1
|
Wang D, Wang S, Dong Y, Wu X, Shen J, Feng S, Wang Z, Huang W. An Opto-Iontronic Cholesteric Liquid Crystalline Retina for Multimodal Circularly Polarized Neuromorphic Vision. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419747. [PMID: 40025907 DOI: 10.1002/adma.202419747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/31/2025] [Indexed: 03/04/2025]
Abstract
Circularly polarized light (CPL) is fundamental to phase-controlled imaging, quantum optics, and optical computing. Conventional CPL detection, relying on polarizers and quarter-wave plates, complicates device design and reduces sensitivity. Among emerging CPL detectors, organic field-effect transistors (OFET) with helical organic semiconductors are highly promising due to their compact structures but suffer tedious synthesis, low dissymmetric factors (gph < 0.1), and high operating voltages (> 50 V). To address these issues, an opto-iontronic cholesteric liquid crystalline (i-CLC) film is developed that is both electrically and photonically active, serving as the dielectric in phototransistors. The well-defined cholesteric structure and broadly tunable pitches of the i-CLC film enable it to detect CPL with an excellent "handedness" selectivity across a broad spectrum. Moreover, its ionic nature provides a high capacitance (up to 580 nF cm- 2 @20 Hz). The resulting flexible CPL detectors achieve an unprecedentedly high dissymmetry factor (gph = 1.33) at low operating voltages (< 5 V), showcasing significant potential in optical communication and data encryption. Furthermore, leveraging high gph, they can perform in-sensor computing for highly accurate semantic segmentation using fused multimodal visual inputs (e.g., circularly polarized and ordinary light), achieving an accuracy of 75.73% and a mean intersection over the union of 0.3982, surpassing the performance of non-CPL photodetectors. Additionally, it optimizes power consumption by a factor of 102 compared to most conventional visual processing systems, offering a groundbreaking hardware solution for high-performance neuromorphic CPL vision.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shaocong Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 25809, P. R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaosong Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jinghui Shen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shiyu Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, 25809, P. R. China
| | - Weiguo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Hong T, Lee C, Bak Y, Park G, Lee H, Kang S, Bae TH, Yoon DK, Park JG. On-Demand Tunable Electrical Conductance Anisotropy in a MOF-Polymer Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309469. [PMID: 38174621 DOI: 10.1002/smll.202309469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Property optimization through orientation control of metal-organic framework (MOF) crystals that exhibit anisotropic crystal structures continues to garner tremendous interest. Herein, an electric field is utilized to post-synthetically control the orientation of conductive layered Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) crystals dispersed in an electronically insulating poly(ethylene glycol) diacrylate (PEGDA) oligomer matrix. Optical and electrical measurements are performed to investigate the impact of the electric field on the alignment of Cu3(HHTP)2 crystals and the formation of aggregated microstructures, which leads to an ≈5000-fold increase in the conductivity of the composite. Notably, the composite thin-films containing aligned Cu3(HHTP)2 crystals exhibit significant conductivity of ≈10-3 S cm-1 despite the low concentration (≈1 wt.%) of conductive Cu3(HHTP)2. The use of an electric field to align Cu3(HHTP)2 crystals can rapidly generate various desired patterns that exhibit on-demand tunable collective charge transport anisotropy. The findings provide valuable insights toward the manipulation and utilization of conductive MOFs with anisotropic crystal structures for various applications such as adhesive electrical interconnects and microelectronics.
Collapse
Affiliation(s)
- Taegyun Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeongseo Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hongju Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunguk Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
3
|
Park SM, Yoon DK. Evaporation-induced self-assembly of liquid crystal biopolymers. MATERIALS HORIZONS 2024; 11:1843-1866. [PMID: 38375871 DOI: 10.1039/d3mh01585h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Evaporation-induced self-assembly (EISA) is a process that has gained significant attention in recent years due to its fundamental science and potential applications in materials science and nanotechnology. This technique involves controlled drying of a solution or dispersion of materials, forming structures with specific shapes and sizes. In particular, liquid crystal (LC) biopolymers have emerged as promising candidates for EISA due to their highly ordered structures and biocompatible properties after deposition. This review provides an overview of recent progress in the EISA of LC biopolymers, including DNA, nanocellulose, viruses, and other biopolymers. The underlying self-assembly mechanisms, the effects of different processing conditions, and the potential applications of the resulting structures are discussed.
Collapse
Affiliation(s)
- Soon Mo Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Ham SH, Han MJ, Kim M. Chiral Materials for Optics and Electronics: Ready to Rise? MICROMACHINES 2024; 15:528. [PMID: 38675339 PMCID: PMC11052036 DOI: 10.3390/mi15040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Chiral materials have gained burgeoning interest in optics and electronics, beyond their classical application field of drug synthesis. In this review, we summarize the diverse chiral materials developed to date and how they have been effectively applied to optics and electronics to get an understanding and vision for the further development of chiral materials for advanced optics and electronics.
Collapse
Affiliation(s)
- Seo-Hyeon Ham
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea;
| | - Moon Jong Han
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Minkyu Kim
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea;
| |
Collapse
|
5
|
Park K, Luo X, Kwok JJ, Khasbaatar A, Mei J, Diao Y. Subtle Molecular Changes Largely Modulate Chiral Helical Assemblies of Achiral Conjugated Polymers by Tuning Solution-State Aggregation. ACS CENTRAL SCIENCE 2023; 9:2096-2107. [PMID: 38033802 PMCID: PMC10683494 DOI: 10.1021/acscentsci.3c00775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
Understanding the solution-state aggregate structure and the consequent hierarchical assembly of conjugated polymers is crucial for controlling multiscale morphologies during solid thin-film deposition and the resultant electronic properties. However, it remains challenging to comprehend detailed solution aggregate structures of conjugated polymers, let alone their chiral assembly due to the complex aggregation behavior. Herein, we present solution-state aggregate structures and their impact on hierarchical chiral helical assembly using an achiral diketopyrrolopyrrole-quaterthiophene (DPP-T4) copolymer and its two close structural analogues wherein the bithiophene is functionalized with methyl groups (DPP-T2M2) or fluorine atoms (DPP-T2F2). Combining in-depth small-angle X-ray scattering analysis with various microscopic solution imaging techniques, we find distinct aggregate in each DPP solution: (i) semicrystalline 1D fiber aggregates of DPP-T2F2 with a strongly bound internal structure, (ii) semicrystalline 1D fiber aggregates of DPP-T2M2 with a weakly bound internal structure, and (iii) highly crystalline 2D sheet aggregates of DPP-T4. These nanoscopic aggregates develop into lyotropic chiral helical liquid crystal (LC) mesophases at high solution concentrations. Intriguingly, the dimensionality of solution aggregates largely modulates hierarchical chiral helical pitches across nanoscopic to micrometer scales, with the more rigid 2D sheet aggregate of DPP-T4 creating much larger pitch length than the more flexible 1D fiber aggregates. Combining relatively small helical pitch with long-range order, the striped twist-bent mesophase of DPP-T2F2 composed of highly ordered, more rigid 1D fiber aggregate exhibits an anisotropic dissymmetry factor (g-factor) as high as 0.09. This study can be a prominent addition to our knowledge on a solution-state hierarchical assembly of conjugated polymers and, in particular, chiral helical assembly of achiral organic semiconductors that can catalyze an emerging field of chiral (opto)electronics.
Collapse
Affiliation(s)
- Kyung
Sun Park
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Xuyi Luo
- Department
of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Justin J. Kwok
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, 1304 W. Green St., Urbana, Illinois 61801, United States
| | - Azzaya Khasbaatar
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Jianguo Mei
- Department
of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, Indiana 47907, United States
| | - Ying Diao
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, 1304 W. Green St., Urbana, Illinois 61801, United States
- Beckman
Institute, Molecular Science and Engineering, University of Illinois at Urbana−Champaign, 405 N. Mathews Ave., Urbana, Illinois 61801, United States
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 505 S. Mathews Ave., Urbana, Illinois 61801, United States
- Materials
Research Laboratory, The Grainger College of Engineering, University of Illinois at Urbana−Champaign, 104 S. Goodwin Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Jeong J, An SY, Hu X, Zhao Y, Yin R, Szczepaniak G, Murata H, Das SR, Matyjaszewski K. Biomass RNA for the Controlled Synthesis of Degradable Networks by Radical Polymerization. ACS NANO 2023; 17:21912-21922. [PMID: 37851525 PMCID: PMC10655241 DOI: 10.1021/acsnano.3c08244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Nucleic acids extracted from biomass have emerged as sustainable and environmentally friendly building blocks for the fabrication of multifunctional materials. Until recently, the fabrication of biomass nucleic acid-based structures has been facilitated through simple crosslinking of biomass nucleic acids, which limits the possibility of material properties engineering. This study presents an approach to convert biomass RNA into an acrylic crosslinker through acyl imidazole chemistry. The number of acrylic moieties on RNA was engineered by varying the acylation conditions. The resulting RNA crosslinker can undergo radical copolymerization with various acrylic monomers, thereby offering a versatile route for creating materials with tunable properties (e.g., stiffness and hydrophobic characteristics). Further, reversible-deactivation radical polymerization methods, such as atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT), were also explored as additional approaches to engineer the hydrogel properties. The study also demonstrated the metallization of the biomass RNA-based material, thereby offering potential applications in enhancing electrical conductivity. Overall, this research expands the opportunities in biomass-based biomaterial fabrication, which allows tailored properties for diverse applications.
Collapse
Affiliation(s)
- Jaepil Jeong
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - So Young An
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaolei Hu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Grzegorz Szczepaniak
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- University
of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland
| | - Hironobu Murata
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Subha R. Das
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Fu L, Wang R, Zhu Q, Gu Y, Zheng L, Chen Y, Jiang J, Ma J. Planar Chirality for Acid/Base Responsive Macrocyclic Pillararenes Induced by Amino Acid Derivatives: Molecular Dynamics Simulations and Machine Learning. J Chem Theory Comput 2023. [PMID: 37154217 DOI: 10.1021/acs.jctc.2c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chirality is ubiquitous in nature, ranging from a DNA helix to a biological macromolecule, snail's shell, and even a galaxy. However, the precise control of chirality at the nanoscale is a challenge due to the structure complexity of supramolecular assemblies, the small energy differences between different enantiomers, and the difficulty in obtaining polymorphic crystals. The planar chirality of water-soluble pillar[5]arenes (called WP5-Na with Na ions in the side chain) host triggered by the addition of chiral L-amino acid hydrochloride (L-AA-OEt) guests and acid/base is rationalized by the relative stability of different chiral isomers, being estimated by molecular dynamics (MD) simulations and quantum chemical calculations. As an increase in the pH value, the change from a positive to a negative value of the free energy difference (ΔG) between two conformations, pR-WP5-Na⊃L-AA-OEt and pS-WP5-Na⊃L-AA-OEt, suggests an inversed preference of the pS-WP5-Na conformer induced by the deprotonated L-arginine ethyl ester (L-Arg-OEt) at pH = 14, which is supported by the circular dichroism (CD) experiments. On the basis of 2256 WP5-Na⊃L-Ala-OEt and 3299 WP5-Na⊃L-Arg-OEt conformers sampled from MD, the gradient boosting regression (GBR) model exhibits a satisfactory performance (R2 = 0.91) in predicting the chirality of WP5-Na complexations using host-guest binding descriptors, including the geometry matching and binding sites and modes (electrostatics and hydrogen bonding). The machine learning model also performs well on external tests of different hosts (using different side chains and cavity sizes) with the addition of 22 other different guests, with the average chirality prediction accuracy of ML versus experimental CD determinations of 92.8%. The easily accessible host-guest features, binding position coordination and size matching between the cavity and guest, exhibit a close correlation to the chirality of different macrocyclic molecules, water-soluble pillar[6]arenes (WP6) versus WP5, in complexation with different amino acid guests. The exploration of efficient host-guest features in ML displays the great potential of building a large space of various assembled systems and accelerating the on-demand design of chiral supramolecular systems at the nanoscale.
Collapse
Affiliation(s)
- Lulu Fu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ranran Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qiang Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuming Gu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Lifeng Zheng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juli Jiang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan 238200, P. R. China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
8
|
Lee CU, Ma S, Ahn J, Kyhm J, Tan J, Lee H, Jang G, Park YS, Yun J, Lee J, Son J, Park JS, Moon J. Tailoring the Time-Averaged Structure for Polarization-Sensitive Chiral Perovskites. J Am Chem Soc 2022; 144:16020-16033. [PMID: 36036662 DOI: 10.1021/jacs.2c05849] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral perovskites have emerged as promising candidates for polarization-sensing materials. Despite their excellent chiroptical properties, the nature of their multiple-quantum-well structures is a critical hurdle for polarization-based and spintronic applications. Furthermore, as the origin of chiroptical activity in chiral perovskites is still illusive, the strategy for simultaneously enhancing the chiroptical activity and charge transport has not yet been reported. Here, we demonstrated that incorporating a Lewis base into the lattice can effectively tune the chiroptical response and electrical properties of chiral perovskites. Through solid-state nuclear magnetic resonance spectroscopic measurements and theoretical calculations, it was demonstrated that the material property manipulation resulted from the change in the time-averaged structure induced by the Lewis base. Finally, as a preliminary proof of concept, a vertical-type circularly polarized light photodetector based on chiral perovskites was developed, exhibiting an outstanding performance with a distinguishability of 0.27 and a responsivity of 0.43 A W-1.
Collapse
Affiliation(s)
- Chan Uk Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.,Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sunihl Ma
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.,Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jihoon Ahn
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jihoon Kyhm
- Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jeiwan Tan
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gyumin Jang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young Sun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juwon Yun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Junwoo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehyun Son
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Sang Park
- Department of Physics, Kyungpook National University, Seoul 02792, Republic of Korea.,SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|