1
|
Li Z, Liu J, Yao M, Zheng S, Chen J, Sun S, Zhao H, Zhang Z, Zhang J, Lv X, Yin J. Development of coding method for traceability identification of cigarette oil pollution based on preparation of multi-emission fluorescent quantum dots by ligand modulation method. Anal Chim Acta 2025; 1345:343733. [PMID: 40015775 DOI: 10.1016/j.aca.2025.343733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND The appearance of cigarettes produces oil spots with different sizes and shapes affect the sensory quality of cigarettes, which are caused by the oil leakage in the production of cigarettes. In the actual production of cigarettes, the mechanical components of the cigarette production line use oil in a very large number of locations, and the processing section was very long. In the event of oil contamination of cigarettes, it is a challenge to ascertain the precise location of oil leakage in mechanical components. RESULTS Herein, we constructed a coding system based on multi-emission fluorescent nano-quantum dots as the markers to identify the cigarette oil contamination. CdSe/ZnS quantum dots with emission peaks at 553 nm, 568 nm, and 595 nm were obtained by CdSe quantum dots with epitaxial growth of the ZnS shell layer based on oleic acid (OA) and oleylamine (OLA) as ligand in the growth process of CdSe nanocrystals, CdSe quantum dots with emission peaks at 636 nm were prepared by combining the ligand action of OA and OLA with the stepwise growth method. The coding system would be allowed to mark 15 different oil-used points with the same oil, encoded by four quantum dots in permutations. Furthermore, the coding system has a detection of as low as 0.136 cm2 oil spot area, and the signal-to-noise ratio of the detection signal can attain a value exceeding 3.36. SIGNIFICANCE The successful construction of this coding system provides a reference for multipoint localization tracer technology in industry. This study provides the cigarette industry with a simple detection, prominent signal, and multiple options of marking scheme for oil traceability and identification detection method and technical means to solve the problem of oil contamination of cigarettes due to oil leakage phenomenon at oil-using points.
Collapse
Affiliation(s)
- Zijuan Li
- Zhangjiakou Cigarette Factory Co., Ltd, Zhangjiakou, 075000, China
| | - Jiahui Liu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Muzi Yao
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Songjin Zheng
- China Tobacco Hebei Industrial Co., Ltd., Shijiazhuang, 050051, China
| | - Jiaojiao Chen
- Zhangjiakou Cigarette Factory Co., Ltd, Zhangjiakou, 075000, China
| | - Shuo Sun
- Zhangjiakou Cigarette Factory Co., Ltd, Zhangjiakou, 075000, China
| | - Haiyang Zhao
- Zhangjiakou Cigarette Factory Co., Ltd, Zhangjiakou, 075000, China
| | - Zhiwu Zhang
- Zhangjiakou Cigarette Factory Co., Ltd, Zhangjiakou, 075000, China
| | - Jianlong Zhang
- Zhangjiakou Cigarette Factory Co., Ltd, Zhangjiakou, 075000, China
| | - Xuan Lv
- Zhangjiakou Cigarette Factory Co., Ltd, Zhangjiakou, 075000, China
| | - Jinjin Yin
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
2
|
Torres R, Thal LB, McBride JR, Cohen BE, Rosenthal SJ. Quantum Dot Fluorescent Imaging: Using Atomic Structure Correlation Studies to Improve Photophysical Properties. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:3632-3640. [PMID: 38476823 PMCID: PMC10926165 DOI: 10.1021/acs.jpcc.3c07367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
Efforts to study intricate, higher-order cellular functions have called for fluorescence imaging under physiologically relevant conditions such as tissue systems in simulated native buffers. This endeavor has presented novel challenges for fluorescent probes initially designed for use in simple buffers and monolayer cell culture. Among current fluorescent probes, semiconductor nanocrystals, or quantum dots (QDs), offer superior photophysical properties that are the products of their nanoscale architectures and chemical formulations. While their high brightness and photostability are ideal for these biological environments, even state of the art QDs can struggle under certain physiological conditions. A recent method correlating electron microscopy ultrastructure with single-QD fluorescence has begun to highlight subtle structural defects in QDs once believed to have no significant impact on photoluminescence (PL). Specific defects, such as exposed core facets, have been shown to quench QD PL in physiologically accurate conditions. For QD-based imaging in complex cellular systems to be fully realized, mechanistic insight and structural optimization of size and PL should be established. Insight from single QD resolution atomic structure and photophysical correlative studies provides a direct course to synthetically tune QDs to match these challenging environments.
Collapse
Affiliation(s)
- Ruben Torres
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Lucas B. Thal
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - James R. McBride
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics & Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sandra J. Rosenthal
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt
Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
3
|
Wang Y, Liu P, Ye Y, Hammock BD, Zhang C. An Integrated Approach to Improve the Assay Performance of Quantum Dot-Based Lateral Flow Immunoassays by Using Silver Deposition. Microchem J 2023; 192:108932. [PMID: 38344211 PMCID: PMC10857874 DOI: 10.1016/j.microc.2023.108932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Traditional quantum dot-based lateral flow immunoassay (QD-LFIA) is limited to signal loss in part by the blinking, photobleaching and oxidative quenching of QD probes. Inspired by the good application of silver deposition on QD surfaces in tissue imaging, and in the context of improving the assay performance without compromising the simplicity and practicality, we report that introducing the QD-silver combination to the LFIA system, has the advantages of accuracy improvement, signal enhancement and user friendliness promotion, but maintains the cost-effective property and commercial accessibility of QD-LFIA. The effect was shown by using CdSe/ZnS QD-LFIA coupled with anti-sodium pentachlorophenate antibody, which provided a 4-fold improvement in the signal, a 2.5-fold improvement in the detection limit and a zero false-negative rate for sodium pentachlorophenate analysis in chicken samples. The proposed LFIA integrates the possibilities of colorimetric and fluorometric detection with different detection limits (fluorometric at 10 ng/mL and colorimetric at 4 ng/mL) and with acceptable detection times (fluorometric at 12 min and colorimetric at 27 min). The current results indicate that this QD-silver combined LFIA is complementary to conventional fluorescence LFIA and could be an inexpensive, versatile, and sensitive alternative.
Collapse
Affiliation(s)
- Yulong Wang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Anhui Science and Technology University, Fengyang 233100, China
| | - Pengyan Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuhui Ye
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Anhui Science and Technology University, Fengyang 233100, China
- School of Biology and food engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Lee C, Xu EZ, Kwock KWC, Teitelboim A, Liu Y, Park HS, Ursprung B, Ziffer ME, Karube Y, Fardian-Melamed N, Pedroso CCS, Kim J, Pritzl SD, Nam SH, Lohmueller T, Owen JS, Ercius P, Suh YD, Cohen BE, Chan EM, Schuck PJ. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature 2023:10.1038/s41586-023-06076-7. [PMID: 37258675 DOI: 10.1038/s41586-023-06076-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/12/2023] [Indexed: 06/02/2023]
Abstract
Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging1-4, nanophotonics5, and optical data storage6,7, to targeted pharmacology, optogenetics, and chemical reactivity8. These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles6,9 can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening10-13 and photobrightening12,14-16, we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.
Collapse
Affiliation(s)
- Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Emma Z Xu
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kevin W C Kwock
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Ayelet Teitelboim
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yawei Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, South Korea
| | - Benedikt Ursprung
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Mark E Ziffer
- Department of Physics, Columbia University, New York, NY, USA
| | - Yuzuka Karube
- Department of Chemistry, Columbia University, New York, NY, USA
| | | | - Cassio C S Pedroso
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Stefanie D Pritzl
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Ludwig-Maximilians Universität München, Munich, Germany
- Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Sang Hwan Nam
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Theobald Lohmueller
- Chair for Photonics and Optoelectronics, Nano-Institute Munich, Ludwig-Maximilians Universität München, Munich, Germany
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Peter Ercius
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP), Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea.
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, South Korea.
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Tang B, Liu BH, Liu ZY, Luo MY, Shi XH, Pang DW. Quantum Dots with a Compact Amphiphilic Zwitterionic Coating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28097-28104. [PMID: 35686447 DOI: 10.1021/acsami.2c04438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Generally speaking, it is difficult to keep nanomaterials encapsulated in amphiphilic polymers like octylamine-grafted poly(acrylic acid) (OPA) compact in coating-layer, with a small hydrodynamic size. Here, we prepared stable hydrophilic quantum dots (QDs) via encapsulation in ∼3 nm-long amphiphilic and zwitterionic (AZ) molecules. After encapsulation with AZ molecules, the coated QDs are only 2.1 nm thicker in coating, instead of 5.4 nm with OPA. Meanwhile, the hydrodynamic sizes of CdSe/CdS, ZnCdSeS, ZnCdSe/ZnS, and CdSe/ZnS QDs encapsulated in AZ molecules (AZ-QDs) are less than 15 nm, and 6-7 nm smaller than those of QDs in OPA (OPA-QDs). Notably, both extracellular and intracellular nonspecific binding of AZ-QDs is approximately 100-folds lower than that of OPA-QDs.
Collapse
Affiliation(s)
- Bo Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Bing-Hua Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zhen-Ya Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Meng-Yao Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xue-Hui Shi
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, Frontiers Science Center for Cell Responses, Nankai University, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Cao Y, Chen Z, Li X, Li Z, Lin G, Liu T, Wu Y. Dual-color quantum dot-loaded nanoparticles based lateral flow biosensor for the simultaneous detection of gastric cancer markers in a single test line. Anal Chim Acta 2022; 1218:339998. [DOI: 10.1016/j.aca.2022.339998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
|
7
|
Wen Y, Xie D, Liu Z. Advances in protein analysis in single live cells: principle, instrumentation and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Pedroso CC, Mann VR, Zuberbühler K, Bohn MF, Yu J, Altoe V, Craik CS, Cohen BE. Immunotargeting of Nanocrystals by SpyCatcher Conjugation of Engineered Antibodies. ACS NANO 2021; 15:18374-18384. [PMID: 34694776 PMCID: PMC9035480 DOI: 10.1021/acsnano.1c07856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inorganic nanocrystals such as quantum dots (QDs) and upconverting nanoparticles (UCNPs) are uniquely suited for quantitative live-cell imaging and are typically functionalized with ligands to study specific receptors or cellular targets. Antibodies (Ab) are among the most useful targeting reagents owing to their high affinities and specificities, but common nanocrystal labeling methods may orient Ab incorrectly, be reversible or denaturing, or lead to Ab-NP complexes too large for some applications. Here, we show that SpyCatcher proteins, which bind and spontaneously form covalent isopeptide bonds with cognate SpyTag peptides, can conjugate engineered Ab to nanoparticle surfaces with control over stability, orientation, and stoichiometry. Compact SpyCatcher-functionalized QDs and UCNPs may be labeled with short-chain variable fragment Ab (scFv) engineered to bind urokinase-type plasminogen activator receptors (uPAR) that are overexpressed in many human cancers. Confocal imaging of anti-uPAR scFv-QD conjugates shows the antibody mediates specific binding and internalization by breast cancer cells expressing uPAR. Time-lapse imaging of photostable scFv-UCNP conjugates shows that Ab binding causes uPAR internalization with a ∼20 min half-life on the cell surface, and uPAR is internalized to endolysosomal compartments distinct from general membrane stains and without significant recycling to the cell surface. The controlled and stable conjugation of engineered Ab to NPs enables targeting of diverse receptors for live-cell study of their distribution, trafficking, and physiology.
Collapse
Affiliation(s)
- Cassio C.S. Pedroso
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Victor R. Mann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Kathrin Zuberbühler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, United States
| | - Markus-Frederik Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, United States
| | - Jessica Yu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Virginia Altoe
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, United States
| | - Bruce E. Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Corresponding Author:
| |
Collapse
|
9
|
Hong CA, Park JC, Na H, Jeon H, Nam YS. Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay. Biosens Bioelectron 2021; 182:113110. [PMID: 33812283 DOI: 10.1016/j.bios.2021.113110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Fast, sensitive, specific, and user-friendly DNA assay is a key technique for the next generation point-of-care molecular diagnosis. However, high-cost, time-consuming, and complicated enzyme-based DNA amplification step is essential to achieve high sensitivity. Herein, a short target DNA-catalyzed formation of quantum dot (QD)-DNA hydrogel is proposed as a new DNA assay platform satisfying the above requirements. A single-stranded target DNA catalyzes the opening cycle of DNA hairpin loops, which are quickly self-assembled with DNA-functionalized QDs to generate QD-DNA hydrogel. The three-dimensional hydrogel network allows efficient resonance energy transfer, dramatically lowering the limit of detection down to ~6 fM without enzymatic DNA amplification. The QD-DNA hydrogel also enables a rapid detection (1 h) with high specificity even for a single-base mismatch. The clinical applicability of the QD-DNA hydrogel is demonstrated for the Klebsiella pneumoniae carbapenemase gene, one of the key targets of drug-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Cheol Am Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Chul Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyebin Na
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Huiju Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
10
|
Mann VR, Manea F, Borys NJ, Ajo-Franklin CM, Cohen BE. Controlled and Stable Patterning of Diverse Inorganic Nanocrystals on Crystalline Two-Dimensional Protein Arrays. Biochemistry 2021; 60:1063-1074. [PMID: 33691067 PMCID: PMC8162747 DOI: 10.1021/acs.biochem.1c00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Controlled patterning of nanoparticles on bioassemblies enables synthesis of complex materials for applications in optics, nanoelectronics, and sensing. Biomolecular self-assembly offers molecular control for engineering patterned nanomaterials, but current approaches have been limited in their ability to combine high nanoparticle coverage with generality that enables incorporation of multiple nanoparticle types. Here, we synthesize photonic materials on crystalline two-dimensional (2D) protein sheets using orthogonal bioconjugation reactions, organizing quantum dots (QDs), gold nanoparticles (AuNPs), and upconverting nanoparticles along the surface-layer (S-layer) protein SbsB from the extremophile Geobacillus stearothermophilus. We use electron and optical microscopy to show that isopeptide bond-forming SpyCatcher and SnoopCatcher systems enable the simultaneous and controlled conjugation of multiple types of nanoparticles (NPs) at high densities along the SbsB sheets. These NP conjugation reactions are orthogonal to each other and to Au-thiol bond formation, allowing tailorable nanoparticle combinations at sufficient labeling efficiencies to permit optical interactions between nanoparticles. Fluorescence lifetime imaging of SbsB sheets conjugated to QDs and AuNPs at distinct attachment sites shows spatially heterogeneous QD emission, with shorter radiative decays and brighter fluorescence arising from plasmonic enhancement at short interparticle distances. This specific, stable, and efficient conjugation of NPs to 2D protein sheets enables the exploration of interactions between pairs of nanoparticles at defined distances for the engineering of protein-based photonic nanomaterials.
Collapse
Affiliation(s)
- Victor R. Mann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Francesca Manea
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Current address: Perfect Day Foods, Berkeley, CA 94608
| | - Nicholas J. Borys
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Current address: Department of Physics, Montana State University, Bozeman, MT 59717
| | - Caroline M. Ajo-Franklin
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Bruce E. Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
11
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Urban JM, Chiang W, Hammond JW, Cogan NMB, Litzburg A, Burke R, Stern HA, Gelbard HA, Nilsson BL, Krauss TD. Quantum Dots for Improved Single-Molecule Localization Microscopy. J Phys Chem B 2021; 125:2566-2576. [PMID: 33683893 PMCID: PMC8080873 DOI: 10.1021/acs.jpcb.0c11545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloidal semiconductor quantum dots (QDs) have long established their versatility and utility for the visualization of biological interactions. On the single-particle level, QDs have demonstrated superior photophysical properties compared to organic dye molecules or fluorescent proteins, but it remains an open question as to which of these fundamental characteristics are most significant with respect to the performance of QDs for imaging beyond the diffraction limit. Here, we demonstrate significant enhancement in achievable localization precision in QD-labeled neurons compared to neurons labeled with an organic fluorophore. Additionally, we identify key photophysical parameters of QDs responsible for this enhancement and compare these parameters to reported values for commonly used fluorophores for super-resolution imaging.
Collapse
Affiliation(s)
- Jennifer M Urban
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United states
| | - Jennetta W Hammond
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United states
| | - Nicole M B Cogan
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Angela Litzburg
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United states
| | - Rebeckah Burke
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Harry A Stern
- Center for Integrated Research and Computing, University of Rochester, Rochester, New York 14627-0216, United States
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United states
- Departments of Pediatrics, Neuroscience, and Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United states
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- The Institute of Optics, University of Rochester, Rochester, New York 14627-0216, United States
| |
Collapse
|
13
|
Lin G, Wang H, Lu W. Generation of Nanodroplet Reactors and Their Applications in In Situ Controllable Synthesis and Transportation of Ag Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002672. [PMID: 33747722 PMCID: PMC7967049 DOI: 10.1002/advs.202002672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/01/2020] [Indexed: 05/11/2023]
Abstract
Nanodroplets have been paid great attention as they are crucial for a wide range of physical, chemical, and biological applications. In this paper, monodispersed nanodroplets are prepared and their directed motions are realized through conducting the formation of nonuniform structures via altering the ionic distribution within; all these dynamics have been observed by using in situ transmission electron microscopy liquid cell technology. It has been found that their transformation from random motion to directed motion is reversible. Moreover, combining multiple directed motions enables long-distance travel with directed motion taking up 95% of the total time. The results here also prove that aqueous nanodroplets can slide directionally on the hydrophilic surface like droplets sliding on hydrophobic surface. Furthermore, the authors successfully achieve the unidirectional transportation of in situ prepared Ag nanoparticles by using the nanodroplets as nanoreactor, carrier, and transporter. The size and number of as-prepared Ag nanoparticles can be quantitatively controlled. In summary, this research provides a new strategy for real-time generation and precise manipulation of aqueous nanodroplets. Together with the quantitatively controllable in situ synthesis of Ag nanoparticles within the nanodroplets, this work can prove their promising applications in many fields.
Collapse
Affiliation(s)
- Guanhua Lin
- Institute for Advanced StudyShenzhen UniversityNanhai Avenue 3688ShenzhenGuangdong518060China
| | - Haifei Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid Interface and Chemical ThermaldynamicsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Wensheng Lu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Colloid Interface and Chemical ThermaldynamicsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| |
Collapse
|
14
|
Miao Y, Wang R, Yang W, Liu S, Yan G. Detection of biological mercaptan by DNA functionalized room temperature phosphorescent quantum dot nanocomposites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118420. [PMID: 32413716 DOI: 10.1016/j.saa.2020.118420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/07/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
In this study, green low-toxicity Mn-doped Zns (Mn-Zns) room-temperature phosphorescent (RTP) quantum dots (QDs) (PQDs) nanocomposites (DNA-PQDs) were prepared under the optimal conditions by using single-stranded DNA (PS-C-ssDNA) rich of cytosine C and Thioguanine G (PS) as the template. DNA-PQDs interact with Ag+ to form AgN bonds and further produce C-Ag+-C conjugates. As a result, DNA-PQDs cluster together and induce the phosphorescent exciton energy transfer (PEET), resulting in quenching of room-temperature phosphorescent of DNA-PQDs. Nevertheless, Ag+ tends to form AgS bonds with biological mercaptan when it is added in, so that Ag+ falls from C-Ag+-C. DNA-PQDs changed from aggregation to looseness and RTP is recovered accordingly. On this basis, RTP detection of biological mercaptan is realized. Since this sensor system has RTP properties based on DNA-PQDs, it is very applicable to detection of mercaptan compounds in biological fluids.
Collapse
Affiliation(s)
- Yanming Miao
- Shanxi Normal University, Linfen 041004, PR China.
| | - Ruirui Wang
- Shanxi Normal University, Linfen 041004, PR China
| | - Wenli Yang
- Shanxi Normal University, Linfen 041004, PR China
| | - Shuying Liu
- Shanxi Normal University, Linfen 041004, PR China
| | - Guiqin Yan
- Shanxi Normal University, Linfen 041004, PR China
| |
Collapse
|
15
|
A 6-nm ultra-photostable DNA FluoroCube for fluorescence imaging. Nat Methods 2020; 17:437-441. [PMID: 32203385 PMCID: PMC7138518 DOI: 10.1038/s41592-020-0782-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Photobleaching limits extended imaging of fluorescent biological samples. Here, we developed DNA based “FluoroCubes” that are similar in size to the green fluorescent protein (GFP), have single-point attachment to proteins, have a ~54-fold higher photobleaching lifetime and emit ~43-fold more photons than single organic dyes. We demonstrate that DNA FluoroCubes provide outstanding tools for single-molecule imaging, allowing the tracking of single motor proteins for >800 steps with nanometer precision.
Collapse
|
16
|
Zhang ZQ, Yao WJ, Qiao LL, Yang X, Shi J, Zhao MX. A Lysosome-Targetable Fluorescence Probe Based on L-Cysteine-Polyamine-Morpholine-Modified Quantum Dots for Imaging in Living Cells. Int J Nanomedicine 2020; 15:1611-1622. [PMID: 32210555 PMCID: PMC7069590 DOI: 10.2147/ijn.s234927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Quantum dots (QDs) are used as fluorescent probes due to their high fluorescence intensity, longevity of fluorescence, strong light-resistant bleaching ability and high light stability. Therefore, we explore a more precise probe that can target an organelle. METHODS In the current study, a new class of fluorescence probes were developed using QDs capped with 4 different L-cysteine-polyamine-morpholine linked by mercapto groups. Ligands were characterised by Electrospray ionization mass spectrometry (ESI-MS), H-Nuclear Magnetic Resonance (1H NMR) spectroscopy, and 13C NMR spectroscopy. Modified QDs were characterized by Transmission Electron Microscope (TEM), Ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 and HepG2 cells. The fluorescence imaging of modified QDs was obtained by confocal laser scanning fluorescence microscopy (CLSM). RESULTS Synthesized QDs ranged between 4 to 5 nm and had strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the cysteine-polyamine-morpholine were successfully incorporated into QD nanoparticles. The MTT results demonstrated that modified QDs had lesser cytotoxicity when compared to unmodified QDs. In addition, modified QDs had strong fluorescence intensity in HeLa cells and targeted lysosomes of HeLa cells. CONCLUSION This study demonstrates the modified QDs efficiently entered cells and could be used as a potential lysosome-targeting fluorescent probe.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Wen-Jing Yao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Lu-Lu Qiao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| |
Collapse
|
17
|
Li W, Zhao X, Liu C, Coudert FX. Ab Initio Molecular Dynamics of CdSe Quantum-Dot-Doped Glasses. J Am Chem Soc 2020; 142:3905-3912. [PMID: 32011133 DOI: 10.1021/jacs.9b12073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have probed the local atomic structure of the interface between a CdSe quantum dot (QD) and a sodium silicate glass matrix. Using ab initio molecular dynamics simulations, we determined the structural properties and bond lengths, in excellent agreement with previous experimental observations. On the basis of an analysis of radial distribution functions, coordination environment, and ring structures, we demonstrate that an important structural reconstruction occurs at the interface between the CdSe QD and the glass matrix. The incorporation of the CdSe QD disrupts the Na-O bonds, while stronger SiO4 tetrahedra are reformed. The existence of the glass matrix breaks the stable 4-membered (4MR) and 6-membered (6MR) Cd-Se rings, and we observe a disassociated Cd atom migrated in the glass matrix. Besides, the formation of Se-Na and Cd-O linkages is observed at the CdSe QD/glass interface. These results significantly extend our understanding of the interfacial structure of CdSe QD-doped glasses and provide physical and chemical insight into the possible defect structure origin of CdSe QD, of interest to the fabrication of the highly luminescent CdSe QD-doped glasses.
Collapse
Affiliation(s)
- Wenke Li
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Hubei 430070 , China.,Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris , 75005 Paris , France
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Hubei 430070 , China
| | - Chao Liu
- State Key Laboratory of Silicate Materials for Architectures , Wuhan University of Technology , Hubei 430070 , China
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris , 75005 Paris , France
| |
Collapse
|
18
|
Thal LB, Mann VR, Sprinzen D, McBride JR, Reid KR, Tomlinson ID, McMahon DG, Cohen BE, Rosenthal SJ. Ligand-conjugated quantum dots for fast sub-diffraction protein tracking in acute brain slices. Biomater Sci 2020; 8:837-845. [PMID: 31790090 PMCID: PMC7002256 DOI: 10.1039/c9bm01629e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Semiconductor quantum dots (QDs) have demonstrated utility in long-term single particle tracking of membrane proteins in live cells in culture. To extend the superior optical properties of QDs to more physiologically relevant cell platforms, such as acute brain slices, we examine the photophysics of compact ligand-conjugated CdSe/CdS QDs using both ensemble and single particle analysis in brain tissue media. We find that symmetric core passivation is critical for both photostability in oxygenated media and for prolonged single particle imaging in brain slices. We then demonstrate the utility of these QDs by imaging single dopamine transporters in acute brain slices, achieving 20 nm localization precision at 10 Hz frame rates. These findings detail design requirements needed for new QD probes in complex living environments, and open the door to physiologically relevant studies that capture the utility of QD probes in acute brain slices.
Collapse
Affiliation(s)
- Lucas B Thal
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
McBride JR, Rosenthal SJ. Real colloidal quantum dot structures revealed by high resolution analytical electron microscopy. J Chem Phys 2019; 151:160903. [DOI: 10.1063/1.5128366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- James R. McBride
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, USA
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, USA
- Department of Interdisciplinary Materials Science, Department of Chemical and Biomolecular Engineering, Department of Physics and Astronomy, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
20
|
Najafiaghdam H, Papageorgiou E, Torquato NA, Tian B, Cohen BE, Anwar M. A 25 micron-thin microscope for imaging upconverting nanoparticles with NIR-I and NIR-II illumination. Theranostics 2019; 9:8239-8252. [PMID: 31754393 PMCID: PMC6857055 DOI: 10.7150/thno.37672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022] Open
Abstract
Rationale: Intraoperative visualization in small surgical cavities and hard-to-access areas are essential requirements for modern, minimally invasive surgeries and demand significant miniaturization. However, current optical imagers require multiple hard-to-miniaturize components including lenses, filters and optical fibers. These components restrict both the form-factor and maneuverability of these imagers, and imagers largely remain stand-alone devices with centimeter-scale dimensions. Methods: We have engineered INSITE (Immunotargeted Nanoparticle Single-Chip Imaging Technology), which integrates the unique optical properties of lanthanide-based alloyed upconverting nanoparticles (aUCNPs) with the time-resolved imaging of a 25-micron thin CMOS-based (complementary metal oxide semiconductor) imager. We have synthesized core/shell aUCNPs of different compositions and imaged their visible emission with INSITE under either NIR-I and NIR-II photoexcitation. We characterized aUCNP imaging with INSITE across both varying aUCNP composition and 980 nm and 1550 nm excitation wavelengths. To demonstrate clinical experimental validity, we also conducted an intratumoral injection into LNCaP prostate tumors in a male nude mouse that was subsequently excised and imaged with INSITE. Results: Under the low illumination fluences compatible with live animal imaging, we measure aUCNP radiative lifetimes of 600 μs - 1.3 ms, which provides strong signal for time-resolved INSITE imaging. Core/shell NaEr0.6Yb0.4F4 aUCNPs show the highest INSITE signal when illuminated at either 980 nm or 1550 nm, with signal from NIR-I excitation about an order of magnitude brighter than from NIR-II excitation. The 55 μm spatial resolution achievable with this approach is demonstrated through imaging of aUCNPs in PDMS (polydimethylsiloxane) micro-wells, showing resolution of micrometer-scale targets with single-pixel precision. INSITE imaging of intratumoral NaEr0.8Yb0.2F4 aUCNPs shows a signal-to-background ratio of 9, limited only by photodiode dark current and electronic noise. Conclusion: This work demonstrates INSITE imaging of aUCNPs in tumors, achieving an imaging platform that is thinned to just a 25 μm-thin, planar form-factor, with both NIR-I and NIR-II excitation. Based on a highly paralleled array structure INSITE is scalable, enabling direct coupling with a wide array of surgical and robotic tools for seamless integration with tissue actuation, resection or ablation.
Collapse
Affiliation(s)
- Hossein Najafiaghdam
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley CA
| | - Efthymios Papageorgiou
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley CA
| | - Nicole A Torquato
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Bining Tian
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Mekhail Anwar
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| |
Collapse
|
21
|
Chen S, Imoukhuede PI. Multiplexing Angiogenic Receptor Quantification via Quantum Dots. Anal Chem 2019; 91:7603-7612. [DOI: 10.1021/acs.analchem.9b00238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Si Chen
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, Missouri 63130, United States
| | - P. I. Imoukhuede
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
22
|
Xu D, Zou W, Du Z, Wang H, Liu B, Zhang C. Novel Synthesis of CdSe Quantum Dots in a Confined Space by Using a High Internal Phase Emulsion and Their Application in Fluorescent Labeling. ChemistrySelect 2019. [DOI: 10.1002/slct.201803228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dawei Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
| | - Wei Zou
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
- Changzhou Institute of Advanced Materials; Beijing University of Chemical Technology; Jiangsu 213164 PR China
| | - Zhongjie Du
- Changzhou Institute of Advanced Materials; Beijing University of Chemical Technology; Jiangsu 213164 PR China
| | - Hong Wang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
| | - Bin Liu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
| | - Chen Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology); Ministry of Education; College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 PR China
- Changzhou Institute of Advanced Materials; Beijing University of Chemical Technology; Jiangsu 213164 PR China
| |
Collapse
|
23
|
Charrier M, Li D, Mann VR, Yun L, Jani S, Rad B, Cohen BE, Ashby PD, Ryan KR, Ajo-Franklin CM. Engineering the S-Layer of Caulobacter crescentus as a Foundation for Stable, High-Density, 2D Living Materials. ACS Synth Biol 2019; 8:181-190. [PMID: 30577690 DOI: 10.1021/acssynbio.8b00448] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Materials synthesized by organisms, such as bones and wood, combine the ability to self-repair with remarkable mechanical properties. This multifunctionality arises from the presence of living cells within the material and hierarchical assembly of different components across nanometer to micron scales. While creating engineered analogues of these natural materials is of growing interest, our ability to hierarchically order materials using living cells largely relies on engineered 1D protein filaments. Here, we lay the foundation for bottom-up assembly of engineered living material composites in 2D along the cell body using a synthetic biology approach. We engineer the paracrystalline surface-layer (S-layer) of Caulobacter crescentus to display SpyTag peptides that form irreversible isopeptide bonds to SpyCatcher-modified proteins, nanocrystals, and biopolymers on the extracellular surface. Using flow cytometry and confocal microscopy, we show that attachment of these materials to the cell surface is uniform, specific, and covalent, and its density can be controlled on the basis of the insertion location within the S-layer protein, RsaA. Moreover, we leverage the irreversible nature of this attachment to demonstrate via SDS-PAGE that the engineered S-layer can display a high density of materials, reaching 1 attachment site per 288 nm2. Finally, we show that ligation of quantum dots to the cell surface does not impair cell viability, and this composite material remains intact over a period of 2 weeks. Taken together, this work provides a platform for self-organization of soft and hard nanomaterials on a cell surface with precise control over 2D density, composition, and stability of the resulting composite, and is a key step toward building hierarchically ordered engineered living materials with emergent properties.
Collapse
|
24
|
Choi H, Lee JM, Jung Y. Monomeric Covalent-Avidin for Rapid and Covalent Labeling of Quantum Dots to Cell Surface Proteins. ACTA ACUST UNITED AC 2019; 3:e1800288. [PMID: 32627405 DOI: 10.1002/adbi.201800288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/26/2018] [Indexed: 01/25/2023]
Abstract
With high brightness and photostability, quantum dots (QDs) are potent probes for long-term imaging of dynamic cell surface proteins, but practical methods to covalently label QDs to target proteins for stable imaging are largely lacking. Here, a small covalent-bond forming protein (Covalent-avidin)/peptide pair is introduced, which provides a recombinant protein-based rapid and covalent QD labeling strategy. Covalent-avidin is constructed by optimized fusion of circular permuted monomeric avidin to SpyCatcher, which forms an isopeptide bond with the SpyTag peptide. Covalent-avidin-conjugated QDs allow for strong and irreversible QD labeling to the biotinylated SpyTag-fused adrenergic receptor on live cells in 2 min. In addition, QDs with only a minimum number of conjugated Covalent-avidin show more stable receptor labeling than commercially available streptavidin-conjugated QDs, also with minimal unwanted clustering of labeled receptors. Monomeric Covalent-avidin will be a valuable protein linker for diverse other nanolabeling structures with beneficial properties such as covalent linkages and facile valency control.
Collapse
Affiliation(s)
- Hyeokjune Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Jeong Min Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Yongwon Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
25
|
Ren L, Li Q, Ma Z, Wang Y, Li H, Shen L, Yu J, Fang X. Quantum dots tethered membrane type 3 matrix metalloproteinase-targeting peptide for tumor optical imaging. J Mater Chem B 2018; 6:7719-7727. [PMID: 32254894 DOI: 10.1039/c8tb02025f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane type matrix metalloproteinases (MT-MMPs) play important roles in malignant tumor progression through the degradation of the extracellular matrix and signal transduction. However, a member of the family, MT3-MMP, has attracted the least concern compared with other MT-MMPs. Here, a novel MT3-MMP-targeting peptide with high affinity and specificity has been developed by a phage-display peptide screening technology and multiple biophysics measurements, including single-molecule recognition force spectroscopy and isothermal titration calorimetry. The binding peptides are conjugated on the surface of CdSe/ZnS quantum dots (QDs) and consequently acted as a ligand that specifically targets MT3-MMP overexpressed tumor cells. The imaging nanoprobes used QDs as the photographic developer for optical imaging in vivo. The nanoprobes exhibited a desirable targeting effect and generated good biodistribution profiles for visualization and imaging of MT3-MMP overexpressed tumor. The peptide could be useful to evaluate the distribution and expression of MT3-MMP. Furthermore, the peptide-functionalized QDs show potential application for cancer diagnosis.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Street, Changchun, Jilin 130062, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lin G, Li L, Panwar N, Wang J, Tjin SC, Wang X, Yong KT. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Tajon CA, Yang H, Tian B, Tian Y, Ercius P, Schuck PJ, Chan EM, Cohen BE. Photostable and efficient upconverting nanocrystal-based chemical sensors. OPTICAL MATERIALS 2018; 84:345-353. [PMID: 31871387 PMCID: PMC6927559 DOI: 10.1016/j.optmat.2018.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chemical sensing in living systems demands optical sensors that are bright, stable, and sensitive to the rapid dynamics of chemical signaling. Lanthanide-doped upconverting nanoparticles (UCNPs) efficiently convert near infrared (NIR) light to higher energy emission and allow biological systems to be imaged with no measurable background or photobleaching, and with reduced scatter for subsurface experiments. Despite their advantages as imaging probes, UCNPs have little innate chemical sensing ability and require pairing with organic fluorophores to act as biosensors, although the design of stable UCNP-fluorophore hybrids with efficient upconverted energy transfer (UET) has remained a challenge. Here, we report Yb3+- and Er3+-doped UCNP-fluorophore conjugates with UET efficiencies up to 88%, and photostabilities 100-fold greater by UET excitation than those of the free fluorophores under direct excitation. Despite adding distance between Er3+ donors and organic acceptors, thin inert shells significantly enhance overall emission without compromising UET efficiency. This can be explained by the large increase in quantum yield of Er3+ donors at the core/shell interface and the large number of fluorophore acceptors at the surface. Sensors excited by UET show increases in photostability well beyond those reported for other methods for increasing the longevity of organic fluorophores, and those covalently attached to UCNP surface polymers show greater chemical stability than those directly coordinated to the nanocrystal surface. By conjugating other fluorescent chemosensors to UCNPs, these hybrids may be extended to a series of NIR-responsive biosensors for quantifying the dynamic chemical populations critical for cell signaling.
Collapse
Affiliation(s)
- Cheryl A Tajon
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Hao Yang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Bining Tian
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Yue Tian
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Peter Ercius
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - P James Schuck
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Emory M Chan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Bruce E Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| |
Collapse
|
28
|
Kovtun O, Tomlinson ID, Bailey DM, Thal LB, Ross EJ, Harris L, Frankland MP, Ferguson RS, Glaser Z, Greer J, Rosenthal SJ. Single Quantum Dot Tracking Illuminates Neuroscience at the Nanoscale. Chem Phys Lett 2018; 706:741-752. [PMID: 30270931 PMCID: PMC6157616 DOI: 10.1016/j.cplett.2018.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of nanometer-sized semiconductor crystals, known as quantum dots, allows us to directly observe individual biomolecular transactions through a fluorescence microscope. Here, we review the evolution of single quantum dot tracking over the past two decades, highlight key biophysical discoveries facilitated by quantum dots, briefly discuss biochemical and optical implementation strategies for a single quantum dot tracking experiment, and report recent accomplishments of our group at the interface of molecular neuroscience and nanoscience.
Collapse
Affiliation(s)
- Oleg Kovtun
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
| | - Ian D. Tomlinson
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
| | - Danielle M. Bailey
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Pharmacology, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
| | - Lucas B. Thal
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
- Departments of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN
| | - Emily J. Ross
- Departments of Hudson Alpha Institute for Biotechnology, Huntsville, AL
| | - Lauren Harris
- Departments of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN
| | | | | | - Zachary Glaser
- Departments of Chemistry, Chemical Biology, Vanderbilt University
| | - Jonathan Greer
- Departments of Chemistry, Chemical Biology, Vanderbilt University
| | - Sandra J. Rosenthal
- Departments of Chemistry, Chemical Biology, Vanderbilt University
- Departments of Pharmacology, Chemical Biology, Vanderbilt University
- Departments of Chemical and Biomolecular Engineering, Chemical Biology, Vanderbilt University
- Departments of Physics and Astronomy, Chemical Biology, Vanderbilt University
- Departments of Vanderbilt Institute of Nanoscale Science and Engineering
- Departments of Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
29
|
Wang G, Li Z, Ma N. Next-Generation DNA-Functionalized Quantum Dots as Biological Sensors. ACS Chem Biol 2018; 13:1705-1713. [PMID: 29257662 DOI: 10.1021/acschembio.7b00887] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-functionalized quantum dots (DNA-QDs) have found considerable application in biosensing and bioimaging. Different from the first generation (I-G) DNA-QDs prepared via conventional bioconjugation chemistry, the second generation (II-G) DNA-QDs prepared via one-step DNA-templated QD synthesis features a defined number of DNA valencies (usually monovalency), which is preferable for controlled assembly and biological targeting. In this review, we summarize recent progress in designing QD probes based on II-G DNA-QDs for advanced sensing and imaging applications. It opens up new avenues for highly sensitive and intelligent sensing of a range of disease-relevant biomolecules in vitro and in living cells.
Collapse
Affiliation(s)
- Ganglin Wang
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhi Li
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Nan Ma
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
30
|
Molecular Imaging with 68Ga Radio-Nanomaterials: Shedding Light on Nanoparticles. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Yao J, Li P, Li L, Yang M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater 2018; 74:36-55. [PMID: 29734008 DOI: 10.1016/j.actbio.2018.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022]
Abstract
According to recent research, nanotechnology based on quantum dots (QDs) has been widely applied in the field of bioimaging, drug delivery, and drug analysis. Therefore, it has become one of the major forces driving basic and applied research. The application of nanotechnology in bioimaging has been of concern. Through in vitro labeling, it was found that luminescent QDs possess many properties such as narrow emission, broad UV excitation, bright fluorescence, and high photostability. The QDs also show great potential in whole-body imaging. The QDs can be combined with biomolecules, and hence, they can be used for targeted drug delivery and diagnosis. The characteristics of QDs make them useful for application in pharmacy and pharmacology. This review focuses on various applications of QDs, especially in imaging, drug delivery, pharmaceutical analysis, photothermal therapy, biochips, and targeted surgery. Finally, conclusions are made by providing some critical challenges and a perspective of how this field can be expected to develop in the future. STATEMENT OF SIGNIFICANCE Quantum dots (QDs) is an emerging field of interdisciplinary subject that involves physics, chemistry, materialogy, biology, medicine, and so on. In addition, nanotechnology based on QDs has been applied in depth in biochemistry and biomedicine. Some forward-looking fields emphatically reflected in some extremely vital areas that possess inspiring potential applicable prospects, such as immunoassay, DNA analysis, biological monitoring, drug discovery, in vitro labelling, in vivo imaging, and tumor target are closely connected to human life and health and has been the top and forefront in science and technology to date. Furthermore, this review has not only involved the traditional biochemical detection but also particularly emphasized its potential applications in life science and biomedicine.
Collapse
|
32
|
Mann VR, Powers AS, Tilley DC, Sack JT, Cohen BE. Azide-Alkyne Click Conjugation on Quantum Dots by Selective Copper Coordination. ACS NANO 2018; 12:4469-4477. [PMID: 29608274 PMCID: PMC5966341 DOI: 10.1021/acsnano.8b00575] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Functionalization of nanocrystals is essential for their practical application, but synthesis on nanocrystal surfaces is limited by incompatibilities with certain key reagents. The copper-catalyzed azide-alkyne cycloaddition is among the most useful methods for ligating molecules to surfaces, but has been largely useless for semiconductor quantum dots (QDs) because Cu+ ions quickly and irreversibly quench QD fluorescence. To discover nonquenching synthetic conditions for Cu-catalyzed click reactions on QD surfaces, we developed a combinatorial fluorescence assay to screen >2000 reaction conditions to maximize cycloaddition efficiency while minimizing QD quenching. We identify conditions for complete coupling without significant quenching, which are compatible with common QD polymer surfaces and various azide/alkyne pairs. Based on insight from the combinatorial screen and mechanistic studies of Cu coordination and quenching, we find that superstoichiometric concentrations of Cu can promote full coupling if accompanied by ligands that selectively compete with the Cu from the QD surface but allow it to remain catalytically active. Applied to the conjugation of a K+ channel-specific peptidyl toxin to CdSe/ZnS QDs, we synthesize unquenched QD conjugates and image their specific and voltage-dependent affinity for K+ channels in live cells.
Collapse
Affiliation(s)
- Victor R. Mann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alexander S. Powers
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Drew C. Tilley
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, United States
| | - Jon T. Sack
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, United States
| | - Bruce E. Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Corresponding Author:
| |
Collapse
|
33
|
Pellico J, Llop J, Fernández-Barahona I, Bhavesh R, Ruiz-Cabello J, Herranz F. Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1549580. [PMID: 29358900 PMCID: PMC5735613 DOI: 10.1155/2017/1549580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/01/2017] [Indexed: 12/12/2022]
Abstract
The combination of the size-dependent properties of nanomaterials with radioisotopes is emerging as a novel tool for molecular imaging. There are numerous examples already showing how the controlled synthesis of nanoparticles and the incorporation of a radioisotope in the nanostructure offer new features beyond the simple addition of different components. Among the different nanomaterials, iron oxide-based nanoparticles are the most used in imaging because of their versatility. In this review, we will study the different radioisotopes for biomedical imaging, how to incorporate them within the nanoparticles, and what applications they can be used for. Our focus is directed towards what is new in this field, what the nanoparticles can offer to the field of nuclear imaging, and the radioisotopes hybridized with nanomaterials for use in molecular imaging.
Collapse
Affiliation(s)
- Juan Pellico
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia, Spain
| | - Irene Fernández-Barahona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Riju Bhavesh
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jesús Ruiz-Cabello
- Departamento Química Física II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Fernando Herranz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
34
|
Nanda SS, Kim MJ, Kim K, Papaefthymiou GC, Selvan ST, Yi DK. Recent advances in biocompatible semiconductor nanocrystals for immunobiological applications. Colloids Surf B Biointerfaces 2017; 159:644-654. [DOI: 10.1016/j.colsurfb.2017.08.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/30/2022]
|