1
|
Derriche N, Franz M, Sawatzky G. Light-element and purely charge-based topological materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:465601. [PMID: 39142323 DOI: 10.1088/1361-648x/ad6f64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
We examine a class of Hamiltonians characterized by interatomic, interorbital even-odd parity hybridization as a model for a family of topological insulators without the need for spin-orbit coupling. Non-trivial properties of these materials are exemplified by studying the topologically-protected edge states ofs-phybridized alkali and alkaline earth atoms in one and two-dimensional lattices. In 1D the topological features are analogous to the canonical Su-Schrieffer-Heeger model but, remarkably, occur in the absence of dimerization. Alkaline earth chains, with Be standing out due to its gap size and near particle-hole symmetry, are of particular experimental interest since their Fermi energy without doping lies directly at the level of topological edge states. Similar physics is demonstrated to occur in a 2D honeycomb lattice system ofs-pbonded atoms, where dispersive edge states emerge. Lighter elements are predicted using this model to host topological states in contrast to spin-orbit coupling-induced band inversion favoring heavier atoms.
Collapse
Affiliation(s)
- Nassim Derriche
- Department of Physics and Astronomy & Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marcel Franz
- Department of Physics and Astronomy & Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - George Sawatzky
- Department of Physics and Astronomy & Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
Vera A, Zheng B, Yanez W, Yang K, Kim SY, Wang X, Kotsakidis JC, El-Sherif H, Krishnan G, Koch RJ, Bowen TA, Dong C, Wang Y, Wetherington M, Rotenberg E, Bassim N, Friedman AL, Wallace RM, Liu C, Samarth N, Crespi VH, Robinson JA. Large-Area Intercalated Two-Dimensional Pb/Graphene Heterostructure as a Platform for Generating Spin-Orbit Torque. ACS NANO 2024; 18:21985-21997. [PMID: 39102316 DOI: 10.1021/acsnano.4c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A scalable platform to synthesize ultrathin heavy metals may enable high-efficiency charge-to-spin conversion for next-generation spintronics. Here, we report the synthesis of air-stable, epitaxially registered monolayer Pb underneath graphene on SiC (0001) by confinement heteroepitaxy (CHet). Diffraction, spectroscopy, and microscopy reveal that CHet-based Pb intercalation predominantly exhibits a mottled hexagonal superstructure due to an ordered network of Frenkel-Kontorova-like domain walls. The system's air stability enables ex situ spin torque ferromagnetic resonance (ST-FMR) measurements that demonstrate charge-to-spin conversion in graphene/Pb/ferromagnet heterostructures with a 1.5× increase in the effective field ratio compared to control samples.
Collapse
Affiliation(s)
- Alexander Vera
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Center for Nanoscale Science, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
| | - Boyang Zheng
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
| | - Wilson Yanez
- Center for Nanoscale Science, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kaijie Yang
- Center for Nanoscale Science, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Seong Yeoul Kim
- Department of Materials Science and Engineering, The University of Texas at Dallas, Dallas ,Texas 75080, United States
| | - Xinglu Wang
- Department of Materials Science and Engineering, The University of Texas at Dallas, Dallas ,Texas 75080, United States
| | - Jimmy C Kotsakidis
- Laboratory for Physical Sciences, College Park, College Park ,Maryland 20740, United States
| | - Hesham El-Sherif
- Department of Materials Science and Engineering, McMaster University, Hamilton ,Ontario L8S 4L8, Canada
| | - Gopi Krishnan
- Department of Materials Science and Engineering, McMaster University, Hamilton ,Ontario L8S 4L8, Canada
| | - Roland J Koch
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - T Andrew Bowen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Center for Nanoscale Science, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
| | - Chengye Dong
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
| | - Yuanxi Wang
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
| | - Maxwell Wetherington
- Materials Research Institute, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nabil Bassim
- Department of Materials Science and Engineering, McMaster University, Hamilton ,Ontario L8S 4L8, Canada
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton ,Ontario L8S 4M1, Canada
| | - Adam L Friedman
- Laboratory for Physical Sciences, College Park, College Park ,Maryland 20740, United States
| | - Robert M Wallace
- Department of Materials Science and Engineering, The University of Texas at Dallas, Dallas ,Texas 75080, United States
| | - Chaoxing Liu
- Center for Nanoscale Science, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nitin Samarth
- Center for Nanoscale Science, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
| | - Vincent H Crespi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Center for Nanoscale Science, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park ,Pennsylvania 18802, United States
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Center for Nanoscale Science, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2-Dimensional Crystal Consortium, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park ,Pennsylvania 18802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park ,Pennsylvania 16802, United States
| |
Collapse
|
3
|
Nemoto R, Arafune R, Nakano S, Tsuchiizu M, Takagi N, Suizu R, Uchihashi T, Awaga K. Chiral Honeycomb Lattices of Nonplanar π-Conjugated Supramolecules with Protected Dirac and Flat Bands. ACS NANO 2024. [PMID: 38946088 DOI: 10.1021/acsnano.4c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The honeycomb lattice is a fundamental two-dimensional (2D) network that gives rise to surprisingly rich electronic properties. While its expansion to 2D supramolecular assembly is conceptually appealing, its realization is not straightforward because of weak intermolecular coupling and the strong influence of a supporting substrate. Here, we show that the application of a triptycene derivative with phenazine moieties, Trip-Phz, solves this problem due to its strong intermolecular π-π pancake bonding and nonplanar geometry. Our scanning tunneling microscopy (STM) measurements demonstrate that Trip-Phz molecules self-assemble on a Ag(111) surface to form chiral and commensurate honeycomb lattices. Electronically, the network can be viewed as a hybrid of honeycomb and kagome lattices. The Dirac and flat bands predicted by a simple tight-binding model are reproduced by total density functional theory (DFT) calculations, highlighting the protection of the molecular bands from the Ag(111) substrate. The present work offers a rational route for creating chiral 2D supramolecules that can simultaneously accommodate pristine Dirac and flat bands.
Collapse
Affiliation(s)
- Ryohei Nemoto
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki , Tsukuba , Ibaraki305-0044, Japan
| | - Ryuichi Arafune
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki , Tsukuba , Ibaraki305-0044, Japan
| | - Saya Nakano
- Department of Physics, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Masahisa Tsuchiizu
- Department of Physics, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Noriaki Takagi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho , Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Suizu
- Department of Chemistry and IRCCS, Nagoya University, Furo-cho , Chikusa-ku, Nagoya 464-8602, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho , Kawaguchi , Saitama332-0012, Japan
| | - Takashi Uchihashi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1, Namiki , Tsukuba , Ibaraki305-0044, Japan
- Graduate School of Science, Hokkaido University, Kita-10 Nishi-8 . Kita-ku, Sapporo 060-0810, Japan
| | - Kunio Awaga
- Department of Chemistry and IRCCS, Nagoya University, Furo-cho , Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Sheverdyaeva PM, Bihlmayer G, Cappelluti E, Pacilé D, Mazzola F, Atodiresei N, Jugovac M, Grimaldi I, Contini G, Kundu AK, Vobornik I, Fujii J, Moras P, Carbone C, Ferrari L. Spin-Dependent ππ^{*} Gap in Graphene on a Magnetic Substrate. PHYSICAL REVIEW LETTERS 2024; 132:266401. [PMID: 38996316 DOI: 10.1103/physrevlett.132.266401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
We present a detailed analysis of the electronic properties of graphene/Eu/Ni(111). By using angle- and spin-resolved photoemission spectroscopy and ab initio calculations, we show that the intercalation of Eu in the graphene/Ni(111) interface gives rise to a gapped freestanding dispersion of the ππ^{*} Dirac cones at the K[over ¯] point with an additional lifting of the spin degeneracy due to the mixing of graphene and Eu states. The interaction with the magnetic substrate results in a large spin-dependent gap in the Dirac cones with a topological nature characterized by a large Berry curvature and a spin-polarized Van Hove singularity, whose closeness to the Fermi level gives rise to a polaronic band.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Asish K Kundu
- CNR-Istituto di Struttura della Materia (CNR-ISM), Strada Statale 14, km 163.5, 34149 Trieste, Italy
- International Center for Theoretical Physics (ICTP), Trieste 34151, Italy
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | | | |
Collapse
|
5
|
Muñiz Cano B, Gudín A, Sánchez-Barriga J, Clark O, Anadón A, Díez JM, Olleros-Rodríguez P, Ajejas F, Arnay I, Jugovac M, Rault J, Le Fèvre P, Bertran F, Mazhjoo D, Bihlmayer G, Rader O, Blügel S, Miranda R, Camarero J, Valbuena MA, Perna P. Rashba-like Spin Textures in Graphene Promoted by Ferromagnet-Mediated Electronic Hybridization with a Heavy Metal. ACS NANO 2024; 18:15716-15728. [PMID: 38847339 DOI: 10.1021/acsnano.4c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Epitaxial graphene/ferromagnetic metal (Gr/FM) heterostructures deposited onto heavy metals have been proposed for the realization of spintronic devices because of their perpendicular magnetic anisotropy and sizable Dzyaloshinskii-Moriya interaction (DMI), allowing for both enhanced thermal stability and stabilization of chiral spin textures. However, establishing routes toward this goal requires the fundamental understanding of the microscopic origin of their unusual properties. Here, we elucidate the nature of the induced spin-orbit coupling (SOC) at Gr/Co interfaces on Ir. Through spin- and angle-resolved photoemission spectroscopy along with density functional theory, we show that the interaction of the heavy metals with the Gr layer via hybridization with the FM is the source of strong SOC in the Gr layer. Furthermore, our studies on ultrathin Co films underneath Gr reveal an energy splitting of ∼100 meV for in-plane and negligible for out-of-plane spin polarized Gr π-bands, consistent with a Rashba-SOC at the Gr/Co interface, which is either the fingerprint or the origin of the DMI. This mechanism vanishes at large Co thicknesses, where neither in-plane nor out-of-plane spin-orbit splitting is observed, indicating that Gr π-states are electronically decoupled from the heavy metal. The present findings are important for future applications of Gr-based heterostructures in spintronic devices.
Collapse
Affiliation(s)
- Beatriz Muñiz Cano
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Adrián Gudín
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jaime Sánchez-Barriga
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Street 15, 12489 Berlin, Germany
| | - Oliver Clark
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Street 15, 12489 Berlin, Germany
| | - Alberto Anadón
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jose Manuel Díez
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | - Fernando Ajejas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Iciar Arnay
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Matteo Jugovac
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
| | - Julien Rault
- Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | | | | | - Donya Mazhjoo
- Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gustav Bihlmayer
- Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Oliver Rader
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Street 15, 12489 Berlin, Germany
| | - Stefan Blügel
- Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Julio Camarero
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | - Paolo Perna
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Roy R, Holec D, Michal L, Hemzal D, Sarkar S, Sandeep Kumar G, Nečas D, Dhankhar M, Kaushik P, Jénnifer Gómez I, Zajíčková L. Possible charge ordering and anomalous transport in graphene/graphene quantum dot heterostructure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:265601. [PMID: 38457842 DOI: 10.1088/1361-648x/ad31bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
Observations of superconductivity and charge density waves (CDW) in graphene have been elusive thus far due to weak electron-phonon coupling (EPC) interactions. Here, we report a unique observation of anomalous transport and multiple charge ordering phases at high temperatures (T1∼213K,T2∼325K) in a 0D-2D van der Waals (vdW) heterostructure comprising of single layer graphene (SLG) and functionalized (amine) graphene quantum dots (GQD). The presence of functionalized GQD contributed to charge transfer with shifting of the Dirac point ∼ 0.05 eV above the Fermi level (ab initio simulations) and carrier densityn∼-0.3×1012 cm-2confirming p-doping in SLG and two-fold increase in EPC interaction was achieved. Moreover, we elucidate the interplay between electron-electron and electron-phonon interactions to substantiate high temperature EPC driven charge ordering in the heterostructure through analyses of magnetotransport and weak anti-localization (WAL) framework. Our results provide impetus to investigate strongly correlated phenomena such as CDW and superconducting phase transitions in novel graphene based heterostructures.
Collapse
Affiliation(s)
- Rajarshi Roy
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - David Holec
- Department of Materials Science, Montanuniversität Leoben, Franz-Josef-Strasse 18, A-8700 Leoben, Austria
| | - Lukáš Michal
- Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Dušan Hemzal
- Department of Condensed Matter Physics, Masaryk University, Kotlářská, 611 37 Brno, Czech Republic
| | - Saikat Sarkar
- Thin Film and Nanoscience Lab, Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Gundam Sandeep Kumar
- Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Heverlee, Belgium
| | - David Nečas
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Meena Dhankhar
- National Centre for Nano Fabrication and Characterization, Oersteds Plads-Building 347, Kongens Lyngby 2800 DK, Denmark
| | - Preeti Kaushik
- Department of Condensed Matter Physics, Masaryk University, Kotlářská, 611 37 Brno, Czech Republic
| | - I Jénnifer Gómez
- Department of Condensed Matter Physics, Masaryk University, Kotlářská, 611 37 Brno, Czech Republic
- Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, Rúa as Carballeiras, 15071 A Coruña, Spain
| | - Lenka Zajíčková
- Department of Condensed Matter Physics, Masaryk University, Kotlářská, 611 37 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| |
Collapse
|
7
|
Liang J, Ma K, Zhao X, Lu G, Riffle J, Andrei CM, Dong C, Furkan T, Rajabpour S, Prabhakar RR, Robinson JA, Magdaleno V, Trinh QT, Ager JW, Salmeron M, Aloni S, Caldwell JD, Hollen S, Bechtel HA, Bassim ND, Sherburne MP, Al Balushi ZY. Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene-Substrate Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47649-47660. [PMID: 37782678 PMCID: PMC10571006 DOI: 10.1021/acsami.3c07763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.
Collapse
Affiliation(s)
- Jiayun Liang
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Ma
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Xiao Zhao
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Guanyu Lu
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jake Riffle
- Department
of Physics and Astronomy, University of
New Hampshire, Durham, New Hampshire 03824, United States
| | - Carmen M. Andrei
- Canadian
Centre for Electron Microscopy, McMaster
University, Hamilton ,ON L8S 4L8, Canada
| | - Chengye Dong
- 2D Crystal
Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Turker Furkan
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Siavash Rajabpour
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rajiv Ramanujam Prabhakar
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joshua A. Robinson
- 2D Crystal
Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vasquez Magdaleno
- Department
of Mining, Metallurgy, and Materials Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Quang Thang Trinh
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, Brisbane, 4111 Australia
| | - Joel W. Ager
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Miquel Salmeron
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Shaul Aloni
- The Molecular Foundry, Lawrence
Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Joshua D. Caldwell
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Shawna Hollen
- Department
of Physics and Astronomy, University of
New Hampshire, Durham, New Hampshire 03824, United States
| | - Hans A. Bechtel
- Advanced
Light Source, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Nabil D. Bassim
- Canadian
Centre for Electron Microscopy, McMaster
University, Hamilton ,ON L8S 4L8, Canada
- Department of
Materials Science and Engineering, McMaster
University, Hamilton ,ON L8S 4L8, Canada
| | - Matthew P. Sherburne
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Zakaria Y. Al Balushi
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Wang C, Wang K, Wang H, Tian Q, Zong J, Qiu X, Ren W, Wang L, Li FS, Zhang WB, Zhang H, Zhang Y. Observation of a Folded Dirac Cone in Heavily Doped Graphene. J Phys Chem Lett 2023; 14:7149-7156. [PMID: 37540032 DOI: 10.1021/acs.jpclett.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Superlattice potentials imposed on graphene can alter its Dirac states, enabling the realization of various quantum phases. We report the experimental observation of a replica Dirac cone at the Brillouin zone center induced by a superlattice in heavily doped graphene with Gd intercalation using angle-resolved photoemission spectroscopy (ARPES). The replica Dirac cone arises from the (√3× √3)R30° superlattice formed by the intervalley coupling of two nonequivalent valleys (e.g., the Kekulé-like distortion phase), accompanied by a bandgap opening. According to the findings, the replica Dirac band in Gd-intercalated graphene disappears beyond a critical temperature of 30 K and can be suppressed by potassium adsorption. The modulation of the replica Dirac band is primarily attributable to the residual frozen gas, which can act as a source of intervalley scattering at temperatures below 30 K. Our results highlight the persistence of the hidden Kekulé-like phase within the heavily doped graphene, enriching our current understanding of its replica Dirac Fermions.
Collapse
Affiliation(s)
- Can Wang
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Kaili Wang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China
| | - Huaiqiang Wang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China
| | - Qichao Tian
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China
| | - Junyu Zong
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China
| | - Xiaodong Qiu
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Ren
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Li Wang
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Fang-Sen Li
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Wei-Bing Zhang
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
| | - Haijun Zhang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yi Zhang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
Ghising P, Biswas C, Lee YH. Graphene Spin Valves for Spin Logic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209137. [PMID: 36618004 DOI: 10.1002/adma.202209137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Indexed: 06/09/2023]
Abstract
An alternative to charge-based electronics identifies the spin degree of freedom for information communication and processing. The long spin-diffusion length in graphene at room temperature demonstrates its ability for highly scalable spintronics. The development of the graphene spin valve (SV) has inspired spin devices in graphene including spin field-effect transistors and spin majority logic gates. A comprehensive picture of spin transport in graphene SVs is required for further development of spin logic. This review examines the advances in graphene SVs and their role in the development of spin logic devices. Different transport and scattering mechanisms in charge and spin are discussed. Furthermore, the on/off switching energy between graphene SVs and charge-based FETs is compared to highlight their prospects for low-power devices. The challenges and perspectives that need to be addressed for the future development of spin logic devices are then outlined.
Collapse
Affiliation(s)
- Pramod Ghising
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Chandan Biswas
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
10
|
Lancaster S, Arnay I, Guerrero R, Gudín A, Guedeja-Marrón A, Diez JM, Gärtner J, Anadón A, Varela M, Camarero J, Mikolajick T, Perna P, Slesazeck S. Toward Nonvolatile Spin-Orbit Devices: Deposition of Ferroelectric Hafnia on Monolayer Graphene/Co/HM Stacks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16963-16974. [PMID: 36951382 DOI: 10.1021/acsami.2c22205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
While technologically challenging, the integration of ferroelectric thin films with graphene spintronics potentially allows the realization of highly efficient, electrically tunable, nonvolatile memories through control of the interfacial spin-orbit driven interaction occurring at graphene/Co interfaces deposited on heavy metal supports. Here, the integration of ferroelectric Hf0.5Zr0.5O2 on graphene/Co/heavy metal epitaxial stacks is investigated via the implementation of several nucleation methods in atomic layer deposition. By employing in situ Al2O3 as a nucleation layer sandwiched between Hf0.5Zr0.5O2 and graphene, the Hf0.5Zr0.5O2 demonstrates a remanent polarization (2Pr) of 19.2 μC/cm2. Using an ex situ, naturally oxidized sputtered Ta layer for nucleation, we could control 2Pr via the interlayer thickness, reaching maximum values of 28 μC/cm2 with low coercive fields. Magnetic hysteresis measurements taken before and after atomic layer deposition show strong perpendicular magnetic anisotropy, with minimal deviations in the magnetization reversal pathways due to the Hf0.5Zr0.5O2 deposition process, thus pointing to a good preservation of the magnetic stack including single-layer graphene. X-ray diffraction measurements further confirm that the high-quality interfaces demonstrated in the stack remain unperturbed by the ferroelectric deposition and anneal. The proposed graphene-based ferroelectric/magnetic structures offer the strong advantages of ferroelectricity and ferromagnetism at room temperature, enabling the development of novel magneto-electric and nonvolatile in-memory spin-orbit logic architectures with low power switching.
Collapse
Affiliation(s)
| | - Iciar Arnay
- IMDEA Nanociencia, c/Faraday 9, Madrid 28049, Spain
| | | | - Adrian Gudín
- IMDEA Nanociencia, c/Faraday 9, Madrid 28049, Spain
| | - Alejandra Guedeja-Marrón
- Departamento de Física de Materiales and Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28040, Spain
| | - Jose Manuel Diez
- Departamento de Física de la Materia Condensada & Departamento de Física Aplicada & Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jan Gärtner
- NaMLab gGmbH, Nöthnitzer Strasse 64a, Dresden 01187, Germany
| | | | - Maria Varela
- Departamento de Física de Materiales and Instituto Pluridisciplinar, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid 28040, Spain
| | - Julio Camarero
- Departamento de Física de la Materia Condensada & Departamento de Física Aplicada & Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Thomas Mikolajick
- NaMLab gGmbH, Nöthnitzer Strasse 64a, Dresden 01187, Germany
- Institute of Semiconductors and Microsystems, Technische Universität Dresden, Nöthnitzer Strasse 64, Dresden 01187, Germany
| | - Paolo Perna
- IMDEA Nanociencia, c/Faraday 9, Madrid 28049, Spain
| | | |
Collapse
|
11
|
Krishnamoorthy HNS, Dubrovkin AM, Adamo G, Soci C. Topological Insulator Metamaterials. Chem Rev 2023; 123:4416-4442. [PMID: 36943013 DOI: 10.1021/acs.chemrev.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Confinement of electromagnetic fields at the subwavelength scale via metamaterial paradigms is an established method to engineer light-matter interaction in most common material systems, from insulators to semiconductors and from metals to superconductors. In recent years, this approach has been extended to the realm of topological materials, providing a new avenue to access nontrivial features of their electronic band structure. In this review, we survey various topological material classes from a photonics standpoint, including crystal growth and lithographic structuring methods. We discuss how exotic electronic features such as spin-selective Dirac plasmon polaritons in topological insulators or hyperbolic plasmon polaritons in Weyl semimetals may give rise to unconventional magneto-optic, nonlinear, and circular photogalvanic effects in metamaterials across the visible to infrared spectrum. Finally, we dwell on how these effects may be dynamically controlled by applying external perturbations in the form of electric and magnetic fields or ultrafast optical pulses. Through these examples and future perspectives, we argue that topological insulator, semimetal and superconductor metamaterials are unique systems to bridge the missing links between nanophotonic, electronic, and spintronic technologies.
Collapse
Affiliation(s)
- Harish N S Krishnamoorthy
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Alexander M Dubrovkin
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Giorgio Adamo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Cesare Soci
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, The Photonic Institute, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
12
|
Polley CM, Fedderwitz H, Balasubramanian T, Zakharov AA, Yakimova R, Bäcke O, Ekman J, Dash SP, Kubatkin S, Lara-Avila S. Bottom-Up Growth of Monolayer Honeycomb SiC. PHYSICAL REVIEW LETTERS 2023; 130:076203. [PMID: 36867809 DOI: 10.1103/physrevlett.130.076203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
The long theorized two-dimensional allotrope of SiC has remained elusive amid the exploration of graphenelike honeycomb structured monolayers. It is anticipated to possess a large direct band gap (2.5 eV), ambient stability, and chemical versatility. While sp^{2} bonding between silicon and carbon is energetically favorable, only disordered nanoflakes have been reported to date. Here we demonstrate large-area, bottom-up synthesis of monocrystalline, epitaxial monolayer honeycomb SiC atop ultrathin transition metal carbide films on SiC substrates. We find the 2D phase of SiC to be almost planar and stable at high temperatures, up to 1200 °C in vacuum. Interactions between the 2D-SiC and the transition metal carbide surface result in a Dirac-like feature in the electronic band structure, which in the case of a TaC substrate is strongly spin-split. Our findings represent the first step towards routine and tailored synthesis of 2D-SiC monolayers, and this novel heteroepitaxial system may find diverse applications ranging from photovoltaics to topological superconductivity.
Collapse
Affiliation(s)
- C M Polley
- MAX IV Laboratory, Lund University, Fotongatan 2, 22484 Lund, Sweden
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - H Fedderwitz
- MAX IV Laboratory, Lund University, Fotongatan 2, 22484 Lund, Sweden
| | - T Balasubramanian
- MAX IV Laboratory, Lund University, Fotongatan 2, 22484 Lund, Sweden
| | - A A Zakharov
- MAX IV Laboratory, Lund University, Fotongatan 2, 22484 Lund, Sweden
| | - R Yakimova
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 581 83 Sweden
| | - O Bäcke
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - J Ekman
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - S P Dash
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - S Kubatkin
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - S Lara-Avila
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, United Kingdom
| |
Collapse
|
13
|
Ahmed T, Subrina S. Novel hybrid monolayers Si xGe ySn 1-x-y: first principles study of structural, electronic, optical, and electron transport properties with NH 3 sensing application. Phys Chem Chem Phys 2022; 24:9475-9491. [PMID: 35388812 DOI: 10.1039/d1cp05912b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural, electronic, optical, and electron transport properties of three different atomically thin novel hybrid monolayers comprising of Si, Ge, and Sn atoms in varying proportions are studied using first principles calculations within the framework of density functional theory. The fabrication of similar hybrid materials is practically realizable but the different properties of these novel monolayers are yet to be explored. The proposed hybrid buckled honeycomb monolayers with sp2-sp3 like orbital hybridization are mechanically and dynamically stable, confirmed by the analysis of in-plane elastic constants, phonon dispersion curve and cohesive energy of the monolayers. The electronic band structures of these hybrid two-dimensional (2D) monolayers, namely Ge0.25Sn0.25Si0.50, Si0.25Ge0.25Sn0.50, and Sn0.25Si0.25Ge0.50, show a considerable direct energy bandgap ranging from 120 meV to 283.8 meV while preserving the linear energy-momentum relation at the K point of the Brillouin zone. The calculated significantly low effective mass (0.063-0.101m0) and very high acoustic phonon limited mobility (∼106 cm2 V-1 s-1) of the charge carriers inside the hybrid monolayers ensure the presence of relativistic-massless Dirac fermions. In order to further investigate the electronic properties, we have calculated the atom projected density of states and differential charge density. Optical properties, e.g. dielectric function, electron loss function, absorption coefficient, refractive index, reflectivity, and optical conductivity, are also explored for parallelly and perpendicularly polarized incident light. These hybrid monolayers show anisotropic optical response for parallel and perpendicular polarization as a function of frequency of the incident light. Polarization tunable plasma frequency, high absorption coefficient over a wide range of frequency, and high refractive indices suggest these hybrid monolayers as potential candidates for optoelectronic applications. We have also designed three different armchair nanoribbons to study the effect of the adsorption of NH3 molecules on these hybrid nanoribbons. Our calculated electron transport properties ensure the applications of these nanoribbons as an NH3 sensor at the molecular level. Thus, our results suggest that the proposed SixGeySn1-x-y hybrid monolayers can be a potential candidate for nanoelectronics, optoelectronics and sensor based applications.
Collapse
Affiliation(s)
- Touhid Ahmed
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
| | - Samia Subrina
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
| |
Collapse
|
14
|
Zhang H, Wang Y, Yang W, Zhang J, Xu X, Liu F. Selective Substrate-Orbital-Filtering Effect to Realize the Large-Gap Quantum Spin Hall Effect. NANO LETTERS 2021; 21:5828-5833. [PMID: 34156241 DOI: 10.1021/acs.nanolett.1c01765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although Pb harbors a strong spin-orbit coupling effect, pristine plumbene (the last group-IV cousin of graphene) hosts topologically trivial states. Based on first-principles calculations, we demonstrate that epitaxial growth of plumbene on the BaTe(111) surface converts the trivial Pb lattice into a quantum spin Hall (QSH) phase with a large gap of ∼0.3 eV via a selective substrate-orbital-filtering effect. Tight-binding model analyses show the pz orbital in half of the Pb overlayer is selectively removed by the BaTe substrate, leaving behind a pz-px,y band inversion. Based on the same working principle, the gap can be further increased to ∼0.5-0.6 eV by surface adsorption of H or halogen atoms that filters out the other half of the Pb pz orbitals. The mechanism of selective substrate-orbital-filtering is general, opening an avenue to explore large-gap QSH insulators in heavy-metal-based materials. It is worth noting that plumbene has already been widely grown on various substrates experimentally.
Collapse
Affiliation(s)
- Huisheng Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Yingying Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Wenjia Yang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Jingjing Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education and Research Institute of Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
15
|
Kanne T, Marnauza M, Olsteins D, Carrad DJ, Sestoft JE, de Bruijckere J, Zeng L, Johnson E, Olsson E, Grove-Rasmussen K, Nygård J. Epitaxial Pb on InAs nanowires for quantum devices. NATURE NANOTECHNOLOGY 2021; 16:776-781. [PMID: 33972757 DOI: 10.1038/s41565-021-00900-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/11/2021] [Indexed: 05/21/2023]
Abstract
Semiconductor-superconductor hybrids are widely used to realize complex quantum phenomena, such as topological superconductivity and spins coupled to Cooper pairs. Accessing new, exotic regimes at high magnetic fields and increasing operating temperatures beyond the state-of-the-art requires new, epitaxially matched semiconductor-superconductor materials. One challenge is the generation of favourable conditions for heterostructural formation between materials with the desired properties. Here we harness an increased knowledge of metal-on-semiconductor growth to develop InAs nanowires with epitaxially matched, single-crystal, atomically flat Pb films with no axial grain boundaries. These highly ordered heterostructures have a critical temperature of 7 K and a superconducting gap of 1.25 meV, which remains hard at 8.5 T, and therefore they offer a parameter space more than twice as large as those of alternative semiconductor-superconductor hybrids. Additionally, InAs/Pb island devices exhibit magnetic field-driven transitions from a Cooper pair to single-electron charging, a prerequisite for use in topological quantum computation. Semiconductor-Pb hybrids potentially enable access to entirely new regimes for a number of different quantum systems.
Collapse
Affiliation(s)
- Thomas Kanne
- Center for Quantum Devices & Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Mikelis Marnauza
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Dags Olsteins
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Damon J Carrad
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joachim E Sestoft
- Center for Quantum Devices & Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joeri de Bruijckere
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Lunjie Zeng
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Erik Johnson
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Eva Olsson
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Kasper Grove-Rasmussen
- Center for Quantum Devices & Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Nygård
- Center for Quantum Devices & Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Lodge MS, Yang SA, Mukherjee S, Weber B. Atomically Thin Quantum Spin Hall Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008029. [PMID: 33893669 DOI: 10.1002/adma.202008029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Atomically thin topological materials are attracting growing attention for their potential to radically transform classical and quantum electronic device concepts. Among them is the quantum spin Hall (QSH) insulator-a 2D state of matter that arises from interplay of topological band inversion and strong spin-orbit coupling, with large tunable bulk bandgaps up to 800 meV and gapless, 1D edge states. Reviewing recent advances in materials science and engineering alongside theoretical description, the QSH materials library is surveyed with focus on the prospects for QSH-based device applications. In particular, theoretical predictions of nontrivial superconducting pairing in the QSH state toward Majorana-based topological quantum computing are discussed, which are the next frontier in QSH materials research.
Collapse
Affiliation(s)
- Michael S Lodge
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Quantum Centres in Diamond and Emergent Materials (QCenDiem)-Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
- Computational Materials Science Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
| | - Bent Weber
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Australian Research Council (ARC) Centre of Excellence in Future Low-Energy Electronics Techonologies (FLEET), School of Physics, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
17
|
Morales C, Urbanos FJ, Del Campo A, Leinen D, Granados D, Prieto P, Aballe L, Foerster M, Soriano L. Influence of chemical and electronic inhomogeneities of graphene/copper on the growth of oxide thin films: the ZnO/graphene/copper case. NANOTECHNOLOGY 2021; 32:245301. [PMID: 33508809 DOI: 10.1088/1361-6528/abe0e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The interaction of graphene with metal oxides is essential for understanding and controlling new devices' fabrication based on these materials. The growth of metal oxides on graphene/substrate systems constitutes a challenging task due to the graphene surface's hydrophobic nature. In general, different pre-treatments should be performed before deposition to ensure a homogenous growth depending on the deposition technique, the metal oxide, and the surface's specific nature. Among these factors, the initial state and interaction of graphene with its substrate is the most important. Therefore, it is imperative to study the initial local state of graphene and relate it to the early stages of metal oxides' growth characteristics. Taking as initial samples graphene grown by chemical vapor deposition on polycrystalline Cu sheets and then exposed to ambient conditions, this article presents a local study of the inhomogeneities of this air-exposed graphene and how they influence on the subsequent ZnO growth. Firstly, by spatially correlating Raman and x-ray photoemission spectroscopies at the micro and nanoscales, it is shown how chemical species present in air intercalate inhomogeneously between Graphene and Cu. The reason for this is precisely the polycrystalline nature of the Cu support. Moreover, these local inhomogeneities also affect the oxidation level of the uppermost layer of Cu and, consequently, the electronic coupling between graphene and the metallic substrate. In second place, through the same characterization techniques, it is shown how the initial state of graphene/Cu sheets influences the local inhomogeneities of the ZnO deposit during the early stages of growth in terms of both, stoichiometry and morphology. Finally, as a proof of concept, it is shown how altering the initial chemical state and interaction of Graphene with Cu can be used to control the properties of the ZnO deposits.
Collapse
Affiliation(s)
- Carlos Morales
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 7, E-28049 Madrid, Spain
| | | | - Adolfo Del Campo
- Instituto de Cerámica y Vidrio, ICV-CSIC, Kelsen 5, E-28049 Madrid, Spain
| | - Dietmar Leinen
- Departamento de Física Aplicada, Universidad de Málaga, Campus Teatinos, E-29071 Málaga, Spain
| | | | - Pilar Prieto
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 7, E-28049 Madrid, Spain
| | - Lucía Aballe
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, E-08290 Cerdanyola del Vallès, Spain
| | - Michael Foerster
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, E-08290 Cerdanyola del Vallès, Spain
| | - Leonardo Soriano
- Departamento de Física Aplicada and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 7, E-28049 Madrid, Spain
| |
Collapse
|
18
|
Guo Q, Dedkov Y, Voloshina E. Intercalation of Mn in graphene/Cu(111) interface: insights to the electronic and magnetic properties from theory. Sci Rep 2020; 10:21684. [PMID: 33303805 PMCID: PMC7729943 DOI: 10.1038/s41598-020-78583-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
The effect of Mn intercalation on the atomic, electronic and magnetic structure of the graphene/Cu(111) interface is studied using state-of-the-art density functional theory calculations. Different structural models of the graphene-Mn-Cu(111) interface are investigated. While a Mn monolayer placed between graphene and Cu(111) (an unfavorable configuration) yields massive rearrangement of the graphene-derived [Formula: see text] bands in the vicinity of the Fermi level, the possible formation of a [Formula: see text]Mn alloy at the interface (a favorable configuration) preserves the linear dispersion for these bands. The deep analysis of the electronic states around the Dirac point for the graphene/[Formula: see text]Mn/Cu(111) system allows to discriminate between contributions from three carbon sublattices of a graphene layer in this system and to explain the bands' as well as spins' topology of the electronic states around the Fermi level.
Collapse
Affiliation(s)
- Qilin Guo
- Department of Physics, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Yuriy Dedkov
- Department of Physics, Shanghai University, Shangda Road 99, Shanghai, 200444, China.
| | - Elena Voloshina
- Department of Physics, Shanghai University, Shangda Road 99, Shanghai, 200444, China.
| |
Collapse
|
19
|
Mehler A, Néel N, Kröger J. Dissimilar Decoupling Behavior of Two-Dimensional Materials on Metal Surfaces. J Phys Chem Lett 2020; 11:5204-5211. [PMID: 32515963 DOI: 10.1021/acs.jpclett.0c01320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The efficiency of hexagonal boron nitride and graphene to separate the hydrocarbon molecule C64H36 from Ru(0001) and Pt(111) surfaces is explored in low-temperature scanning tunneling microscopy and spectroscopy experiments. Both 2D materials enable the observation of the Franck-Condon effect in both frontier orbitals. On hexagonal boron nitride, vibronic progression with two vibrational energies gives rise to sharp orbital sidebands that are clearly visible up to the second order of the vibrational quantum number with different Huang-Rhys factors. In contrast, on graphene, orbital and vibronic spectroscopic signatures exhibit broad line shapes, with the second-order progression being hardly discriminable. Only a single vibrational quantum energy leaves its fingerprint in the Franck-Condon spectrum.
Collapse
Affiliation(s)
- Alexander Mehler
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Nicolas Néel
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Jörg Kröger
- Institut für Physik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
20
|
Vincent T, Voloshina E, Pons S, Simon S, Fonin M, Wang K, Paulus B, Roditchev D, Dedkov Y, Vlaic S. Quantum Well States for Graphene Spin-Texture Engineering. J Phys Chem Lett 2020; 11:1594-1600. [PMID: 32013453 DOI: 10.1021/acs.jpclett.0c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The modification of graphene band structure, in particular via induced spin-orbit coupling, is currently a great challenge for the scientific community from both a fundamental and applied point of view. Here, we investigate the modification of the electronic structure of graphene (gr) initially adsorbed on Ir(111) via intercalation of one monolayer Pd by means of angle-resolved photoelectron spectroscopy and density functional theory. We reveal that for the gr/Pd/Ir(111) intercalated system, a spin splitting of graphene π states higher than 200 meV is present near the graphene K point. This spin separation arises from the hybridization of the graphene valence band states with spin-polarized quantum well states of a single Pd layer on Ir(111). Our results demonstrate that the proposed approach on the tailoring of the dimensionality of heavy materials interfaced with a graphene layer might lead to a giant spin-orbit splitting of the graphene valence band states.
Collapse
Affiliation(s)
- Thomas Vincent
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI Paris, PSL Research University, CNRS, UMR 8213, Sorbonne Universités , UPMC Univ. Paris 06, 75005 Paris , France
| | - Elena Voloshina
- Department of Physics , Shanghai University , 99 Shangda Road , 200444 Shanghai , China
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
- Institute of Physical and Organic Chemistry , Southern Federal University , 344090 Rostov on Don , Russia
| | - Stéphane Pons
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI Paris, PSL Research University, CNRS, UMR 8213, Sorbonne Universités , UPMC Univ. Paris 06, 75005 Paris , France
| | - Sabina Simon
- Department of Physics , University of Konstanz , 78457 Konstanz , Germany
| | - Mikhail Fonin
- Department of Physics , University of Konstanz , 78457 Konstanz , Germany
| | - Kangli Wang
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Beate Paulus
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , 14195 Berlin , Germany
| | - Dimitri Roditchev
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI Paris, PSL Research University, CNRS, UMR 8213, Sorbonne Universités , UPMC Univ. Paris 06, 75005 Paris , France
- INSP , UPMC Paris 6 and CNRS-UMR 7588, 4 place Jussieu , 75252 Paris , France
| | - Yuriy Dedkov
- Department of Physics , Shanghai University , 99 Shangda Road , 200444 Shanghai , China
- Institute of Physical and Organic Chemistry , Southern Federal University , 344090 Rostov on Don , Russia
| | - Sergio Vlaic
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI Paris, PSL Research University, CNRS, UMR 8213, Sorbonne Universités , UPMC Univ. Paris 06, 75005 Paris , France
| |
Collapse
|
21
|
Ajejas F, Anadon A, Gudin A, Diez JM, Ayani CG, Olleros-Rodríguez P, de Melo Costa L, Navío C, Gutierrez A, Calleja F, Vázquez de Parga AL, Miranda R, Camarero J, Perna P. Thermally Activated Processes for Ferromagnet Intercalation in Graphene-Heavy Metal Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4088-4096. [PMID: 31875389 DOI: 10.1021/acsami.9b19159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of graphene (Gr) spintronics requires the ability to engineer epitaxial Gr heterostructures with interfaces of high quality, in which the intrinsic properties of Gr are modified through proximity with a ferromagnet to allow for efficient room temperature spin manipulation or the stabilization of new magnetic textures. These heterostructures can be prepared in a controlled way by intercalation through graphene of different metals. Using photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we achieve a nanoscale control of thermally activated intercalation of a homogeneous ferromagnetic (FM) layer underneath epitaxial Gr grown onto (111)-oriented heavy metal (HM) buffers deposited, in turn, onto insulating oxide surfaces. XPS and STM demonstrate that Co atoms evaporated on top of Gr arrange in 3D clusters and, upon thermal annealing, penetrate through and diffuse below Gr in a 2D fashion. The complete intercalation of the metal occurs at specific temperatures, depending on the type of metallic buffer. The activation energy and the optimum temperature for the intercalation processes are determined. We describe a reliable method to fabricate and characterize in situ high-quality Gr-FM/HM heterostructures, enabling the realization of novel spin-orbitronic devices that exploit the extraordinary properties of Gr.
Collapse
Affiliation(s)
- Fernando Ajejas
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Alberto Anadon
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Adrian Gudin
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - José Manuel Diez
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Cosme G Ayani
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| | | | | | - Cristina Navío
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Alejandro Gutierrez
- Departamento Física Aplicada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Fabian Calleja
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| | - Amadeo L Vázquez de Parga
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
- IFIMAC, Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Rodolfo Miranda
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
- IFIMAC, Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Julio Camarero
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
- Departamento Física de la Materia Condensada & Instituto "Nicolás Cabrera" , Universidad Autónoma de Madrid , 28049 Madrid , Spain
- IFIMAC, Universidad Autónoma de Madrid , 28049 Madrid , Spain
| | - Paolo Perna
- IMDEA Nanociencia , c/ Faraday 9, Campus de Cantoblanco , 28049 Madrid , Spain
| |
Collapse
|
22
|
Zeng Y, Wang L, Li S, He C, Zhong D, Yao DX. Topological phase transition induced by magnetic proximity effect in two dimensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:395502. [PMID: 31185461 DOI: 10.1088/1361-648x/ab28d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the magnetic proximity effect on a two-dimensional topological insulator in a CrI3/SnI3/CrI3 trilayer structure. From first-principles calculations, the BiI3-type SnI3 monolayer without spin-orbit coupling has Dirac cones at the corners of the hexagonal Brillouin zone. With spin-orbit coupling turned on, it becomes a topological insulator, as revealed by a non-vanishing Z 2 invariant and an effective model from symmetry considerations. Without spin-orbit coupling, the Dirac points are protected if the CrI3 layers are stacked ferromagnetically, and are gapped if the CrI3 layers are stacked antiferromagnetically, which can be explained by the irreducible representations of the magnetic space groups [Formula: see text] and [Formula: see text], corresponding to ferromagnetic and antiferromagnetic stacking, respectively. By analyzing the effective model including the perturbations, we find that the competition between the magnetic proximity effect and spin-orbit coupling leads to a topological phase transition between a trivial insulator and a topological insulator.
Collapse
Affiliation(s)
- Yijie Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Parisa Zare, Rezania H. Effect of Holstein Electron-Phonon Coupling on Thermoelectric Properties of Gapped Graphene Structure. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419050364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Afzal AM, Min KH, Ko BM, Eom J. Observation of giant spin–orbit interaction in graphene and heavy metal heterostructures. RSC Adv 2019; 9:31797-31805. [PMID: 35527934 PMCID: PMC9072641 DOI: 10.1039/c9ra06961e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 11/21/2022] Open
Abstract
Graphene is a promising material demonstrating some interesting phenomena such as the spin Hall effect, bipolar transistor effect, and non-trivial topological states. However, graphene has an intrinsically small spin–orbit interaction (SOI), making it difficult to apply in spintronic devices. The electronic band structure of graphene makes it possible to develop a systematic method to enhance SOI extrinsically. In this study, we designed a graphene field-effect transistor with a Pb layer intercalated between graphene (Gr) and Au layers and studied the effect on the strength of the SOI. The SOI in our system was significantly increased to 80 meV, which led to a giant non-local signal (∼180 Ω) at room temperature due to the spin Hall effect. Further, we extract key parameters of spin transport from the length and width dependence of non-local measurement. To support these findings, we also measured the temperature and gate-dependent weak localization (WL) effect. We obtained the magnitude of the SOI and spin relaxation time of Gr via quantitative analysis of WL. The SOI magnitudes estimated from the non-local signal and the WL effect are close in value. The enhancement of the SOI of Gr at room temperature is a potential simple manipulation method to explore the use of this material for spin-based applications. We used Pb as an intercalated layer between the graphene and Au and measured the spin–orbit interaction in local and non-local measurement configurations.![]()
Collapse
Affiliation(s)
- Amir Muhammad Afzal
- Department of Physics & Astronomy
- Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC)
- Sejong University
- Seoul 05006
- Korea
| | - Kuen Hong Min
- Department of Physics & Astronomy
- Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC)
- Sejong University
- Seoul 05006
- Korea
| | - Byung Min Ko
- Department of Physics & Astronomy
- Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC)
- Sejong University
- Seoul 05006
- Korea
| | - Jonghwa Eom
- Department of Physics & Astronomy
- Graphene Research Institute-Texas Photonics Center International Research Center (GRI-TPC IRC)
- Sejong University
- Seoul 05006
- Korea
| |
Collapse
|
25
|
Voloshina E, Dedkov Y. Realistic Large-Scale Modeling of Rashba and Induced Spin-Orbit Effects in Graphene/High-Z-Metal Systems. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elena Voloshina
- Physics Department; Shanghai University; 99 Shangda Road Shanghai 200444 P. R. China
- Department of Chemistry, Humboldt-Universität zu Berlin; 10099 Berlin Germany
| | - Yuriy Dedkov
- Physics Department; Shanghai University; 99 Shangda Road Shanghai 200444 P. R. China
| |
Collapse
|
26
|
Cattelan M, Fox NA. A Perspective on the Application of Spatially Resolved ARPES for 2D Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E284. [PMID: 29702567 PMCID: PMC5977298 DOI: 10.3390/nano8050284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
In this paper, a perspective on the application of Spatially- and Angle-Resolved PhotoEmission Spectroscopy (ARPES) for the study of two-dimensional (2D) materials is presented. ARPES allows the direct measurement of the electronic band structure of materials generating extremely useful insights into their electronic properties. The possibility to apply this technique to 2D materials is of paramount importance because these ultrathin layers are considered fundamental for future electronic, photonic and spintronic devices. In this review an overview of the technical aspects of spatially localized ARPES is given along with a description of the most advanced setups for laboratory and synchrotron-based equipment. This technique is sensitive to the lateral dimensions of the sample. Therefore, a discussion on the preparation methods of 2D material is presented. Some of the most interesting results obtained by ARPES are reported in three sections including: graphene, transition metal dichalcogenides (TMDCs) and 2D heterostructures. Graphene has played a key role in ARPES studies because it inspired the use of this technique with other 2D materials. TMDCs are presented for their peculiar transport, optical and spin properties. Finally, the section featuring heterostructures highlights a future direction for research into 2D material structures.
Collapse
Affiliation(s)
- Mattia Cattelan
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK; .
| | - Neil A Fox
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK; .
- H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK.
| |
Collapse
|
27
|
Rybkin AG, Rybkina AA, Otrokov MM, Vilkov OY, Klimovskikh II, Petukhov AE, Filianina MV, Voroshnin VY, Rusinov IP, Ernst A, Arnau A, Chulkov EV, Shikin AM. Magneto-Spin-Orbit Graphene: Interplay between Exchange and Spin-Orbit Couplings. NANO LETTERS 2018; 18:1564-1574. [PMID: 29365269 DOI: 10.1021/acs.nanolett.7b01548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A rich class of spintronics-relevant phenomena require implementation of robust magnetism and/or strong spin-orbit coupling (SOC) to graphene, but both properties are completely alien to it. Here, we for the first time experimentally demonstrate that a quasi-freestanding character, strong exchange splitting and giant SOC are perfectly achievable in graphene at once. Using angle- and spin-resolved photoemission spectroscopy, we show that the Dirac state in the Au-intercalated graphene on Co(0001) experiences giant splitting (up to 0.2 eV) while being by no means distorted due to interaction with the substrate. Our calculations, based on the density functional theory, reveal the splitting to stem from the combined action of the Co thin film in-plane exchange field and Au-induced Rashba SOC. Scanning tunneling microscopy data suggest that the peculiar reconstruction of the Au/Co(0001) interface is responsible for the exchange field transfer to graphene. The realization of this "magneto-spin-orbit" version of graphene opens new frontiers for both applied and fundamental studies using its unusual electronic bandstructure.
Collapse
Affiliation(s)
- Artem G Rybkin
- Research Park , Saint Petersburg State University , 198504 Saint Petersburg , Russia
| | - Anna A Rybkina
- Saint Petersburg State University , 198504 Saint Petersburg , Russia
| | - Mikhail M Otrokov
- Saint Petersburg State University , 198504 Saint Petersburg , Russia
- Donostia International Physics Center (DIPC) , Paseo de Manuel Lardizabal 4 , 20018 San Sebastián/Donostia , Spain
- Tomsk State University , 634050 Tomsk , Russia
- Departamento de Física de Materiales UPV/EHU , Centro de Física de Materiales CFM - MPC and Centro Mixto CSIC-UPV/EHU , 20080 San Sebastián/Donostia , Spain
| | - Oleg Yu Vilkov
- Saint Petersburg State University , 198504 Saint Petersburg , Russia
| | | | | | - Maria V Filianina
- Saint Petersburg State University , 198504 Saint Petersburg , Russia
| | | | - Igor P Rusinov
- Saint Petersburg State University , 198504 Saint Petersburg , Russia
- Tomsk State University , 634050 Tomsk , Russia
| | - Arthur Ernst
- Max-Planck-Institut für Mikrostrukturphysik , Weinberg 2 , D-06120 Halle , Germany
- Institut für Theoretische Physik, Johannes Kepler Universität , A 4040 Linz , Austria
| | - Andrés Arnau
- Donostia International Physics Center (DIPC) , Paseo de Manuel Lardizabal 4 , 20018 San Sebastián/Donostia , Spain
- Departamento de Física de Materiales UPV/EHU , Centro de Física de Materiales CFM - MPC and Centro Mixto CSIC-UPV/EHU , 20080 San Sebastián/Donostia , Spain
| | - Evgueni V Chulkov
- Saint Petersburg State University , 198504 Saint Petersburg , Russia
- Donostia International Physics Center (DIPC) , Paseo de Manuel Lardizabal 4 , 20018 San Sebastián/Donostia , Spain
- Tomsk State University , 634050 Tomsk , Russia
- Departamento de Física de Materiales UPV/EHU , Centro de Física de Materiales CFM - MPC and Centro Mixto CSIC-UPV/EHU , 20080 San Sebastián/Donostia , Spain
| | | |
Collapse
|
28
|
Wakamura T, Reale F, Palczynski P, Guéron S, Mattevi C, Bouchiat H. Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer WS_{2}. PHYSICAL REVIEW LETTERS 2018; 120:106802. [PMID: 29570325 DOI: 10.1103/physrevlett.120.106802] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/27/2017] [Indexed: 06/08/2023]
Abstract
We demonstrate strong anisotropic spin-orbit interaction (SOI) in graphene induced by monolayer WS_{2}. Direct comparison between graphene-monolayer WS_{2} and graphene-bulk WS_{2} systems in magnetotransport measurements reveals that monolayer transition metal dichalcogenide can induce much stronger SOI than bulk. Detailed theoretical analysis of the weak antilocalization curves gives an estimated spin-orbit energy (E_{so}) higher than 10 meV. The symmetry of the induced SOI is also discussed, and the dominant z→-z symmetric SOI can only explain the experimental results. Spin relaxation by the Elliot-Yafet mechanism and anomalous resistance increase with temperature close to the Dirac point indicates Kane-Mele SOI induced in graphene.
Collapse
Affiliation(s)
- T Wakamura
- Laboratoire de Physique des Solides, Université Paris-Sud, 91400 Orsay, France
| | - F Reale
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - P Palczynski
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - S Guéron
- Laboratoire de Physique des Solides, Université Paris-Sud, 91400 Orsay, France
| | - C Mattevi
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - H Bouchiat
- Laboratoire de Physique des Solides, Université Paris-Sud, 91400 Orsay, France
| |
Collapse
|
29
|
Dedkov Y, Voloshina E. Comment on "Spin-Orbit Coupling Induced Gap in Graphene on Pt(111) with Intercalated Pb Monolayer". ACS NANO 2017; 11:10627-10629. [PMID: 29099574 DOI: 10.1021/acsnano.7b00737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Yuriy Dedkov
- Fachbereich Physik, Universität Konstanz , 78457 Konstanz, Germany
| | - Elena Voloshina
- Institut für Chemie, Humboldt-Universität zu Berlin , 10099 Berlin, Germany
| |
Collapse
|
30
|
Klimovskikh II, Otrokov MM, Voroshnin VY, Sostina D, Petaccia L, Di Santo G, Thakur S, Chulkov EV, Shikin AM. Reply to "Comment on 'Spin-Orbit Coupling Induced Gap in Graphene on Pt(111) with Intercalated Pb Monolayer'". ACS NANO 2017; 11:10630-10632. [PMID: 29099573 DOI: 10.1021/acsnano.7b06779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
| | - Mikhail M Otrokov
- Saint Petersburg State University , 198504 Saint Petersburg, Russia
- Departamento de Fı́sica de Materiales UPV/EHU, Centro de Fı́sica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, 20080 San Sebastián/Donostia, Basque Country, Spain
| | | | - Daria Sostina
- Saint Petersburg State University , 198504 Saint Petersburg, Russia
| | - Luca Petaccia
- Elettra Sincrotrone Trieste , Strada Statale 14 km 163.5, 34149 Trieste, Italy
| | - Giovanni Di Santo
- Elettra Sincrotrone Trieste , Strada Statale 14 km 163.5, 34149 Trieste, Italy
| | - Sangeeta Thakur
- Elettra Sincrotrone Trieste , Strada Statale 14 km 163.5, 34149 Trieste, Italy
| | - Evgueni V Chulkov
- Saint Petersburg State University , 198504 Saint Petersburg, Russia
- Tomsk State University , 634050 Tomsk, Russian Federation
- Departamento de Fı́sica de Materiales UPV/EHU, Centro de Fı́sica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, 20080 San Sebastián/Donostia, Basque Country, Spain
- Donostia International Physics Center (DIPC) , 20018 San Sebastián/Donostia, Basque Country, Spain
| | | |
Collapse
|
31
|
Hwang J, Hwang H, Kim MJ, Ryu H, Lee JE, Zhou Q, Mo SK, Lee J, Lanzara A, Hwang C. Hole doping, hybridization gaps, and electronic correlation in graphene on a platinum substrate. NANOSCALE 2017; 9:11498-11503. [PMID: 28766659 DOI: 10.1039/c7nr03080k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The interaction between graphene and substrates provides a viable route to enhance the functionality of both materials. Depending on the nature of electronic interaction at the interface, the electron band structure of graphene is strongly influenced, allowing us to make use of the intrinsic properties of graphene or to design additional functionalities in graphene. Here, we present an angle-resolved photoemission study on the interaction between graphene and a platinum substrate. The formation of an interface between graphene and platinum leads to a strong deviation in the electronic structure of graphene not only from its freestanding form but also from the behavior observed on typical metals. The combined study on the experimental and theoretical electron band structure unveils the unique electronic properties of graphene on a platinum substrate, which singles out graphene/platinum as a model system investigating graphene on a metallic substrate with strong interaction.
Collapse
Affiliation(s)
- Jinwoong Hwang
- Department of Physics, Pusan National University, Busan 46241, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kou L, Ma Y, Sun Z, Heine T, Chen C. Two-Dimensional Topological Insulators: Progress and Prospects. J Phys Chem Lett 2017; 8:1905-1919. [PMID: 28394616 DOI: 10.1021/acs.jpclett.7b00222] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional topological insulators (2D TIs) are a remarkable class of atomically thin layered materials that exhibit unique symmetry-protected helical metallic edge states with an insulating interior. Recent years have seen a tremendous surge in research of this intriguing new state of quantum matter. In this Perspective, we summarize major milestones and the most significant progress in the latest developments of material discovery and property characterization in 2D TI research. We categorize the large number and rich variety of theoretically proposed 2D TIs based on the distinct mechanisms of topological phase transitions, and we systematically analyze and compare their structural, chemical, and physical characteristics. We assess the current status and challenges of experimental synthesis and potential device applications of 2D TIs and discuss prospects of exciting new opportunities for future research and development of this fascinating class of materials.
Collapse
Affiliation(s)
- Liangzhi Kou
- School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology , Garden Point Campus, QLD 4001, Brisbane, Australia
| | - Yandong Ma
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig , Linnéstraße 2, 04103 Leipzig, Germany
| | - Ziqi Sun
- School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology , Garden Point Campus, QLD 4001, Brisbane, Australia
| | - Thomas Heine
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig , Linnéstraße 2, 04103 Leipzig, Germany
| | - Changfeng Chen
- Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada , Las Vegas, Nevada 89154, United States
| |
Collapse
|
33
|
Klimovskikh II, Sostina D, Petukhov A, Rybkin AG, Eremeev SV, Chulkov EV, Tereshchenko OE, Kokh KA, Shikin AM. Spin-resolved band structure of heterojunction Bi-bilayer/3D topological insulator in the quantum dimension regime in annealed Bi 2Te 2.4Se 0.6. Sci Rep 2017; 7:45797. [PMID: 28378826 PMCID: PMC5381095 DOI: 10.1038/srep45797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/02/2017] [Indexed: 11/08/2022] Open
Abstract
Two- and three-dimensional topological insulators are the key materials for the future nanoelectronic and spintronic devices and quantum computers. By means of angle- and spin-resolved photoemission spectroscopy we study the electronic and spin structure of the Bi-bilayer/3D topological insulator in quantum tunneling regime formed under the short annealing of Bi2Te2.4Se0.6. Owing to the temperature-induced restructuring of the topological insulator's surface quintuple layers, the hole-like spin-split Bi-bilayer bands and the parabolic electronic-like state are observed instead of the Dirac cone. Scanning Tunneling Microscopy and X-ray Photoemission Spectroscopy measurements reveal the appearance of the Bi2 terraces at the surface under the annealing. The experimental results are supported by density functional theory calculations, predicting the spin-polarized Bi-bilayer bands interacting with the quintuple-layers-derived states. Such an easily formed heterostructure promises exciting applications in spin transport devices and low-energy electronics.
Collapse
Affiliation(s)
| | - D. Sostina
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
| | - A. Petukhov
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
| | - A. G. Rybkin
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
| | - S. V. Eremeev
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
- Institute of Strength Physics and Materials Science, 634055, Tomsk, Russia
- Tomsk State University, 634050, Tomsk, Russia
| | - E. V. Chulkov
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
- Tomsk State University, 634050, Tomsk, Russia
- Donostia International Physics Center (DIPC), 20018 San Sebastián/Donostia, Basque Country, Spain
- Departamento de Física de Materiales UPV/EHU, Centro de Física de Materiales CFM - MPC and Centro Mixto CSIC-UPV/EHU, 20080 San Sebastián/Donostia, Basque Country, Spain
| | - O. E. Tereshchenko
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
- A.V. Rzhanov Institute of Semiconductor Physics, 630090, Novosibirsk, Russia
- Novosibirsk State University, 630090, Novosibirsk, Russia
| | - K. A. Kokh
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
- Novosibirsk State University, 630090, Novosibirsk, Russia
- V.S. Sobolev Institute of Geology and Mineralogy, 630090, Novosibirsk, Russia
| | - A. M. Shikin
- Saint Petersburg State University, 198504, Saint Petersburg, Russia
| |
Collapse
|