1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Yang J, Wang Y, Liu F, Zhang Y, Han F. Crosstalk between ferroptosis and endoplasmic reticulum stress: A potential target for ovarian cancer therapy (Review). Int J Mol Med 2025; 55:97. [PMID: 40314096 PMCID: PMC12045474 DOI: 10.3892/ijmm.2025.5538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/08/2025] [Indexed: 05/03/2025] Open
Abstract
Ferroptosis is a unique mode of cell death driven by iron‑dependent phospholipid peroxidation, and its mechanism primarily involves disturbances in iron metabolism, imbalances in the lipid antioxidant system and accumulation of lipid peroxides. Protein processing, modification and folding in the endoplasmic reticulum (ER) are closely related regulatory processes that determine cell function, fate and survival. The uncontrolled proliferative capacity of malignant cells generates an unfavorable microenvironment characterized by high metabolic demand, hypoxia, nutrient deprivation and acidosis, which promotes the accumulation of misfolded or unfolded proteins in the ER, leading to ER stress (ERS). Ferroptosis and ERS share common pathways in several diseases, and the two interact to affect cell survival and death. Additionally, cell death pathways are not linear signaling cascades, and different pathways of cell death may be interrelated at multiple levels. Ferroptosis and ERS in ovarian cancer (OC) have attracted increasing research interest; however, both are discussed separately regarding OC. The present review aims to summarize the associations and potential links between ferroptosis and ERS, aiming to provide research references for the development of therapeutic approaches for the management of OC.
Collapse
Affiliation(s)
- Jiaqi Yang
- Postgraduate School of Traditional Chinese Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yu Wang
- Postgraduate School of Traditional Chinese Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Fangyuan Liu
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yizhong Zhang
- Postgraduate School of Traditional Chinese Gynecology, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Fengjuan Han
- Department of Gynecology, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
3
|
Yang G, Ren D, Yu T, Fang J. Biodegradable copper-doped calcium phosphate nanoplatform enables tumor microenvironment modulations for amplified ferroptosis in cervical carcinoma treatment. Int J Pharm X 2025; 9:100315. [PMID: 39811248 PMCID: PMC11731240 DOI: 10.1016/j.ijpx.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
As a recently discovered form of regulated cell death, ferroptosis has attracted much attention in the field cancer therapy. However, achieving considerably enhanced efficacy is often restricted by the overexpression of endogenous glutathione (GSH) in tumor microenvironment (TME). In this work, we report a ferroptosis-inducing strategy of GSH depletion and reactive oxygen species (ROS) generation based on a biodegradable copper-doped calcium phosphate (CaP) with L-buthionine sulfoximine (BSO) loading (denoted as BSO@CuCaP-LOD, BCCL). BCCL was conducted by a biomineralization approach using lactate oxidases (LOD) as a bio-template to obtain Cu-doped CaP nanoparticles. Then, BSO was loaded to form BCCL nanoparticles with pH-responsive biodegradability to endow controlled release of Cu2+ and BSO in response to acidic TME. Benefiting from the catalytic performance of LOD, BCCL efficiently depletes the level of lactate in tumor, which can generate endogenous H2O2 for subsequent Fenton-like reaction. The Cu2+ and BSO intracellular GSH depletion followed by GSH-mediated Cu2+/Cu+ conversion, leading to the inhibition of glutathione peroxidase 4 (GPX4) and generation of •OH radicals via Cu+-mediated Fenton-like reaction. BCCL confers enhanced ferroptosis induction via intracellular LOD-induced H2O2 production, BSO-mediated GSH depletion, and Cu+-mediated ROS generation, leading to cause effective ferroptotic cell damage. As verified by in vitro and in vivo assays, the designed BCCL nanoplatform is highly biocompatible and exhibits superior anticancer therapy on uterine cervical carcinoma U14 tumor xenografts. This study, therefore, provides a biocompatible therapeutic platform that modulating the TME to enable intensive ROS generating efficacy and GSH depleting performance, as well as provides an innovative paradigm for achieving effective ferroptosis-based cancer therapy.
Collapse
Affiliation(s)
| | | | - Tao Yu
- Department of Gynecology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, PR China
| | - Junfeng Fang
- Department of Gynecology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, PR China
| |
Collapse
|
4
|
Zhang Y, Zheng L, Che T, Meng N. Dysregulation of Calcium Homeostasis: An Important Factor Leading to Ferroptosis in Cardiovascular Diseases. Cell Biol Int 2025; 49:589-605. [PMID: 40042118 DOI: 10.1002/cbin.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/31/2024] [Accepted: 02/16/2025] [Indexed: 05/14/2025]
Abstract
Cardiovascular disease is a circulatory system disease involving the heart and blood vessels, which is one of the main causes of human health loss and even life-threatening. Ca2+ is an important signal molecule. Free calcium ions in the cytoplasm are involved in various physiological and biochemical reactions of cells. Ferroptosis is a programmed cell death driven by lipid peroxidation dependent on free ferrous ions. The essence of ferroptosis is the accumulation of lipid peroxide caused by the increase of intracellular ferrous ion content, which leads to the damage of the phospholipid membrane and eventually cell death. Studies have shown that calcium homeostasis and ferroptosis are involved in the occurrence and development of cardiovascular diseases, but the relationship between them remains to be clarified. This article reviews the various pathways regulating calcium homeostasis in cells and the occurrence and development mechanism of ferroptosis, and discusses the relationship between the two in cardiovascular diseases, which is expected to provide novel and important strategies for alleviating and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Leiyin Zheng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Tongtong Che
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
5
|
Chen Y, Huang X, Hu R, Lu E, Luo K, Yan X, Zhang Z, Ma Y, Zhang M, Sha X. Inhalable biomimetic polyunsaturated fatty acid-based nanoreactors for peroxynitrite-augmented ferroptosis potentiate radiotherapy in lung cancer. J Nanobiotechnology 2025; 23:338. [PMID: 40340938 PMCID: PMC12060495 DOI: 10.1186/s12951-025-03409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/19/2025] [Indexed: 05/10/2025] Open
Abstract
The limited efficacy and poor tumor accumulation remain crucial challenges for radiotherapy against lung cancer. To address these limitations, we rationally developed a polyunsaturated fatty acid (PUFA)-based nanoreactor (DHA-N@M) camouflaged with macrophage cell membrane to improve tumoral distribution and achieve peroxynitrite-augment ferroptosis for enhanced radiotherapy against lung cancer. After nebulization, the nanoreactors exhibited superior pulmonary accumulation in orthotopic lung cancer-bearing mice, with 70-fold higher than intravenously injected nanoreactors at 12 h post-administration, and distributed deeply in the tumors. DHA-N@M selectively released nitric oxide (NO) in glutathione (GSH)-enriched tumor cells, with consumption of GSH and subsequent inactivation of glutathione peroxidase 4 (GPX4). Under radiation, NO reacted with radiotherapy-induced reactive oxygen species (ROS) to generate peroxynitrite (ONOO-), resulting in redox homeostasis disruption. Combined with docosahexaenoic acid (DHA)-induced lipid metabolism disruption, overwhelming ferroptosis was induced both in vitro and in vivo. Notably, DHA-N@M mediated ferroptosis-radiotherapy significantly suppressed tumor growth with a 93.91% inhibition in orthotopic lung cancer models. Therefore, this design provides a nebulized ferroptosis-radiotherapy strategy for lung cancer.
Collapse
Affiliation(s)
- Yiting Chen
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xueli Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Ruining Hu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Enhao Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Kuankuan Luo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Xin Yan
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Zhiwen Zhang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China
| | - Yan Ma
- Department of Pharmacy, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
| | - Minghe Zhang
- Naval Medical Center, Naval Medical University, Shanghai, Shanghai, 200052, China.
| | - Xianyi Sha
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Lane 826, Zhangheng Road, Shanghai, 201203, China.
- Quzhou Fudan Institute, 108 Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, 324002, China.
| |
Collapse
|
6
|
Wang M, Zhang W, Liu B, Ding B, Li K, Ma P, Lin J. Boosting Cancer Cell Ferroptosis with Carbon Monoxide Poisoned Hemoglobin. J Am Chem Soc 2025. [PMID: 40334178 DOI: 10.1021/jacs.5c03831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
The peroxidase (POD)-like nanozymes, particularly those with atomic Fe-Nx sites, have demonstrated exceptional catalytic potential in cancer cell ferroptosis. The biodegradable hemoglobin (Hb) is recognized as an Fe-N5 POD-like nanozyme expected to replace the carbon-based ones, while its uncontrollable catalytic reaction remains a safety concern. Here, inspired by the carbon monoxide (CO) poisoned Hb, we develop a controllable and biodegradable catalytic nanoplatform DPHCO which integrates carboxyhemoglobin (HbCO) and platinum(IV) prodrug into -CH2SSCH2- bridged dendritic mesoporous organosilica nanoparticles (DMON). The Fe-N5 site of HbCO could be temporarily deactivated during the blood circulation. In tumor tissue, the poisoned site will be in situ reactivated by the H2O2-driven valence modulation of heme iron, along with CO desorption. The reactivated Hb performs POD-like activity during the ferric-ferryl redox cycle, adhering to Michaelis-Menten kinetics and density function theory (DFT) calculation results. Both in vitro and in vivo data suggest that the reactivated Hb and released CO could induce lipid peroxidation and cancer cell ferroptosis, which is further boosted by cisplatin synergy. This gas modification and iron valence-driven modulation provide a feasible approach for toggling the "OFF/ON" activity of the catalytic site, which would inspire the development of nanozymes for precision oncotherapy.
Collapse
Affiliation(s)
- Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wenying Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
7
|
Xu H, Liu N, Wang Q, Liu J, Qu C, Zhang W, Qian J. Ferrous Fumarate-Encapsulated Nanoformulation Triggering a Domino Effect for Enhanced Ferroptosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40327625 DOI: 10.1021/acsami.5c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Fenton-induced ferroptosis has emerged as a promising therapeutic strategy for malignant tumors. However, the therapeutic efficacy of ferroptosis is limited by factors such as suboptimal Fenton efficiency, intracellular antioxidant systems, and insufficient drug accumulation. Here, we report a domino effect triggered by a homologous cancer cell membrane-camouflaged nanoformulation: disrupting intracellular redox homeostasis, inducing enhanced oxidative stress and leading to specific ferroptosis. This strategy involves using pure red-emission upconversion nanoparticles (NaErF4:4%Tm@NaYF4, U NPs), a ferroptosis inducer (ferrous fumarate, an iron-deficiency anemia therapeutic reagent), and glucose oxidase (GOx). The nanoformulation, U@mSiO2/ferrous fumarate/GOx@lecithin/cell membrane (USFGM), enables efficient in vivo deep tissue upconversion luminescence (UCL) imaging by pure red-emission. Lecithin-modified cancer cell membranes are characterized by homologous target "homing" and acid-responsive release. Exogenous GOx depletes intratumoral glucose and generates H+/H2O2, which disrupts the nutrient supply and promotes efficient generation of reactive oxygen species (ROS). Subsequently, Fe2+/fumaric acids (FAs) are acid-responsively released from ferrous fumarate, which synchronously triggers and exacerbates the process of ferroptosis through mechanisms such as lipid ROS generation and glutathione (GSH) depletion. Here, we report for the first time that FA depletes GSH and leads to inactivation of GSH-dependent peroxidase 4 (GPX4). This concept is also confirmed in tumor-bearing mice of salivary adenoid cystic carcinoma (SACC). In summary, this work identifies a systemic, low-toxicity, and highly efficient cancer inhibitory nanoformulation from existing clinical drugs, which provides a promising direction for exploring therapeutic strategies for human malignant tumors.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Na Liu
- Department of Anesthesiology & Maxillofacial and Otorhinolaryngology Oncology & National Clinical Research Center for Cancer & Tianjin Key Laboratory of Cancer Prevention and Therapy & Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Qian Wang
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Jinyang Liu
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Chen Qu
- Department of Anesthesiology & Maxillofacial and Otorhinolaryngology Oncology & National Clinical Research Center for Cancer & Tianjin Key Laboratory of Cancer Prevention and Therapy & Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenchao Zhang
- Department of Anesthesiology & Maxillofacial and Otorhinolaryngology Oncology & National Clinical Research Center for Cancer & Tianjin Key Laboratory of Cancer Prevention and Therapy & Tianjin Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Jing Qian
- College of Chemistry & Tianjin Key Laboratory of Structure and Performance for Functional Molecules & Ministry of Education Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
8
|
Gupta G, Samuel VP, M RM, Rani B, Sasikumar Y, Nayak PP, Sudan P, Goyal K, Oliver BG, Chakraborty A, Dua K. Caspase-independent cell death in lung cancer: from mechanisms to clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04149-0. [PMID: 40257494 DOI: 10.1007/s00210-025-04149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Caspase-independent cell death (CICD) has recently become a very important mechanism in lung cancer, in particular, to overcome a critical failure in apoptotic cell death that is common to disease progression and treatment failures. The pathways involved in CICD span from necroptosis, ferroptosis, mitochondrial dysfunction, and autophagy-mediated cell death. Its potential therapeutic applications have been recently highlighted. Glutathione peroxidase 4 (GPX4) inhibition-driven ferroptosis has overcome drug resistance in non-small cell lung cancer (NSCLC). In addition, necroptosis involving RIPK1 and RIPK3 causes tumor cell death and modulation of immune responses in the tumor microenvironment (TME). Mitochondrial pathways are critical for CICD through modulation of metabolic and redox homeostasis. Ferroptosis is amplified by mitochondrial reactive oxygen species (ROS) and lipid peroxidation in lung cancer cells, and mitochondrial depolarization induces oxidative stress and leads to cell death. In addition, mitochondria-mediated autophagy, or mitophagy, results in the clearance of damaged organelles under stress conditions, while this function is also linked to CICD when dysregulated. The role of cell death through autophagy regulated by ATG proteins and PI3K/AKT/mTOR pathway is dual: to suppress tumor and to sensitize cells to therapy. A promising approach to enhancing therapeutic outcomes involves targeting mechanisms of CICD, including inducing ferroptosis by SLC7A11 inhibition, modulating mitochondrial ROS generation, or combining inhibition of autophagy with chemotherapy. Here, we review the molecular underpinnings of CICD, particularly on mitochondrial pathways and their potential to transform lung cancer treatment.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Y Sasikumar
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Puneet Sudan
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Kamal Dua
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
9
|
Zhang J, Huang Y, Shen W, Zeng Y, Miao Y, Feng N, Ci T. Effects of Surface Charge of Inhaled Liposomes on Drug Efficacy and Biocompatibility. Pharmaceutics 2025; 17:329. [PMID: 40142994 PMCID: PMC11945262 DOI: 10.3390/pharmaceutics17030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Objectives: Liposomes are a promising drug carrier for inhaled delivery systems and their physical parameters could influence therapeutic efficacy significantly. This study was designed to answer the specific question of the proper surface charge of liposomes in pulmonary inhalation, as well as to study the synergistic anti-inflammation efficacy between drugs. Methods: In this work, a series of drug-loaded liposomes with different surface charges (from negative to positive) were prepared, and several in vitro and in vivo assays, including cytotoxicity, hemolysis assay, mucus penetration and lipopolysaccharide (LPS)-induced pneumonia model test, were adopted to evaluate the anti-inflammation efficacy and biocompatibility of the above liposomes. Results: Compared with cationic liposomes, anionic liposomes are capable of better mucus penetration and good biocompatibility (low cytotoxicity, better blood compatibility and mild tissue inflammation), but with poor cellular uptake by immune cells. In specific, even when the liposome surface charge was only +2.6 mV, its cytotoxicity and blood hemolysis reached around 20% and 15%, respectively. Furthermore, there was no significant difference in biocompatibility between anionic liposomes (-25.9 vs. -2.5 mV), but a slightly negative-charged liposome exhibited better cellular uptake. Conclusions: Thus, slightly negative-charged liposomes (-1~-3 mV) could be a well inhaled drug carrier considering both efficacy and biocompatibility. In an LPS-induced pneumonia mouse model, the drug-loaded liposomes achieved better anti-inflammatory efficacy compared with free drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Y.H.); (W.S.); (Y.Z.); (Y.M.)
| | - Tianyuan Ci
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (J.Z.); (Y.H.); (W.S.); (Y.Z.); (Y.M.)
| |
Collapse
|
10
|
Zhang Q, Ma RF, Chen SW, Cao K, Wang Y, Xu ZR. Biomineralized and metallized small extracellular vesicles encapsulated in hydrogels for mitochondrial-targeted synergistic tumor therapy. Acta Biomater 2025; 194:428-441. [PMID: 39870149 DOI: 10.1016/j.actbio.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy. M1-phenotype macrophages-derived sEVs, which carry cytokines that inhibit tumor progression, were separately encapsulated with calcium phosphates (CaPs) and Au@Pt nanoparticles (Au@Pt NPs), endowing them with pH and photothermal dual-responsiveness. Subsequently, they were assembled into sEV-Au@Pt NPs/CaPs nanohybrids, and functionalized with mitochondria-targeting peptides. Within tumor cells, mitochondrial targeting enhances Ca2+ accumulation, resulting in mitochondrial homeostasis imbalance. The release of Pt2+ causes nuclear damage and exacerbates mitochondrial dysfunction. Furthermore, under laser irradiation, the sEV-Au@Pt NPs absorb light, generating hyperthermia that promotes the release of Ca2+ and Pt2+ from the hydrogel and cytokines from the sEVs, thereby achieving a quadruple-efficient synergistic therapy. The hydrogel effectively prolongs the retention time of nanohybrids, aiding in the prevention of tumor recurrence. These nanohybrids exhibit favorable mitochondrial targeting ability, with a Pearson's co-localization coefficient of 0.877. In experimental trials, tumor growth was significantly inhibited after only five treatments, with the tumor volume reduced to 0.16-fold that of the control group. This strategy presents a potential tailored platform for engineered sEVs in mitochondrial-targeted therapy and holds great promise for advancing organelle-targeted therapeutic strategies. STATEMENT OF SIGNIFICANCE: Engineering small extracellular vesicles (sEVs) can significantly enhance the synergistic effects of organelle-targeted therapy, thereby improving therapeutic efficacy and reducing side effects. However, their full development is still pending. In this study, we present a promising strategy that involves engineering sEVs with pH and photothermal dual-responsiveness through biomineralization and metallization, enabling quadruple synergistic tumor therapy. Our study demonstrates the remarkable synergistic effects of mitochondrial homeostasis imbalance caused by Ca2+ bursts and nuclear damage due to Pt2+ release. After five treatments, the tumor volume in the experimental group was reduced to 0.16-fold that of the control group. This strategy holds great promise for the design of engineered sEVs as organelle-targeted therapeutic systems.
Collapse
Affiliation(s)
- Qi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ruo-Fei Ma
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Si-Wen Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ke Cao
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
11
|
Sahoo SS, Manna D. Nanomaterial-Triggered Ferroptosis and Cuproptosis in Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412462. [PMID: 40018870 DOI: 10.1002/smll.202412462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Cancer remains one of the leading causes of the death of individuals globally. Conventional treatment techniques like chemotherapy and radiation often suffer various drawbacks like toxicity and drug resistance. The study of cell death has been predominantly focused on classical forms like apoptosis, but the role of metal ions in governing controlled cell death is a fascinating and less explored area. Metal-mediated controlled cell death is a process where metal triggers cell death via a unique mechanism. Nanomaterial-based strategies have gained attention for their ability to deliver precise therapeutic agents while also triggering Regulated Cell Death (RCD) mechanisms in cancer cells. The recently discovered metal-mediated controlled cell death techniques like cuproptosis and ferroptosis can be used in cancer treatment as they can be used selectively for the treatment of drug-resistant cancer. Nano material-based delivery system can also be used for the precise delivery of the drug to the targeted sites. In this review, we have given some idea about the mechanism of metal-mediated controlled cell death techniques (ferroptosis and cuproptosis) and how we can initiate controlled cell deaths using nanomaterials for cancer treatment.
Collapse
Affiliation(s)
- Suman Sekhar Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| | - Debasish Manna
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
12
|
Liang JL, Huang QX, Chen QW, Jin XK, Han ZY, Ji P, Cheng SX, Chen WH, Zhang XZ. Perturbing Organelle-Level K +/Ca 2+ Homeostasis by Nanotherapeutics for Enhancing Ion-Mediated Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416574. [PMID: 39955648 DOI: 10.1002/adma.202416574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Intracellular ions are involved in numerous pivotal immune processes, but the precise regulation of these signaling ions to achieve innovative immune therapeutic strategies is still a huge challenge. Here, an ion-mediated immunotherapy agent (IMIA) is engineered to achieve precise spatiotemporal control of perturbing K+/Ca2+ homeostasis at the organelle-level, thereby amplifying antitumor immune responses to achieve high-performance cancer therapy. By taking in intracellular K+ and supplying exogenous Ca2+ within tumor cells, K+/Ca2+ homeostasis is perturbed by IMIA. In parallel, perturbing K+ homeostasis induced endoplasmic reticulum (ER) stress triggers the release of Ca2+ from ER and causes a decreased concentration of Ca2+ in ER, which further accelerates ER-mitochondria Ca2+ flux and the influx of extracellular Ca2+ (store-operated Ca2+ entry (SOCE)) via opening Ca2+ release-activated Ca2+ (CRAC) channels, thus creating a self-amplifying ion interference loop to perturb K+/Ca2+ homeostasis. In this process, the elevated immunogenicity of tumor cells would evoke robust antitumor immune responses by driving the excretion of damage-associated molecular patterns (DAMPs). Importantly, this ion-immunotherapy strategy reshapes the immunosuppressive tumor microenvironment (TME), and awakens the systemic immune response and long-term immune memory effect, thus effectively inhibiting the growth of primary/distant tumors, orthotopic tumors as well as metastatic tumors in different mice models.
Collapse
Affiliation(s)
- Jun-Long Liang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qian-Xiao Huang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Qi-Wen Chen
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiao-Kang Jin
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Yi Han
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Ping Ji
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Xue Cheng
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Department of Cardiology, Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
13
|
Yan HX, Zhang YZ, Niu YQ, Wang YW, Liu LH, Tang YP, Huang JM, Leung ELH. Investigating the interaction between calcium signaling and ferroptosis for novel cancer treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156377. [PMID: 39798340 DOI: 10.1016/j.phymed.2025.156377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Drug resistance in cancer is steadily rising, making the development of new therapeutic targets increasingly critical for improving treatment outcomes. PURPOSE The mutual regulation of ions is essential for cell growth. Based on this concept, ion interference strategies offer a highly effective approach for cancer treatment. Calcium ions (Ca2+), as major second messengers, are closely associated with ion exchange and homeostasis. Disruptions in this balance can lead to cell death. However, while iron ions are also crucial, the connection between Ca2+and iron-induced cell death (ferroptosis) has not been well established. Therefore, this study suggests that Ca2+ may play a role in the induction of ferroptosis, presenting a novel and efficient target for cancer therapy. STUDY DESIGN PubMed, Google Scholar, and Web of Science databases were systematically searched for articles published in the past 15 years on the mechanisms of calcium ion-induced ferroptosis in cancer and related drugs. RESULTS The analysis highlights how Ca2+regulate ferroptosis. The mechanisms by which Ca2+influence ferroptosis are summarized based on existing literature, and relevant drugs that act on Ca2+/ferroptosis axis are outlined. CONCLUSION Ca2+ regulate ferroptosis primarily through the modulation of reactive oxygen species (ROS) and glutathione (GSH) levels, a mechanism that applies to a wide range of cancer cells as well as paracancerous and normal cells in cancer treatment. Furthermore, plant-derived active compounds exhibit potent anticancer properties and often act on the Ca2+/ferroptosis axis. These natural compounds could play a significant role in the development of new cancer treatment strategies.
Collapse
Affiliation(s)
- Hao-Xin Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yi-Zhong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Dr. Neher's Biophysics of Innovative Drug Discovery, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), PR China
| | - Yu-Qing Niu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China
| | - Yu-Wei Wang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China
| | - Li-Hua Liu
- Economics and Management Yanbian University, Yanji, PR China
| | - Yu-Ping Tang
- Key Laboratory of Shanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shanxi University of Chinese Medicine, Xianyang 712046, Shanxi Province, PR China.
| | - Ju-Min Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China. MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), PR China.
| |
Collapse
|
14
|
Zhang J, Zhou Y, Guo J, Yan M, Liu C, Du B. Core-Shell Nanoparticles with Sequential Drug Release Depleting Cholesterol for Reverse Tumor Multidrug Resistance. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6689-6702. [PMID: 39813326 DOI: 10.1021/acsami.4c17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Multidrug resistance (MDR) facilitates tumor recurrence and metastasis, which has become a main cause of chemotherapy failure in clinical. However, the current therapeutic effects against MDR remain unsatisfactory, mainly hampered by the rigid structure of drug-resistant cell membranes and the uncontrolled drug release. In this study, based on a sequential drug release strategy, we engineered a core-shell nanoparticle (DOX-M@CaP@ATV@HA) depleting cholesterol for reverse tumor MDR. DOX-M@CaP@ATV@HA could accurately target tumor cells due to the active targetability of hyaluronic acid (HA) toward CD44 receptors. The calcium phosphate (CaP) shell was cleaved in the lysosomal acidic environment so that the cholesterol-lowering drug atorvastatin (ATV) was rapidly released to diminish cholesterol and P-glycoprotein (P-gp) level on the membrane, thereby boosting tumor cell drug uptake. Next, doxorubicin (DOX) was gradually released from the hydrophobic core of the mPEG-DSPE micelle, inflicting irreversible DNA damage and triggering apoptosis. The nanosystem was proven both in vitro and in vivo to reverse MDR effectively and exhibited a remarkable therapeutic efficacy on drug-resistant tumors with high biosafety. In conclusion, DOX-M@CaP@ATV@HA effectively reverses MDR via cholesterol depletion, which provides an innovative strategy for tumor MDR treatment.
Collapse
Affiliation(s)
- Jieke Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mei Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chenxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan, China
| |
Collapse
|
15
|
Kusi D, Sun Y, Liu C. Advances in Manganese-based nanomaterials for cancer therapy via regulating Non-Ferrous ferroptosis. Int J Pharm 2025; 669:125101. [PMID: 39706379 DOI: 10.1016/j.ijpharm.2024.125101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Ferroptosis, a regulated form of cell death distinct from apoptosis, was first identified in 2012 and is characterized by iron-dependent lipid peroxidation driven by reactive oxygen species (ROS). Since its discovery, ferroptosis has been linked to various diseases, with recent studies highlighting its potential in cancer therapy, particularly for targeting cancer cells that are resistant to traditional treatments like chemotherapy and radiotherapy. While iron has historically been central to ferroptosis, emerging evidence indicates that non-ferrous ions, especially manganese (Mn), also play a crucial role in modulating this process. Mn-based nanomaterials have shown significant promise in cancer treatment by enhancing ROS production, depleting antioxidant defenses, and inducing ferroptosis. Additionally, these materials offer advantages in tumor imaging, immunotherapy, and catalyzing the Fenton-like reactions essential for ferroptosis. This review delves into the mechanisms of Mn-induced ferroptosis, focusing on recent advancements in Mn-based nanomaterials and their applications in chemodynamic therapy and immunotherapy. By leveraging non-ferrous ion-mediated ferroptosis, these approaches provide a novel avenue for cancer treatment. Furthermore, this review explores the potential role of Mn-based nanomaterials in the lipid metabolism pathways involved in ferroptosis and highlights the advantages of Mn ions over other metals in promoting ferroptosis. These insights offer new perspectives for the development of tumor therapies centered on Mn-based nanomaterials.
Collapse
Affiliation(s)
- Dipa Kusi
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yan Sun
- Department of Cardiology, Zhejiang Rongjun Hospital, Jiaxing 314001 PR China.
| | - Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
16
|
Dong X, Nie J, Huang A, Chen L, Zang E, Xiang Z, Hao X, Yan S, Ding X, Zhao Y. A novel small molecule NJH-13 induces pyroptosis via the Ca 2+ driven AKT-FOXO1-GSDME signaling pathway in NSCLC by targeting TRPV5. J Adv Res 2025:S2090-1232(25)00047-5. [PMID: 39832720 DOI: 10.1016/j.jare.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION Pyroptosis represents a mode of programmed necrotic cell death (PCD), mediated by members of gasdermin family (GSDMs), such as GSDME. It is emerging as a promising approach for combating cancer. Notably, GSDME is the key modulator for the switch between apoptosis and pyroptosis in cells. However, GSDME is often downregulated in many malignancies, including lung adenocarcinoma. OBJECTIVE To identify novel pyroptosis inducers in non-small cell lung cancer (NSCLC) and dissect the underlying mechanism. METHODS Pyroptosis was examined by live cell imaging, PI/Hoechst/Annexin V staining, LDH release assay, ELISA, and western blot assays. DARTS, CETSA, molecular docking was used to identify the target of NJH-13. RNA-seq, qPCR, chromatin immunoprecipitation (ChIP), dual luciferase assays were used elucidate the mechanism. RESULTS In this study, NJH-13, an N-containing heterocycle, was screened out and identified to possess the ability to activate GSDME, consequently triggering pyroptosis in NSCLC cells. By using the DARTS strategy, transient receptor potential cation channel subfamily V member 5 (TRPV5) was identified as a potential target of NJH-13. NJH-13 increased intracellular calcium level and triggered oxidative stress, both of which are critical events leading to pyroptosis mediated by GSDME. Mechanistically, NJH-13 enhanced the transcription of GSDME via the protein kinase B (AKT)/forkhead box transcription factor O1 (FOXO1) signaling pathway. ChIP revealed that FOXO1 bound directly to the promoter region of GSDME, thus triggering the GSDME-mediated pyroptosis. Pharmacological and genetic activation of AKT or inhibition of FOXO1 partially rescued NJH-13-induced pyroptotic cell death. Moreover, NJH-13 treatment suppressed tumor growth in vivo. CONCLUSION Taken together, our results revealed that TRPV5 is a distinctive target for manipulating pyroptosis and provided evidence that NJH-13 functions as a potential anti-cancer agent capable of triggering pyroptosis in NSCLC cells.
Collapse
Affiliation(s)
- Xianxiang Dong
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiahui Nie
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Aiying Huang
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Li Chen
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Erkang Zang
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Zhengrui Xiang
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojiang Hao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Shengjiao Yan
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing 100730, PR China.
| | - Yuhan Zhao
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.
| |
Collapse
|
17
|
Yan R, Zou C, Yang X, Zhuang W, Huang Y, Zheng X, Hu J, Liao L, Yao Y, Sun X, Hu WW. Nebulized inhalation drug delivery: clinical applications and advancements in research. J Mater Chem B 2025; 13:821-843. [PMID: 39652178 DOI: 10.1039/d4tb01938e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Nebulized inhalation administration refers to the dispersion of drugs into small droplets suspended in the gas through a nebulized device, which are deposited in the respiratory tract by inhalation, to achieve the local therapeutic effect of the respiratory tract. Compared with other drug delivery methods, nebulized inhalation has the advantages of fast effect, high local drug concentration, less dosage, convenient application and less systemic adverse reactions, and has become one of the main drug delivery methods for the treatment of respiratory diseases. In this review, we first discuss the characteristics of nebulized inhalation, including its principles and influencing factors. Next, we compare the advantages and disadvantages of different types of nebulizers. Finally, we explore the clinical applications and recent research developments of nebulized inhalation therapy. By delving into these aspects, we aim to gain a deeper understanding of its pivotal role in contemporary medical treatment.
Collapse
Affiliation(s)
- Ruyi Yan
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Chang Zou
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiaohang Yang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weihua Zhuang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yushi Huang
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiuli Zheng
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jie Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lingni Liao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongchao Yao
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- High Altitude Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
18
|
Hu Y, Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Nanoformula Design for Inducing Non-Apoptotic Cell Death Regulation: A Powerful Booster for Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2403493. [PMID: 39632361 DOI: 10.1002/adhm.202403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Cancer treatment has witnessed revolutionary advancements marked by the emergence of immunotherapy, specifically immune checkpoint blockade (ICB). However, the inherent low immunogenicity of tumor cells and the intricate immunosuppressive network within the tumor microenvironment (TME) pose significant challenges to the further development of immunotherapy. Nanotechnology has ushered in unprecedented opportunities and vast prospects for tumor immunotherapy. Nevertheless, traditional nano-formulations often rely on inducing apoptosis to kill cancer cells, which encounters the issue of immune silencing, hindering effective tumor immune activation. The non-apoptotic modes of regulated cell death (RCD), including pyroptosis, ferroptosis, autophagy, necroptosis, and cuproptosis, have gradually garnered attention. These non-apoptotic cell death pathways can induce effective immunogenic cell death (ICD), enhancing cancer immunotherapy. This review comprehensively explores advanced nano-formulation design strategies and their applications in enhancing cancer immunotherapy by promoting non-apoptotic RCD in recent years. It also discusses the potential advantages of these strategies in inducing tumor-specific non-apoptotic RCD. By deeply understanding the significance of non-apoptotic RCD in synergistic cancer immunotherapy, this article provides valuable insights for developing more advanced nano-delivery systems that can robustly induce highly immunogenic non-apoptotic modes, offering novel research and development avenues to address the clinical challenges encountered by immunotherapy represented by ICB.
Collapse
Affiliation(s)
- Yi Hu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Qing Yu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
19
|
Tan W, Liang Z, Tan X, Tan G. Ginsenoside Rg1 improves cigarette smoke-induced ferroptosis in COPD by regulating PERK/ATF4 axis to inhibit endoplasmic reticulum stress. Biochem Biophys Res Commun 2024; 739:150946. [PMID: 39531905 DOI: 10.1016/j.bbrc.2024.150946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/26/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ferroptosis plays a key role in the development of chronic obstructive pulmonary disease (COPD). Whether ginsenoside Rg1 improves cigarette smoke-induced COPD or whether ginsenoside Rg1 improves COPD by inhibiting ferroptosis remains unknown. METHODS BEAS-2B cells were exposed to cigarette solution (CSE) for 24 h and treated with ginsenoside Rg1, the ferroptosis inhibitor Fer-1, and the PERK inhibitor GSK. Cell viability, endoplasmic reticulum stress, mitochondrial morphology, membrane potential, reactive oxygen species (ROS), iron levels, and the expression of related proteins were detected using corresponding methods. A COPD mouse model was constructed using cigarette smoke (CS). Ginsenoside Rg1 and GSK were administered via tube feeding 15 days after successful modeling. Mouse lung tissues were evaluated by HE staining. The expression of inflammatory markers, ROS, iron content, and related proteins was detected using corresponding methods. RESULTS The results demonstrated that in the CSE-exposed BEAS-2B cell model and CS-induced mouse COPD model, the expression levels of endoplasmic reticulum stress (ERS)-related factors such as GRP78 were increased, while those of the antioxidant markers GPX4 and GSH were significantly decreased. Ginsenoside Rg1 improved emphysema and inflammation by inhibiting ferroptosis in vivo and in vitro. Using a PERK inhibitor, we found that ginsenoside Rg1 inhibited ferroptosis in vivo and in vitro by regulating ERS. CONCLUSION This study showed that ginsenoside Rg1 alleviates cigarette smoke-induced COPD by regulating the PERK/ATF4 axis to inhibit ERS and ferroptosis.
Collapse
Affiliation(s)
- Wei Tan
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Zicheng Liang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoning Tan
- Department of Oncology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| | - Guangbo Tan
- Department of Pulmonology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China.
| |
Collapse
|
20
|
Hajimolaali M, Dorkoosh FA, Antimisiaris SG. Review of recent preclinical and clinical research on ligand-targeted liposomes as delivery systems in triple negative breast cancer therapy. J Liposome Res 2024; 34:671-696. [PMID: 38520185 DOI: 10.1080/08982104.2024.2325963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Triple-negative breast Cancer (TNBC) is one of the deadliest types, making up about 20% of all breast cancers. Chemotherapy is the traditional manner of progressed TNBC treatment; however, it has a short-term result with a high reversibility pace. The lack of targeted treatment limited and person-dependent treatment options for those suffering from TNBC cautions to be the worst type of cancer among breast cancer patients. Consequently, appropriate treatment for this disease is considered a major clinical challenge. Therefore, various treatment methods have been developed to treat TNBC, among which chemotherapy is the most common and well-known approach recently studied. Although effective methods are chemotherapies, they are often accompanied by critical limitations, especially the lack of specific functionality. These methods lead to systematic toxicity and, ultimately, the expansion of multidrug-resistant (MDR) cancer cells. Therefore, finding novel and efficient techniques to enhance the targeting of TNBC treatment is an essential requirement. Liposomes have demonstrated that they are an effective method for drug delivery; however, among a large number of liposome-based drug delivery systems annually developed, a small number have just received authorization for clinical application. The new approaches to using liposomes target their structure with various ligands to increase therapeutic efficiency and diminish undesired side effects on various body tissues. The current study describes the most recent strategies and research associated with functionalizing the liposomes' structure with different ligands as targeted drug carriers in treating TNBCs in preclinical and clinical stages.
Collapse
Affiliation(s)
- Mohammad Hajimolaali
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Sophia G Antimisiaris
- Department of Pharmacy, Laboratory of Pharmaceutical Technology, University of Patras, Patras, Greece
- Institute of Chemical Engineering, Foundation for Research and Technology Hellas, FORTH/ICEHT, Patras, Greece
| |
Collapse
|
21
|
Zhang Y, Zhang M, Hu X, Hao H, Quan C, Ren T, Gao H, Wang J. Engineering a porphyrin COFs encapsulated by hyaluronic acid tumor-targeted nanoplatform for sequential chemo-photodynamic multimodal tumor therapy. Int J Biol Macromol 2024; 279:135328. [PMID: 39242006 DOI: 10.1016/j.ijbiomac.2024.135328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Numerous barriers hinder the entry of drugs into cells, limiting the effectiveness of tumor pharmacotherapy. Effective penetration into tumor tissue and facilitated cellular uptake are crucial for the efficacy of nanotherapeutics. Photodynamic therapy (PDT) is a promising approach for tumor suppression. In this study, we developed a size-adjustable porphyrin-based covalent organic framework (COF), further modified with hyaluronic acid (HA), to sequentially deliver drugs for combined chemo-photodynamic tumor therapy. A larger COF (P-COF, approximately 500 nm) was loaded with the antifibrotic drug losartan (LST) to create LST/P-COF@HA (LCH), which accumulates at tumor sites. After injection, LCH releases LST, downregulating tumor extracellular matrix (ECM) component levels and decreasing collagen density, thus reducing tumor solid stress. Additionally, the reactive oxygen species (ROS) generated from LCH under 660 nm laser irradiation induce lipid peroxidation of cell membranes. Owing to its larger particle size, LCH primarily functions extracellularly, paving the way for subsequent treatments. Following intravenous administration, the smaller COF (p-COF, approximately 200 nm) loaded with doxorubicin (DOX) and modified with HA (DOX/p-COF@HA, DCH) readily enters cells in the altered microenvironment. Within tumor cells, ROS generated from DCH facilitates PDT, while the released DOX targets cancer cells via chemotherapy, triggered by disulfide bond cleavage in the presence of elevated glutathione (GSH) levels. This depletion of GSH further enhances the PDT effect. Leveraging the size-tunable properties of the porphyrin COF, this platform achieves a multifunctional delivery system that overcomes specific barriers at optimal times, leading to improved outcomes in chemo-photodynamic multimodal tumor therapy in vivo.
Collapse
Affiliation(s)
- Yao Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Mo Zhang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Xiaoxiao Hu
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Han Hao
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Cuilu Quan
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Tiantian Ren
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan, Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064 Chengdu, China.
| | - Jing Wang
- School of Pharmacy, National Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, 050017 Shijiazhuang, China.
| |
Collapse
|
22
|
Lv Z, Liu P, Yang Y, Ji J, Wu A, Huang W, Zhang L, Zhang Z, Yang Y, Li W, Huang M. (-)-Epicatechin regulates endoplasmic reticulum stress and promotes ferroptosis in lung cancer cells via the PERK/eIF2α/ATF4 signaling pathway. PLoS One 2024; 19:e0313010. [PMID: 39480832 PMCID: PMC11527276 DOI: 10.1371/journal.pone.0313010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
OBJECTIVE (-)-Epicatechin (EC) is an active ingredient of Fagopyrum dibtrys (D. Don) Hara and can regulate lung cancer progression. However, the specific regulatory mechanism is poorly understood. This study explored the specific mechanism of EC in the treatment of lung cancer. METHODS H460 cells were injected subcutaneously into the left dorsal sides of nude mice to establish an animal model of lung cancer. H460 and H1299 cells and nude mice were treated with different concentrations of EC. The expression levels of related proteins were detected by Western blotting. Cell proliferation, migration, and invasion were detected by CCK-8, colony formation, and Transwell assays. Flow cytometry was used to detect the Ca2+ level in lung cancer cells. Immunohistochemistry was used to detect the expression of Ki-67 in tumor tissues. RESULTS This study revealed that ferroptosis in lung cancer cells was inhibited during lung cancer development. EC treatment promotes ferroptosis, inhibits the proliferation, migration and invasion of lung cancer cells, and inhibits the formation of tumors in vivo. Ferroptosis inhibitors (Fer-1) weaken the effects of EC on lung cancer cells, whereas a ferroptosis inducer (erastin) further promotes the effects of EC. In addition, endoplasmic reticulum (ER) stress is involved in the EC-induced ferroptosis of lung cancer cells, and treatment with GSK, an inhibitor of the ER stress protein PERK, can reverse the effect of EC. CONCLUSION EC therapy activates the PERK-eIF2α-ATF4 signaling pathway to increase ER stress, thereby promoting ferroptosis in lung cancer cells and inhibiting the occurrence and development of lung cancer. Our research suggests that EC may become a drug candidate for treating lung cancer.
Collapse
Affiliation(s)
- Zengbo Lv
- Department of Oncology, The First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Peiwan Liu
- Department of Hepatobiliary Surgery, The First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yingyu Yang
- Department of Pathology, The First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Jianhua Ji
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Anao Wu
- Department of Oncology, The First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wensheng Huang
- Department of Oncology, The First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Liqiong Zhang
- Geriatrics Department, The First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Zhijun Zhang
- Department of Oncology, The First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Yunkui Yang
- Department of Oncology, The First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Wenhui Li
- Department of Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Meifang Huang
- Department of Oncology, The First People’s Hospital of Qujing/The Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| |
Collapse
|
23
|
Xu W, Suo A, Aldai AJM, Wang Y, Fan J, Xia Y, Xu J, Chen Z, Zhao H, Zhang M, Qian J. Hollow Calcium/Copper Bimetallic Amplifier for Cuproptosis/Paraptosis/Apoptosis Cancer Therapy via Cascade Reinforcement of Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. ACS NANO 2024; 18:30053-30068. [PMID: 39412236 DOI: 10.1021/acsnano.4c11455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The endoplasmic reticulum (ER) and mitochondria are essential organelles that play crucial roles in maintaining cellular homeostasis. The simultaneous induction of ER stress and mitochondrial dysfunction represents a promising yet challenging strategy for cancer treatment. Herein, a hollow calcium-copper bimetallic nanoplatform is developed as a cascade amplifier to reinforce ER stress and mitochondrial dysfunction for breast cancer treatment. For this purpose, we report a facile method for preparing hollow CaCO3 (HCC) nanoparticles by regulating the dissolution-recrystallization process of amorphous CaCO3, and the amplifier D@HCC-CuTH is meticulously fabricated by sequentially coating disulfiram-loaded HCC nanoparticles with a copper coordination polymer and hyaluronan. In tumor cells, the dithiocarbamate-copper complex generated in situ by liberated disulfiram and Cu2+ inhibits the ubiquitin-proteasome system, causing irreversible ER stress and intracellular Ca2+ redistribution. Meanwhile, the amplifier induces mitochondrial dysfunction via triggering a self-amplifying loop of mitochondrial Ca2+ burst, and reactive oxygen species augment. Additionally, Cu2+ induces dihydrolipoamide S-acetyltransferase oligomerization in mitochondria, further exacerbating mitochondrial damage via cuproptosis. Collectively, ER stress amplification and mitochondrial dysfunction synergistically induce a cuproptosis-paraptosis-apoptosis trimodal cell death pathway, which demonstrates significant efficacy in suppressing tumor growth. This study presents a paradigm for synchronously inducing subcellular organelle disorders to boost cancer multimodal therapy.
Collapse
Affiliation(s)
- Weijun Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Aili Suo
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | | | - Yaping Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingjing Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuxiang Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiaxuan Xu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhexi Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huichen Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Junmin Qian
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
24
|
Shu L, Luo P, Chen Q, Liu J, Huang Y, Wu C, Pan X, Huang Z. Fibroin nanodisruptor with Ferroptosis-Autophagy synergism is potent for lung cancer treatment. Int J Pharm 2024; 664:124582. [PMID: 39142466 DOI: 10.1016/j.ijpharm.2024.124582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Chemotherapy agents for lung cancer often cause apoptotic resistance in cells, leading to suboptimal therapeutic outcomes. FIN56 can be a potential treatment for lung cancer as it induces non-apoptotic cell death, namely ferroptosis. However, a bottleneck exists in FIN56-induced ferroptosis treatment; specifically, FIN56 fails to induce sufficient oxidative stress and may even trigger the defense system against ferroptosis, resulting in poor therapeutic efficacy. To overcome this, this study proposed a strategy of co-delivering FIN56 and piperlongumine to enhance the ferroptosis treatment effect by increasing oxidative stress and connecting with the autophagy pathway. FIN56 and piperlongumine were encapsulated into silk fibroin-based nano-disruptors, named FP@SFN. Characterization results showed that the particle size of FP@SFN was in the nanometer range and the distribution was uniform. Both in vivo and in vitro studies demonstrated that FP@SFN could effectively eliminate A549 cells and inhibit subcutaneous lung cancer tumors. Notably, ferroptosis and autophagy were identified as the main cell death pathways through which the nano-disruptors increased oxidative stress and facilitated cell membrane rupture. In conclusion, nano-disruptors can effectively enhance the therapeutic effect of ferroptosis treatment for lung cancer through the ferroptosis-autophagy synergy mechanism, providing a reference for the development of related therapeutics.
Collapse
Affiliation(s)
- Lei Shu
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China; Panyu Central Hospital Affiliated to Guangzhou Medical University, Guangzhou 511400, PR China
| | - Peili Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Qingxin Chen
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Jingyang Liu
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
25
|
Yang C, Ming H, Li B, Liu S, Chen L, Zhang T, Gao Y, He T, Huang C, Du Z. A pH and glutathione-responsive carbon monoxide-driven nano-herb delivery system for enhanced immunotherapy in colorectal cancer. J Control Release 2024; 376:659-677. [PMID: 39442888 DOI: 10.1016/j.jconrel.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Dihydroartemisinin (DHA), a compound extracted from the herbal medicine Artemisia annua, has shown promise as a clinical treatment strategy for colorectal cancer. However, its clinical use is hindered by its low water solubility and bioavailability. A pH/glutathione (GSH) dual-responsive nano-herb delivery system (PMDC NPs) has been developed for the targeted delivery of DHA, accompanied by abundant carbon monoxide (CO) release. Due to the passive enhanced permeability and retention (EPR) effect and active targeting mediated by pHCT74 peptide binding to overexpressed α-enolase on colorectal cancer cells, the pHCT74/MOF-5@DHA&CORM-401 nanoparticles (PMDC NPs) exhibited specific targeting capacity against colorectal cancer cells. Once reaching the tumor site, the pH/GSH dual-responsive behavior of metal-organic framework-5 (MOF-5) enabled the rapid release of cargo, including DHA and CORM-401, in the acidic tumor microenvironment. Subsequently, DHA stimulated CORM-401 to release CO, which facilitated ROS-induced ferroptosis and apoptosis, leading to immunogenic cell death (ICD) and a sustained antitumor response through the release of tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs). Overall, PMDC NPs enhanced the bioavailability of DHA and exhibited outstanding therapeutic effectiveness both in vitro and in vivo, indicating their potential as a promising and feasible alternative for synergistic treatment with immunotherapy and gas therapy in the clinical management of colorectal cancer.
Collapse
Affiliation(s)
- Chen Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Zhang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yajie Gao
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Tao He
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
26
|
Han S, Zou J, Xiao F, Xian J, Liu Z, Li M, Luo W, Feng C, Kong N. Nanobiotechnology boosts ferroptosis: opportunities and challenges. J Nanobiotechnology 2024; 22:606. [PMID: 39379969 PMCID: PMC11460037 DOI: 10.1186/s12951-024-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, necrosis, and autophagy, is a unique type of cell death driven by iron-dependent phospholipid peroxidation. Since ferroptosis was defined in 2012, it has received widespread attention from researchers worldwide. From a biochemical perspective, the regulation of ferroptosis is strongly associated with cellular metabolism, primarily including iron metabolism, lipid metabolism, and redox metabolism. The distinctive regulatory mechanism of ferroptosis holds great potential for overcoming drug resistance-a major challenge in treating cancer. The considerable role of nanobiotechnology in disease treatment has been widely reported, but further and more systematic discussion on how nanobiotechnology enhances the therapeutic efficacy on ferroptosis-associated diseases still needs to be improved. Moreover, while the exciting therapeutic potential of ferroptosis in cancer has been relatively well summarized, its applications in other diseases, such as neurodegenerative diseases, cardiovascular and cerebrovascular diseases, and kidney disease, remain underreported. Consequently, it is necessary to fill these gaps to further complete the applications of nanobiotechnology in ferroptosis. In this review, we provide an extensive introduction to the background of ferroptosis and elaborate its regulatory network. Subsequently, we discuss the various advantages of combining nanobiotechnology with ferroptosis to enhance therapeutic efficacy and reduce the side effects of ferroptosis-associated diseases. Finally, we analyze and discuss the feasibility of nanobiotechnology and ferroptosis in improving clinical treatment outcomes based on clinical needs, as well as the current limitations and future directions of nanobiotechnology in the applications of ferroptosis, which will not only provide significant guidance for the clinical applications of ferroptosis and nanobiotechnology but also accelerate their clinical translations.
Collapse
Affiliation(s)
- Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jianhua Zou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jing Xian
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Meng Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chan Feng
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
27
|
Bai XF, Hu J, Wang MF, Li LG, Han N, Wang H, Chen NN, Gao YJ, You H, Wang X, Xu X, Yu TT, Li TF, Ren T. Cepharanthine triggers ferroptosis through inhibition of NRF2 for robust ER stress against lung cancer. Eur J Pharmacol 2024; 979:176839. [PMID: 39033838 DOI: 10.1016/j.ejphar.2024.176839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Severe endoplasmic reticulum (ER) stress elicits apoptosis to suppress lung cancer. Our previous research identified that Cepharanthine (CEP), a kind of phytomedicine, possessed powerful anti-cancer efficacy, for which the underlying mechanism was still uncovered. Herein, we investigated how CEP induced ER stress and worked against lung cancer. METHODS The differential expression genes (DEGs) and enrichment were detected by RNA-sequence. The affinity of CEP and NRF2 was analyzed by cellular thermal shift assay (CETSA) and molecular docking. The function assay of lung cancer cells was measured by western blots, flow cytometry, immunofluorescence staining, and ferroptosis inhibitors. RESULTS CEP treatment enriched DEGs in ferroptosis and ER stress. Further analysis demonstrated the target was NRF2. In vitro and in vivo experiments showed that CEP induced obvious ferroptosis, as characterized by the elevated iron ions, ROS, COX-2 expression, down-regulation of GPX4, and atrophic mitochondria. Moreover, enhanced Grp78, CHOP expression, β-amyloid mass, and disappearing parallel stacked structures of ER were observed in CEP group, suggesting ER stress was aroused. CEP exhibited excellent anti-lung cancer efficacy, as evidenced by the increased apoptosis, reduced proliferation, diminished cell stemness, and prominent inhibition of tumor grafts in animal models. Furthermore, the addition of ferroptosis inhibitors weakened CEP-induced ER stress and apoptosis. CONCLUSION In summary, our findings proved CEP drives ferroptosis through inhibition of NRF2 for induction of robust ER stress, thereby leading to apoptosis and attenuated stemness of lung cancer cells. The current work presents a novel mechanism for the anti-tumor efficacy of the natural compound CEP.
Collapse
Affiliation(s)
- Xiao-Feng Bai
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Jun Hu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Mei-Fang Wang
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Ning Han
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Hansheng Wang
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Nan-Nan Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Yu-Jie Gao
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Hui You
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xiao Wang
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Xiang Xu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China
| | - Ting-Ting Yu
- Department of Pathology, Renmin Hospital of Shiyan, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Tong-Fei Li
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China.
| | - Tao Ren
- Department of Pulmonary and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Renmin Road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
28
|
Wang W, Zhong Z, Peng S, Fu J, Chen M, Lang T, Yue X, Fu Y, He J, Jin Y, Huang Y, Wu C, Huang Z, Pan X. "All-in-one" metal polyphenol network nanocapsules integrated microneedle patches for lipophagy fueled ferroptosis-mediated multimodal therapy. J Control Release 2024; 373:599-616. [PMID: 39074587 DOI: 10.1016/j.jconrel.2024.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Ferroptosis-mediated multimodal therapy has emerged as a promising strategy for tumor elimination, with lipid peroxide (LPO) playing a pivotal role. However, the therapeutic efficiency is limited due to insufficient intracellular levels of free fatty acids (FFA), which severely hinder the production of LPO. To address this limitation, we proposed a lipophagy strategy aimed at degrading lipid droplets (LDs) to release FFA, serving as the essential "fuel" for LPO production. In this study, the lipophagy inducer epigallocatechin gallate (EGCG) was self-assembled with reactive oxygen species (ROS)-producer phenethyl isothiocyanate (PEITC) mediated by Fe2+ to form EFP nanocapsules, which were further integrated into microneedle patches to form a "all-in-one" EFP@MNs. The metal-polyphenol network structure of EFP endow it with photothermal therapy capacity. Upon insertion into tumors, the released EFP nanocapsules were demonstrated to induce lipophagy through metabolic disturbance, thereby promoting LPO production and facilitating ferroptosis. When combined with photothermal therapy, this approach significantly remolded the tumor immune microenvironment by driving tumor-associated macrophages toward M1 phenotype and enhancing dendritic cell maturation. Encouragingly, in conjunction with αPD-L1 treatment, the proposed EFP@MNs exhibited remarkable efficacy in tumor ablation. Our study presents a versatile framework for utilizing microneedle patches to power ferroptosis-mediated multimodal therapy.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Ziqiao Zhong
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China.
| | - Siyuan Peng
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Jintao Fu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Minglong Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | | | - Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Yanping Fu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China.
| | - Jingyu He
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China.
| | - Yuzhen Jin
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 511443, China.
| | - Xin Pan
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
29
|
Kassaee SN, Richard D, Ayoko GA, Islam N. Lipid polymer hybrid nanoparticles against lung cancer and their application as inhalable formulation. Nanomedicine (Lond) 2024; 19:2113-2133. [PMID: 39143915 PMCID: PMC11486133 DOI: 10.1080/17435889.2024.2387530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer is a leading cause of global cancer mortality, often treated with chemotherapeutic agents. However, conventional approaches such as oral or intravenous administration of drugs yield low bioavailability and adverse effects. Nanotechnology has unlocked new gateways for delivering medicine to their target sites. Lipid-polymer hybrid nanoparticles (LPHNPs) are one of the nano-scaled delivery platforms that have been studied to exploit advantages of liposomes and polymers, enhancing stability, drug loading, biocompatibility and controlled release. Pulmonary administration of drug-loaded LPHNPs enables direct lung deposition, rapid onset of action and heightened efficacy at low doses of drugs. In this manuscript, we will review the potential of LPHNPs in management of lung cancer through pulmonary administration.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Derek Richard
- Centre for Genomics & Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Godwin A. Ayoko
- School of Chemistry & Physics & Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| |
Collapse
|
30
|
Yan C, Lv H, Feng Y, Li Y, Zhao Z. Inhalable nanoparticles with enhanced cuproptosis and cGAS-STING activation for synergistic lung metastasis immunotherapy. Acta Pharm Sin B 2024; 14:3697-3710. [PMID: 39220876 PMCID: PMC11365430 DOI: 10.1016/j.apsb.2024.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 09/04/2024] Open
Abstract
Due to the insufficient Cu+ accumulation, Cu+ efflux mechanism, and highly immunosuppressive tumor microenvironment (TME) in lung metastasis, the cuproptosis efficacy is limited. Herein, an inhalable nanodevice (CLDCu) is constructed to successfully overcome the drawbacks of cuproptosis. CLDCu consists of a Cu2+-chitosan shell and low molecular weight heparin-tocopherol succinate (LMWH-TOS, LT) core with disulfiram (DSF) loading. The prepared CLDCu can be inhaled and accumulate in large amounts in lung lesions (63.6%) with 56.5 times higher than intravenous injection. Within tumor cells, the mild acidity triggers the co-release of DSF and Cu2+, thus generating bis(diethyldithiocarbamate)-copper (CuET) to block Cu+ efflux protein ATP7B and forming toxic Cu+, leading to enhanced cuproptosis. Meanwhile, the released chitosan cooperates with CLDCu-induced cuproptosis to activate stimulator of interferon genes (STING) pathway, which significantly potentiates dendritic cells (DCs) maturation, as wells as evokes innate and adaptive immunity. In lung metastatic mice model, CLDCu is found to induce cuproptosis and reverse the immunosuppressive TME by inhalation administration. Moreover, CLDCu combined with anti-programmed cell death protein ligand-1 antibody (aPD-L1) provokes stronger antitumor immunity. Therefore, nanomedicine that combines cuproptosis with STING activation is a novel strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Chongzheng Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huaiyou Lv
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264001, China
| | - Yafei Feng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
31
|
Yuhao W, Shenghua C, Jueying C, Shate X, Rongrong S, Xiangfeng S. Targeting ferroptosis regulators in lung cancer: Exploring natural products. Heliyon 2024; 10:e33934. [PMID: 39104501 PMCID: PMC11298827 DOI: 10.1016/j.heliyon.2024.e33934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Lung cancer remains a formidable global health challenge, necessitating innovative therapeutic strategies for improved efficacy. This review explores the untapped potential of natural products and Traditional Chinese Medicine (TCM) in lung cancer therapy, focusing on targeting ferroptosis regulators. Natural compounds, such as curcumin and resveratrol, exhibit diverse anti-cancer mechanisms, complemented by TCM's holistic approach rooted in a 3500-year history. Emphasizing the induction of cell death, particularly ferroptosis, the review highlights its significance in overcoming challenges like resistance to conventional therapies. Key ferroptosis regulators are explored in the context of natural products and TCM. The impact of these treatments on crucial pathways, such as antioxidant mechanisms (GPX4, SLC7A11, and NRF2), iron metabolism regulators, and lipid and mitochondria pathways, is examined. The findings provide a comprehensive overview of how natural products and TCM modulate ferroptosis in lung cancer, offering valuable insights for the development of innovative, side-effect-reduced therapeutic strategies. This work holds promise for transforming the landscape of lung cancer treatment by integrating the rich resources of nature into conventional therapeutic paradigms.
Collapse
Affiliation(s)
- Wang Yuhao
- Graduated College, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Cheng Shenghua
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Chen Jueying
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| | - Xiang Shate
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Song Rongrong
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Shen Xiangfeng
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| |
Collapse
|
32
|
Li S, Wang B, Tao J, Dong Y, Wang T, Zhao X, Jiang T, Zhang L, Yang H. Chemodynamic therapy combined with endogenous ferroptosis based on "sea urchin-like" copper sulfide hydrogel for enhancing anti-tumor efficacy. Int J Pharm 2024; 660:124330. [PMID: 38866081 DOI: 10.1016/j.ijpharm.2024.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/26/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Chemodynamic therapy (CDT) is a promising strategy for cancer treatment, however, its application is restricted by low hydrogen peroxide (H2O2) concentration, insufficient reactive oxygen species (ROS) generation, and high glutathione (GSH) levels. Here, we developed an injectable thermosensitive hydrogel (DSUC-Gel) based on "sea urchin-like" copper sulfide nanoparticles (UCuS) loaded with dihydroartemisinin (DHA) and sulfasalazine (SAS) to overcome these limitations of CDT. DSUC was cleaved to release DHA, SAS and Cu2+ under acidic tumor microenvironment to enhance CDT. DHA with peroxide bridge responded to intracellular Fe2+ to alleviate H2O2 deficiency. SAS prevented GSH synthesis by targeting SLC7A11 and inhibited glutathione peroxidase (GPX4) activity to induce endogenous ferroptosis. ROS produced by Fenton-like reaction of Cu2+ promoted lipid peroxidation (LPO) accumulation to promote ferroptosis. Enhanced CDT and ferroptosis induced immunogenic cell death (ICD), promoted dendritic cells (DCs) maturation and cytotoxic T lymphocytes (CTLs) infiltration. As a result, DSUC-Gel significantly inhibited tumor growth both in vitro and in vivo. Our study provides a novel approach for enhancing anti-tumor efficacy by combining CDT, endogenous ferroptosis and ICD.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Yu Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lianxiao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Hai Yang
- Department of Pharmacy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266042, China.
| |
Collapse
|
33
|
Zhang J, Zhang S, Liu M, Yang Z, Huang R. Research Progress on Ferroptosis and Nanotechnology-Based Treatment in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:347-358. [PMID: 39050766 PMCID: PMC11268712 DOI: 10.2147/bctt.s475199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In recent years, more and more researches on cell death mode in breast cancer, including apoptosis, ferroptosis, etc. Ferroptosisis a regulated form of cell death characterized by iron-dependent accumulation of lipid peroxidation to lethal levels, and numerous studies have shown that ferroptosis is closely associated with tumor cells. Breast cancer is one of the malignant tumors with the highest incidence in women, and TNBC accounts for about 15-20% of all types of breast cancer. Due to the poor prognosis, strong aggressiveness, high drug resistance and lack of molecular targeting characteristics of TNBC, the treatment of TNBC faces many difficulties and great challenges. A large number of studies have shown that ferroptosis plays an important role in the occurrence and development of TNBC, tumor diagnosis, treatment and prognosis, among which the main mechanisms inducing ferroptosis include oxidative stress pathway, iron metabolism pathway and lipid metabolism pathway. Since TNBC is highly sensitive to oxidative stress pathways, intracellular GSH reduces reactive oxygen species under the action of GSH peroxidase (GPX), and when intracellular lipid peroxidase (LPO) accumulates to a certain level, ferroptosis will be induced, thus achieving the purpose of killing TNBC cells. In addition, lipid metabolism is highly consistent with the high lipid level of TNBC tumor cells. As a new therapeutic method, nanotechnology has added security to the treatment of cancer with its high safety and excellent biocompatibility. Therefore, the combination of nanotechnology with iron-based radiotherapy, chemotherapy, targeting and immunization has great research value for the treatment of TNBC In addition, the novel idea of treating TNBC with ethnopharmacology combined with ferroptosis is also involved. This article reviews the mechanism of ferroptosis and the recent research on the treatment prospects of TNBC based on ferroptosis and nanotechnology, hoping to provide references for the treatment of diseases based on ferroptosis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Shengjun Zhang
- Department of General Surgery, Affiliated Hospital of Yan ‘an University, Yan ‘an, People’s Republic of China
| | - Minli Liu
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Zhe Yang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| | - Rong Huang
- Department of Medical College of Yan’an University, Yan ‘an, People’s Republic of China
| |
Collapse
|
34
|
Martins SA, Costa RR, Brito A, Reis RL, Alves NM, Pashkuleva I, Soares da Costa D. Multifunctional calcium-based nanocarriers for synergistic treatment of triple-negative breast cancer. J Colloid Interface Sci 2024; 674:500-512. [PMID: 38943911 DOI: 10.1016/j.jcis.2024.06.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Targeted breast cancer therapies hold the potential to improve the efficiency of drug delivery to the pathology site without impacting the viability and function of healthy cells. Herein, we developed multifunctional nanocarriers that target simultaneously several downstream signaling processes in triple negative breast cancer cells. The system comprises pH sensitive CaCO3 nanoparticles (NPs) as carriers of the anticancer drug doxorubicin (DOX). The NPs were coated in a layer-by-layer (LbL) fashion using poly-l-lysine and hyaluronic acid to target receptors overexpressed in breast cancer (e.g. CD44, RHAMM). Spheroids of the triple-negative Hs578T cell line were used as a 3D model to assess the therapeutic potential of this system. Our results showed that the NPs act via a synergistic mechanism that combines Ca2+ overload causing cell calcification and DNA damage by DOX. The LbL coating was crucial for the protection of the healthy cells, i.e. it provides NPs with targeting capacity. The overall data suggests that the LbL-coated NPs loaded with DOX hold great potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Sara A Martins
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui R Costa
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Alexandra Brito
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
35
|
Wu L, Wang W, Guo M, Fu F, Wang W, Sung T, Zhang M, Zhong Z, Wu C, Pan X, Huang Z. Inhalable iron redox cycling powered nanoreactor for amplified ferroptosis-apoptosis synergetic therapy of lung cancer. NANO RESEARCH 2024; 17:5435-5451. [DOI: 10.1007/s12274-024-6455-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 06/25/2024]
|
36
|
Wang Y, Zhou X, Yao L, Hu Q, Liu H, Zhao G, Wang K, Zeng J, Sun M, Lv C. Capsaicin Enhanced the Efficacy of Photodynamic Therapy Against Osteosarcoma via a Pro-Death Strategy by Inducing Ferroptosis and Alleviating Hypoxia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306916. [PMID: 38221813 DOI: 10.1002/smll.202306916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Ferroptosis, a novel form of nonapoptotic cell death, can effectively enhance photodynamic therapy (PDT) performance by disrupting intracellular redox homeostasis and promoting apoptosis. However, the extremely hypoxic tumor microenvironment (TME) together with highly expressed hypoxia-inducible factor-1α (HIF-1α) presents a considerable challenge for clinical PDT against osteosarcoma (OS). Hence, an innovative nanoplatform that enhances antitumor PDT by inducing ferroptosis and alleviating hypoxia is fabricated. Capsaicin (CAP) is widely reported to specifically activate transient receptor potential vanilloid 1 (TRPV1) channel, trigger an increase in intracellular Ca2+ concentration, which is closely linked with ferroptosis, and participate in decreased oxygen consumption by inhibiting HIF-1α in tumor cells, potentiating PDT antitumor efficiency. Thus, CAP and the photosensitizer IR780 are coencapsulated into highly biocompatible human serum albumin (HSA) to construct a nanoplatform (CI@HSA NPs) for synergistic tumor treatment under near-infrared (NIR) irradiation. Furthermore, the potential underlying signaling pathways of the combination therapy are investigated. CI@HSA NPs achieve real-time dynamic distribution monitoring and exhibit excellent antitumor efficacy with superior biosafety in vivo. Overall, this work highlights a promising NIR imaging-guided "pro-death" strategy to overcome the limitations of PDT for OS by promoting ferroptosis and alleviating hypoxia, providing inspiration and support for future innovative tumor therapy approaches.
Collapse
Affiliation(s)
- Yang Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Xueru Zhou
- West China School of Pharmacy, Sichuan University, Chengdu, 610064, P. R. China
| | - Li Yao
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Qin Hu
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, P. R. China
| | - Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, 571199, P. R. China
| | - Guosheng Zhao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kai Wang
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Jun Zeng
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Mingwei Sun
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
| | - Chuanzhu Lv
- Department of Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610064, P. R. China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, P. R. China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, P. R. China
| |
Collapse
|
37
|
Long D, Mao C, Huang Y, Xu Y, Zhu Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed Pharmacother 2024; 175:116722. [PMID: 38729051 DOI: 10.1016/j.biopha.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingtao Huang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
38
|
Liang Q, Wang Y, Li Y, Wang J, Liu C, Li Y. Ferroptosis: emerging roles in lung cancer and potential implications in biological compounds. Front Pharmacol 2024; 15:1374182. [PMID: 38783959 PMCID: PMC11111967 DOI: 10.3389/fphar.2024.1374182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer has high metastasis and drug resistance. The prognosis of lung cancer patients is poor and the patients' survival chances are easily neglected. Ferroptosis is a programmed cell death proposed in 2012, which differs from apoptosis, necrosis and autophagy. Ferroptosis is a novel type of regulated cell death which is driven by iron-dependent lipid peroxidation and subsequent plasma membrane ruptures. It has broad prospects in the field of tumor disease treatment. At present, multiple studies have shown that biological compounds can induce ferroptosis in lung cancer cells, which exhibits significant anti-cancer effects, and they have the advantages in high safety, minimal side effects, and less possibility to drug resistance. In this review, we summarize the biological compounds used for the treatment of lung cancer by focusing on ferroptosis and its mechanism. In addition, we systematically review the current research status of combining nanotechnology with biological compounds for tumor treatment, shed new light for targeting ferroptosis pathways and applying biological compounds-based therapies.
Collapse
Affiliation(s)
- Qiuran Liang
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yuehui Wang
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yili Li
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jinyan Wang
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Chuanbo Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yicong Li
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Song A, Wang W, Wang H, Ji Y, Zhang Y, Ren J, Qu X. An Alkaline Nanocage Continuously Activates Inflammasomes by Disrupting Multiorganelle Homeostasis for Efficient Pyroptosis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38697643 DOI: 10.1021/acsami.4c02620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Pyroptosis has garnered increasing attention because of its ability to trigger robust antitumor immunity. Pyroptosis is initiated by the activation of inflammasomes, which are regulated by various organelles. The collaboration among organelles offers several protective mechanisms to prevent activation of the inflammasome, thereby limiting the induction of efficient pyroptosis. Herein, a multiorganelle homeostasis disruptor (denoted BLL) is constructed by encapsulating liposomes and bortezomib (BTZ) within a layered double hydroxide (LDH) nanocage to continuously activate inflammasomes for inducing efficient pyroptosis. In lysosomes, the negatively charged liposomes are released to recruit the NLRP3 inflammasomes through electrostatic interactions. ER stress is induced by BTZ to enhance the activation of the NLRP3 inflammasome. Meanwhile, the BLL nanocage exhibited H+-scavenging ability due to the weak alkalinity of LDH, thus disrupting the homeostasis of the lysosome and alleviating the degradation of the NLRP3 inflammasome by lysosomal-associated autophagy. Our results suggest that the BLL nanocage induces homeostatic imbalance in various organelles and efficient pyroptosis. We hope this work can provide new insights into the design of an efficient pyroptosis inducer by disrupting the homeostatic balance of multiple organelles and promote the development of novel antineoplastic platforms.
Collapse
Affiliation(s)
- Anjun Song
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Wenjie Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yanjun Ji
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Yanjie Zhang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
40
|
Yan C, Liu Y, Zhao G, Yang H, Lv H, Li G, Li Y, Fu Y, Sun F, Feng Y, Li Y, Zhao Z. Inhalable metal-organic framework-mediated cuproptosis combined with PD-L1 checkpoint blockade for lung metastasis synergistic immunotherapy. Acta Pharm Sin B 2024; 14:2281-2297. [PMID: 38799628 PMCID: PMC11119570 DOI: 10.1016/j.apsb.2024.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 05/29/2024] Open
Abstract
Cuproptosis shows enormous application prospects in lung metastasis treatment. However, the glycolysis, Cu+ efflux mechanisms, and insufficient lung drug accumulation severely restrict cuproptosis efficacy. Herein, an inhalable poly (2-(N-oxide-N,N-diethylamino)ethyl methacrylate) (OPDEA)-coated copper-based metal-organic framework encapsulating pyruvate dehydrogenase kinase 1 siRNA (siPDK) is constructed for mediating cuproptosis and subsequently promoting lung metastasis immunotherapy, namely OMP. After inhalation, OMP shows highly efficient lung accumulation and long-term retention, ascribing to the OPDEA-mediated pulmonary mucosa penetration. Within tumor cells, OMP is degraded to release Cu2+ under acidic condition, which will be reduced to toxic Cu+ to induce cuproptosis under glutathione (GSH) regulation. Meanwhile, siPDK released from OMP inhibits intracellular glycolysis and adenosine-5'-triphosphate (ATP) production, then blocking the Cu+ efflux protein ATP7B, thereby rendering tumor cells more sensitive to OMP-mediated cuproptosis. Moreover, OMP-mediated cuproptosis triggers immunogenic cell death (ICD) to promote dendritic cells (DCs) maturation and CD8+ T cells infiltration. Notably, OMP-induced cuproptosis up-regulates membrane-associated programmed cell death-ligand 1 (PD-L1) expression and induces soluble PD-L1 secretion, and thus synergizes with anti-PD-L1 antibodies (aPD-L1) to reprogram immunosuppressive tumor microenvironment, finally yielding improved immunotherapy efficacy. Overall, OMP may serve as an efficient inhalable nanoplatform and afford preferable efficacy against lung metastasis through inducing cuproptosis and combining with aPD-L1.
Collapse
Affiliation(s)
- Chongzheng Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ying Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Guozhi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huatian Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huaiyou Lv
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaqing Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengqin Sun
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yafei Feng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yizhe Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
41
|
Liu J, Xie Y, Ma J, Chu H. New Ca 2+ based anticancer nanomaterials trigger multiple cell death targeting Ca 2+ homeostasis for cancer therapy. Chem Biol Interact 2024; 393:110948. [PMID: 38479714 DOI: 10.1016/j.cbi.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Calcium ion (Ca2+) is a necessary element for human and Ca2+ homeostasis plays important roles in various cellular process and functions. Recent reaches have targeted on inducing Ca2+ overload (both intracellular and transcellular) for tumor therapy. With the development of nanotechnology, nanoplatform-mediated Ca2+ overload has been safe theranostic model for cancer therapy, and defined a special calcium overload-induced tumor cell death as "calcicoptosis". However, the underlying mechanism of calcicoptosis in cancer cells remains further identification. In this review, we summarized multiple cell death types due to Ca2+ overload that induced by novel anticancer nanomaterials in tumor cells, including apoptosis, autophagy, pyroptosis, and ferroptosis. We reviewed the roles of these anticancer nanomaterials on Ca2+ homeostasis, including transcellular Ca2+ influx and efflux, and intracellular Ca2+ change in the cytosolic and organelles, and connection of Ca2+ overload with other metal ions. This review provides the knowledge of these nano-anticancer materials-triggered calcicoptosis accompanied with multiple cell death by regulating Ca2+ homeostasis, which could not only enhance their efficiency and specificity, but also enlighten to design new cancer therapeutic strategies and biomedical applications.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Yimin Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing Hospital, Yixing, Jiangsu, 214200, China
| | - Jun Ma
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Hezhen Chu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China.
| |
Collapse
|
42
|
Chen W, Lu Y, Sun X, Leng J, Lin S, He X, Zhang C, Yuan C. A multifunctional CaCO 3 bioreactor coated with coordination polymers enhances cancer immunotherapy. J Control Release 2024; 368:780-796. [PMID: 38499091 DOI: 10.1016/j.jconrel.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Designing effective nanomedicines to induce durable anti-tumor immunity represents a promising strategy for improving moderate immune stimulation. In this study, we engineered a multifunctional nanoreactor (named SCGFP NPs) for remodeling the tumor microenvironment (TME) to improve the therapeutic efficacy of immunotherapy. The core of SCGFP NPs consists of CaCO3 loaded with SN38, prepared by the gas diffusion method, and coated with a significant amount of gallic acid-Fe3+-PEG coordination polymer on the surface. In the acidic TME, SCGFP NPs explosively release exogenous Ca2+ and SN38. The SN38-induced intracellular Ca2+ accumulation and exogenous Ca2+ synergistically trigger immunogenic cell death (ICD) through sustained Ca2+ overload. The ablation of tumors with high-intensity photothermal therapy (PTT) by near-infrared (NIR) irradiation of GA-Fe3+ induces tumor cell necrosis, further enhancing ICD activation. Additionally, SN38 upregulates PD-L1, amplifying tumor responsiveness to immune checkpoint inhibitors (ICIs). This study indicates that SCGFP NPs, through the integration of a trimodal therapeutic strategy, hold enormous potential for various types of tumor immunotherapy through distinct mechanisms or synergistic effects.
Collapse
Affiliation(s)
- Weiguo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yishuang Lu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiaoya Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jiafu Leng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Shuai Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Chunfeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Chunsu Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
43
|
Wang B, Wang L, Yang Q, Zhang Y, Qinglai T, Yang X, Xiao Z, Lei L, Li S. Pulmonary inhalation for disease treatment: Basic research and clinical translations. Mater Today Bio 2024; 25:100966. [PMID: 38318475 PMCID: PMC10840005 DOI: 10.1016/j.mtbio.2024.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Pulmonary drug delivery has the advantages of being rapid, efficient, and well-targeted, with few systemic side effects. In addition, it is non-invasive and has good patient compliance, making it a highly promising drug delivery mode. However, there have been limited studies on drug delivery via pulmonary inhalation compared with oral and intravenous modes. This paper summarizes the basic research and clinical translation of pulmonary inhalation drug delivery for the treatment of diseases and provides insights into the latest advances in pulmonary drug delivery. The paper discusses the processing methods for pulmonary drug delivery, drug carriers (with a focus on various types of nanoparticles), delivery devices, and applications in pulmonary diseases and treatment of systemic diseases (e.g., COVID-19, inhaled vaccines, diagnosis of the diseases, and diabetes mellitus) with an updated summary of recent research advances. Furthermore, this paper describes the applications and recent progress in pulmonary drug delivery for lung diseases and expands the use of pulmonary drugs for other systemic diseases.
Collapse
Affiliation(s)
- Bin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Binzhou People's Hospital, Binzhou, 256610, Shandong, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tang Qinglai
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
44
|
Liu N, Lin Q, Huang Z, Liu C, Qin J, Yu Y, Chen W, Zhang J, Jiang M, Gao X, Huo S, Zhu X. Mitochondria-Targeted Prodrug Nanoassemblies for Efficient Ferroptosis-Based Therapy via Devastating Ferroptosis Defense Systems. ACS NANO 2024; 18:7945-7958. [PMID: 38452275 DOI: 10.1021/acsnano.3c10133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Ferroptosis is a form of regulated cell death accompanied by lipid reactive oxygen species (ROS) accumulation in an iron-dependent manner. However, the efficiency of tumorous ferroptosis was seriously restricted by intracellular ferroptosis defense systems, the glutathione peroxidase 4 (GPX4) system, and the ubiquinol (CoQH2) system. Inspired by the crucial role of mitochondria in the ferroptosis process, we reported a prodrug nanoassembly capable of unleashing potent mitochondrial lipid peroxidation and ferroptotic cell death. Dihydroorotate dehydrogenase (DHODH) inhibitor (QA) was combined with triphenylphosphonium moiety through a disulfide-containing linker to engineer well-defined nanoassemblies (QSSP) within a single-molecular framework. After being trapped in cancer cells, the acidic condition provoked the structural disassembly of QSSP to liberate free prodrug molecules. The mitochondrial membrane-potential-driven accumulation of the lipophilic cation prodrug was delivered explicitly into the mitochondria. Afterward, the thiol-disulfide exchange would occur accompanied by downregulation of reduced glutathione levels, thus resulting in mitochondria-localized GPX4 inactivation for ferroptosis. Simultaneously, the released QA from the hydrolysis reaction of the adjacent ester bond could further devastate mitochondrial defense and evoke robust ferroptosis via the DHODH-CoQH2 system. This subcellular targeted nanoassembly provides a reference for designing ferroptosis-based strategy for efficient cancer therapy through interfering antiferroptosis systems.
Collapse
Affiliation(s)
- Nian Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Qian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Jingbo Qin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yanlin Yu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Weibin Chen
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jingbo Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Min Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xuemin Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
45
|
Huang Y, Chang Z, Gao Y, Ren C, Lin Y, Zhang X, Wu C, Pan X, Huang Z. Overcoming the Low-Stability Bottleneck in the Clinical Translation of Liposomal Pressurized Metered-Dose Inhalers: A Shell Stabilization Strategy Inspired by Biomineralization. Int J Mol Sci 2024; 25:3261. [PMID: 38542235 PMCID: PMC10970625 DOI: 10.3390/ijms25063261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 06/25/2024] Open
Abstract
Currently, several types of inhalable liposomes have been developed. Among them, liposomal pressurized metered-dose inhalers (pMDIs) have gained much attention due to their cost-effectiveness, patient compliance, and accurate dosages. However, the clinical application of liposomal pMDIs has been hindered by the low stability, i.e., the tendency of the aggregation of the liposome lipid bilayer in hydrophobic propellant medium and brittleness under high mechanical forces. Biomineralization is an evolutionary mechanism that organisms use to resist harsh external environments in nature, providing mechanical support and protection effects. Inspired by such a concept, this paper proposes a shell stabilization strategy (SSS) to solve the problem of the low stability of liposomal pMDIs. Depending on the shell material used, the SSS can be classified into biomineralization (biomineralized using calcium, silicon, manganese, titanium, gadolinium, etc.) biomineralization-like (composite with protein), and layer-by-layer (LbL) assembly (multiple shells structured with diverse materials). This work evaluated the potential of this strategy by reviewing studies on the formation of shells deposited on liposomes or similar structures. It also covered useful synthesis strategies and active molecules/functional groups for modification. We aimed to put forward new insights to promote the stability of liposomal pMDIs and shed some light on the clinical translation of relevant products.
Collapse
Affiliation(s)
- Yeqi Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Ziyao Chang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (X.P.)
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Chuanyu Ren
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Yuxin Lin
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (X.P.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (Y.H.); (Y.G.); (C.R.); (Y.L.); (C.W.)
| |
Collapse
|
46
|
Deng X, Liu T, Zhu Y, Chen J, Song Z, Shi Z, Chen H. Ca & Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening. Bioact Mater 2024; 33:483-496. [PMID: 38125638 PMCID: PMC10730349 DOI: 10.1016/j.bioactmat.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Limited by low tumor immunogenicity and the immunosuppressive tumor microenvironment (TME), triple-negative breast cancer (TNBC) has been poorly responsive to immunotherapy so far. Herein, a Ca & Mn dual-ion hybrid nanostimulator (CMS) is constructed to enhance anti-tumor immunity through ferroptosis inducing and innate immunity awakening, which can serve as a ferroptosis inducer and immunoadjuvant for TNBC concurrently. On one hand, glutathione (GSH) depletion and reactive oxygen species (ROS) generation can be achieved due to the mixed valence state of Mn in CMS. On the other hand, as an exotic Ca2+ supplier, CMS causes mitochondrial Ca2+ overload, which further amplifies the oxidative stress. Significantly, tumor cells undergo ferroptosis because of the inactivation of glutathione peroxidase 4 (GPX4) and accumulation of lipid peroxidation (LPO). More impressively, CMS can act as an immunoadjuvant to awaken innate immunity by alleviating intra-tumor hypoxia and Mn2+-induced activation of the STING signaling pathway, which promotes polarization of tumor-associated macrophages (TAMs) and activation of dendritic cells (DCs) for antigen presentation and subsequent infiltration of tumor-specific cytotoxic T lymphocytes (CTLs) into tumor tissues. Taken together, this work demonstrates a novel strategy of simultaneously inducing ferroptosis and awakening innate immunity, offering a new perspective for effective tumor immunotherapy of TNBC.
Collapse
Affiliation(s)
- Xi Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yutong Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jufeng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ze Song
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhangpeng Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
- Nanotechnology and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| |
Collapse
|
47
|
Yong J, Shu H, Zhang X, Yang K, Luo G, Yu L, Li J, Huang H. Natural Products-Based Inhaled Formulations for Treating Pulmonary Diseases. Int J Nanomedicine 2024; 19:1723-1748. [PMID: 38414528 PMCID: PMC10898359 DOI: 10.2147/ijn.s451206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Given the unique physiological and pathological characteristics of the lung, the direct, inhalable route is more conducive to pulmonary drug delivery and disease control than traditional systemic drug delivery, significantly circumventing drug loss, off-target effects, systemic and organ toxicity, etc., and is widely regarded as the preferred regimen for pulmonary drug delivery. However, very few lung diseases are currently treated with the preferred inhaled formulations, such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. And there is a lack of appropriate inhaled formulations for other critical lung diseases, such as lung cancer and pulmonary fibrosis, due to the fact that the physicochemical properties of the drugs and their pharmacokinetic profiles do not match the physiology of the lung, and conventional inhalation devices are unable to deliver them to the specific parts of the lung. Phytochemicals of natural origin, due to their wide availability and clear safety profile, hold great promise for the preparation of inhalable formulations to improve the current dilemma in the treatment of lung diseases. In particular, the preparation of inhalable formulations based on nano- and microparticulate carriers for drug delivery to deep lung tissues, which overcome the shortcomings of conventional inhalation therapies while targeting the drug activity directly to a specific part of the lung, may be the best approach to change the current dilemma of lung disease treatment. In this review, we discuss recent advances in nano- and micron-carrier-based inhalation formulations for the delivery of natural products for the treatment of pulmonary diseases, which may represent an opportunity for practical clinical translation of natural products.
Collapse
Affiliation(s)
- Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Hongli Shu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Xiao Zhang
- Department of Clinical Laboratory, Chengdu Children Special Hospital, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Kun Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Guining Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Lu Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Jiaqi Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Hong Huang
- Department of Clinical Laboratory, the People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, People’s Republic of China
| |
Collapse
|
48
|
Li S, Fan R, Wang Y, He K, Xu J, Li H. Application of calcium overload-based ion interference therapy in tumor treatment: strategies, outcomes, and prospects. Front Pharmacol 2024; 15:1352377. [PMID: 38425645 PMCID: PMC10902152 DOI: 10.3389/fphar.2024.1352377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Low selectivity and tumor drug resistance are the main hinderances to conventional radiotherapy and chemotherapy against tumor. Ion interference therapy is an innovative anti-tumor strategy that has been recently reported to induce metabolic disorders and inhibit proliferation of tumor cells by reordering bioactive ions within the tumor cells. Calcium cation (Ca2+) are indispensable for all physiological activities of cells. In particular, calcium overload, characterized by the abnormal intracellular Ca2+ accumulation, causes irreversible cell death. Consequently, calcium overload-based ion interference therapy has the potential to overcome resistance to traditional tumor treatment strategies and holds promise for clinical application. In this review, we 1) Summed up the current strategies employed in this therapy; 2) Described the outcome of tumor cell death resulting from this therapy; 3) Discussed its potential application in synergistic therapy with immunotherapy.
Collapse
Affiliation(s)
- Shuangjiang Li
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
- Battalion, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Ruicheng Fan
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yuekai Wang
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
- Battalion, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Kunqian He
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
- Battalion, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Jinhe Xu
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Hongli Li
- Chongqing Key Laboratory of Neurobiology, Department of Teaching Experiment Center, College of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
49
|
Wang W, Zhong Z, Huang Z, Hiew TN, Huang Y, Wu C, Pan X. Nanomedicines for targeted pulmonary delivery: receptor-mediated strategy and alternatives. NANOSCALE 2024; 16:2820-2833. [PMID: 38289362 DOI: 10.1039/d3nr05487j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary drug delivery of nanomedicines is promising for the treatment of lung diseases; however, their lack of specificity required for targeted delivery limit their applications. Recently, a variety of pulmonary delivery targeting nanomedicines (PDTNs) has been developed for enhancing drug accumulation in lung lesions and reducing systemic side effects. Furthermore, with the increasing profound understanding of the specific microenvironment of different local lung diseases, multiple targeting strategies have been employed to promote drug delivery efficiency, which can be divided into the receptor-mediated strategy and alternatives. In this review, the current publication trend on PDTNs is analyzed and discussed, revealing that the research in this area has been attracting much attention. According to the different unique microenvironments of lung lesions, the reported PDTNs based on the receptor-mediated strategy for lung cancer, lung infection, lung inflammation and pulmonary fibrosis are listed and summarized. In addition, several other well-established strategies for the design of these PDTNs, such as charge regulation, mucus delivery enhancement, stimulus-responsive drug delivery and magnetic force-driven targeting, are introduced and discussed. Besides, bottlenecks in the development of PDTNs are discussed. Finally, we highlight the challenges and opportunities in the development of PDTNs. We hope that this review will provide an overview of the available PDTNs for guiding the treatment of lung diseases.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Ziqiao Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Tze Ning Hiew
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa 52242, USA
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
50
|
Li W, Shen Y, Yang C, Ye F, Liang Y, Cheng Z, Ou Y, Chen W, Chen Z, Zou L, Liu Y, Hu Y, Yan X, Jiang H. Identification of a novel ferroptosis-inducing micropeptide in bladder cancer. Cancer Lett 2024; 582:216515. [PMID: 38056687 DOI: 10.1016/j.canlet.2023.216515] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Bladder cancer (BC) is a common malignancy in males, and currently lacks ideal therapeutic approaches. Exploring emerging therapeutic targets from the perspective of endogenous peptides to improve the prognosis of bladder cancer patients holds promise. In this study, we have identified CTSGDP-13, a novel endogenous peptide, which demonstrates potential anti-cancer effects in BC. Our findings reveal that CTSGDP-13 can promote ferroptosis in BC cells, both in vitro and in vivo, leading to the inhibition of BC progression. Furthermore, we have identified TRIM25 as a downstream regulatory target of CTSGDP-13. The expression of TRIM25 is significantly upregulated in BC, and its inhibition of ferroptosis promotes BC progression. Mechanistic studies have shown that CTSGDP-13 promotes the ubiquitination and subsequent degradation of TRIM25 by disrupting its interaction with the deubiquitinase USP7. Further investigations indicate that CTSGDP-13 promotes ferroptosis in BC by regulating the USP7/TRIM25/KEAP1 axis. The elucidation of the functional mechanisms of natural CTSGDP-13 and TRIM25 holds promise in providing valuable therapeutic targets for BC diagnosis and treatment.
Collapse
Affiliation(s)
- Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Shen
- Department of Urology, Northern Jiangsu People's Hospital, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wensun Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ziang Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yufei Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Yan
- Department of Urology, Pediatric Urolith Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China; Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China; Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|