1
|
Zhao P, Yue K, Dai Y, Wan Y, Chen X, Yan Y. An integral composite electrode with low Ir loading for efficient acidic oxygen evolution. Chem Commun (Camb) 2025; 61:5934-5937. [PMID: 40129302 DOI: 10.1039/d5cc00884k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The development of low-Ir-loading oxygen evolution reaction catalysts with high performance and stability is a major challenge for advancing proton exchange membrane water electrolysis (PEMWE). In this study, we report an integral composite electrode by depositing TiO2 nanowires on titanium plate via an in situ growth method and subsequently loading Ir nanoparticles onto these nanowires (Ir-TiO2/TP). This approach not only reduces the usage of Ir but also significantly enhances the catalytic performance, with a low overpotential of 199 mV at 10 mA cm-2, while maintaining negligible activity decay over 440 hours at 10 mA cm-2 in 0.5 M H2SO4.
Collapse
Affiliation(s)
- Peng Zhao
- College of Materials Science and Engineering Hunan University, Changsha, Hunan 410082, China.
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Kaihang Yue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Yao Dai
- College of Materials Science and Engineering Hunan University, Changsha, Hunan 410082, China.
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Yingjie Wan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Xuli Chen
- College of Materials Science and Engineering Hunan University, Changsha, Hunan 410082, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| |
Collapse
|
2
|
Kang J, Fang Y, Yang J, Huang L, Chen Y, Li D, Sun J, Jiang R. Recent Development of Ir- and Ru-Based Electrocatalysts for Acidic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20519-20559. [PMID: 40138357 DOI: 10.1021/acsami.4c22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Proton exchange membrane (PEM) water electrolyzers are one type of the most promising technologies for efficient, nonpolluting and sustainable production of high-purity hydrogen. The anode catalysts account for a very large fraction of cost in PEM water electrolyzer and also determine the lifetime of the electrolyzer. To date, Ir- and Ru-based materials are types of promising catalysts for the acidic oxygen evolution reaction (OER), but they still face challenges of high cost or low stability. Hence, exploring low Ir and stable Ru-based electrocatalysts for acidic OER attracts extensive research interest in recent years. Owing to these great research efforts, significant developments have been achieved in this field. In this review, the developments in the field of Ir- and Ru-based electrocatalysts for acidic OER are comprehensively described. The possible OER mechanisms are first presented, followed by the introduction of the criteria for evaluation of the OER electrocatalysts. The development of Ir- and Ru-based OER electrocatalysts are then elucidated according to the strategies utilized to tune the catalytic performances. Lastly, possible future research in this burgeoning field is discussed.
Collapse
Affiliation(s)
- Jianghao Kang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunpeng Fang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Yang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Luo Huang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Chen
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Deng Li
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Sun
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ruibin Jiang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
3
|
Fu Q, Zhou J, Wang X, Xu W, Chen X, Chen L, Huang Y. Nanoscale Engineering of 3D Intragaps and Compositions in Multimetallic Hollow Superstructures for Enhanced Catalysis. NANO LETTERS 2025; 25:4696-4704. [PMID: 40067745 DOI: 10.1021/acs.nanolett.4c05403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Designing and synthesizing multishelled metallic hollow nanostructures with intragaps and porous shells have received widespread attention for enhancing optical and catalytic properties. However, significant challenges remain in engineering these structures at the nanometer scale. Herein, we employed the galvanic replacement reaction (GRR) method to prepare multimetallic hollow superstructures with 3D cavities and distinct nanometer intragaps. By precise control of the intragap distances (1-10 nm) and composition distributions within a single entity, libraries of multimetallic hollow superstructures were constructed. Using the 4-nitrophenol reduction as a model reaction, triple-shell Au@Pt-Ag nanoparticles with approximately 1 nm intragaps exhibited a catalytic rate 211.6 times higher than that of commercial Pt/C catalysts. The nanoconfinement environment of multishelled structures not only increases active sites but also promotes electron delocalization of reactants, accelerating the hydrogenation process both thermodynamically and kinetically. Our work advances the rational synthesis of multishelled nanostructures, expanding their potential applications in catalysis, plasmonics, and biosensing.
Collapse
Affiliation(s)
- Qianqian Fu
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jingyi Zhou
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoyuan Wang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wenying Xu
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoli Chen
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Liang Chen
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Youju Huang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
4
|
Mahmood A, He D, Liu C, Talib SH, Zhao B, Liu T, He Y, Song Z, Chen L, Han D, Niu L. Effect of Selective Metallic Defects on Catalytic Performance of Alloy Nanosheets. SMALL METHODS 2024; 8:e2301490. [PMID: 38063782 DOI: 10.1002/smtd.202301490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 10/24/2024]
Abstract
Defects in the crystal structure of nanomaterials are important for their diverse applications. As, defects in 2D framework allow surface confinement effects, efficient molecular accessibility, high surface-area to volume-ratio and lead to higher catalytic activity, but it is challenging to expose defects of specific metal on the surface of 2D alloy and find the correlation between defective structure and electrocatalytic properties with atomic precision. Herein, the work paves the way for the controlled synthesis of ultrathin porous Ir-Cu nanosheets (NSs) with selectively iridium (Ir) rich defects to boost their performance for acidic oxygen evolution reaction (OER). X-ray absorption spectroscopy reveals that the oxidized states of Ir in defects of porous NSs significantly impact the electronic structure and decline the energy barrier. As a result, porous Ir-Cu/C NSs deliver improved OER activity with an overpotential of 237 mV for reaching 10 mA cm-2 and exhibit significantly higher mass activity than benchmark Ir/C under acidic conditions. Therefore, the present work highlights the concept of constructing a selective noble metal defect-rich open structure for catalytic applications.
Collapse
Affiliation(s)
- Azhar Mahmood
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dequan He
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Chuhao Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shamraiz Hussain Talib
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Advanced Materials Chemistry Centre, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Bolin Zhao
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Tianren Liu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Ying He
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhongqian Song
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Lijuan Chen
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
| |
Collapse
|
5
|
Ahmad W, Hou Y, Ahmad N, Wang K, Zou C, Wan Z, Aftab S, Zhou S, Pan Z, Gao HL, Liang C, Yan W, Ling M, Lu Z. Sr-induced Fermi Engineering of β-FeOOH for Multifunctional Catalysis. SMALL METHODS 2024; 8:e2301434. [PMID: 38237086 DOI: 10.1002/smtd.202301434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/17/2023] [Indexed: 10/24/2024]
Abstract
Designing a multifunctional electrocatalyst to produce H2 from water, urea, urine, and wastewater, is highly desirable yet challenging because it demands precise Fermi-engineering to realize stronger π-donation from O 2p to electron(e-)-deficient metal (t2g) d-orbitals. Here a Sr-induced phase transformed β-FeOOH/α-Ni(OH)2 catalyst anchored on Ni-foam (designated as pt-NFS) is introduced, where Sr produces plenteous Fe4+ (Fe3+ → Fe4+) to modulate Fermi level and e--transfer from e--rich Ni3+(t2g)-orbitals to e--deficient Fe4+(t2g)-orbitals, via strong π-donation from the π-symmetry lone-pair of O bridge. pt-NFS utilizes Fe-sites near the Sr-atom to break the H─O─H bonds and weakens the adsorption of *O while strengthening that of *OOH, toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Invaluably, Fe-sites of pt-NFS activate H2-production from urea oxidation reaction (UOR) through a one-stage pathway which, unlike conventional two-stage pathways with two NH3-molecules, involves only one NH3-molecule. Owing to more suitable kinetic energetics, pt-NFS requires 133 mV (negative potential shift), 193 mV, ≈1.352 V, and ≈1.375 V versus RHE for HER, OER, UOR, and human urine oxidation, respectively, to reach the benchmark 10 mA cm-2 and also demonstrates remarkable durability of over 25 h. This work opens a new corridor to design multifunctional electrocatalysts with precise Fermi engineering through d-band modulation.
Collapse
Affiliation(s)
- Waqar Ahmad
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yunpeng Hou
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Nisar Ahmad
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Kun Wang
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Chenghao Zou
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhengwei Wan
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Sumaira Aftab
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shaodong Zhou
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhao Pan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Huai-Ling Gao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Chengdu Liang
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Min Ling
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhihui Lu
- Division of New Energy Materials, Institute of Zhejiang University-Quzhou, Quzhou, 324000, China
| |
Collapse
|
6
|
Li Y, Yu G, Li J, Bian Z, Han X, Wu B, Wu G, Yang Q, Hong X. Universal Synthesis of Amorphous Metal Oxide Nanomeshes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401162. [PMID: 38511537 DOI: 10.1002/smll.202401162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Constructing the pore structures in amorphous metal oxide nanosheets can enhance their electrocatalytic performance by efficiently increasing specific surface areas and facilitating mass transport in electrocatalysis. However, the accurate synthesis for porous amorphous metal oxide nanosheets remains a challenge. Herein, a facile nitrate-assisted oxidation strategy is reported for synthesizing amorphous mesoporous iridium oxide nanomeshes (a-m IrOx NMs) with a pore size of ∼4 nm. X-ray absorption characterizations indicate that a-m IrOx NMs possess stretched Ir─O bonds and weaker Ir-O interaction compared with commercial IrO2. Combining thermogravimetric-fourier transform infrared spectroscopy with differential scanning calorimetry measurements, it is demonstrated that sodium nitrate, acting as an oxidizing agent, is conducive to the formation of amorphous nanosheets, while the NO2 produced by the in situ decomposition of nitrates facilitates the generation of pores within the nanomeshes. As an anode electrocatalyst in proton exchange membrane water electrolyzer, a-m IrOx NMs exhibit superior performance, maintaining a cell voltage of 1.67 V at 1 A cm-2 for 120 h without obvious decay with a low loading (0.4 mgcatalyst cm-2). Furthermore, the nitrate-assisted method is demonstrated to be a general approach to prepare various amorphous metal oxide nanomeshes, including amorphous RhOx, TiOx, ZrOx, AlOx, and HfOx nanomeshes.
Collapse
Affiliation(s)
- Youle Li
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ge Yu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junmin Li
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zenan Bian
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bei Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qing Yang
- Department of Chemistry, Laboratory of Nanomaterials for Energy Conversion (LNEC), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
7
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
8
|
Li W, Yin D, Li P, Zhao X, Hao S. Iridium single-atoms anchored on a TiO 2 support as an efficient catalyst for the hydrogen evolution reaction. Phys Chem Chem Phys 2024; 26:19822-19830. [PMID: 38988227 DOI: 10.1039/d4cp01878h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Single-atom catalysts (SACs) play a vital role in the hydrogen evolution reaction (HER) owing to the highly desirable atom efficiency and the minimal amount of precious metals. Herein, we use TiO2 nanosheets to anchor stable atomically dispersed iridium (Ir) to be used as a catalyst (Ir@TiO2) for the HER. The atomic dispersion of Ir on the TiO2 substrate is confirmed by aberration-corrected scanning transmission electron microscopy and it is anchored by numerous surface functional groups on abundantly exposed basal planes in TiO2. In acidic media, the Ir@TiO2 catalyst (1.35 wt% Ir) shows a low overpotential (41 mV at 10 mA cm-2), a small Tafel slope of 42 mV dec-1, and a decent durability for 1000 cycles of the HER with the polarization curve having only a 1 mV shift, which are comparable with those of a commercial Pt/C catalyst with 20 wt% Pt. This work paves a way to design Ir atomically anchored catalysts with low cost and high activity.
Collapse
Affiliation(s)
- Wenxuan Li
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Dashu Yin
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Peng Li
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Xinhua Zhao
- College of Electrical Engineering, Chuzhou Polytechnic, Chuzhou 239000, China.
| | - Shengcai Hao
- Beijing Academy of Science and Technology, Beijing 100089, China.
- College of Materials Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
9
|
Li W, Bu Y, Ge X, Li F, Han GF, Baek JB. Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation. CHEMSUSCHEM 2024; 17:e202400295. [PMID: 38362788 DOI: 10.1002/cssc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Ongoing research to develop advanced electrocatalysts for the oxygen evolution reaction (OER) is needed to address demand for efficient energy conversion and carbon-free energy sources. In the OER process, acidic electrolytes have higher proton concentration and faster response than alkaline ones, but their harsh strongly acidic environment requires catalysts with greater corrosion and oxidation resistance. At present, iridium oxide (IrO2) with its strong stability and excellent catalytic performance is the catalyst of choice for the anode side of commercial PEM electrolysis cells. However, the scarcity and high cost of iridium (Ir) and the unsatisfactory activity of IrO2 hinder industrial scale application and the sustainable development of acidic OER catalytic technology. This highlights the importance of further research on acidic Ir-based OER catalysts. In this review, recent advances in Ir-based acidic OER electrocatalysts are summarized, including fundamental understanding of the acidic OER mechanism, recent insights into the stability of acidic OER catalysts, highly efficient Ir-based electrocatalysts, and common strategies for optimizing Ir-based catalysts. The future challenges and prospects of developing highly effective Ir-based catalysts are also discussed.
Collapse
Affiliation(s)
- Wanqing Li
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunfei Bu
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Xinlei Ge
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai, 200433, P. R. China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
10
|
Ha JS, Park Y, Jeong J, Lee SH, Lee SJ, Kim IT, Park SH, Jin H, Kim SM, Choi S, Kim C, Choi SM, Kang BK, Lee HM, Park YS. Solar-Powered AEM Electrolyzer via PGM-Free (Oxy)hydroxide Anode with Solar to Hydrogen Conversion Efficiency of 12.44. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401782. [PMID: 38654698 PMCID: PMC11220676 DOI: 10.1002/advs.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Water electrolyzers powered by renewable energy are emerging as clean and sustainable technology for producing hydrogen without carbon emissions. Specifically, anion exchange membrane (AEM) electrolyzers utilizing non-platinum group metal (non-PGM) catalysts have garnered attention as a cost-effective method for hydrogen production, especially when integrated with solar cells. Nonetheless, the progress of such integrated systems is hindered by inadequate water electrolysis efficiency, primarily caused by poor oxygen evolution reaction (OER) electrodes. To address this issue, a NiFeCo─OOH has developed as an OER electrocatalyst and successfully demonstrated its efficacy in an AEM electrolyzer, which is powered by renewable electricity and integrated with a silicon solar cell.
Collapse
Affiliation(s)
- Jun Seok Ha
- Department of Advanced Material EngineeringChungbuk National UniversityChungdae‐ro 1, Seowon‐GuCheongjuChungbuk28644Republic of Korea
| | - Youngtae Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Engineering (KAIST)Daejeon34141Republic of Korea
- Hydrogen Research DepartmentKorea Institute of Energy Research (KIER)152 Gajeong‐roYuseong‐guDaejeon34129Republic of Korea
| | - Jae‐Yeop Jeong
- Department of Hydrogen Energy MaterialsSurface & Nano Materials DivisionKorea Institute of Materials Science (KIMS)Changwon51508Republic of Korea
- Department of Materials Science and EngineeringPusan National UniversityBusan46241Republic of Korea
| | - Seung Hun Lee
- Department of Materials Science and EngineeringPusan National UniversityBusan46241Republic of Korea
| | - Sung Jun Lee
- Department of Advanced Material EngineeringChungbuk National UniversityChungdae‐ro 1, Seowon‐GuCheongjuChungbuk28644Republic of Korea
- Department of Urban, Energy, and Environmental EngineeringChungbuk National UniversityChungdae‐ro 1Seowon‐Gu, Cheongju, Chungbuk28644Republic of Korea
| | - In Tae Kim
- Department of Advanced Material EngineeringChungbuk National UniversityChungdae‐ro 1, Seowon‐GuCheongjuChungbuk28644Republic of Korea
- Department of Urban, Energy, and Environmental EngineeringChungbuk National UniversityChungdae‐ro 1Seowon‐Gu, Cheongju, Chungbuk28644Republic of Korea
| | - Seo Hyun Park
- Department of Advanced Material EngineeringChungbuk National UniversityChungdae‐ro 1, Seowon‐GuCheongjuChungbuk28644Republic of Korea
- Department of Urban, Energy, and Environmental EngineeringChungbuk National UniversityChungdae‐ro 1Seowon‐Gu, Cheongju, Chungbuk28644Republic of Korea
| | - Hyunsoo Jin
- Department of Mechanical & Materials EngineeringWorcester Polytechnic Institute100 Institute RoadWorcesterMA01609USA
| | - Soo Min Kim
- Nano Electronic Materials and Components Research CenterGumi Electronics and Information Technology Research InstituteSandongmyeonGumi 39171Republic of Korea
| | - Suwon Choi
- Department of Materials Science and EngineeringPusan National UniversityBusan46241Republic of Korea
| | - Chiho Kim
- Department of Hydrogen Energy MaterialsSurface & Nano Materials DivisionKorea Institute of Materials Science (KIMS)Changwon51508Republic of Korea
| | - Sung Mook Choi
- Department of Hydrogen Energy MaterialsSurface & Nano Materials DivisionKorea Institute of Materials Science (KIMS)Changwon51508Republic of Korea
- Advanced Materials EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Bong Kyun Kang
- Department of Electronic Materials, Devices, and Equipment EngineeringSoonchunhyang University22, Soonchunhyang‐roAsan CityChungnam31538Republic of Korea
- Department of Display Materials EngineeringSoonchunhyang University22, Soonchunhyang‐roAsan CityChungnam31538Republic of Korea
| | - Hyuck Mo Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Engineering (KAIST)Daejeon34141Republic of Korea
| | - Yoo Sei Park
- Department of Advanced Material EngineeringChungbuk National UniversityChungdae‐ro 1, Seowon‐GuCheongjuChungbuk28644Republic of Korea
- Department of Urban, Energy, and Environmental EngineeringChungbuk National UniversityChungdae‐ro 1Seowon‐Gu, Cheongju, Chungbuk28644Republic of Korea
| |
Collapse
|
11
|
Zhu S, Liu Y, Gong Y, Sun Y, Chen K, Liu Y, Liu W, Xia T, Zheng Q, Gao H, Guo H, Wang R. Boosting Bifunctional Catalysis by Integrating Active Faceted Intermetallic Nanocrystals and Strained Pt-Ir Functional Shells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305062. [PMID: 37803476 DOI: 10.1002/smll.202305062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/23/2023] [Indexed: 10/08/2023]
Abstract
PtIr-based nanostructures are fascinating materials for application in bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysis. However, the fabrication of PtIr nanocatalysts with clear geometric features and structural configurations, which are crucial for enhancing the bifunctionality, remains challenging. Herein, PtCo@PtIr nanoparticles are precisely designed and fabricated with a quasi-octahedral PtCo nanocrystal as a highly atomically ordered core and an ultrathin PtIr atomic layer as a compressively strained shell. Owing to their geometric and core-shell features, the PtCo@PtIr nanoparticles deliver approximately six and eight times higher mass and specific activities, respectively, as an ORR catalyst than a commercial Pt/C catalyst. The half-wave potential of PtCo@PtIr exhibits a negligible decrease by 9 mV after 10 000 cycles, indicating extraordinary ORR durability because of the ordered arrangement of Pt and Co atoms. When evaluated using the ORR-OER dual reaction upon the introduction of Ir, PtCo@PtIr exhibits a small ORR-OER overpotential gap of 679 mV, demonstrating its great potential as a bifunctional electrocatalyst for fabricating fuel cells. The findings pave the way for designing precise intermetallic core-shell nanocrystals as highly functional catalysts.
Collapse
Affiliation(s)
- Shiyu Zhu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yun Liu
- Zhongyuan Critical Metals Laboratory, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuting Sun
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Kang Chen
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yuan Liu
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Weidi Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, ST Lucia, QLD, 4072, Australia
| | - Tianyu Xia
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Han Gao
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
12
|
Jeon D, Kim DY, Kim H, Kim N, Lee C, Seo DH, Ryu J. Electrochemical Evolution of Ru-Based Polyoxometalates into Si,W-Codoped RuO x for Acidic Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304468. [PMID: 37951714 DOI: 10.1002/adma.202304468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Despite intensive studies over decades, the development of electrocatalysts for acidic water splitting still relies on platinum group metals, especially Pt and Ir, which are scarce, expensive, and poorly sustainable. Because such problems can be alleviated, Ru-based bifunctional catalysts such as rutile RuO2 have recently emerged. However, RuO2 has a relatively low activity for hydrogen evolution reactions (HER) and low stability for oxygen evolution reactions (OER) under acidic conditions. In this study, the synthesis of a RuOx -based bifunctional catalyst (RuSiW) for acidic water splitting via the electrochemical evolution from Ru-based polyoxometalates at cathodic potentials is reported. RuSiW consists of the nanocrystalline RuO2 core and Si,W-codoped RuOx shell. RuSiW exhibits outstanding HER and OER activity comparable to Pt/C and RuO2 , respectively, with high stability. Computational analysis suggests that the codoping of RuOx with W and Si synergistically improves the HER activity of otherwise poor RuO2 by shifting the d-band center and optimizing atomic configurations beneficial for proper hydrogen adsorption. This study provides insights into the design and synthesis of unprecedented bifunctional electrocatalysts using catalytically inactive and less explored elements, such as Si and W.
Collapse
Affiliation(s)
- Dasom Jeon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong Yeon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeongoo Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Nayeong Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Cheolmin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong-Hwa Seo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungki Ryu
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Emergent Hydrogen Technology R&D Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Renewable Carbon, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
13
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Zheng X, Yang J, Li P, Wang Q, Wu J, Zhang E, Chen S, Zhuang Z, Lai W, Dou S, Sun W, Wang D, Li Y. Ir-Sn pair-site triggers key oxygen radical intermediate for efficient acidic water oxidation. SCIENCE ADVANCES 2023; 9:eadi8025. [PMID: 37851800 PMCID: PMC10584348 DOI: 10.1126/sciadv.adi8025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
The anode corrosion induced by the harsh acidic and oxidative environment greatly restricts the lifespan of catalysts. Here, we propose an antioxidation strategy to mitigate Ir dissolution by triggering strong electronic interaction via elaborately constructing a heterostructured Ir-Sn pair-site catalyst. The formation of Ir-Sn dual-site at the heterointerface and the resulting strong electronic interactions considerably reduce d-band holes of Ir species during both the synthesis and the oxygen evolution reaction processes and suppress their overoxidation, enabling the catalyst with substantially boosted corrosion resistance. Consequently, the optimized catalyst exhibits a high mass activity of 4.4 A mgIr-1 at an overpotential of 320 mV and outstanding long-term stability. A proton-exchange-membrane water electrolyzer using this catalyst delivers a current density of 2 A cm-2 at 1.711 V and low degradation in an accelerated aging test. Theoretical calculations unravel that the oxygen radicals induced by the π* interaction between Ir 5d-O 2p might be responsible for the boosted activity and durability.
Collapse
Affiliation(s)
- Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiarui Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng Li
- School of Science, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Qishun Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Erhuan Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shenghua Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Weihong Lai
- Institute for Superconducting and Electronic Materials, Australia Institute for Innovation Material, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
15
|
Zhao W, Xu F, Liu L, Liu M, Weng B. Strain-Induced Electronic Structure Modulation on MnO 2 Nanosheet by Ir Incorporation for Efficient Water Oxidation in Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308060. [PMID: 37845788 DOI: 10.1002/adma.202308060] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Indexed: 10/18/2023]
Abstract
Oxygen electrochemistry plays a key role in renewable energy technologies, such as fuel cells and electrolyzers, but its slow kinetics limits the performance and the commercialization of such devices. Here, a strained MnO2 nanosheet induced by Ir incorporation is developed with optimized electronic structure by a simple hydrothermal method. With the incorporation of Ir, the strain induces elongated Mn─O bond length, and thereby tuning the electronic structure to favor the oxygen evolution reaction (OER) performance. The obtained catalyst exhibits an excellent mass activity of 5681 A g-1 at an overpotential of 300 mV in 0.5 m H2 SO4 , and reaches 50 and 100 mA cm-2 at overpotentials of only 240 and 277 mV, respectively. The catalyst is also stable even at 300 mA cm-2 in 0.5 m H2 SO4 . Using the nanosheet as the OER catalyst and the Pt/C as the hydrogen evolution reaction catalyst, a two-electrode electrolyzer achieves 10 mA cm-2 with only a cell voltage of 1.453 V for overall water splitting in 0.5 m H2 SO4 . This strategy enables the material with high feasibility for practical applications on hydrogen production.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Luqiong Liu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha, Hunan Province, 410083, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, China
| |
Collapse
|
16
|
Lee GR, Kim J, Hong D, Kim YJ, Jang H, Han HJ, Hwang CK, Kim D, Kim JY, Jung YS. Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts. Nat Commun 2023; 14:5402. [PMID: 37669945 PMCID: PMC10480199 DOI: 10.1038/s41467-023-41102-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Suppressing the oxidation of active-Ir(III) in IrOx catalysts is highly desirable to realize an efficient and durable oxygen evolution reaction in water electrolysis. Although charge replenishment from supports can be effective in preventing the oxidation of IrOx catalysts, most supports have inherently limited charge transfer capability. Here, we demonstrate that an excess electron reservoir, which is a charged oxygen species, incorporated in antimony-doped tin oxide supports can effectively control the Ir oxidation states by boosting the charge donations to IrOx catalysts. Both computational and experimental analyses reveal that the promoted charge transfer driven by excess electron reservoir is the key parameter for stabilizing the active-Ir(III) in IrOx catalysts. When used in a polymer electrolyte membrane water electrolyzer, Ir catalyst on excess electron reservoir incorporated support exhibited 75 times higher mass activity than commercial nanoparticle-based catalysts and outstanding long-term stability for 250 h with a marginal degradation under a water-splitting current of 1 A cm-2. Moreover, Ir-specific power (74.8 kW g-1) indicates its remarkable potential for realizing gigawatt-scale H2 production for the first time.
Collapse
Affiliation(s)
- Gyu Rac Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Doosun Hong
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Ye Ji Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hanhwi Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyeuk Jin Han
- Department of Environment and Energy Engineering, Sungshin Women's University, 55, Dobong-ro 76ga-gil, Gangbuk-gu, Seoul, 01133, Republic of Korea
| | - Chang-Kyu Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Donghun Kim
- Computational Science Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Jin Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology, 14-gil 5, Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
17
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Li X, Min Y, Liu F, Liu M, Zheng Y. Glutathione-Mediated Synthesis of Yolk-Shell AuAg Nanostructures Containing a Spherical Core and Cuboctahedral Skeletons and Their Applications in Plasmonic Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11788-11796. [PMID: 37567582 DOI: 10.1021/acs.langmuir.3c01506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Frame/skeleton-like nanostructures are of great value in plasmonic catalysis as a result of the synergetic structural advantages arising from both maximized surface atomic exposure and efficient incident light absorptions. Herein, we report the size-tunable fabrication of yolk-shell AuAg nanoparticles containing a spherical core and cuboctahedral skeletons (AuAg YSCNSs), together with the exploration of their applications for assisting the reduction of 4-nitrophenol (4-NP) under ultraviolet-visible (UV-vis) light irradiation. The use of glutathione (GSH) at an appropriate amount to mediate the galvanic replacement reaction between Au@Ag core-shell nanocubes and HAuCl4 is found to be crucial in regulating the shape evolution. Their sizes could be readily tuned by altering the edge lengths of Au@Ag core-shell nanocubes. When working as the photocatalyst assisting the reduction of 4-NP, the AuAg YSCNSs exhibit a higher apparent rate constant under UV-vis light irradiation. The current work demonstrates the feasibility to create skeleton-like noble metal nanocrystals with the shape largely deviated from that of the original template via the "top-down" carving strategy by introducing non-metallic surface doping, which could be potentially extended to other noble metals or alloys.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, People's Republic of China
| | - Yuanyuan Min
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, People's Republic of China
| | - Feng Liu
- International Research Center for Renewable Energy, National Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Maochang Liu
- International Research Center for Renewable Energy, National Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China
| | - Yiqun Zheng
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu, Shandong 273155, People's Republic of China
| |
Collapse
|
19
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
20
|
Rong C, Dastafkan K, Wang Y, Zhao C. Breaking the Activity and Stability Bottlenecks of Electrocatalysts for Oxygen Evolution Reactions in Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2211884. [PMID: 37549889 DOI: 10.1002/adma.202211884] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/28/2023] [Indexed: 08/09/2023]
Abstract
Oxygen evolution reaction (OER) is a cornerstone reaction for a variety of electrochemical energy conversion and storage systems such as water splitting, CO2 /N2 reduction, reversible fuel cells, and metal-air batteries. However, OER catalysis in acids suffers from extra sluggish kinetics due to the additional step of water dissociation along with its multiple electron transfer processes. Furthermore, OER catalysts often suffer from poor stability in harsh acidic electrolytes due to the severe dissolution/corrosion processes. The development of active and stable OER catalysts in acids is highly demanded. Here, the recent advances in OER electrocatalysis in acids are reviewed and the key strategies are summarized to overcome the bottlenecks of activity and stability for both noble-metal-based and noble metal-free catalysts, including i) morphology engineering, ii) composition engineering, and iii) defect engineering. Recent achievements in operando characterization and theoretical calculations are summarized which provide an unprecedented understanding of the OER mechanisms regarding active site identification, surface reconstruction, and degradation/dissolution pathways. Finally, views are offered on the current challenges and opportunities to break the activity-stability relationships for acidic OER in mechanism understanding, catalyst design, as well as standardized stability and activity evaluation for industrial applications such as proton exchange membrane water electrolyzers and beyond.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yuan Wang
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
21
|
Maulana AL, Chen PC, Shi Z, Yang Y, Lizandara-Pueyo C, Seeler F, Abruña HD, Muller D, Schierle-Arndt K, Yang P. Understanding the Structural Evolution of IrFeCoNiCu High-Entropy Alloy Nanoparticles under the Acidic Oxygen Evolution Reaction. NANO LETTERS 2023. [PMID: 37406363 DOI: 10.1021/acs.nanolett.3c01831] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
High-entropy alloy (HEA) nanoparticles are promising catalyst candidates for the acidic oxygen evolution reaction (OER). Herein, we report the synthesis of IrFeCoNiCu-HEA nanoparticles on a carbon paper substrate via a microwave-assisted shock synthesis method. Under OER conditions in 0.1 M HClO4, the HEA nanoparticles exhibit excellent activity with an overpotential of ∼302 mV measured at 10 mA cm-2 and improved stability over 12 h of operation compared to the monometallic Ir counterpart. Importantly, an active Ir-rich shell layer with nanodomain features was observed to form on the surface of IrFeCoNiCu-HEA nanoparticles immediately after undergoing electrochemical activation, mainly due to the dissolution of the constituent 3d metals. The core of the particles was able to preserve the characteristic homogeneous single-phase HEA structure without significant phase separation or elemental segregation. This work illustrates that under acidic operating conditions, the near-surface structure of HEA nanoparticles is susceptible to a certain degree of structural dynamics.
Collapse
Affiliation(s)
- Arifin Luthfi Maulana
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States
| | - Peng-Cheng Chen
- California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zixiao Shi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, United States
| | - Yao Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 94720, United States
| | - Carlos Lizandara-Pueyo
- California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States
| | | | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - David Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14850, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca 14850, New York United States
| | | | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Chen X, Yan S, Wen S, Chen J, Xu J, Wang C, Lu X. Chelating adsorption-engaged synthesis of ultrafine iridium nanoparticles anchored on N-doped carbon nanofibers toward highly efficient hydrogen evolution in both alkaline and acidic media. J Colloid Interface Sci 2023; 641:782-790. [PMID: 36966567 DOI: 10.1016/j.jcis.2023.03.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
Developing highly efficient and stable precious metal electrocatalysts toward hydrogen evolution reaction (HER) is crucial for energy application, while it is still challenging to achieve highly dispersed ultrafine metal nanoparticles on some promising supports to synergistically promote their electrocatalytic performance. Herein, we propose a feasible chelating adsorption-engaged strategy by introducing de-doped polyaniline with abundant amino groups to immobilize ultrafine iridium (Ir) nanoparticles on their derived N-doped carbon nanofibers (Ir-NCNFs). Experimental results demonstrate that the synthesized Ir-NCNFs can effectively promote the charge transfer and expose more electrochemical active sites, which eventually accelerate the reaction kinetics. Thus, the synthesized Ir-NCNFs catalyst exhibits admirable HER activities in both alkaline and acidic conditions with overpotentials of only 23 and 8 mV, which are even superior or close to the benchmark Pt/C catalyst. Furthermore, the synthesized Ir-NCNFs catalyst also exhibits a long-term durability. This study affords a reliable means to construct high-performance supported ultrafine metal nanocatalysts for electrocatalytic applications to alleviate the growing demand for energy conversion.
Collapse
|
23
|
Jiang B, Guo Y, Sun F, Wang S, Kang Y, Xu X, Zhao J, You J, Eguchi M, Yamauchi Y, Li H. Nanoarchitectonics of Metallene Materials for Electrocatalysis. ACS NANO 2023. [PMID: 37367960 DOI: 10.1021/acsnano.3c01380] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Controlling the synthesis of metal nanostructures is one approach for catalyst engineering and performance optimization in electrocatalysis. As an emerging class of unconventional electrocatalysts, two-dimensional (2D) metallene electrocatalysts with ultrathin sheet-like morphology have gained ever-growing attention and exhibited superior performance in electrocatalysis owing to their distinctive properties originating from structural anisotropy, rich surface chemistry, and efficient mass diffusion capability. Many significant advances in synthetic methods and electrocatalytic applications for 2D metallenes have been obtained in recent years. Therefore, an in-depth review summarizing the progress in developing 2D metallenes for electrochemical applications is highly needed. Unlike most reported reviews on the 2D metallenes, this review starts by introducing the preparation of 2D metallenes based on the classification of the metals (e.g., noble metals, and non-noble metals) instead of synthetic methods. Some typical strategies for preparing each kind of metal are enumerated in detail. Then, the utilization of 2D metallenes in electrocatalytic applications, especially in the electrocatalytic conversion reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, fuel oxidation reaction, CO2 reduction reaction, and N2 reduction reaction, are comprehensively discussed. Finally, current challenges and opportunities for future research on metallenes in electrochemical energy conversion are proposed.
Collapse
Affiliation(s)
- Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Yanna Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Fengyu Sun
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunqing Kang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| | - Jungmok You
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Miharu Eguchi
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
24
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
25
|
Ren Y, Zang Z, Lv C, Li B, Li L, Yang X, Lu Z, Yu X, Zhang X. Structurally-supported PtCuCo nanoframes as efficient bifunctional catalysts for oxygen reduction and methanol oxidation reactions. J Colloid Interface Sci 2023; 640:801-808. [PMID: 36905889 DOI: 10.1016/j.jcis.2023.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Developing highly durable and active catalysts with the morphology of structurally robust nanoframes toward oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in acidic environment is crucial but still a great challenge to completely achieve in a single material. Herein, PtCuCo nanoframes (PtCuCo NFs) with internal support structures as enhanced bifunctional electrocatalysts were prepared by a facile one-pot approach. PtCuCo NFs exhibited remarkable activity and durability for ORR and MOR owing to the ternary compositions and the structure-fortifying frame structures. Impressively, the specific/mass activity of PtCuCo NFs were 12.8/7.5 times as large as that of commercial Pt/C for ORR in perchloric acid solution. For MOR in sulfuric acid solution, the mass/specific activity of PtCuCo NFs was 1.66 A mgPt-1/4.24 mA cm-2, which was 5.4/9.4 times as large as that of Pt/C. This work may provide a promising nanoframe material to develop dual catalysts for fuel cells.
Collapse
Affiliation(s)
- Yangyang Ren
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zehao Zang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chenhao Lv
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Beibei Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
26
|
Liu Z, Lu Y, Cui Z, Qi R. Coaxial Nanofiber IrO x@SbSnO x as an Efficient Electrocatalyst for Proton Exchange Membrane Dehumidifier. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10606-10620. [PMID: 36791314 DOI: 10.1021/acsami.2c18375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Development of efficient catalysts for oxygen evolution reaction (OER) remains challenging in PEM dehumidifier or vapor electrolyzer. This study developed novel coaxial IrOx@SbSnOx nanofiber (NF) catalysts by electrospinning using a dual-channel needle. This method ensures the fibrous structure and the uniform loading of Ir oxide on the support of antimony tin oxide (ATO). IrO2@SbSnOx nanoparticles were synthesized for comparison. Characterizations showed that the active area and charge transfer resistance of NF was 1.47 times and 17.72% of that of commercial ones, respectively. The overpotential of NF at 10 mA·cm-2 was 359 mV, much smaller than that of commercial IrO2 (418 mV). In addition, the reaction overpotential of NF increased by only 38 mV after 1000 cyclic voltammetry cycles, indicating good electrochemical stability. To explore the enhancement mechanism, first-principles calculations were conducted for theoretically simulating the hetero-structures. Based on d-band theory, the structure formed between ATO and IrO2 can effectively weaken the adsorption of oxygen intermediates on the catalyst surface, which reduces the OER energy barrier from 1.705 to 1.632 eV, causing an over 15% decrease of overpotential after loading on ATO. As a practical attempt, we applied the new catalysts in real PEM assembly for air dehumidification and found that the performance was improved by about 2 times compared with that using commercial catalysts. This study provides a research direction for the design of one-dimensional NF catalysts and their using in PEM applications.
Collapse
Affiliation(s)
- Zhen Liu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Lu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhuoan Cui
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ronghui Qi
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
27
|
Wang Y, Guo X, Wang X, Huang J, Yin L, Zhu W, Zhuang Z. Construction of steady-active self-supported porous Ir-based electrocatalysts for the oxygen evolution reaction. Chem Commun (Camb) 2023; 59:1813-1816. [PMID: 36722877 DOI: 10.1039/d2cc06231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.
Collapse
Affiliation(s)
- Yongsheng Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China. .,State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoxuan Guo
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinyu Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China. .,International Clean Energy Research Office, China Three Gorges Corporation, Beijing 100038, China
| | - Junling Huang
- International Clean Energy Research Office, China Three Gorges Corporation, Beijing 100038, China
| | - Likun Yin
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China.
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. .,Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Tian L, Liu Y, He C, Tang S, Li J, Li Z. Hollow Heterostructured Nanocatalysts for Boosting Electrocatalytic Water Splitting. CHEM REC 2023; 23:e202200213. [PMID: 36193962 DOI: 10.1002/tcr.202200213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Indexed: 11/07/2022]
Abstract
The implementation of electrochemical water splitting demands the development and application of electrocatalysts to overcome sluggish reaction kinetics of hydrogen/oxygen evolution reaction (HER/OER). Hollow nanostructures, particularly for hollow heterostructured nanomaterials can provide multiple solutions to accelerate the HER/OER kinetics owing to their advantageous merit. Herein, the recent advances of hollow heterostructured nanocatalysts and their excellent performance for water splitting are systematically summarized. Starting by illustrating the intrinsically advantageous features of hollow heterostructures, achievements in engineering hollow heterostructured electrocatalysts are also highlighted with the focus on structural design, interfacial engineering, composition regulation, and catalytic evaluation. Finally, some perspective insights and future challenges of hollow heterostructured nanocatalysts for electrocatalytic water splitting are also discussed.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Yuanyuan Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Shirong Tang
- School of Food Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Jing Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P.R. China
| |
Collapse
|
29
|
Chu X, Wang K, Qian W, Xu H. Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Mao X, Wang L, Li Y. Machine-Learning-Assisted Discovery of High-Efficient Oxygen Evolution Electrocatalysts. J Phys Chem Lett 2023; 14:170-177. [PMID: 36579956 DOI: 10.1021/acs.jpclett.2c02873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Iridium oxide (IrO2) is the predominant electrocatalyst for the oxygen evolution reaction (OER), but its low efficiency and high cost limit its applications. In this work, we have developed a strategy by combination of high-throughput density functional theory (DFT) and machine learning (ML) techniques for material discovery on IrO2-based electrocatalysts with enhanced OER activity. A total of 36 kinds of metal dopants are considered to substitute for Ir to form binary and ternary metal oxides, and the most stable surface structures are selected from a total of 4648 structures for OER activity evaluation. Utilizing the neural network language model (NNLM), we associate the atomic environment with the formation energies of crystals and free energies of OER intermediates, and finally a series of potential candidates have been screened as the superior OER catalysts. Our strategy could efficiently explore promising electrocatalysts, especially for evaluating complex multi-metallic compounds.
Collapse
Affiliation(s)
- Xinnan Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, People's Republic of China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, People's Republic of China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, People's Republic of China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, People's Republic of China
| |
Collapse
|
31
|
Gu Q, Zhu J, Weng GJ, Li JJ, Zhao JW. Au nanorod core in an AgPt cage: Synthesis of Au@AgPt core/cage nanoframes with rough surface and controllable geometry by galvanic replacement. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Kim HY, Jun M, Lee K, Joo SH. Skeletal Nanostructures Promoting Electrocatalytic Reactions with Three-Dimensional Frameworks. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ho Young Kim
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Minki Jun
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
33
|
Lin HY, Lou ZX, Ding Y, Li X, Mao F, Yuan HY, Liu PF, Yang HG. Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. SMALL METHODS 2022; 6:e2201130. [PMID: 36333185 DOI: 10.1002/smtd.202201130] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yeliang Ding
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
34
|
Pan Z, Tang Z, Sun D, Zhan Y. Hierarchical NiCo2S4@NiMoO4 nanotube arrays on nickel foam as an advanced bifunctional electrocatalyst for efficient overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Hong Y, Venkateshalu S, Jeong S, Tomboc GM, Jo J, Park J, Lee K. Galvanic replacement reaction to prepare catalytic materials. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yongju Hong
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Sandhya Venkateshalu
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Sangyeon Jeong
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Gracita M. Tomboc
- Green Hydrogen Lab (GH2Lab) Institute for Hydrogen Research (IHR), Université du Québec à Trois−Rivières (UQTR) Québec Canada
| | - Jinhyoung Jo
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Jongsik Park
- Department of Chemistry Kyonggi University Suwon Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| |
Collapse
|
36
|
Todoroki N, Tsurumaki H, Shinomiya A, Wadayama T. Surface microstructures and oxygen evolution properties of cobalt oxide deposited on Ir(111) and Pt(111) single crystal substrates. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Naoto Todoroki
- Graduate School of Environmental Studies Tohoku University Sendai Japan
| | - Hiroto Tsurumaki
- Graduate School of Environmental Studies Tohoku University Sendai Japan
| | - Arata Shinomiya
- Graduate School of Environmental Studies Tohoku University Sendai Japan
| | | |
Collapse
|
37
|
Yang L, Xu H, He G, Chen H. Recent advances in hollow nanomaterials with multiple dimensions for electrocatalytic water splitting. Dalton Trans 2022; 51:13559-13572. [PMID: 36018245 DOI: 10.1039/d2dt01757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic water splitting has great research prospects in the production of green hydrogen energy, and electrocatalysts are the prerequisite. As widely employed efficient electrocatalysts, hollow nanostructures have attracted a lot of research attention due to their excellent catalytic activity and structural stability. Moreover, the abundant catalytically active sites and tunable morphology also make hollow nanomaterials promising electrocatalysts for water splitting. Despite these advantages, the industrial applications of these hollow nanocatalysts are impeded by limitations like the lack of effective synthesis methods and unclear formation mechanisms. Therefore, extensive efforts have been devoted to the development of efficient synthesis strategies to boost the development of more efficient hollow electrocatalysts, and great progress has been achieved in recent years. To gain a better understanding of the rapid development of hollow nanocatalysts for water splitting, we herein organize a review to summarize the recent synthetic methods and advantages of hollow materials with different dimensions. The specific advantages of hollow nanomaterials in electrocatalytic water splitting, such as abundant active sites, a stable structure, high mass transfer efficiency, and reduced aggregation of catalytic particles, are also summarized. Finally, the challenges and prospects of hollow nanostructures with multiple dimensions in electrocatalytic water splitting are further explored.
Collapse
Affiliation(s)
- Lida Yang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Oil and Gas Storage & Transportation Technology, Changzhou University, Jiangsu, 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Oil and Gas Storage & Transportation Technology, Changzhou University, Jiangsu, 213164, China.
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Oil and Gas Storage & Transportation Technology, Changzhou University, Jiangsu, 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Jiangsu Key Laboratory of Oil and Gas Storage & Transportation Technology, Changzhou University, Jiangsu, 213164, China.
| |
Collapse
|
38
|
Controllable Construction of IrCo Nanoclusters and the Performance for Water Electrolysis. Catalysts 2022. [DOI: 10.3390/catal12080914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Finding a suitable catalyst is an important research direction in hydrogen (H2) production from water electrolysis. We report a synthetic method to obtain IrxCo/C clusters by polyol reduction. The catalyst is small in size and can be evenly distributed. The Ir3Co/C cluster catalyst had very good activity under acidic conditions. The overpotential of the best-performing Ir3Co/C cluster for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is only 290 mV and 91 mV when 10 mA cm−2 and 100 mA cm−2. The catalyst performance may be improved because of the synergistic effect and the small size of the prepared catalyst, which accelerates proton transfer. This approach offers a strategy to reduce costs while improving catalytic activity.
Collapse
|
39
|
Yoo S, Lee J, Hilal H, Jung I, Park W, Lee JW, Choi S, Park S. Nesting of multiple polyhedral plasmonic nanoframes into a single entity. Nat Commun 2022; 13:4544. [PMID: 35927265 PMCID: PMC9352762 DOI: 10.1038/s41467-022-32261-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
The development of plasmonic nanostructures with intricate nanoframe morphologies has attracted considerable interest for improving catalytic and optical properties. However, arranging multiple nanoframes in one nanostructure especially, in a solution phase remains a great challenge. Herein, we show complex nanoparticles by embedding various shapes of three-dimensional polyhedral nanoframes within a single entity through rationally designed synthetic pathways. This synthetic strategy is based on the selective deposition of platinum atoms on high surface energy facets and subsequent growth into solid platonic nanoparticles, followed by the etching of inner Au domains, leaving complex nanoframes. Our synthetic routes are rationally designed and executable on-demand with a high structural controllability. Diverse Au solid nanostructures (octahedra, truncated octahedra, cuboctahedra, and cubes) evolved into complex multi-layered nanoframes with different numbers/shapes/sizes of internal nanoframes. After coating the surface of the nanoframes with plasmonically active metal (like Ag), the materials exhibited highly enhanced electromagnetic near-field focusing embedded within the internal complicated rim architecture. The spatial configuration of nanostructure building blocks determines the physical and optical properties of their superstructures. Here, the authors report on complex nanoparticles in which different geometric forms of nanoframes are nested into a single entity by multistep chemical reactions.
Collapse
Affiliation(s)
- Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.,Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.,Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woongkyu Park
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju, 61007, Republic of Korea
| | - Joong Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Soobong Choi
- Department of Physics, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
40
|
Lee S, Jung I, Son J, Lee S, Park M, Kim JE, Park W, Lee J, Nam JM, Park S. Heterogeneous Component Au (Outer)-Pt (Middle)-Au (Inner) Nanorings: Synthesis and Vibrational Characterization on Middle Pt Nanorings with Surface-Enhanced Raman Scattering. ACS NANO 2022; 16:11259-11267. [PMID: 35834780 DOI: 10.1021/acsnano.2c04633] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a synthetic approach for heterometallic (Au-Pt-Au) nanorings with intertwined triple rings (NITs), wherein three differently sized metal circular nanorings concentrically overlap in a single entity. The synthetic method allows one to control the component of core nanorings (Au or Pt) with a tunable gap distance. The narrow circular nanogaps between inner and outer Au rings strongly enhance the electromagnetic near-field via intraparticle coupling of localized surface plasmon resonance, which realizes surface-enhanced Raman scattering (SERS) at the single-particle level. Importantly, when the component of the middle ring is Pt, in situ SERS measurement for electrochemical reactions on Pt domains could be monitored with electrochemical potential variations due to the near-field focusing that is assisted by plasmonically active inner and outer Au nanorings, which is not feasible with pure Pt nanoparticle systems. The resulting NIT systems are robust and may benefit the synthesis of complicated nanostructures, giving myriad applications.
Collapse
Affiliation(s)
- Soohyun Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
- Institute of Basic Science, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University (SNU), Seoul, 08826, South Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Minsun Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Ji-Eun Kim
- Department of Chemistry, Seoul National University (SNU), Seoul, 08826, South Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University (SNU), Seoul, 08826, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| |
Collapse
|
41
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
42
|
|
43
|
Zhang J, Fu X, Xia F, Zhang W, Ma D, Zhou Y, Peng H, Wu J, Gong X, Wang D, Yue Q. Core-Shell Nanostructured Ru@Ir-O Electrocatalysts for Superb Oxygen Evolution in Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108031. [PMID: 35261199 DOI: 10.1002/smll.202108031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Indexed: 06/14/2023]
Abstract
The design of highly active and durable catalysts for the sluggish anodic oxygen evolution reaction (OER) in acid remains an urgent yet challenging goal in water electrolysis. Herein, a core-shell nanostructured Ru@Ir-O catalyst with tensile strains and incorporated oxygens is introduced in the Ir shell that holds an extremely low OER overpotential of 238 mV at 10 mA cm-2 in acid. The material also shows a remarkable 78-fold higher mass activity than the conventional IrO2 at 1.55 V in 0.5 M H2 SO4 . Structural characterization and theoretical calculations reveal that the core-shell interaction and tensile strain cause band position shift and charge redistribution. These electronic factors furthermore optimize the bonding strength of O* and HOO* intermediates on the surface, yielding significantly boosted OER activity relative to the conventional IrO2 .
Collapse
Affiliation(s)
- Jiahao Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xianbiao Fu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fanjie Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Centre, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Wenqing Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Dongsheng Ma
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yu Zhou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Hong Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Nanostructure Research Centre, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Dong Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
44
|
Riyajuddin S, Pahuja M, Sachdeva PK, Azmi K, Kumar S, Afshan M, Ali F, Sultana J, Maruyama T, Bera C, Ghosh K. Super-Hydrophilic Leaflike Sn 4P 3 on the Porous Seamless Graphene-Carbon Nanotube Heterostructure as an Efficient Electrocatalyst for Solar-Driven Overall Water Splitting. ACS NANO 2022; 16:4861-4875. [PMID: 35188366 DOI: 10.1021/acsnano.2c00466] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water splitting using renewable energy resources is an economic and green approach that is immensely enviable for the production of high-purity hydrogen fuel to resolve the currently alarming energy and environmental crisis. One of the effective routes to produce green fuel with the help of an integrated solar system is to develop a cost-effective, robust, and bifunctional electrocatalyst by complete water splitting. Herein, we report a superhydrophilic layered leaflike Sn4P3 on a graphene-carbon nanotube matrix which shows outstanding electrochemical performance in terms of low overpotential (hydrogen evolution reaction (HER), 62 mV@10 mA/cm2, and oxygen evolution reaction (OER), 169 mV@20 mA/cm2). The outstanding stability of HER at least for 15 days at a high applied current density of 400 mA/cm2 with a minimum loss of potential (1%) in acid medium infers its potential compatibility toward the industrial sector. Theoretical calculations indicate that the decoration of Sn4P3 on carbon nanotubes modulates the electronic structure by creating a higher density of state near Fermi energy. The catalyst also reveals an admirable overall water splitting performance by generating a low cell voltage of 1.482 V@10 mA/cm2 with a stability of at least 65 h without obvious degradation of potential in 1 M KOH. It exhibited unassisted solar energy-driven water splitting when coupled with a silicon solar cell by extracting a high stable photocurrent density of 8.89 mA/cm2 at least for 90 h with 100% retention that demonstrates a high solar-to-hydrogen conversion efficiency of ∼10.82%. The catalyst unveils a footprint for pure renewable fuel production toward carbon-free future green energy innovation.
Collapse
Affiliation(s)
- Sk Riyajuddin
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| | - Mansi Pahuja
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| | - Parrydeep Kaur Sachdeva
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| | - Kashif Azmi
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| | - Sushil Kumar
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| | - Mohd Afshan
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| | - Firdaus Ali
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| | - Jenifar Sultana
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| | - Takahiro Maruyama
- Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
| | - Chandan Bera
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| | - Kaushik Ghosh
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, 140306 Mohali, Punjab, India
| |
Collapse
|
45
|
Yang M, Zhang CH, Li NW, Luan D, Yu L, Lou XW(D. Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105135. [PMID: 35043604 PMCID: PMC8948566 DOI: 10.1002/advs.202105135] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Indexed: 06/01/2023]
Abstract
Electrocatalytic water splitting using renewable energy is widely considered as a clean and sustainable way to produce hydrogen as an ideal energy fuel for the future. Electrocatalysts are indispensable elements for large-scale water electrolysis, which can efficiently accelerate electrochemical reactions occurring at both ends. Benefitting from high specific surface area, well-defined void space, and tunable chemical compositions, hollow nanostructures can be applied as promising candidates of direct electrocatalysts or supports for loading internal or external electrocatalysts. Herein, some recent progress in the structural design of micro-/nanostructured hollow materials as advanced electrocatalysts for water splitting is summarized. First, the design principles and corresponding strategies toward highly effective hollow electrocatalysts for oxygen/hydrogen evolution reactions are highlighted. Afterward, an overview of current reports about hollow electrocatalysts with diverse architectural designs and functionalities is given, including direct hollow electrocatalysts with single-shelled, multi-shelled, or open features and heterostructured electrocatalysts based on hollow hosts. Finally, some future research directions of hollow electrocatalysts for water splitting are discussed based on personal perspectives.
Collapse
Affiliation(s)
- Min Yang
- State Key Lab of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Cai Hong Zhang
- State Key Lab of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Nian Wu Li
- State Key Lab of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Deyan Luan
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Le Yu
- State Key Lab of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| |
Collapse
|
46
|
Huang J, Chen J, Liu W, Zhang J, Chen J, Li Y. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Kang Z, Chen Y, Wang H, Alia SM, Pivovar BS, Bender G. Discovering and Demonstrating a Novel High-Performing 2D-Patterned Electrode for Proton-Exchange Membrane Water Electrolysis Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2335-2342. [PMID: 34978183 DOI: 10.1021/acsami.1c20525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proton-exchange membrane water electrolysis (PEMWE) produces hydrogen with high efficiency and purity but uses high-loading platinum-group metal (PGM) catalysts. Such concerns call for the development of novel electrode architectures to improve catalyst utilization and mass activity, thus promoting PEMWE cost competitiveness for large-scale implementation. In this study, we demonstrated, for the first time, a novel two-dimensional (2D)-patterned electrode with edge effects to address these challenges. The edge effect was induced by membrane properties, potential distribution, and counter electrode coverage and could be optimized by tuning the catalyst layer dimensions. To achieve identical PEMWE performance, the optimal pattern saved the 21% anode PGM catalyst compared with the conventional catalyst fully covered electrode. The PGM catalyst could be further reduced by 61% to boost mass activity with no significant performance loss. The results also indicated that the electrode uniformity in PEMWE cells might not be as critical as that in PEM fuel cells. The novel 2D-patterned electrode could effectively reduce PGM catalyst loading, accelerating affordable and large-scale production of hydrogen and other value-added chemicals via electrolysis.
Collapse
Affiliation(s)
- Zhenye Kang
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
| | - Yingying Chen
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
| | - Hao Wang
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
| | - Shaun M Alia
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
| | - Bryan S Pivovar
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
| | - Guido Bender
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401, United States
| |
Collapse
|
48
|
Song M, Lu X, Du M, Chen Z, Zhu C, Xu H, Cheng W, Zhuang W, Li Z, Tian L. Electronic and architecture engineering of hammer-shaped Ir–NiMoO 4-ZIF for effective oxygen evolution. CrystEngComm 2022. [DOI: 10.1039/d2ce00924b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electronic and architecture engineering is realized via doping an ultralow amount of Ir into NiMoO4-ZIF hammers to achieve outstanding electrocatalytic OER performance.
Collapse
Affiliation(s)
- Ming Song
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Xinhu Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Minglin Du
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Chen Zhu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Hui Xu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Wenjing Cheng
- School of Chemistry and Environmental Science, Yili Normal University, 835000, PR China
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
| | - Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, 221018, PR China
- School of Chemistry and Environmental Science, Yili Normal University, 835000, PR China
| |
Collapse
|
49
|
Ding C, Qiao Z. Electrospun one-dimensional electrocatalysts for boosting electrocatalysis. CrystEngComm 2022. [DOI: 10.1039/d2ce00886f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic reaction plays a crucial role in determining the energy conversion efficiency in advanced technology. However, it is limited by the sluggish reaction kinetics and high energy barrier. These shortcomings...
Collapse
|
50
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|