1
|
Zhang Q, Zhou J, Kao CW, Gao S, Li J, Lu YR, Yuan D, Palaniyandy N, Tan Y. Interfacial Electronic Interactions Induced by Self-Assembled Amorphous RuCo Bimetallenes/MXene Heterostructures for Nitrate Electroreduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502635. [PMID: 40351078 DOI: 10.1002/smll.202502635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Indexed: 05/14/2025]
Abstract
Electrocatalytic nitrate reduction to ammonia (NO3RR) is an attractive green route to generate valuable ammonia and remove nitrates in industrial processes. However, under the intense competition of hydrogen evolution reactions (HER), it is a key challenge to improve the selectivity and reduce the energy consumption of the nitrate reduction reaction. Herein, a unique amorphous RuCo Bimetallenes confined on Ti3C2Tx-MXene (RuCo/Ti3C2Tx) is reported as a highly efficient NO3RR catalyst, showing a remarkable Faradaic efficiency for ammonia of 94.7% at -0.2 V versus reversible hydrogen electrode (RHE), with the corresponding high ammonia yield rate of 98.8 mg h-1 mgcat -1 at -0.6 V versus RHE. Significantly, the RuCo/Ti3C2Tx heterostructures are able to operate stably at 1 A cm-2 for over 100 h under membrane electrode assembly (MEA) conditions with a stabilized NH3 Faraday efficiency. In-depth theoretical and operando spectroscopic investigations unveil that the in situ generation of heterojunction via interfacial Ru/Co─O bridges can induce charge redistribution through Ru/Co─O-Ti structure and modulate the electronic structure of RuCo Bimetallenes, significantly promoting *H production and the adsorption and activation of reactants/intermediates, while suppressing HER, thereby boosting NO3RR performance. This study offers a new insight the metal-support interaction for the development of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Qi Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jing Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Shanqiang Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Jilong Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Dingwang Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Nithyadharseni Palaniyandy
- Institute for Catalysis and Energy Solutions (ICES), College of Science, Engineering, and Technology (CSET), University of South Africa, Florida Science Campus, Roodepoort, 1709, South Africa
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
2
|
Wang S, Hou X, Li Y, Zhou C, Zhang P, Hu C. From Single-Atom to Dual-Atom: A Universal Principle for the Rational Design of Heterogeneous Fenton-like Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8822-8833. [PMID: 40261206 DOI: 10.1021/acs.est.4c13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Developing efficient heterogeneous Fenton-like catalysts is the key point to accelerating the removal of organic micropollutants in the advanced oxidation process. However, a general principle guiding the reasonable design of highly efficient heterogeneous Fenton-like catalysts has not been constructed up to now. In this work, a total of 16 single-atom and 272 dual-atom transition metal/nitrogen/carbon (TM/N/C) catalysts for H2O2 dissociation were explored systematically based on high-throughput density functional theory and machine learning. It was found that H2O2 dissociation on single-atom TM/N/C exhibited a distinct volcano-type relationship between catalytic activity and •OH adsorption energy. The favorable •OH adsorption energies were in the range of -3.11 ∼ -2.20 eV. Three different descriptors, namely, energetic, electronic, and structural descriptors, were found, which can correlate the intrinsic properties of catalysts and their catalytic activity. Using adsorption energy, stability, and activation energy as the evaluation criteria, two dual-atom CoCu/N/C and CoRu/N/C catalysts were screened out from 272 candidates, which exhibited higher catalytic activity than the best single-atom TM/N/C catalyst due to the synergistic effect. This work could present a conceptually novel understanding of H2O2 dissociation on TM/N/C and inspire the structure-oriented catalyst design from the viewpoint of volcano relationship.
Collapse
Affiliation(s)
- Shengbo Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Xiuli Hou
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Yichan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Chen Zhou
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Chu T, Tian P, Wang G, Jia Y, Dai S, Rong C, Zhang B, Xuan FZ. An Atomically Dispersed Pd Sub-Metallene: Intermediate State of Single Atoms and Metal Bonds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504603. [PMID: 40326153 DOI: 10.1002/adma.202504603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Despite the metal coordination and single-atom catalyst (SAC) have been extensively investigated in surface science over the past decade, their overall activity in involving multi-step reactions remains unsatisfactory owing to the metal bond and single atom being irreconcilable. Here, a stable atomically dispersed Pd sub-metallene (Pd ADSM) layer supported on the 2D MXene (Mo2TiC2) is reported, which combines the advantages of 2D structures, single atoms, and metal bonds. Pd ADSM shows covalent structures along the z-coordination and highly coordinated metal bonds in the 2D direction. During the alkaline hydrogen evolution reaction (HER), Pd ADSM shows 7- and 112-times higher mass activity than the SAC (Pd SAC) and commercial Pt/C at the overpotential of -108 mV, respectively. Operando characterizations and theoretical calculations reveal that the Pd─Pd interface not only makes the adsorbed water form a flexible hydrogen-bonded skeleton closer to the catalytic center but also reduces the energy barrier for the HER rate-determining step. Moreover, the moderate adsorption energy of Pd─Pd bonds in ADSM can rapidly activate, dissociate, and desorb hydrogen molecules at room temperature, resulting in record-high hydrogen sensing performances (Response time, Recovery time, and Sensitivity for 100 ppm H2 are 4.8, 1.6 s, and 43.5%, respectively).
Collapse
Affiliation(s)
- Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengfei Tian
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Guiying Wang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanyan Jia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, and Key Laboratory of Pressure Systems and Safety of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Alemayehu DD, Tsai MC, Tsai MH, Yang CC, Chang CC, Chang CY, Moges EA, Lakshmanan K, Nikodimos Y, Su WN, Wang CH, Hwang BJ. Heterogeneous Interfaces of Ni 3Se 4 Nanoclusters Decorated on a Ni 3N Surface Enhance Efficient and Durable Hydrogen Evolution Reactions in Alkaline Electrolyte. J Am Chem Soc 2025. [PMID: 40325798 DOI: 10.1021/jacs.4c17747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Transition metal selenides (TMSes) have been identified as cost-efficient alternatives to platinum (Pt) for the alkaline hydrogen evolution reaction (HER) owing to their distinct electronic properties and excellent conductivity. However, they encounter challenges such as sluggish water dissociation and severe oxidative degradation, requiring further optimizations. In this study, we developed a dual-site heterogeneous catalyst, Ni3Se4-Ni3N, by decorating Ni3Se4 nanoclusters on a Ni3N substrate. This catalyst design promoted significant interfacial electronic interactions, modulated electronic structures, and enhanced the adsorption of the intermediates. Various spectroscopic analyses and theoretical calculations revealed that the nitride surfaces improved water adsorption and dissociation, enriching the surface with adsorbed hydrogen (H*) atoms, while the Se sites facilitated hydrogen coupling and subsequent release of H2. Following a hydrogen spillover mechanism, the surface-adsorbed hydrogen atoms were transferred to nearby electron-dense selenide sites for H2 formation and release. Consequently, the optimized catalyst demonstrated improved HER activity, requiring only an ∼60 mV overpotential at 10 mA cm-2 current density and maintained stability under higher potential conditions.
Collapse
Affiliation(s)
- Dessalew Dagnew Alemayehu
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Meng-Che Tsai
- Department of Greenergy, National University of Tainan, Tainan 700301, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Meng-Hsuan Tsai
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Chueh-Cheng Yang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Chun-Chi Chang
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Chia-Yu Chang
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Endalkachew Asefa Moges
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Keseven Lakshmanan
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yosef Nikodimos
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Nien Su
- Nano-electrochemistry Laboratory, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Bing Joe Hwang
- Nano-electrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
5
|
Jiang Z, Tong K, Li Z, Tao H, Zhu M. Spin State Regulation for Peroxide Activation: Fundamental Insights and Regulation Mechanisms. Angew Chem Int Ed Engl 2025; 64:e202500791. [PMID: 39925159 DOI: 10.1002/anie.202500791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/11/2025]
Abstract
Peroxides are widely used in environmental applications due to their strong oxidizing properties, however, traditional activation methods often face challenges such as uncontrolled reactive oxygen species (ROS) generation and high energy barriers. Recent advancements in spin state regulation provide a promising alternative to enhance the efficiency of peroxide activation. This review provides an overview of spin fundamentals and discusses the key factors affecting spin state in catalytic materials, including crystal field configuration, ligand environment, and valence changes. Subsequently, the role of electron spin state in peroxide activation is comprehensively analyzed, with a focus on how spin state regulation can tune adsorption energy, lower energy barriers, facilitate electron transfer between transition metals and peroxides, and promote selective ROS generation. Finally, this review briefly outlines the practical applications of peroxide activation in water treatment and concludes with a summary and perspectives on future research directions. This review aims to provide a comprehensive perspective on the role of spin state regulation in advancing peroxide activation strategies.
Collapse
Affiliation(s)
- Zicong Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, P.R. China
| | - Kangbo Tong
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, P.R. China
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, P.R. China
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, P.R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, P.R. China
| |
Collapse
|
6
|
Sui NLD, Lee JM. Optimization of 3D Metal-Based Assemblies for Efficient Electrocatalysis: Structural and Mechanistic Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410390. [PMID: 40095760 DOI: 10.1002/smll.202410390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Indexed: 03/19/2025]
Abstract
The commercial utilization of low-dimensional catalysts has been hindered by their propensity for agglomeration and stacking, greatly minimizing their utilization of active sites. To circumvent this problem, low-dimensional materials can be assembled into systematic 3D architectures to synergistically retain the benefits of their constituent low-dimensional nanomaterials, with value-added bulk properties such as increased active surface area, improved charge transport pathways, and enhanced mass transfer, leading to higher catalytic activity and durability compared to their constituents. The hierarchical organization of low-dimensional building blocks within 3D structures also enables precise control over the catalyst's morphology, composition, and surface chemistry, facilitating tailored design for specific electrochemical applications. Despite the surge in 3D metal-based assemblies, there are no reviews encompassing the different types of metal-based 3D assemblies from low-dimensional nanomaterials for electrocatalysis. Herein, this review addresses this gap by investigating the various types of self-supported 3D assemblies and exploring how their electrocatalytic performance can be elevated through structural modifications and mechanistic studies to tailor them for various electrochemical reactions.
Collapse
Affiliation(s)
- Nicole L D Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
7
|
He S, Chen Y, Fang J, Liu Y, Lin Z. Optimizing photocatalysis via electron spin control. Chem Soc Rev 2025; 54:2154-2187. [PMID: 39838850 DOI: 10.1039/d4cs00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis via electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics via strengthening surface interaction and increasing product selectivity. Nevertheless, the lack of a comprehensive and critical review on this topic is noteworthy. Herein, we provide a summary of the fundamentals of electron spin control and the techniques employed to scrutinize the electron spin state of active sites in photocatalysts. Subsequently, we highlight advanced strategies for manipulating electron spin, including doping design, defect engineering, magnetic field regulation, metal coordination modulation, chiral-induced spin selectivity, and combined strategies. Additionally, we review electron spin control-optimized photocatalytic processes, including photocatalytic water splitting, CO2 reduction, pollutant degradation, and N2 fixation, providing specific examples and detailed discussion on underlying mechanisms. Finally, we outline perspectives on further enhancing photocatalytic activity through electron spin manipulation. This review seeks to offer valuable insights to guide future research on electron spin control for improving photocatalytic applications.
Collapse
Affiliation(s)
- Shaoxiong He
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yanxi Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Jingyun Fang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yijiang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, P. R. China.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
8
|
Chu K, Weng B, Lu Z, Ding Y, Zhang W, Tan R, Zheng YM, Han N. Exploration of Multidimensional Structural Optimization and Regulation Mechanisms: Catalysts and Reaction Environments in Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416053. [PMID: 39887545 PMCID: PMC11923998 DOI: 10.1002/advs.202416053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Ammonia (NH3) is esteemed for its attributes as a carbon-neutral fuel and hydrogen storage material, due to its high energy density, abundant hydrogen content, and notably higher liquefaction temperature in comparison to hydrogen gas. The primary method for the synthetic generation of NH3 is the Haber-Bosch process, involving rigorous conditions and resulting in significant global energy consumption and carbon dioxide emissions. To tackle energy and environmental challenges, the exploration of innovative green and sustainable technologies for NH3 synthesis is imperative. Rapid advances in electrochemical technology have created fresh prospects for researchers in the realm of environmentally friendly NH3 synthesis. Nevertheless, the intricate intermediate products and sluggish kinetics in the reactions impede the progress of green electrochemical NH3 synthesis (EAS) technologies. To improve the activity and selectivity of the EAS, which encompasses the electrocatalytic reduction of nitrogen gas, nitrate, and nitric oxide, numerous electrocatalysts and design strategies have been meticulously investigated. Here, this review primarily delves into recent progress and obstacles in EAS pathways, examining methods to boost the yield rate and current efficiency of NH3 synthesis via multidimensional structural optimization, while also exploring the challenges and outlook for EAS.
Collapse
Affiliation(s)
- Kaibin Chu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Bo Weng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Zhaorui Lu
- School of Materials Science and Engineering, Linyi University, Linyi, 276000, P. R. China
| | - Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Wei Zhang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Rui Tan
- Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Yu-Ming Zheng
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Ning Han
- The Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 3G4, Canada
| |
Collapse
|
9
|
Xu G, Wang T. Determining the Magnetic Status of Active Sites on Nanocatalysts. J Phys Chem Lett 2025; 16:1447-1452. [PMID: 39888717 DOI: 10.1021/acs.jpclett.5c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Abstract
Identifying the atomic structure and chemical composition of active sites on nanocatalysts has been a long pursuit in heterogeneous catalysis. Yet, determining the magnetic structure of a well-defined active site is even more challenging. However, explicit morphology and reaction temperature have not been considered in identifying the magnetic behaviors of the nanocatalysts, especially in theoretical studies. Herein, we determined the magnetic status of nanoscale catalysts at finite temperatures by using atomistic spin models. The size dependence of the Curie point and the magnetic premelting have been discussed, indicating that the magnetic properties over a localized active center can greatly differ from the bulk. Therefore, the magnetic phase transitions and its concomitant magneto-catalytic effect can be induced at a considerably low temperature. Our analysis demonstrated that an 8 nm cobalt-based core-shell nanoparticle can achieve the optimal magnetization with Sabatier optimal activity for ammonia synthesis at 523 K, which is in accord with the reaction condition of the Haber-Bosch process. We believe our findings elucidate the importance of determining the localized magnetic configuration for active sites. Furthermore, including this unexcavated dimension in the dynamical simulations of the catalytic process can provide us with a more complete and comprehensive understanding of the reaction mechanism under working conditions.
Collapse
Affiliation(s)
- Gaomou Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University; Zhejiang Baima Lake Laboratory, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
10
|
Liu Y, Chen Y, Li Q, Shi J, Liu B. Electrocatalysis of Co/Co xO y nanofilms supported by synchronously nitrogen-doped Ketjenblack carbon towards oxygen reduction reaction. J Colloid Interface Sci 2025; 679:253-261. [PMID: 39362150 DOI: 10.1016/j.jcis.2024.09.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Developing a highly active and stable non-precious metal catalyst for oxygen reduction reaction (ORR) is of great practical significance for advancing fuel cell technology. In this work, a continuous two-step hydrothermal reaction followed by high temperature pyrolysis were employed to achieve in situ N-doping preferentially into Ketjenblack carbon (KB-N) and composite of KB-N and Co/CoxOy nanofilms (Co/CoxOy-NFs) as Co/CoxOy-NFs@KB-N. The N-doped state strongly affects the ORR activity of catalyst. All prepared Co/CoxOy-NFs@KB-N catalysts exhibit observably improved ORR activity compared with the basal KB-N and N-doped Co/CoxOy-NFs, in which the optimal Co/CoxOy-NFs@KB-N catalyst demonstrate the positive Eonset (0.864 V) and E1/2 (0.788 V) vs. RHE, the low Tafel slope (69.27 mV dec-1), implying quick ORR kinetics. And, the Co/CoxOy-NFs@KB-N catalyst exhibits highly electrochemical durability. The KB-N substrate can purify Co valence in CoO component, promote amorphization of CoO crystalline structure and enhance the interaction between Co/CoxOy-NFs and KB-N in Co/CoxOy-NFs@KB-N catalyst. Thus electronic effect, structural effect and synergistic effect can strengthen O2 adsorption, provide enough adsorbed sites and accelerate electron transfer, resulting in prominent ORR performance of Co/CoxOy-NFs@KB-N catalyst.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yumei Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Qing Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jianchao Shi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China; State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo 454003, PR China.
| |
Collapse
|
11
|
Hu H, Wang J, Liao K, Chen Z, Zhang S, Sun B, Wang X, Ren X, Lin J, Han X. Clarifying the Active Structure and Reaction Mechanism of Atomically Dispersed Metal and Nonmetal Sites with Enhanced Activity for Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416126. [PMID: 39718226 DOI: 10.1002/adma.202416126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Indexed: 12/25/2024]
Abstract
Atomically dispersed transition metal (ADTM) catalysts are widely implemented in energy conversion reactions, while the similar properties of TMs make it difficult to continuously improve the activity of ADTMs via tuning the composition of metals. Introducing nonmetal sites into ADTMs may help to effectively modulate the electronic structure of metals and significantly improve the activity. However, it is difficult to achieve the co-existence of ADTMs with nonmetal atoms and clarify their synergistic effect on the catalytic mechanism. Therefore, elucidating the active sites within atomically dispersed metal-nonmetal materials and unveiling catalytic mechanism is highly important. Herein, a novel hybrid catalyst, with coexistence of Co single-atoms and Co─Se dual-atom sites (Co─Se/Co/NC), is successfully synthesized and exhibits remarkable performance for oxygen reduction reaction (ORR). Theoretical results demonstrate that the Se sites can effectively modulate the charge redistribution at Co active sites. Furthermore, the synergistic effect between Co single-atom sites and Co─Se dual-atom sites can further adjust the d-band center, optimize the adsorption/desorption behavior of intermediates, and finally accelerate the ORR kinetics. This work has clearly clarified the reaction mechanism and shows the great potential of atomically dispersed metal-nonmetal nanomaterials for energy conversion and storage applications.
Collapse
Affiliation(s)
- Hui Hu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Kang Liao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Zanyu Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Buwei Sun
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Xixi Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
| | - Jianguo Lin
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin, 300350, P. R. China
- National Innovation Platform for Industry-Education Integration of Energy Storage Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
12
|
Li J, Ma Y, Mu X, Wang X, Li Y, Ma H, Guo Z. Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411964. [PMID: 39777433 PMCID: PMC11831450 DOI: 10.1002/advs.202411964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants. This review critically assesses the latest discoveries in the coupled electrooxidation of various small molecules with OWS, including alcohols, aldehydes, amides, urea, hydrazine, etc. Emphasis is placed on the corresponding electrocatalyst design and related reaction mechanisms (e.g., dual hydrogenation and N-N bond breaking of hydrazine and C═N bond regulation in urea splitting to inhibit hazardous NCO- and NO- productions, etc.), along with emerging alternative electrooxidation reactions (electrooxidation of tetrazoles, furazans, iodide, quinolines, ascorbic acid, sterol, trimethylamine, etc.). Some new decoupled electrolysis and self-powered systems are also discussed in detail. Finally, the potential challenges and prospects of coupled water electrolysis systems are highlighted to aid future research directions.
Collapse
Affiliation(s)
- Jiachen Li
- Department of ChemistryThe University of Hong KongHong Kong999077China
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | | | | | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
- Zhijian LaboratoryXi'an710025China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| |
Collapse
|
13
|
Yang Y, Chen D, Hu S, Pei P, Xu X. Advanced Ir-Based Alloy Electrocatalysts for Proton Exchange Membrane Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410372. [PMID: 39901480 DOI: 10.1002/smll.202410372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Indexed: 02/05/2025]
Abstract
Proton exchange membrane water electrolyzer (PEMWE) coupled with renewable energy to produce hydrogen is an important part of clean energy acquisition in the future. However, the slow kinetics of the oxygen evolution reaction (OER) hinder the large-scale application of PEM water electrolysis technology. To deal with the problems existing in the PEM electrolyzer and improve the electrolysis efficiency, substantial efforts are invested in the development of cost-effective and stable electrocatalysts. Within this scenario, the different OER reaction mechanisms are first discussed here. Based on the in-depth understanding of the reaction mechanism, the research progress of low-iridium noble metal alloys is reviewed from the aspects of special effects, design strategies, reaction mechanisms, and synthesis methods. Finally, the challenges and prospects of the future development of high-efficiency and low-precious metal OER electrocatalysts are presented.
Collapse
Affiliation(s)
- Yuan Yang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongfang Chen
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528000, China
| | - Song Hu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528000, China
| | - Pucheng Pei
- School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Xiaoming Xu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528000, China
| |
Collapse
|
14
|
Guo H, Zhou Y, Chu K, Cao X, Qin J, Zhang N, Roeffaers MBJ, Zbořil R, Hofkens J, Müllen K, Lai F, Liu T. Improved Ammonia Synthesis and Energy Output from Zinc-Nitrate Batteries by Spin-State Regulation in Perovskite Oxides. J Am Chem Soc 2025; 147:3119-3128. [PMID: 39818850 PMCID: PMC11783523 DOI: 10.1021/jacs.4c12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Electrocatalytic nitrate reduction to ammonia (eNRA) is a promising route toward environmental sustainability and clean energy. However, its efficiency is often limited by the slow conversion of intermediates due to spin-forbidden processes. Here, we introduce a novel A-site high-entropy strategy to develop a new perovskite oxide (La0.2Pr0.2Nd0.2Ba0.2Sr0.2)CoO3-δ (LPNBSC) for eNRA. The LPNBSC possesses a higher concentration of high-spin (HS) cobalt-active centers, resulting from an increased concentration of [CoO5] structural motifs compared to conventional LaCoO3. Consequently, this material exhibits a significantly improved electrocatalytic performance toward ammonia (NH3) production, resulting in a 3-fold increase in yield rate (129 μmol h-1 mgcat.-1) and a 2-fold increase in Faradaic efficiency (FE, 76%) compared to LaCoO3 at the optimal potential. Furthermore, the LPNBSC-based Zn-nitrate battery reaches a maximum FE of 82% and an NH3 yield rate of 57 μmol h-1 cm-2. Density functional theory calculations reveal that A-site high-entropy management in perovskites facilitates nitrate activation and potentially optimizes the thermodynamic rate-determining step of the eNRA process, namely, *HNO3 + H+ + e- → *NO2 + H2O. This work presents an efficient concept for modulating the spin state of the B-site metal in perovskites and offers valuable insights for the design of high-performance eNRA catalysts.
Collapse
Affiliation(s)
- Hele Guo
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Yazhou Zhou
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies (CEET), VŠB−Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Kaibin Chu
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Xueying Cao
- Key
Laboratory for Colloid and Interface Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingjing Qin
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Nan Zhang
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Maarten B. J. Roeffaers
- cMACS,
Department
of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Radek Zbořil
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies (CEET), VŠB−Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 241/27, Olomouc 779 00, Czech Republic
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Feili Lai
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tianxi Liu
- The
Key Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Do VH, Lee JM. Transforming Adsorbate Surface Dynamics in Aqueous Electrocatalysis: Pathways to Unconstrained Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417516. [PMID: 39871686 DOI: 10.1002/adma.202417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Indexed: 01/29/2025]
Abstract
Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability. The immense promise and rapid evolution of this design strategy, however, do not overshadow the substantial challenges and ambiguities that persist, impeding the realization of significant breakthroughs in electrocatalyst development. This review explores the latest insights into the principles guiding the design of catalytic surfaces that enable favorable adsorbate dynamics within the contexts of hydrogen and oxygen electrochemistry. Innovative approaches for tailoring adsorbate-surface interactions are discussed, delving into underlying principles that govern these dynamics. Additionally, perspectives on the prevailing challenges are presented and future research directions are proposed. By evaluating the core principles and identifying critical research gaps, this review seeks to inspire rational electrocatalyst design, the discovery of novel reaction mechanisms and concepts, and ultimately, advance the large-scale implementation of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| |
Collapse
|
16
|
Yan L, Mao Y, Li Y, Sha Q, Sun K, Li P, Waterhouse GIN, Wang Z, Tian S, Sun X. Sublimation Transformation Synthesis of Dual-Atom Fe Catalysts for Efficient Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202413179. [PMID: 39225757 DOI: 10.1002/anie.202413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Dual-atom catalysts (DACs) have garnered significant interest due to their remarkable catalytic reactivity. However, achieving atomically precise control in the fabrication of DACs remains a major challenge. Herein, we developed a straightforward and direct sublimation transformation synthesis strategy for dual-atom Fe catalysts (Fe2/NC) by utilizing in situ generated Fe2Cl6(g) dimers from FeCl3(s). The structure of Fe2/NC was investigated by aberration-corrected transmission electron microscopy and X-ray absorption fine structure (XAFS) spectroscopy. As-obtained Fe2/NC, with a Fe-Fe distance of 0.3 nm inherited from Fe2Cl6, displayed superior oxygen reduction performance with a half-wave potential of 0.90 V (vs. RHE), surpassing commercial Pt/C catalysts, Fe single-atom catalyst (Fe1/NC), and its counterpart with a common and shorter Fe-Fe distance of ~0.25 nm (Fe2/NC-S). Density functional theory (DFT) calculations and microkinetic analysis revealed the extended Fe-Fe distance in Fe2/NC is crucial for the O2 adsorption on catalytic sites and facilitating the subsequent protonation process, thereby boosting catalytic performance. This work not only introduces a new approach for fabricating atomically precise DACs, but also offers a deeper understanding of the intermetallic distance effect on dual-site catalysis.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yu Mao
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Yingxin Li
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Qihao Sha
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kai Sun
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Panpan Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | | | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, 1010, Auckland, New Zealand
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
17
|
Hao C, Wu Y, Zheng X, Du Y, Fan Y, Pang W, Tadich A, Zhang S, Frauenheim T, Ma T, Li X, Cheng Z. Engineering Magnetic Heterostructures with Synergistic Regulation of Charge-Transfer and Spin-Ordering for Enhanced Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409842. [PMID: 39588586 PMCID: PMC11744567 DOI: 10.1002/advs.202409842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/06/2024] [Indexed: 11/27/2024]
Abstract
The design of heterojunctions offers a crucial solution for energy conversion and storage challenges, but current research predominantly focuses on charge transfer benefits, often neglecting spin attribute regulation despite the increasing recognition of spin-sensitivity in many chemical reactions. In this study, a novel magnetic heterostructure, CoFe2O4@CoFeMo3O8, is designed to simultaneously modulate charge and spin characteristics, and systematically elucidated their synergistic impact on the oxygen evolution reaction (OER). Experimental results and density functional theory calculations confirmed that the magnetic heterostructure exhibits both charge transfer and spin polarization. It is found that the charge-transfer behavior enhances conductivity and adsorption ability through band structure regulation. Meanwhile, magnetically polarized electrons promote triplet O2 generation and accelerate electron transport via spin-selective pathways. Moreover, the heterostructure's effective response to external alternating magnetic fields further amplifies the spin-dependent effect and introduces a magnetothermal effect, locally heating the active sites through spin flip, thereby boosting catalytic activity. Consequently, the OER activity of the magnetic heterostructure is improved by 83.8 times at 1.5 V compared to its individual components. This magnetic heterojunction strategy presents a promising avenue for advanced catalysis through synergistic regulating of charge-transfer and spin-ordering.
Collapse
Affiliation(s)
- Chongyan Hao
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| | - Yang Wu
- Bremen Center for Computational Materials ScienceUniversity of Bremen28359BremenGermany
| | - Xiaobo Zheng
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| | - Yumeng Du
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| | - Yameng Fan
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| | - Weikong Pang
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| | - Anton Tadich
- Australian SynchrotronAustralian Nuclear Science and Technology OrganizationClaytonVIC3168Australia
| | - Shujun Zhang
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| | - Thomas Frauenheim
- School of ScienceConstructor University28759BremenGermany
- Institute for Advanced StudyChengdu UniversityChengdu610106China
| | - Tianyi Ma
- School of ScienceRMIT UniversityMelbourneVIC3000Australia
| | - Xiaoning Li
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
- School of ScienceRMIT UniversityMelbourneVIC3000Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongong2500Australia
| |
Collapse
|
18
|
Wang Y, Zhang X, Yang Y, Wang H, Lau WM, Wang C, Fu Z, Pang D, Wang Q, Zheng J. Regulating the electronic structure of Pt SAs-Ni 2P for enhanced hydrogen evolution reaction. J Colloid Interface Sci 2025; 677:491-501. [PMID: 39106774 DOI: 10.1016/j.jcis.2024.07.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
The single atom catalysts (SACs) show immense promise as catalytic materials. By doping the single atoms (SAs) of precious metals onto substrates, the atomic utilization of these metals can be maximized, thereby reducing catalyst costs. The electronic structure of precious metal SAs is significantly influenced by compositions of doped substrates. Therefore, optimizing the electronic structure through appropriate doping of substrates can further enhance catalytic activity. Here, Pt single atoms (Pt SAs) are doped onto transition metal sulfide substrate NiS2 (Pt SAs-NiS2) and phosphide substrate Ni2P (Pt SAs-Ni2P) to design and prepare catalysts. Compared to the Pt SAs-NiS2 catalyst, the Pt SAs-Ni2P catalyst exhibits better hydrogen evolution catalytic performance and stability. Under 1 M KOH conditions, the hydrogen evolution mass activity current density of the Pt SAs-Ni2P catalyst reaches 0.225 A mgPt-1 at 50 mV, which is 33 times higher than that of commercial Pt/C catalysts. It requires only 44.9 mV to achieve a current density of 10 mA cm-2. In contrast, for the Pt SAs-NiS2 catalyst, the hydrogen evolution mass activity current density is 0.178 A mgPt-1, requiring 77.8 mV to achieve a current density of 10 mA cm-2. Theoretical calculations indicate that in Pt SAs-Ni2P, the interaction between Pt SAs and the Ni2P substrate causes the Pt d-band center to shift downward, enhancing the H2O desorption and providing optimal H binding sites. Additionally, the hollow octahedral morphology of Ni2P provides a larger surface area, exposing more reactive sites and improving reaction kinetics. This study presents an effective pathway for preparing high-performance hydrogen evolution electrocatalysts by selecting appropriate doped substrates to control the electronic structure of Pt SAs.
Collapse
Affiliation(s)
- Yushun Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China
| | - Xinzheng Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing 100083, China
| | - Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China
| | - Huichao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528399, China
| | - Chenjing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China
| | - Zhongheng Fu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing 100083, China
| | - Dawei Pang
- Beijing Key Laboratory of Solid Microstructure and Properties, Department of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| | - Qian Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing 100083, China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528399, China.
| |
Collapse
|
19
|
Liu H, Jiang Y, Li Q, Hai G, Gu C, Du Y. Interface-Triggered Spin-Magnetic Effect in Rare Earth Intraparticle Heterostructured Nanoalloys for Boosting Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202412591. [PMID: 39219031 DOI: 10.1002/anie.202412591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rare earth (RE) elements are attractive for spin-magnetic modulation due to their unique 4 f electron configuration and strong orbital couplings. Alloying RE with conventional 3d transition-metal (TM) is promising for the fabrication of advanced spin catalysts yet remains much difficulties in preparation, which leads to the mysteries of spin-magnetic effect between RE and 3d TM on catalysis. Here we define a solid-phase synthetic protocol for creating RE-3d TM-noble metal integrated intraparticle heterostructured nanoalloys (IHAs) with distinct Gd and Co interface within the entire Rh framework, denoted as RhCo-RhGd IHAs. They exhibit interface-triggered antiferromagnetic interaction, which can induce electron redistribution and regulate spin polarization. Theoretical calculations further reveal that active sites around the heterointerface with weakened spin polarization optimize the adsorption and dissociation of H2O, thus promoting alkaline hydrogen evolution catalysis. The RhCo-RhGd IHAs show a small overpotential of 11.3 mV at 10 mA cm-2, as well as remarkable long-term stability, far superior to previously reported Rh-based catalysts.
Collapse
Affiliation(s)
- Hengjun Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Qingqing Li
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Guangtong Hai
- Beijing Advanced Innovation Center for Materials Genome Engineering, College of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Chao Gu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
20
|
Zhang H, Zhao Y, Cheng Z, Jiang J, Fu J, Xu Q. 2D NiFe 2O 4/Ni(OH) 2 Heterostructure-Based Self-Supporting Electrode With Synergistic Surface/Interfacial Engineering for Efficient Water Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405225. [PMID: 39161189 DOI: 10.1002/smll.202405225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Indexed: 08/21/2024]
Abstract
To meet the industrial demand for overall water splitting, oxygen evolution reaction (OER) electrocatalysts with low-cost, highly effective, and durable properties are urgently required. Herein, a facile confined strategy is utilized to construct 2D NiFe2O4/Ni(OH)2 heterostructures-based self-supporting electrode with surface-interfacial coengineering, in which abundant and ultrastable interfaces are developed. Under the high molar ratio of Ni/Fe, both spinel oxide and hydroxides phases are formed simultaneously to obtain 2D NiFe2O4/Ni(OH)2 heterostructure. The in-depth analysis indicates that the NiFe2O4/Ni(OH)2 interface displays strong electronic interactions and triggers the formation of crystalline-amorphous coexisting catalytic active NiOOH. Meanwhile, the stable catalyst-collector interface favors the electron transfer and oxygen molecules transport. The resultant 2D NiFe2O4/Ni(OH)2@CP electrode exhibits superior OER performance, including a low overpotential of 389 mV and a long operating time of 12 h at 1 A cm-2. This work paves a novel method for fabricating efficient and low-cost electrocatalysts for electrochemical conversation devices.
Collapse
Affiliation(s)
- Hongbo Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yiting Zhao
- Henan Institute of advanced technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Zhenfeng Cheng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Jingyun Jiang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- Henan Institute of advanced technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|
21
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
22
|
Li T, Du T, Xu S, Zhang L, Peng Y, Zhao X, Zhou X, Yan C, Qian T. Weakening O-Intermediates Adsorption Strength Over the Pd Metallene via Lewis-Acidic Site Modulation for Enhanced Oxygen Reduction. Inorg Chem 2024; 63:19450-19457. [PMID: 39333885 DOI: 10.1021/acs.inorgchem.4c03455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
The reasonable design and modulation of the electronic properties of Pd metallene are acknowledged as a promising avenue for enhancing the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs), yet they remain a formidable challenge. Herein, a thin-sheet structure of Zr-doped Pd metallene (PdZr metallene) with abundant defects is proposed using a facile wet-chemical approach for efficient and highly durable ORR electrocatalysis. Multiple microstructural analyses uncover that orchestrated electronic and oxophilic regulation of PdZr metallene via Lewis-acidic Zr site modulation could concurrently optimize the electronic configuration of Pd, downshift the d-band center of Pd, and, thus, promote the intrinsic activity. Benefiting from the unique two-dimensional morphology and electronic structure optimization facilitated by the Zr coupling effect, the resultant PdZr metallene demonstrates significantly enhanced ORR electrocatalytic performance in basic solutions, with a high half-wave potential (E1/2) of 0.87 V and commendable stability for 30 000 s, surpassing those of Pd metallene and various advanced Pd-based catalysts reported in the literature. Encouragingly, the PdZr metallene-based AEMFC achieves an increased maximum power density (90.4 mW cm-2) and impressive robustness over 12 h in an alkaline environment, manifesting the practical application of PdZr metallene in AEMFCs. This study showcases the applicability of PdZr metallene via Lewis acid site regulation for fabricating highly active electrocatalysts for high-performance AEMFCs.
Collapse
Affiliation(s)
- Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tianheng Du
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shuya Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yukun Peng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xianzhe Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xi Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
23
|
Guo J, Ding R, Li Y, Xie J, Fang Q, Yan M, Zhang Y, Yan Z, Chen Z, He Y, Sun X, Liu E. Semi-Ionic F Modified N-Doped Porous Carbon Implanted with Ruthenium Nanoclusters toward Highly Efficient pH-Universal Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403151. [PMID: 38934338 DOI: 10.1002/smll.202403151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Developing high electroactivity ruthenium (Ru)-based electrocatalysts for pH-universal hydrogen evolution reaction (HER) is challenging due to the strong bonding strengths of key Ru─H/Ru─OH intermediates and sluggish water dissociation rates on active Ru sites. Herein, a semi-ionic F-modified N-doped porous carbon implanted with ruthenium nanoclusters (Ru/FNPC) is introduced by a hydrogel sealing-pyrolying-etching strategy toward highly efficient pH-universal hydrogen generation. Benefiting from the synergistic effects between Ru nanoclusters (Ru NCs) and hierarchically F, N-codoped porous carbon support, such synthesized catalyst displays exceptional HER reactivity and durability at all pH levels. The optimal 8Ru/FNPC affords ultralow overpotentials of 17.8, 71.2, and 53.8 mV at the current density of 10 mA cm-2 in alkaline, neutral, and acidic media, respectively. Density functional theory (DFT) calculations elucidate that the F-doped substrate to support Ru NCs weakens the adsorption energies of H and OH on Ru sites and reduces the energy barriers of elementary steps for HER, thus enhancing the intrinsic activity of Ru sites and accelerating the HER kinetics. This work provides new perspectives for the design of advanced electrocatalysts by porous carbon substrate implanted with ultrafine metal NCs for energy conversion applications.
Collapse
Affiliation(s)
- Jian Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jinmei Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Qi Fang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Miao Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuzhen Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Ziyang Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhiqiang Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuming He
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
24
|
Sun S, Zhang Y, Shi X, Sun W, Felser C, Li W, Li G. From Charge to Spin: An In-Depth Exploration of Electron Transfer in Energy Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312524. [PMID: 38482969 DOI: 10.1002/adma.202312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/24/2024] [Indexed: 05/01/2024]
Abstract
Catalytic materials play crucial roles in various energy-related processes, ranging from large-scale chemical production to advancements in renewable energy technologies. Despite a century of dedicated research, major enduring challenges associated with enhancing catalyst efficiency and durability, particularly in green energy-related electrochemical reactions, remain. Focusing only on either the crystal structure or electronic structure of a catalyst is deemed insufficient to break the linear scaling relationship (LSR), which is the golden rule for the design of advanced catalysts. The discourse in this review intricately outlines the essence of heterogeneous catalysis reactions by highlighting the vital roles played by electron properties. The physical and electrochemical properties of electron charge and spin that govern catalysis efficiencies are analyzed. Emphasis is placed on the pronounced influence of external fields in perturbing the LSR, underscoring the vital role that electron spin plays in advancing high-performance catalyst design. The review culminates by proffering insights into the potential applications of spin catalysis, concluding with a discussion of extant challenges and inherent limitations.
Collapse
Affiliation(s)
- Shubin Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xin Shi
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 A Fenghua Rd, Jiangbei District, Ningbo, 315211, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Claudia Felser
- Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
25
|
Wang R, Lee JM. High-Energy Facet Engineering for Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401546. [PMID: 38705853 DOI: 10.1002/smll.202401546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/15/2024] [Indexed: 05/07/2024]
Abstract
The design of high-energy facets in electrocatalysts has attracted significant attention due to their potential to enhance electrocatalytic activity. In this review, the significance of high-energy facets in various electrochemical reactions are highlighted, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CRR). Their importance in various electrochemical reactions and present strategies for constructing high-energy facets are discussed, including alloying, heterostructure formation, selective etching, capping agents, and coupling with substrates. These strategies enable control over crystallographic orientation and surface morphology, fine-tuning electrocatalytic properties. This study also addresses future directions and challenges, emphasizing the need to better understand fundamental mechanisms. Overall, high-energy facets offer exciting opportunities for advancing electrocatalysis.
Collapse
Affiliation(s)
- Rui Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
26
|
Chen Z, Li X, Ma H, Zhang Y, Peng J, Ma T, Cheng Z, Gracia J, Sun Y, Xu ZJ. Spin-dependent electrocatalysis. Natl Sci Rev 2024; 11:nwae314. [PMID: 39363911 PMCID: PMC11448474 DOI: 10.1093/nsr/nwae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/07/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
The shift towards sustainable energy requires efficient electrochemical conversion technologies, emphasizing the crucial need for robust electrocatalyst design. Recent findings reveal that the efficiency of some electrocatalytic reactions is spin-dependent, with spin configuration dictating performance. Consequently, understanding the spin's role and controlling it in electrocatalysts is important. This review succinctly outlines recent investigations into spin-dependent electrocatalysis, stressing its importance in energy conversion. It begins with an introduction to spin-related features, discusses characterization techniques for identifying spin configurations, and explores strategies for fine-tuning them. At the end, the article provides insights into future research directions, aiming to reveal more unknown fundamentals of spin-dependent electrocatalysis and encourage further exploration in spin-related research and applications.
Collapse
Affiliation(s)
- Zhengjie Chen
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Xiaoning Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Hao Ma
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Peng
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne 3000, Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, North Wollongong 2500, Australia
| | - Jose Gracia
- MagnetoCat SL, General Polavieja 9 3I, Alicante 03012, Spain
| | - Yuanmiao Sun
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen 518107, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Center for Advanced Catalysis Science and Technology, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
27
|
Pramoda K, Chithaiah P, Rao CNR. Rhombohedrally stacked layered transition metal dichalcogenides and their electrocatalytic applications. NANOSCALE 2024; 16:15909-15927. [PMID: 39145442 DOI: 10.1039/d4nr02021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Layered transition metal dichalcogenides (TMDCs) are extensively investigated as catalyst materials for a wide range of electrochemical applications due to their high surface area and versatile electronic and chemical properties. Bulk TMDCs are van der Waals solids that possess strong in-plane bonding and weak inter-layer interactions. In the few-layer 2D TMDCs, several polymorphic structures have been reported as each individual layer can either retain octahedral or trigonal prismatic coordination. Among them, 1T (tetragonal), 2H (hexagonal) and 3R (rhombohedral) phases are very common. These polymorphs can display discrepancies in their catalytic activity as their electronic structure diverges due to different d orbital filling states. The broken inversion symmetry and large exposed edge sites of some of the 3R-phase TMDCS such as MoS2, NbS2 and TaS2 appear to be advantageous for electrocatalytic water reduction and battery applications. We describe recent studies in phase engineering of 2D TMDCs, particularly aiming at the 3R polytype and their electrocatalytic properties. Redox ability primarily depends on a distinct polymorphic phase in which TMDCs are isolated, and hence, with rich polymorphic structures being reported, numerous new catalytic applications can be realized. Phase conversion from 2H to 3R phase in some TMDCs enhances structural integrity and establishes robustness under harsh chemical conditions.
Collapse
Affiliation(s)
- K Pramoda
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, 562112, India
| | - Pallellappa Chithaiah
- New Chemistry Unit, School of Advanced Materials and International Centre for Material Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru-560064, India.
| | - C N R Rao
- New Chemistry Unit, School of Advanced Materials and International Centre for Material Science, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru-560064, India.
| |
Collapse
|
28
|
Wang N, Mei R, Chen L, Yang T, Chen Z, Lin X, Liu Q. P-Bridging Asymmetry Diatomic Catalysts Sites Drive Efficient Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400327. [PMID: 38516947 DOI: 10.1002/smll.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Rechargeable zinc-air batteries (ZABs) rely on the development of high-performance bifunctional oxygen electrocatalysts to facilitate efficient oxygen reduction/evolution reactions (ORR/OER). Single-atom catalysts (SACs), characterized by their precisely defined active sites, have great potential for applications in ZABs. However, the design and architecture of atomic site electrocatalysts with both high activity and durability present significant challenges, owing to their spatial confinement and electronic states. In this study, a strategy is proposed to fabricate structurally uniform dual single-atom electrocatalyst (denoted as P-FeCo/NC) consisting of P-bridging Fe and Co bimetal atom (i.e., Fe-P-Co) decorated on N, P-co-doped carbon framework as an efficient and durable bifunctional electrocatalyst for ZABs. Experimental investigations and theoretical calculations reveal that the Fe-P-Co bridge-coupling structure enables a facile adsorption/desorption of oxygen intermediates and low activation barrier. The resultant P-FeCo/NC exhibits ultralow overpotential of 340 mV at 10 mA cm-2 for OER and high half-wave potential of 0.95 V for ORR. In addition, the application of P-FeCo/NC in rechargeable ZABs demonstrates enhanced performance with maximum power density of 115 mW cm-2 and long cyclic stability, which surpass Pt/C and RuO2 catalysts. This study provides valuable insights into the design and mechanism of atomically dispersed catalysts for energy conversion applications.
Collapse
Affiliation(s)
- Nan Wang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Riguo Mei
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Liqiong Chen
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Tao Yang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Zhongwei Chen
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada
| | - Xidong Lin
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Qingxia Liu
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemical and Materials Engineering, University of Alberta, Waterloo, T6R1H9, Canada
| |
Collapse
|
29
|
Xia D, Lee C, Charpentier NM, Deng Y, Yan Q, Gabriel JP. Drivers and Pathways for the Recovery of Critical Metals from Waste-Printed Circuit Boards. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309635. [PMID: 38837685 PMCID: PMC11321694 DOI: 10.1002/advs.202309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/15/2024] [Indexed: 06/07/2024]
Abstract
The ever-increasing importance of critical metals (CMs) in modern society underscores their resource security and circularity. Waste-printed circuit boards (WPCBs) are particularly attractive reservoirs of CMs due to their gamut CM embedding and ubiquitous presence. However, the recovery of most CMs is out of reach from current metal-centric recycling industries, resulting in a flood loss of refined CMs. Here, 41 types of such spent CMs are identified. To deliver a higher level of CM sustainability, this work provides an insightful overview of paradigm-shifting pathways for CM recovery from WPCBs that have been developed in recent years. As a crucial starting entropy-decreasing step, various strategies of metal enrichment are compared, and the deployment of artificial intelligence (AI) and hyperspectral sensing is highlighted. Then, tailored metal recycling schemes are presented for the platinum group, rare earth, and refractory metals, with emphasis on greener metallurgical methods contributing to transforming CMs into marketable products. In addition, due to the vital nexus of CMs between the environment and energy sectors, the upcycling of CMs into electro-/photo-chemical catalysts for green fuel synthesis is proposed to extend the recycling chain. Finally, the challenges and outlook on this all-round upgrading of WPCB recycling are outlined.
Collapse
Affiliation(s)
- Dong Xia
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
| | - Carmen Lee
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Nicolas M. Charpentier
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| | - Yuemin Deng
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
- Ecologic France15 Avenue du CentreGuyancour78280France
| | - Qingyu Yan
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Jean‐Christophe P. Gabriel
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| |
Collapse
|
30
|
Feng H, Han Y, Wang Y, Chai DF, Ran J, Zhang W, Zhang Z, Dong G, Qi M, Guo D. Advancing overall water splitting via phase-engineered amorphous/crystalline interface: A novel strategy to accelerate proton-coupled electron transfer. J Colloid Interface Sci 2024; 667:237-248. [PMID: 38636225 DOI: 10.1016/j.jcis.2024.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Traditional phase engineering enhances conductivity or activity by fully converting electrocatalytic materials into either a crystalline or an amorphous state, but this approach often faces limitations. Thus, a practical solution entails balancing the dynamic attributes of both phases to maximize an electrocatalyst's functionality is urgently needed. Herein, in this work, Co/Co2C crystals have been assembled on the amorphous N, S co-doped porous carbon (NSPC) through hydrothermal and calcination processes. The stable biphase structure and amorphous/crystalline (A/C) interface enhance conductivity and intrinsic activity. Moreover, the adsorption ability of water molecules and intermediates is improved significantly attributed to the rich oxygen-containing groups, unsaturated bonds, and defect sites of NSPC, which accelerates proton-coupled electron transfer (PCET) and overall water splitting. Consequently, A/C-Co/Co2C/NSPC (Co/Co2C/NSPC with amorphous/crystalline interface) exhibits outstanding behavior for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), requiring the overpotential of 240.0 mV and 70.0 mV to achieve 10 mA cm-2. Moreover, an electrolyzer assembled by A/C-Co/Co2C/NSPC-3 (anode) and A/C-Co/Co2C/NSPC-2 (cathode) demonstrates a low drive voltage of 1.54 V during overall water splitting process. Overall, this work has pioneered the coexistence of crystalline/amorphous phases in electrocatalysts and provided new insights into phase engineering.
Collapse
Affiliation(s)
- Hui Feng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yue Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yutong Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Jianxin Ran
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Wenzhi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Zhuanfang Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guohua Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Meili Qi
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China.
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
31
|
Wang X, Li N, Wang GC, Liu M, Zhang C, Liu S. Ultrafine Nanoclusters Unlocked 3d-4f Electronic Ladders for Efficient Electrocatalytic Water Oxidation. ACS NANO 2024. [PMID: 39047140 DOI: 10.1021/acsnano.4c05130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The vast extensional planes of two-dimensional (2D) nanomaterials are recognized as desirable ground for electrocatalytic reactions. However, they tend to exhibit catalytic inertia due to their surface-ordered coordination configurations. Herein, an in situ autoxidation strategy enables high-density grafting of ultrafine CeO2 nanoclusters on 2D Co(OH)2. Affluent active units were activated at the inert interface of Co(OH)2 via the formation of Co-O-Ce units. The optimized catalyst exhibits oxygen evolution reaction activity with an overpotential of 83 mV lower than that of Co(OH)2 at 10 mA cm-2. The cascade orbital coupling between Co (3d) and Ce (4f) in Co-O-Ce units drives electron transfer by unlocking a "d-f electron ladder". Meanwhile, the bond-order theorem analyses and the d-band center show that the occupancy of Co-3d-eg is optimized to balance the adsorption-desorption process of active sites to the key reaction intermediate *OOH, thereby making it easier to release oxygen. This work will drive the development of wider area electron modulation methods and provide guidance for the surface engineering of 2D nanomaterials.
Collapse
Affiliation(s)
- Xuemin Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Na Li
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gui-Chang Wang
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming Liu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Cui Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuangxi Liu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Yu J, Huang C, Usoltsev O, Black AP, Gupta K, Spadaro MC, Pinto-Huguet I, Botifoll M, Li C, Herrero-Martín J, Zhou J, Ponrouch A, Zhao R, Balcells L, Zhang CY, Cabot A, Arbiol J. Promoting Polysulfide Redox Reactions through Electronic Spin Manipulation. ACS NANO 2024; 18:19268-19282. [PMID: 38981060 PMCID: PMC11271176 DOI: 10.1021/acsnano.4c05278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
Catalytic additives able to accelerate the lithium-sulfur redox reaction are a key component of sulfur cathodes in lithium-sulfur batteries (LSBs). Their design focuses on optimizing the charge distribution within the energy spectra, which involves refinement of the distribution and occupancy of the electronic density of states. Herein, beyond charge distribution, we explore the role of the electronic spin configuration on the polysulfide adsorption properties and catalytic activity of the additive. We showcase the importance of this electronic parameter by generating spin polarization through a defect engineering approach based on the introduction of Co vacancies on the surface of CoSe nanosheets. We show vacancies change the electron spin state distribution, increasing the number of unpaired electrons with aligned spins. This local electronic rearrangement enhances the polysulfide adsorption, reducing the activation energy of the Li-S redox reactions. As a result, more uniform nucleation and growth of Li2S and an accelerated liquid-solid conversion in LSB cathodes are obtained. These translate into LSB cathodes exhibiting capacities up to 1089 mA h g-1 at 1 C with 0.017% average capacity loss after 1500 cycles, and up to 5.2 mA h cm-2, with 0.16% decay per cycle after 200 cycles in high sulfur loading cells.
Collapse
Affiliation(s)
- Jing Yu
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
| | - Chen Huang
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- Department
of Chemistry, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Oleg Usoltsev
- ALBA
Synchrotron, 08290 Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Ashley P. Black
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Kapil Gupta
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Maria Chiara Spadaro
- Department
of Physics and Astronomy “Ettore Majorana”, University of Catania, via S. Sofia 64, 95123 Catania, Italy
- CNR-IMM, via S. Sofia
64, 95123 Catania, Italy
| | - Ivan Pinto-Huguet
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Marc Botifoll
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Canhuang Li
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- Department
of Chemistry, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | | | - Jinyuan Zhou
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education & School of Physical Science & Technology, Lanzhou University, 730000 Lanzhou, China
| | - Alexandre Ponrouch
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Ruirui Zhao
- School
of Chemistry, South China Normal University, 510006 Guangzhou, China
| | - Lluís Balcells
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
| | - Chao Yue Zhang
- Key
Laboratory for Magnetism and Magnetic Materials of the Ministry of
Education & School of Physical Science & Technology, Lanzhou University, 730000 Lanzhou, China
| | - Andreu Cabot
- Catalonia
Institute for Energy Research (IREC), Sant Adrià de Besòs, Barcelona, 08930 Catalonia, Spain
- ICREA, Passeig Lluìs
Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Jordi Arbiol
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST,
Campus UAB, 08193 Bellaterra, Barcelona, Catalonia, Spain
- ICREA, Passeig Lluìs
Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
33
|
Wang Y, Sun J, Sun N, Zhang M, Liu X, Zhang A, Wang L. The spin polarization strategy regulates heterogeneous catalytic activity performance: from fundamentals to applications. Chem Commun (Camb) 2024; 60:7397-7413. [PMID: 38946499 DOI: 10.1039/d4cc02012j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, there has been significant attention towards the development of catalysts that exhibit superior performance and environmentally friendly attributes. This surge in interest is driven by the growing demands for energy utilization and storage as well as environmental preservation. Spin polarization plays a crucial role in catalyst design, comprehension of catalytic mechanisms, and reaction control, offering novel insights for the design of highly efficient catalysts. However, there are still some significant research gaps in the current study of spin catalysis. Therefore, it is urgent to understand how spin polarization impacts catalytic reactions to develop superior performance catalysts. Herein, we present a comprehensive summary of the application of spin polarization in catalysis. Firstly, we summarize the fundamental mechanism of spin polarization in catalytic reactions from two aspects of kinetics and thermodynamics. Additionally, we review the regulation mechanism of spin polarization in various catalytic applications and several approaches to modulate spin polarization. Moreover, we discuss the future development of spin polarization in catalysis and propose several potential avenues for further progress. We aim to improve current catalytic systems through implementing a novel and distinctive spin engineering strategy.
Collapse
Affiliation(s)
- Yan Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Junkang Sun
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Ning Sun
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Mengyang Zhang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Xianya Liu
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Anlei Zhang
- College of Science, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Longlu Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
34
|
Wu Q, Chen K, Shadike Z, Li C. Relay-Type Catalysis by a Dual-Metal Single-Atom System in a Waste Biomass Derivative Host for High-Rate and Durable Li-S Batteries. ACS NANO 2024; 18:13468-13483. [PMID: 38739894 DOI: 10.1021/acsnano.3c09919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An environmental-friendly and sustainable carbon-based host is one of the most competitive strategies for achieving high loading and practicality of Li-S batteries. However, the polysulfide conversion reaction kinetics is still limited by the nonuniform or monofunctional catalyst configuration in the carbon host. In this work, we propose a catalysis mode based on "relay-type" co-operation by adjacent dual-metal single atoms for high-rate and durable Li-S batteries. A discarded sericin fabric-derived porous N-doped carbon with a stacked schistose structure is prepared as the high-loading sulfur (84 wt %) host by a facile ionothermal method, which further enables the uniform anchoring of Fe/Co dual-metal single atoms. This multifunctional host enables superior lithiophilic-sulfiphilic and electrocatalytic capabilities contributed by the "relay-type" single-atom modulation effects on different conversion stages of liquid polysulfides and solid Li2S2/Li2S, leading to the suppression of the "shuttle effect", alleviation of nucleation and decomposition barriers of Li2Sx, and acceleration of polysulfide conversion kinetics. The corresponding Li-S batteries exhibit a high specific capacity of 1399.0 mA h g-1, high-rate performance up to 10 C, and excellent cycling stability over 1000 cycles. They can also endure the high sulfur loading of 8.5 mg cm-2 and the lean electrolyte condition and yield an areal capacity as high as 8.6 mA h cm-2. This work evidentially demonstrates the potential of waste biomass reutilization coupled with the design of a single-atom system for practical Li-S batteries with high energy density.
Collapse
Affiliation(s)
- Qingping Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, P. R. China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Keyi Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, P. R. China
| | - Zulipiya Shadike
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chilin Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, P. R. China
| |
Collapse
|
35
|
Li L, Wang Y, Nazmutdinov RR, Zairov RR, Shao Q, Lu J. Magnetic Field Enhanced Cobalt Iridium Alloy Catalyst for Acidic Oxygen Evolution Reaction. NANO LETTERS 2024; 24:6148-6157. [PMID: 38728265 DOI: 10.1021/acs.nanolett.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Magnetic field mediated magnetic catalysts provide a powerful pathway for accelerating their sluggish kinetics toward the oxygen evolution reaction (OER) but remain great challenges in acidic media. The key obstacle comes from the production of an ordered magnetic domain catalyst in the harsh acidic OER. In this work, we form an induced local magnetic moment in the metallic Ir catalyst via the significant 3d-5d hybridization by introducing cobalt dopants. Interestingly, CoIr nanoclusters (NCs) exhibit an excellent magnetic field enhanced acidic OER activity, with the lowest overpotential of 220 mV at 10 mA cm-2 and s long-term stability of 120 h under a constant magnetic field (vs 260 mV/20 h without a magnetic field). The turnover frequency reaches 7.4 s-1 at 1.5 V (vs RHE), which is 3.0 times higher than that without magnetization. Density functional theory results show that CoIr NCs have a pronounced spin polarization intensity, which is preferable for OER enhancement.
Collapse
Affiliation(s)
- Lamei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Renat R Nazmutdinov
- Kazan National Research Technological University, Kazan, 420015, Russian Federation
| | - Rustem R Zairov
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, 420008, 1/29 Lobachevskogo str., Russian Federation
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
36
|
Fu Y, Cao C, Song W, Li B, Sun XZ, Wang ZX, Fan L, Chen J. Self-Assembly Strategy for Constructing Porous Boron and Nitrogen Co-Doped Carbon as an Efficient ORR Electrocatalyst toward Zinc-Air Battery. Chemistry 2024; 30:e202400252. [PMID: 38486419 DOI: 10.1002/chem.202400252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 03/28/2024]
Abstract
Carbon nanomaterials doped with N and B could activate nearby carbon atoms to promote charge polarization through the synergistic coupling effect between N and B atoms, thus facilitating adsorption of O2 and weakening O-O bond to enhance oxygen reduction reaction. Herein, a simple and controllable self-assembly strategy is applied to synthesize porous B, N co-doped carbon-based catalysts (BCN-P), which employs the macrocyclic molecule cucurbit[7]uril (CB7) as nitrogen source, and 3D aromatic-like closo-[B12H12]2- as boron source. In addition, polystyrene microspheres are added to help introduce porous structure to expose more active sites. Benefitting from porous structures and the synergistic coupling effect between N and B atoms, BCN-P has a high onset potential (Eonset=0.846 V) and half-wave potential (E1/2=0.74 V) in alkaline media. The zinc-air battery assembled with BCN-P shows high operating voltage (1.42 V), peak power density (128.7 mW cm-2) and stable charge/discharge cycles, which is even comparable with Pt/C.
Collapse
Affiliation(s)
- Yuying Fu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Cancan Cao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Wenrui Song
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Bo Li
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Xuzhuo Z Sun
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Zhengxi X Wang
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Liuqing Fan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| | - Jing Chen
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, P.R. China
| |
Collapse
|
37
|
Wu X, Liu L, Yuan K, Shao Y, Shen X, Cui S, Chen X. Modulating Electronic Structure and Atomic Insights into the Novel Hierarchically Porous PdCuFe Trimetallic Alloy Aerogel for Efficient Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307243. [PMID: 38054802 DOI: 10.1002/smll.202307243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Indexed: 12/07/2023]
Abstract
The high cost of noble Pd/Pt required for the oxygen reduction reaction (ORR) in the cathode restricts the wide applications of fuel cells. In this study, the synthesis of a novel Pd3CuFe0.5 aerogel electrocatalyst is successfully demonstrated using self-assembly and lyophilization techniques, employing a mild reducing agent. The resulting aerogel electrocatalyst exhibits a distinctive 3D network structure, possessing a substantial BET-specific surface area of 75.19 m2 g-1. It is worth noting that the optimized Pd3CuFe0.5 aerogel demonstrates exceptional ORR performance with a high half-wave potential of 0.92 V versus RHE, a significant limiting current density of 7.6 mA cm-2, and the excellent electrocatalytic stability, superior to the reported noble metal electrocatalysts, with the ORR activity decays only 4.9% after 16 000 s. In addition, the Pd3CuFe0.5 aerogel electrocatalyst shows superior cycling stability for ≈120 h at a charge/discharge current density of 10 mA cm-2, indicating its promising application in fuel cells. Furthermore, the resulting composite aerogel possesses excellent hydrogen evolution reaction and ethanol oxidation reaction activity. The density functional theory calculations show that the partial oxidation of Pd3CuFe0.5 aerogel leads to a negative shift of the d-band center, which energetically optimizes the binding strength of *O intermediates, therefore accelerating the ORR activity.
Collapse
Affiliation(s)
- Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Liu Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Ke Yuan
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yitian Shao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Sheng Cui
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Xiangbao Chen
- AECC Beijing Institute of Aeronautical Materials, Beijing, 100095, China
| |
Collapse
|
38
|
Xu G, Sun L, Wang T. Demagnetizing Ferromagnetic Catalysts to the Sabatier Optimal of Haber-Bosch Process. JACS AU 2024; 4:1405-1412. [PMID: 38665674 PMCID: PMC11040701 DOI: 10.1021/jacsau.3c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/28/2024]
Abstract
Achieving the Sabatier optimal of a chemical reaction has been the central topic in heterogeneous catalysis for a century. However, this ultimate goal was greatly hindered in previous catalyst design strategies since the active sites indeed changed. Fortunately, the magneto-catalytic effect (MCE) provides a promising solution to this long-standing challenge. Recent research suggests that the performance of ferromagnetic catalysts is capable to be promoted without changing its chemical structure. Herein, we use time-dependent density functional perturbation theory (TDDFPT) calculations to elucidate that a partially demagnetized (DM) ferromagnet could be a Sabatier optimal catalyst. Using ammonia synthesis as the model reaction, we determined the activity of Cobalt at each DM state by including the magnetic thermal excitations via magnon analysis, making the 55% DM Co to the genuine Sabatier optimal. As an essential but underexcavated phenomenon in heterogeneous catalysis, the MCE will open a new avenue to design high-performance catalysts.
Collapse
Affiliation(s)
- Gaomou Xu
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, 18
Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Licheng Sun
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, 18
Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Division
of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory, Hangzhou 310000, Zhejiang Province, China
| | - Tao Wang
- Center
of Artificial Photosynthesis for Solar Fuels and Department of Chemistry,
School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, 18
Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Division
of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
39
|
Hernández-Montes O, Garzón IL, Barrios-Vargas JE. A chiral metal cluster triggers enantiospecific electronic transport. Phys Chem Chem Phys 2024; 26:11277-11282. [PMID: 38251447 DOI: 10.1039/d3cp04581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Chirality is a geometric property of matter that can be present at different scales, especially at the nanoscale. Here, we investigate the manifestation of chirality in electronic transport through a molecular junction. Spinless electronic transport through a chiral molecular junction is not enantiospecific. However, when a chiral metal cluster, C3-Au34, is attached to the source electrode, a different response is obtained in spinless electronic transport between R and L systems: this indicates the crucial role of chiral clusters in triggering enantiospecific spinless electronic transport. In contrast, when an achiral metal cluster, C3v-Au34, is attached, no change in conductance occurs between enantiomeric systems. Using the non-equilibrium green's function method, we characterized this phenomenon by calculating the transmission and conductance of spin-unpolarized electrons. Our theoretical results highlight the importance of metal clusters with specific sizes and chiral structures in electronic transport and support previously published experimental results that exhibited enantiospecific scanning tunneling measurements with intrinsically chiral tips.
Collapse
Affiliation(s)
- Omar Hernández-Montes
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Ignacio L Garzón
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico.
| | - J Eduardo Barrios-Vargas
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
40
|
Prabhu P, Do VH, Yoshida T, Zhou Y, Ariga-Miwa H, Kaneko T, Uruga T, Iwasawa Y, Lee JM. Subnanometric Osmium Clusters Confined on Palladium Metallenes for Enhanced Hydrogen Evolution and Oxygen Reduction Catalysis. ACS NANO 2024; 18:9942-9957. [PMID: 38552006 DOI: 10.1021/acsnano.3c10219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os5%@Pd metallenes manifest a low η10 overpotential of only 11 mV in 1.0 M KOH electrolyte (HER) as well as a highly positive E1/2 potential of 0.92 V in 0.1 M KOH (ORR), along with superior mass activities and electrochemical durability. Theoretical investigations reveal that the strong electron redistribution between Os and Pd elements renders a precise fine-tuning of respective d-band centers, thereby guiding adsorption of hydrogen and oxygen intermediates with an appropriate binding energy for the optimal HER and ORR.
Collapse
Affiliation(s)
- P Prabhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Viet-Hung Do
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
- Energy Research Institute @ NTU, ERI@N, Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Takefumi Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Hiroko Ariga-Miwa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Takuma Kaneko
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Tomoya Uruga
- Research & Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Sayo, Hyogo 679-5198, Japan
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
41
|
Lu Z, Yang H, Qi G, Liu Q, Feng L, Zhang H, Luo J, Liu X. Efficient and Stable pH-Universal Water Electrolysis Catalyzed by N-Doped Hollow Carbon Confined RuIrO x Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308841. [PMID: 38009776 DOI: 10.1002/smll.202308841] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Indexed: 11/29/2023]
Abstract
A facile strategy is developed to fabricate 3 nm RuIrOx nanocrystals anchored onto N-doped hollow carbon for highly efficient and pH-universal overall water splitting and alkaline seawater electrolysis. The designed catalyst exhibits much lower overpotential and superior stability than most previously reported Ru- and Ir-based electrocatalysts for hydrogen/oxygen evolution reactions. It also manifests excellent overall water splitting activities and maintains ≈100% Faradic efficiency with a cell voltage of 1.53, 1.51, and 1.54 V at 10 mA cm-2 for 140, 255, and 200 h in acid, alkaline, and alkaline seawater electrolytes, respectively. The excellent electrocatalytic performance can be attributed to solid bonding between RuIrOx and the hollow carbon skeleton, and effective electronic coupling between Ru and Ir, thus inducing its remarkable electrocatalytic activities and long-lasting stability.
Collapse
Affiliation(s)
- Zhensui Lu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Gaocan Qi
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hao Zhang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Optoelectronic Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua, Shenzhen, 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, China
| |
Collapse
|
42
|
Sun Y, Li X, Wang Z, Jiang L, Mei B, Fan W, Wang J, Zhu J, Lee JM. Biomimetic Design of a Dynamic M-O-V Pyramid Electron Bridge for Enhanced Nitrogen Electroreduction. J Am Chem Soc 2024; 146:7752-7762. [PMID: 38447176 DOI: 10.1021/jacs.3c14816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Electrochemical nitrogen reduction reaction (eNRR) offers a sustainable route for ammonia synthesis; however, current electrocatalysts are limited in achieving optimal performance within narrow potential windows. Herein, inspired by the heliotropism of sunflowers, we present a biomimetic design of Ru-VOH electrocatalyst, featuring a dynamic Ru-O-V pyramid electron bridge for eNRR within a wide potential range. In situ spectroscopy and theoretical investigations unravel the fact that the electrons are donated from Ru to V at lower overpotentials and retrieved at higher overpotentials, maintaining a delicate balance between N2 activation and proton hydrogenation. Moreover, N2 adsorption and activation were found to be enhanced by the Ru-O-V moiety. The catalyst showcases an outstanding Faradaic efficiency of 51.48% at -0.2 V (vs RHE) with an NH3 yield rate exceeding 115 μg h-1 mg-1 across the range of -0.2 to -0.4 V (vs RHE), along with impressive durability of over 100 cycles. This dynamic M-O-V pyramid electron bridge is also applicable to other metals (M = Pt, Rh, and Pd).
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xuheng Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhiqi Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lili Jiang
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
43
|
Lin L, Xu Y, Han Y, Xu R, Wang T, Sun Z, Yan Z. Spin-Magnetic Effect of d-π Conjugation Polymer Enhanced O-H Cleavage in Water Oxidation. J Am Chem Soc 2024; 146:7363-7372. [PMID: 38452363 DOI: 10.1021/jacs.3c11907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A deep understanding of the mechanism for the spin-magnetic effect on O-H cleavage is crucial for the development of new catalysts for water oxidation. Herein, we designed and synthesized the crystalline Fe-DABDT and Co-DABDT (DABDT = 2,5-diaminobenzene-1,4-dithiol) and optimized an effective magnetic moment to explore the role of the spin-magnetic effect in the regulation of water oxidation activity. It can be found that the OER activity of the catalyst is positively correlated with its effective magnetic moment. Under the external magnetic field, Fe-DABDT with more spin single electrons has a stronger spin-magnetic response to water oxidation than Fe/Co-DABDT and Co-DABDT. The increase in OER current of Fe-DABDT is nearly 2 times higher than that of Co-DABDT. Experimental and density functional theory studies show that magnetized Fe sites could realize nucleophilic reaction, accelerate the polarization of electron spin states, and promote the polar decomposition of O-H and the formation of the O-O bond. This study provides mechanistic insight into the spin-magnetic effect of oxygen evolution reaction and further understanding of the spin origin of catalytic activity, which is expected to improve the energy efficiency of hydrogen production.
Collapse
Affiliation(s)
- Liu Lin
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yunming Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yiting Han
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Ruikun Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Tongyue Wang
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zemin Sun
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Yang S, Guo X, Li X, Wu T, Zou L, He Z, Xu Q, Zheng J, Chen L, Wang Q, Xu ZJ. Enhancing Photocatalytic CO 2 Conversion through Oxygen-Vacancy-Mediated Topological Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202317957. [PMID: 38270335 DOI: 10.1002/anie.202317957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Weak adsorption of gas reactants and strong binding of intermediates present a significant challenge for most transition metal oxides, particularly in the realm of CO2 photoreduction. Herein, we demonstrate that the adsorption can be fine-tuned by phase engineering of oxide catalysts. An oxygen vacancy mediated topological phase transition in Ni-Co oxide nanowires, supported on a hierarchical graphene aerogel (GA), is observed from a spinel phase to a rock-salt phase. Such in situ phase transition empowers the Ni-Co oxide catalyst with a strong internal electric field and the attainment of abundant oxygen vacancies. Among a series of catalysts, the in situ transformed spinel/rock-salt heterojunction supported on GA stands out for an exceptional photocatalytic CO2 reduction activity and selectivity, yielding an impressive CO production rate of 12.5 mmol g-1 h-1 and high selectivity of 96.5 %. This remarkable performance is a result of the robust interfacial coupling between two topological phases that optimizes the electronic structures through directional charge transfer across interfaces. The phase transition process induces more Co2+ in octahedral site, which can effectively enhance the Co-O covalency. This synergistic effect balances the surface activation of CO2 molecules and desorption of reaction intermediates, thereby lowering the energetic barrier of the rate-limiting step.
Collapse
Affiliation(s)
- Sudong Yang
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, P. R. China
| | - Xu Guo
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiaoning Li
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Tianze Wu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Longhua Zou
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Zhiying He
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qing Xu
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Junjie Zheng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Lin Chen
- School of Chemistry and Chemical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qingyuan Wang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, P. R. China
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Zhichuan J Xu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
45
|
Li Y, Li Y, Sun H, Gao L, Jin X, Li Y, Lv Z, Xu L, Liu W, Sun X. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. NANO-MICRO LETTERS 2024; 16:139. [PMID: 38421549 PMCID: PMC10904713 DOI: 10.1007/s40820-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhi Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lijun Xu
- Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
46
|
Tan HJ, Si R, Li XB, Tang ZK, Wei XL, Seriani N, Yin WJ, Gebauer R. How spin state and oxidation number of transition metal atoms determine molecular adsorption: a first-principles case study for NH 3. Phys Chem Chem Phys 2024; 26:7688-7694. [PMID: 38372067 DOI: 10.1039/d3cp05042d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Understanding how the electronic state of transition metal atoms can influence molecular adsorption on a substrate is of great importance for many applications. Choosing NH3 as a model molecule, its adsorption behavior on defected SnS2 monolayers is investigated. The number of valence electrons n is controlled by decorating the monolayer with different transition metal atoms, ranging from Sc to Zn. Density-Functional Theory based calculations show that the adsorption energy of NH3 molecules oscillates with n and shows a clear odd-even pattern. There is also a mirror symmetry of the adsorption energies for large and low electron numbers. This unique behavior is mainly governed by the oxidation state of the TM ions. We trace back the observed trends of the adsorption energy to the orbital symmetries and ligand effects which affect the interaction between the 3σ orbitals (NH3) and the 3d orbitals of the transition metals. This result unravels the role which the spin state of TM ions plays in different crystal fields for the adsorption behavior of molecules. This new understanding of the role of the electronic structure on molecular adsorption can be useful for the design of high efficiency nanodevices in areas such as sensing and photocatalysis.
Collapse
Affiliation(s)
- Hua-Jian Tan
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Rutong Si
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste I-34151, Italy.
| | - Xi-Bo Li
- Department of Physics, Jinan University, Guangzhou 510632, P. R. China
| | - Zhen-Kun Tang
- College of Physics and Electronics Engineering, Hengyang Normal University, Hengyang 421008, China
| | - Xiao-Lin Wei
- Department of Physics and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Nicola Seriani
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste I-34151, Italy.
| | - Wen-Jin Yin
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste I-34151, Italy.
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ralph Gebauer
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste I-34151, Italy.
| |
Collapse
|
47
|
Deng Z, Mostaghimi AHB, Gong M, Chen N, Siahrostami S, Wang X. Pd 4d Orbital Overlapping Modulation on Au@Pd Nanowires for Efficient H 2O 2 Production. J Am Chem Soc 2024; 146:2816-2823. [PMID: 38230974 DOI: 10.1021/jacs.3c13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Isolating Pd atoms has been shown to be crucial for the design of a Pd-based electrocatalyst toward 2e- oxygen reduction reaction (ORR). However, there are limited studies focusing on the systematic compositional design that leads to an optimal balance between activity and selectivity. Herein, we design a series of Au@Pd core@shell structures to investigate the influence of the Pd 4d orbital overlapping degree on 2e- ORR performance. Density functional theory (DFT) calculations indicate that enhanced H2O2 selectivity and activity are achieved at Pdn clusters with n ≤ 3, and Pd clusters larger than Pd3 should be active for 4e- ORR. However, experimental results show that Au@Pd nanowires (NWs) with Pd4 as the primary structure exhibit the optimal H2O2 performance in an acidic electrolyte with a high mass activity (7.05 A mg-1 at 0.4 V) and H2O2 selectivity (nearly 95%). Thus, we report that Pd4, instead of Pd3, is the upper threshold of Pd cluster size for an ideal 2e- ORR. It results from the oxygen coverage on the catalyst surface during the ORR process, and such an oxygen coverage phenomenon causes electron redistribution and weakened *OOH binding strength on active sites, leading to enhanced activity of Pd4 with only 0.06 V overpotential in acidic media.
Collapse
Affiliation(s)
- Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
| | | | - Mingxing Gong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430078, P. R. China
| | - Ning Chen
- Canadian Light Source, 44 Innovation Blvd., Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Samira Siahrostami
- Department of Chemistry, University of Calgary, 2500 University Drive NW., Calgary, Alberta T2N 1N4, Canada
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
48
|
Shi J, Li R, Zhang J, Wang Y, Ma W, Yue Z, Jin C, Liu Y, Zheng L, Bai J, Li X, Leng K, Qu Y. N-Coordinated Iridium-Molybdenum Dual-Atom Catalysts Enabling Efficient Bifunctional Hydrogen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:889-897. [PMID: 38153800 DOI: 10.1021/acsami.3c16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Achieving effective hydrogen evolution/oxidation reaction (HER/HOR) across a wide pH span is of critical importance in unlocking the full potential of hydrogen energy but remains intrinsically challenging. Here, we engineer the N-coordinated Ir-Mo dual atoms on a carbon matrix by ultrafast high-temperature sintering, creating an efficient bifunctional electrocatalyst for both HER and HOR in both acidic and alkaline electrolytes. The optimized catalyst, Ir-Mo DAC/NC, demonstrates exceptional performance, with a significantly reduced HER overpotential of 11.3 mV at 10 mA/cm2 and a HOR exchange current (i0,m) of 3972 mA/mgIr in acidic conditions, surpassing the performance of Pt/C and Ir/C catalysts. In alkaline conditions, Ir-Mo DAC/NC also outperforms Pt/C, as evidenced by its low HER overpotential of 23 mV at 10 mA/cm2 and a high i0,m of 1308 mA/mgIr. Furthermore, our catalyst exhibits remarkable stability in both acidic and alkaline environments. DFT calculations results reveal that the superior electrochemical performance of Ir-Mo DAC/NC arises from the electronic synergy between Ir and Mo pairs, which regulates the interaction between the intermediates and active sites. These findings present a promising strategy for the development of dual-atom catalysts (DACs), with potential applications in the polymer fuel cells and water electrolyzers.
Collapse
Affiliation(s)
- Jingbo Shi
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Ren Li
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Jianting Zhang
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Yi Wang
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Weilong Ma
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Zongye Yue
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Chenghao Jin
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Yijiang Liu
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Lirong Zheng
- Institute of High Energy Physics, Beijing 100039, China
| | - Jinbo Bai
- CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, 8-10 rue Joliot-Curie, Gif-sur-Yvette 91190, France
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Kunyue Leng
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| | - Yunteng Qu
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
49
|
Li L, Zhang X, Humayun M, Xu X, Shang Z, Li Z, Yuen MF, Hong C, Chen Z, Zeng J, Bououdina M, Temst K, Wang X, Wang C. Manipulation of Electron Spins with Oxygen Vacancy on Amorphous/Crystalline Composite-Type Catalyst. ACS NANO 2024; 18:1214-1225. [PMID: 38150422 DOI: 10.1021/acsnano.3c12133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
By substituting the oxygen evolution reaction (OER) with the anodic urea oxidation reaction (UOR), it not only reduces energy consumption for green hydrogen generation but also allows purification of urea-rich wastewater. Spin engineering of the d orbital and oxygen-containing adsorbates has been recognized as an effective pathway for enhancing the performance of electrocatalysts. In this work, we report the fabrication of a bifunctional electrocatalyst composed of amorphous RuO2-coated NiO ultrathin nanosheets (a-RuO2/NiO) with abundant amorphous/crystalline interfaces for hydrogen evolution reaction (HER) and UOR. Impressively, only 1.372 V of voltage is required to attain a current density of 10 mA cm-2 over a urea electrolyzer. The increased oxygen vacancies in a-RuO2/NiO by incorporation of amorphous RuO2 enhance the total magnetization and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics. The density functional theory study reveals that the amorphous/crystalline interfaces promote charge-carrier transfer, and the tailored d-band center endows the optimized adsorption of oxygen-generated intermediates. This kind of oxygen vacancy induced spin-polarized electrons toward boosting HER and UOR kinetics and provides a reliable reference for exploration of advanced electrocatalysts.
Collapse
Affiliation(s)
- Linfeng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zixuan Shang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhishan Li
- Faculty of Metallurgical and Energy Engineering, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Muk Fung Yuen
- The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, People's Republic of China
| | - Chunxia Hong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Zhenhua Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Kristiaan Temst
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D Box 2418, B 3001 Leuven, Belgium
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Xiaolei Wang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
50
|
Dai J, Tong Y, Zhao L, Hu Z, Chen CT, Kuo CY, Zhan G, Wang J, Zou X, Zheng Q, Hou W, Wang R, Wang K, Zhao R, Gu XK, Yao Y, Zhang L. Spin polarized Fe 1-Ti pairs for highly efficient electroreduction nitrate to ammonia. Nat Commun 2024; 15:88. [PMID: 38167739 PMCID: PMC10762114 DOI: 10.1038/s41467-023-44469-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Electrochemical nitrate reduction to ammonia offers an attractive solution to environmental sustainability and clean energy production but suffers from the sluggish *NO hydrogenation with the spin-state transitions. Herein, we report that the manipulation of oxygen vacancies can contrive spin-polarized Fe1-Ti pairs on monolithic titanium electrode that exhibits an attractive NH3 yield rate of 272,000 μg h-1 mgFe-1 and a high NH3 Faradic efficiency of 95.2% at -0.4 V vs. RHE, far superior to the counterpart with spin-depressed Fe1-Ti pairs (51000 μg h-1 mgFe-1) and the mostly reported electrocatalysts. The unpaired spin electrons of Fe and Ti atoms can effectively interact with the key intermediates, facilitating the *NO hydrogenation. Coupling a flow-through electrolyzer with a membrane-based NH3 recovery unit, the simultaneous nitrate reduction and NH3 recovery was realized. This work offers a pioneering strategy for manipulating spin polarization of electrocatalysts within pair sites for nitrate wastewater treatment.
Collapse
Affiliation(s)
- Jie Dai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yawen Tong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Long Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, China
| | - Chang-Yang Kuo
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 300092, Taiwan, China
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, China
| | - Guangming Zhan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaxian Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyue Zou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Zheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Hou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruizhao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaiyuan Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China.
| | - Yancai Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|