaces, interfaces, and thin films, with atomic resolution accuracy. While current methodologies require high surface flatness, this becomes challenging for naturally curved surfaces, particularly for liquid metals, due to the very high surface tension. Here, the development of X-ray reflectivity measurements with beam sizes of a few tens of micrometres on highly curved liquid surfaces using a synchrotron diffractometer equipped with a double crystal beam deflector is presented. The proposed and developed method, which uses a standard reflectivity θ-2θ scan, is successfully applied to study in situ the bare surface of molten copper and molten copper covered by a graphene layer grown in situ by chemical vapor deposition. It was found that the roughness of the bare liquid surface of copper at 1400 K is 1.25 ± 0.10 Å, while the graphene layer is separated from the liquid surface by a distance of 1.55 ± 0.08 Å and has a roughness of 1.26 ± 0.09 Å.
Collapse
Affiliation(s)
- Oleg V. Konovalov
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Valentina Belova
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Francesco La Porta
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Mehdi Saedi
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Irene M. N. Groot
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Gilles Renaud
- Univ. Grenoble Alpes, CEA, IRIG/MEM/NRS, 38000 Grenoble, France
| | - Irina Snigireva
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Anatoly Snigirev
- Immanuel Kant Baltic Federal University, 14 Nevskogo, 236041 Kaliningrad, Russian Federation
| | - Maria Voevodina
- Immanuel Kant Baltic Federal University, 14 Nevskogo, 236041 Kaliningrad, Russian Federation
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrea Sartori
- Institute for Experimental and Applied Physics, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Bridget M. Murphy
- Institute for Experimental and Applied Physics, Kiel University, Olshausenstrasse 40, 24098 Kiel, Germany
- Ruprecht-Haensel Laboratory, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Maciej Jankowski
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| |
Collapse
|
15
|
Lee Y, Chang S, Chen S, Chen S, Chen H. Optical Inspection of 2D Materials: From Mechanical Exfoliation to Wafer-Scale Growth and Beyond. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102128. [PMID: 34716758 PMCID: PMC8728831 DOI: 10.1002/advs.202102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Indexed: 05/11/2023]
Abstract
Optical inspection is a rapid and non-destructive method for characterizing the properties of two-dimensional (2D) materials. With the aid of optical inspection, in situ and scalable monitoring of the properties of 2D materials can be implemented industrially to advance the development and progress of 2D material-based devices toward mass production. This review discusses the optical inspection techniques that are available to characterize various 2D materials, including graphene, transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), group-III monochalcogenides, black phosphorus (BP), and group-IV monochalcogenides. First, the authors provide an introduction to these 2D materials and the processes commonly used for their fabrication. Then they review several of the important structural properties of 2D materials, and discuss how to characterize them using appropriate optical inspection tools. The authors also describe the challenges and opportunities faced when applying optical inspection to recently developed 2D materials, from mechanically exfoliated to wafer-scale-grown 2D materials. Most importantly, the authors summarize the techniques available for largely and precisely enhancing the optical signals from 2D materials. This comprehensive review of the current status and perspective of future trends for optical inspection of the structural properties of 2D materials will facilitate the development of next-generation 2D material-based devices.
Collapse
Affiliation(s)
- Yang‐Chun Lee
- Department of Materials Science and EngineeringNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt RoadTaipei10617Taiwan
| | - Sih‐Wei Chang
- Department of Materials Science and EngineeringNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt RoadTaipei10617Taiwan
| | - Shu‐Hsien Chen
- Department of Materials Science and EngineeringNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt RoadTaipei10617Taiwan
| | - Shau‐Liang Chen
- Department of Materials Science and EngineeringNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt RoadTaipei10617Taiwan
| | - Hsuen‐Li Chen
- Department of Materials Science and EngineeringNational Taiwan UniversityNo. 1, Sec. 4, Roosevelt RoadTaipei10617Taiwan
| |
Collapse
|
16
|
Abstract
Even after being in business for at least the last 100 years, research into the field of (heterogeneous) catalysis is still vibrant, both in academia and in industry. One of the reasons for this is that around 90% of all chemicals and materials used in everyday life are produced employing catalysis. In 2020, the global catalyst market size reached $35 billion, and it is still steadily increasing every year. Additionally, catalysts will be the driving force behind the transition toward sustainable energy. However, even after having been investigated for 100 years, we still have not reached the holy grail of developing catalysts from rational design instead of from trial-and-error. There are two main reasons for this, indicated by the two so-called "gaps" between (academic) research and actual catalysis. The first one is the "pressure gap", indicating the 13 orders of magnitude difference in pressure between the ultrahigh vacuum lab conditions and the atmospheric pressures (and higher) of industrial catalysis. The second one is the "materials gap", indicating the difference in complexity between single-crystal model catalysts of academic research and the real catalysts, consisting of metallic nanoparticles on supports, promoters, fillers, and binders. Although over the past decades significant efforts have been made in closing these gaps, many steps still have to be taken. In this Account, I will discuss the steps we have taken at Leiden University to further our fundamental understanding of heterogeneous catalysis at the (near-)atomic scale. I will focus on bridging the pressure gap, though we are also working on closing the materials gap. Over the past years, we developed state-of-the-art equipment that is able to investigate the (near-)atomic-scale structure of the catalyst surface during the chemical reaction using several surface-science-based techniques such as scanning tunneling microscopy, atomic force microscopy, optical microscopy, and X-ray-based techniques (surface X-ray diffraction, grazing-incidence small-angle X-ray scattering, and X-ray reflectivity, in collaboration with ESRF). Simultaneously with imaging the surface, we can investigate the catalyst's performance via mass spectrometry, enabling us to link changes in the catalyst structure to its activity, selectivity, or stability. Although we are currently investigating many industrially relevant catalytic systems, I will here focus the discussion on the oxidation of platinum during, for example, CO and NO oxidation, the NO reduction reaction on platinum, and the growth of graphene on liquid (molten) copper. I will show that to be able to obtain the full picture of heterogeneous catalysis, the ability to investigate the catalyst at the (near-)atomic scale during the chemical reaction is a must.
Collapse
Affiliation(s)
- Irene M. N. Groot
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| |
Collapse
|