1
|
Sundaresan P, Lee TY. Electrochemical sensor for selective diquat detection based on samarium-stannate-nanoparticle-anchored titanium aluminum carbide MXene nanocomposites. Food Chem 2025; 477:143487. [PMID: 39999554 DOI: 10.1016/j.foodchem.2025.143487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025]
Abstract
The persistent presence of diquat (DQ) residue poses a significant threat to human health, underscoring the need to monitor DQ levels in agricultural samples. This is crucial for both precision and post-harvest agriculture, which require non-destructive, rapid, and cost-effective analytical methods using electrochemical detection. We developed a novel nanocomposite, composed of samarium stannate (Sm2Sn2O7) nanoparticles anchored on an MXene (Ti3Al(1-x)C2-OH(x); TAC-1), for the electrochemical quantification of DQ. A three-dimensional titanium aluminum carbide MXene surface was hydroxylated and functionalized with Sm2Sn2O7 nanoparticles using a combustion method. The resulting heterogeneous TAC-1-Sm2Sn2O7 composite contained active sites that enabled selective and sensitive DQ detection owing to the synergistic effects of the enhanced electrocatalytic sites and rapid charge transfer. Under real-world conditions, a TAC-1-Sm2Sn2O7-modified screen-printed carbon electrode sensor exhibited outstanding electrochemical activity toward DQ, with good recovery (98 %) from prepared samples. Hence, the designed sensor electrode is well suited for DQ monitoring.
Collapse
Affiliation(s)
- Periyasamy Sundaresan
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Yoon Lee
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Technology Education, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
An Y, Han J, Gao X, Yang R, Zhang W, Ren R, Li L, Jiang W, Wang A, Ren N. Few-layer MoS 2 co-assembly with GO to optimize defect channels and stability of GO membranes for high-performance organic-inorganic separation. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137770. [PMID: 40037191 DOI: 10.1016/j.jhazmat.2025.137770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
The selective separation of organic compounds and inorganic salts is essential for wastewater recycling in fine chemical industries such as pharmaceuticals and pesticides. Membrane separation technology offers a promising solution. However, conventional organic membranes often face challenges related to precise separation and solvent resistance. While graphene oxide (GO) membranes exhibit excellent solvent resistance, their separation performance and structural stability require further improvement. In this study, we developed a GO/few-layer molybdenum disulfide (FLMoS2) membrane via co-assembly. The optimized GO/FLMoS2 membrane demonstrated a water permeability of 28.4 LMH/bar, approximately four times higher than conventional GO membranes, and achieved a separation factor exceeding 900 for organic/inorganic mixtures-among the highest reported for two-dimensional (2D) membranes. Comprehensive characterization, including low-field nuclear magnetic resonance (LF-NMR), revealed that this superior performance was attributed to controlled defect channels, enhanced interlayer cross-linking, and the intrinsic rigidity of FLMoS2, which provided high structural stability and minimal swelling. Moreover, mechanical strength assessments, including critical destructive load force and nanoindentation tests, confirmed significant improvement in structural robustness. As a result, the GO/FLMoS2 membrane maintained stable water permeability and separation efficiency over 100 hours of continuous operation and six chemical cleaning cycles, demonstrating its potential for sustainable wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Yechen An
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinglong Han
- State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Xiaoxu Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Ruijie Yang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AL, Canada
| | - Wenhai Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources College of Chemistry, Xinjiang University, Urumqi, Beijing, PR China
| | - Ruiyun Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Luwei Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wenli Jiang
- Department of Civil & Environmental Engineering, University of California, Berkeley, CA 94720, United States.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Eco-Environment, Harbin Institute of Technology, Shenzhen 518055, PR China
| |
Collapse
|
3
|
Chao S, Xu M, Xue Y, Wu Q, Guo Y, Li J, Javed MS, Li C, Li J, Zhang W. Hexagon holes MXene with polyvalent titanium interface enabled ultra-stable storage of potassium-ions. J Colloid Interface Sci 2025; 686:650-659. [PMID: 39919510 DOI: 10.1016/j.jcis.2025.01.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
In order to prevent the energy density attenuation caused by MXene Ti3C2 fragmentation during the long period potassium-ions storage in aqueous systems, the hexagon holes Ti3C2 are constructed by using the coordination strategy of defect tuning and in-situ micro-oxidation. Through experiments and theoretical calculations,it is proved that Ti4+-O-K-Ti2+/3+ polyvalent titanium interfaces improve the reaction kinetics, enhance the adsorption activity for potassium-ions, and decrease the adsorption energy barrier. The antioxidant mechanism of hexagon holes Ti3C2 with polyvalent titanium for potassium-ions storage in aqueous system is revealed. This provides a new way for the practical application of ultra-stable potassium-ions storage.
Collapse
Affiliation(s)
- Shaofei Chao
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001 China
| | - Man Xu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001 China
| | - Yanhui Xue
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001 China
| | - Qiong Wu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001 China.
| | - Yu Guo
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001 China
| | - Junyan Li
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Jilin University, Changchun 130012 China
| | | | - Chunyao Li
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001 China
| | - Junjie Li
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001 China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Electron Microscopy Center, Jilin University, Changchun 130012 China.
| |
Collapse
|
4
|
Wei J, Ye P, Zhang Y, Zheng J, Hao Q, Zhang W, Bao H, Teng B. Balancing catalyst-intermediate interactions: Unlocking high-performance MXene-supported catalysts for two-electron water oxidation reaction from single atoms to nanoparticles. ENVIRONMENTAL RESEARCH 2025; 272:121207. [PMID: 39988045 DOI: 10.1016/j.envres.2025.121207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Two-electron water oxidation reaction (2e-WOR) provides an eco-friendly and cost-efficient approach to H2O2 synthesis. ZnO-based catalysts exhibit outstanding H2O2 activity and selectivity. Exploring the relationship between the structure of different zinc-based catalysts and their 2e-WOR performance is crucial for the rational design and development of high-performance catalysts. In this work, MXene (Ti3C2Tx) nanosheets were employed as supports to prepare zinc single atoms, ZnO nanoclusters and nanoparticles on MXene. Structural characterization, electrocatalytic evaluation, and density functional theory (DFT) calculations revealed distinct differences in catalyst performance. Zn-SA/MXene and ZnO-NC/MXene exhibit strong interactions with OH radicals, resulting in adsorption energies that greatly exceed the optimal range of -2.4∼-1.6 eV. This excessive interaction hinders efficient hydrogen peroxide production. In contrast, ZnO-NP/MXene achieves a balanced interaction with OH, with adsorption energy approaching the optimal range, leading to superior 2e-WOR activity. These findings highlight the critical role of tuning the interaction strength between active sites and OH radicals to achieve optimal catalytic performance. This work offers valuable theoretical insights and experimental validation for designing high-performance 2e-WOR catalysts, demonstrating that neither excessively strong nor weak interactions are conducive to maximizing efficiency.
Collapse
Affiliation(s)
- Jiangtao Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Pengyang Ye
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yaqian Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiayu Zheng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qinglan Hao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Weiyi Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Haihong Bao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
5
|
Lee S, Jang JD, Jeong YJ, Lee Y, Roh JW, Hong S, Kim H, Lim J, Jin HM. Tuning MXene Pathways via Silver Nanoparticle Size Variations for Anode-Free Battery Applications. J Phys Chem Lett 2025; 16:1787-1795. [PMID: 39937147 DOI: 10.1021/acs.jpclett.4c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
MXenes, a class of two-dimensional titanium carbide materials, have emerged as promising materials for film-based applications due to their exceptional properties. However, their densely layered structures hinder ion diffusion, metal-ion mobility, and nanoscale particle transfer, limiting their potential in energy-related applications. Expanding and controlling interlayer spacing is essential for overcoming these limitations and optimizing MXene performance. In this study, silver nanoparticles (AgNPs) measuring 20 and 55 nm in size were incorporated into dense MXene structures to control and expand their pathways. X-ray diffraction confirmed the lamellar structure of pristine MXene, and detailed analyses using electron microscopy and small-angle neutron scattering demonstrated that the size and concentration of AgNPs directly influenced pathway expansion. The interlayer spacing increased significantly, with widths growing from 2.4 nm to ∼25 nm as the AgNP parameters varied. Electrochemical impedance spectroscopy results revealed that the densely packed structure of pristine MXene was unsuitable for use as an anode-current collector coating in batteries. In contrast, the MXene/AgNP composite demonstrated effective functionality due to the expanded pathways, which improved ion transfer and conductivity. These findings underscore the importance of pathway engineering and the use of additive insertion methods in advancing MXene-based materials for energy storage and other functional applications.
Collapse
Affiliation(s)
- Sangho Lee
- Neutron Science Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Yu-Jun Jeong
- Department of Physics and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Yonghee Lee
- Department of Nano & Advanced Materials Science and Engineering, Kyungpook National University, Sangju-si, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jong Wook Roh
- Department of Nano & Advanced Materials Science and Engineering, Kyungpook National University, Sangju-si, Gyeongsangbuk-do 37224, Republic of Korea
| | - Seokjae Hong
- Neutron Science Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Hyungsub Kim
- Neutron Science Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero 989 Beon-Gil, Yuseong-gu, Daejeon, 34057, Republic of Korea
- Advanced Energy Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jisoo Lim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeong Min Jin
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Kawai K, Ando Y, Okubo M. Machine Learning-Assisted Survey on Charge Storage of MXenes in Aqueous Electrolytes. SMALL METHODS 2025; 9:e2400062. [PMID: 38530036 DOI: 10.1002/smtd.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Pseudocapacitance is capable of both high power and energy densities owing to its fast chemical adsorption with substantial charge transfer. 2D transition-metal carbides/nitrides (MXenes) are an emerging class of pseudocapacitive electrode materials. However, the factors that dominate the physical and chemical properties of MXenes are intercorrelated with each other, giving rise to challenges in the quantitative assessment of their discriminating importance. In this perspective, literature data on the specific capacitance of MXene electrodes in aqueous electrolytes is comprehensively surveyed and analyzed using machine-learning techniques. The specific capacitance of MXene electrodes shows strong dependency on their interlayer spacing, where confined H2O in the interlayer space should play a key role in the charge storage mechanism. The electrochemical behavior of MXene electrodes is overviewed based on atomistic insights obtained from data-driven approaches.
Collapse
Affiliation(s)
- Kosuke Kawai
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yasunobu Ando
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba, Ibaraki, 305-8568, Japan
| | - Masashi Okubo
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
7
|
Vigneshwaran J, Sakthivel A, Kumari A, Narayan RL, Chakkravarthy V, Ghosh D, Jose SP. Efficiently Designed Three-Dimensional Architecture of CoMn 2O 4 Decorated V 2CT x MXene for Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67553-67566. [PMID: 39579114 DOI: 10.1021/acsami.4c09937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The structure, morphology, stoichiometry, and chemical characterization of the V2CTx MXene, CoMn2O4, and V2C@CoMn2O4 nanocomposite, prepared by using a soft template method, have been studied. The electron microscopy studies reveal that the V2C@CoMn2O4 composite incorporates mesoporous spheres of CoMn2O4 within the 2D layered structure of MXene. The specific capacitance of the composite electrode is ∼570 F g-1 at 1 A g-1, which is significantly higher than that of the sum of the individual components. It also exhibits great rate capability and a Coulombic efficiency of ∼96.5% over 10000 cycles. An asymmetric supercapacitor prototype created with V2C@CoMn2O4//activated carbon outperformed other reported ASCs in terms of achieving a high energy density of 62 Wh kg-1 at a power density of 440 W kg-1. The improved response of V2C@CoMn2O4 and ASC is attributed to the enhanced active area available for charge transfer and the synergistic interaction between CoMn2O4 spherical particles and nanolayered MXene. Supporting density functional theory (DFT) calculations are performed to understand the impact of composite heterojunction formation on its detailed electronic structure. Our atomistic simulations reveal that by incorporating CoMn2O4 in V2C, the density of electronic states at the Fermi level increases, boosting the charge transfer characteristics. These modifications in turn enhance the charge storage capabilities of heterojunction. Finally, the merits of the V2C@CoMn2O4 composite electrode are discussed by comparing it with those of other existing high-performance MXene-based composite electrodes.
Collapse
Affiliation(s)
- J Vigneshwaran
- Advanced Materials Laboratory, School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Arunkumar Sakthivel
- CSIR-Central Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankita Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - R L Narayan
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - V Chakkravarthy
- Welding and Additive Manufacturing Centre, Cranfield University, Bedfordshire, Cranfield MK430AL, United Kingdom
| | - Dibyajyoti Ghosh
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sujin P Jose
- Advanced Materials Laboratory, School of Physics, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| |
Collapse
|
8
|
Kaleem Shabbir M, Arif F, Asghar H, Irum Memon S, Khanum U, Akhtar J, Ali A, Ramzan Z, Aziz A, Memon AA, Hussain Thebo K. Two-Dimensional MXene-Based Electrocatalysts: Challenges and Opportunities. CHEM REC 2024; 24:e202400047. [PMID: 39042918 DOI: 10.1002/tcr.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/22/2024] [Indexed: 07/25/2024]
Abstract
MXene, regarded as cutting-edge two-dimensional (2D) materials, have been widely explored in various applications due to their remarkable flexibility, high specific surface area, good mechanical strength, and interesting electrical conductivity. Recently, 2D MXene has served as a ideal platform for the design and development of electrocatalysts with high activity, selectivity, and stability. This review article provides a detailed description of the structural engineering of MXene-based electrocatalysts and summarizes the uses of 2D MXene in hydrogen evolution reactions, nitrogen reduction reactions, oxygen evolution reactions, oxygen reduction reactions, and methanol/ethanol oxidation. Then, key issues and prospects for 2D MXene as a next-generation platform in fundamental research and real-world electrocatalysis applications are discussed. Emphasis will be given to material design and enhancement techniques. Finally, future research directions are suggested to improve the efficiency of MXene-based electrocatalysts.
Collapse
Affiliation(s)
- Muhammad Kaleem Shabbir
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Fozia Arif
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Haleema Asghar
- Government Graduate College for Women Jhelum, Jhelum, 49600, Pakistan
| | - Sanam Irum Memon
- Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro
| | - Urooj Khanum
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Akbar Ali
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zeeshan Ramzan
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
| | - Aliya Aziz
- Department of Chemistry, University of Kotli, Kotli, AJK 11100, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
| | - Khalid Hussain Thebo
- Functional nanomaterials Lab (FNL), Department of Chemistry Mirpur, University of Science and Technology (MUST), -10250 (AJK), Mirpur, Pakistan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Wenhua Road, China
| |
Collapse
|
9
|
Li H, Yang K, Hu H, Qin C, Yu B, Zhou S, Jiang T, Ho D. MXene Supported Surface Plasmon Polaritons for Optical Microfiber Ammonia Sensing. Anal Chem 2024; 96:11823-11831. [PMID: 38994642 DOI: 10.1021/acs.analchem.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The properties of surface plasmons are notoriously dependent on the supporting materials system. However, new capabilities cannot be obtained until the technique of surface plasmon enabled by advanced two-dimensional materials is well understood. Herein, we present the experimental demonstration of surface plasmon polaritons (SPPs) supported by single-layered MXene flakes (Ti3C2Tx) coating on an optical microfiber and its application as an ammonia gas sensor. Enabled by its high controllability of chemical composition, unique atomistically thin layered structure, and metallic-level conductivity, MXene is capable of supporting not only plasmon resonances across a wide range of wavelengths but also a selective sensing mechanism through frequency modulation. Theoretical modeling and optics experiments reveal that, upon adsorbing ammonia molecules, the free electron motion at the interface between the SiO2 microfiber and the MXene coating is modulated (i.e., the modulation of the SPPs under applied light), thus inducing a variation in the evanescent field. Consequently, a wavelength shift is produced, effectively realizing a selective and highly sensitive ammonia sensor with a 100 ppm detection limit. The MXene supported SPPs open a promising path for the application of advanced optical techniques toward gas and chemical analysis.
Collapse
Affiliation(s)
- Hui Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Anhui 230601, China
- Key Laboratory of OptoElectronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Optoelectronic Engineering, Anhui University, Anhui 230601, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Kai Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Benli Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Anhui 230601, China
- Key Laboratory of OptoElectronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Optoelectronic Engineering, Anhui University, Anhui 230601, China
| | - Sheng Zhou
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Anhui 230601, China
- Key Laboratory of OptoElectronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Optoelectronic Engineering, Anhui University, Anhui 230601, China
| | - Tongtong Jiang
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong 999077, China
| |
Collapse
|
10
|
Fang H, Thakur A, Zahmatkeshsaredorahi A, Fang Z, Rad V, Shamsabadi AA, Pereyra C, Soroush M, Rappe AM, Xu XG, Anasori B, Fakhraai Z. Stabilizing Ti 3C 2T x MXene flakes in air by removing confined water. Proc Natl Acad Sci U S A 2024; 121:e2400084121. [PMID: 38968114 PMCID: PMC11252812 DOI: 10.1073/pnas.2400084121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/01/2024] [Indexed: 07/07/2024] Open
Abstract
MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti[Formula: see text]C[Formula: see text]T[Formula: see text] MXene monoflakes have exceptional thermal stability at temperatures up to 600[Formula: see text]C in air, while multiflakes readily oxidize in air at 300[Formula: see text]C. Density functional theory calculations indicate that confined water between Ti[Formula: see text]C[Formula: see text]T[Formula: see text] flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti[Formula: see text]C[Formula: see text]T[Formula: see text] films at 600[Formula: see text]C, resulting in substantial stability improvement in multiflake films (can withstand 600[Formula: see text]C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti[Formula: see text]C[Formula: see text]T[Formula: see text] oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability.
Collapse
Affiliation(s)
- Hui Fang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| | - Anupma Thakur
- School of Materials Engineering, Purdue University, West Lafayette, IN47907
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, IN46202
| | | | - Zhenyao Fang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| | - Vahid Rad
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA19104
| | | | - Claudia Pereyra
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA19104
| | - Andrew M. Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| | - Xiaoji G. Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA18015
| | - Babak Anasori
- School of Materials Engineering, Purdue University, West Lafayette, IN47907
- Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, IN46202
- School of Mechanical Engineering, Purdue University, West Lafayette, IN47907
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
11
|
Zhang L, Chen J, Wei G, Li H, Wang G, Li T, Wang J, Jiang Y, Bao L, Zhang Y. Construction of Monolayer Ti 3C 2T x MXene on Nickel Foam under High Electrostatic Fields for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:887. [PMID: 38786843 PMCID: PMC11124477 DOI: 10.3390/nano14100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Ti3C2Tx MXene, as a common two-dimensional material, has a wide range of applications in electrochemical energy storage. However, the surface forces of few-layer or monolayer Ti3C2Tx MXene lead to easy agglomeration, which hinders the demonstration of its performance due to the characteristics of layered materials. Herein, we report a facile method for preparing monolayer Ti3C2Tx MXene on nickel foam to achieve a self-supporting structure for supercapacitor electrodes under high electrostatic fields. Moreover, the specific capacitance varies with the deposition of different-concentration monolayer Ti3C2Tx MXene on nickel foam. As a result, Ti3C2Tx/NF has a high specific capacitance of 319 mF cm-2 at 2 mA cm-2 and an excellent long-term cycling stability of 94.4% after 7000 cycles. It was observed that the areal specific capacitance increases, whereas the mass specific capacitance decreases with the increasing loading mass. Attributable to the effect of the high electrostatic field, the self-supporting structure of the Ti3C2Tx/NF becomes denser as the concentration of the monolayer Ti3C2Tx MXene ink increases, ultimately affecting its electrochemical performance. This work provides a simple way to overcome the agglomeration problem of few-layer or monolayer MXene, then form a self-supporting electrode exhibiting excellent electrochemical performance.
Collapse
Affiliation(s)
- Liyong Zhang
- Department of Mechanical Engineering, Anhui Science and Technology University, Chuzhou 235000, China
| | - Jijie Chen
- Department of Mechanical Engineering, Anhui Science and Technology University, Chuzhou 235000, China
| | - Guangzhi Wei
- Department of Mechanical Engineering, Anhui Science and Technology University, Chuzhou 235000, China
| | - Han Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Guanbo Wang
- Jiangsu Zhonggong High-End Equipment Research Institute Co., Ltd., Taizhou 235000, China
| | - Tongjie Li
- Department of Mechanical Engineering, Anhui Science and Technology University, Chuzhou 235000, China
| | - Juan Wang
- Department of Mechanical Engineering, Anhui Science and Technology University, Chuzhou 235000, China
| | - Yehu Jiang
- Anhui Zhongxin Technology Co., Ltd., Chuzhou 235000, China
| | - Le Bao
- Department of Mechatronics Engineering, Hanyang University, Ansan 15588, Republic of Korea;
| | - Yongxing Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Anhui Province Key Laboratory of Intelligent Computing and Applications, Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
12
|
Yuan T, Zhang Z, Liu Q, Liu XT, Tao SQ, Yao CL. Cellulose nanofiber/MXene (Ti 3C 2T x)/liquid metal film as a highly performance and flexible electrode material for supercapacitors. Int J Biol Macromol 2024; 262:130119. [PMID: 38346617 DOI: 10.1016/j.ijbiomac.2024.130119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
In recent times, there has been significant interest in the utilization of cellulose nanofiber (CNF) films as the foundation for supercapacitors due to their three-dimensional structure, flexibility and eco-friendliness. An ultrasonic and vacuum filtration method was used to prepare a hybrid film consisting of MXene (Ti3C2Tx), CNF and liquid metal (LM). The combination of CNF and LM with MXene produces a porous structure with higher electrical conductivity, which facilitates the transportation of ions and electrons within the composition and confers the material with heightened electrochemical properties. The CNF/MXene/LM electrode has a significant area capacitance of 871.3 mF cm-2 at a current density of 5 mA cm-2. The hybrid film demonstrates excellent stability, maintaining a high conductivity of 546.4 S∙cm-1 and retaining 96.9 % capacitance after 2000 cycles at a current density of 10 mA cm-2. By utilizing the thin film as an electrode, a high-performance quasi-solid supercapacitor was fabricated, with a remarkably thin thickness of only 0.319 mm. Supercapacitors show exceptional electrical properties, including a surface-specific capacitance of 188.2 mF cm-2 at a current density of 5 mA cm-2. This study indicates that flexible electrodes made from cellulose nanofiber have extensive potential in the realm of supercapacitors.
Collapse
Affiliation(s)
- Tao Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qian Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiu-Tong Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Qu Tao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Chun-Li Yao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
13
|
Huang H, Yang W. MXene-Based Micro-Supercapacitors: Ink Rheology, Microelectrode Design and Integrated System. ACS NANO 2024. [PMID: 38307615 DOI: 10.1021/acsnano.3c10246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
MXenes have shown great potential for micro-supercapacitors (MSCs) due to the high metallic conductivity, tunable interlayer spacing and intercalation pseudocapacitance. In particular, the negative surface charge and high hydrophilicity of MXenes make them suitable for various solution processing strategies. Nevertheless, a comprehensive review of solution processing of MXene MSCs has not been conducted. In this review, we present a comprehensive summary of the state-of-the-art of MXene MSCs in terms of ink rheology, microelectrode design and integrated system. The ink formulation and rheological behavior of MXenes for different solution processing strategies, which are essential for high quality printed/coated films, are presented. The effects of MXene and its compounds, 3D electrode structure, and asymmetric design on the electrochemical properties of MXene MSCs are discussed in detail. Equally important, we summarize the integrated system and intelligent applications of MXene MSCs and present the current challenges and prospects for the development of high-performance MXene MSCs.
Collapse
Affiliation(s)
- Haichao Huang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Weiqing Yang
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
14
|
Park S, Choi SH, Kim JM, Ji S, Kang S, Yim S, Myung S, Kim SK, Lee SS, An KS. Nanoarchitectonics of MXene Derived TiO 2 /Graphene with Vertical Alignment for Achieving the Enhanced Supercapacitor Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305311. [PMID: 37798936 DOI: 10.1002/smll.202305311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Structural engineering and hybridization of heterogeneous 2D materials can be effective for advanced supercapacitor. Furthermore, architectural design of electrodes particularly with vertical construction of structurally anisotropic graphene nanosheets, can significantly enhance the electrochemical performance. Herein, MXene-derived TiO2 nanocomposites hybridized with vertical graphene is synthesized via CO2 laser irradiation on MXene/graphene oxide nanocomposite film. Instantaneous photon energy by laser irradiation enables the formation of vertical graphene structures on nanocomposite films, presenting the controlled anisotropy in free-standing film. This vertical structure enables improved supercapacitor performance by forming an open structure, increasing the electrolyte-electrode interface, and creating efficient electron transport path. In addition, the effective oxidation of MXene nanosheets by instantaneous photon energy leads to the formation of rutile TiO2 . TiO2 nanoparticles directly generated on graphene enables the effective current path, which compensates for the low conductivity of TiO2 and enables the functioning of an effective supercapacitor by utilizing its pseudocapacitive properties. The resulting film exhibits excellent specific areal capacitance of 662.9 mF cm-2 at a current density of 5 mA cm-2 . The film also shows superb cyclic stability during 40 000 repeating cycles, maintaining high capacitance. Also, the pseudocapacitive redox reaction kinetics is evaluated, showing fast redox kinetics with potential for high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Seungyoung Park
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Seo Hyun Choi
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Ju Min Kim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Seulgi Ji
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Saewon Kang
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Soonmin Yim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sung Myung
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Seong K Kim
- Department of Chemical Engineering, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon, 34430, Republic of Korea
| | - Sun Sook Lee
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Ki-Seok An
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| |
Collapse
|
15
|
Zhou L, Wang J, Xiong Z, Fan Y, Wang Y. Chirality-Selected Coacervate by Chiral Gemini Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17488-17497. [PMID: 37990365 DOI: 10.1021/acs.langmuir.3c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Chiral surfactants present opportunities to self-assemble into supramolecules with a chiral trait; however, the effects of stereochemistry on the formation of simple coacervates remain unclear. Here, we investigate the chirality-selected phase behavior in mixtures of chiral gemini surfactant 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-2,3-butanediol (12-4(OH)2-12) with an oppositely charged chiral mandelic acid (MA). It demonstrates that altering the chirality of surfactants yields a heightened ability to regulate the phase behavior, leading to the formation of three different network-like structures, i.e., wormlike micelle, coacervate, and hydrogel, in the racemate, enantiomer, and mesomer, respectively. The different aggregate structures arise from the intermolecular and intramolecular hydrogen-bond interactions of the two hydroxyl groups located at stereogenic centers. Intriguingly, although they contain similar microstructures, the solid-like hydrogel and liquid-like wormlike micelle show similar low hydration ability and have no encapsulation capability, whereas only coacervate formed by the enantiomers of 12-4(OH)2-12 displays liquid-like characteristics, strong capacity to sequester diverse solutes, and high affinity for tightly bound water simultaneously. These findings further highlight the unique and advantageous properties of coacervates as a promising model for exploring the biological process and understanding how chirality plays a crucial role in early life scenarios and cell evolution at the molecular level.
Collapse
Affiliation(s)
- Lili Zhou
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Jie Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichen Xiong
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
16
|
Aravind AM, Tomy M, Kuttapan A, Kakkassery Aippunny AM, Suryabai XT. Progress of 2D MXene as an Electrode Architecture for Advanced Supercapacitors: A Comprehensive Review. ACS OMEGA 2023; 8:44375-44394. [PMID: 38046319 PMCID: PMC10688139 DOI: 10.1021/acsomega.3c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023]
Abstract
Supercapacitors, designed to store more energy and be proficient in accumulating more energy than conventional batteries with numerous charge-discharge cycles, have been developed in response to the growing demand for energy. Transition metal carbides/nitrides called MXenes have been the focus of researchers' cutting-edge research in energy storage. The 2D-layered MXenes are a hopeful contender for the electrode material due to their unique properties, such as high conductivity, hydrophilicity, tunable surface functional groups, better mechanical properties, and outstanding electrochemical performance. This newly developed pseudocapacitive substance benefits electrochemical energy storage because it is rich in interlayer ion diffusion pathways and ion storage sites. Making MXene involves etching the MAX phase precursor with suitable etchants, but different etching methods have distinct effects on the morphology and electrochemical properties. It is an overview of the recent progress of MXene and its structure, synthesis, and unique properties. There is a strong emphasis on the effects of shape, size, electrode design, electrolyte behavior, and other variables on the charge storage mechanism and electrochemical performance of MXene-based supercapacitors. The electrochemical application of MXene and the remarkable research achievements in MXene-based composites are an intense focus. Finally, in light of further research and potential applications, the challenges and future perspectives that MXenes face and the prospects that MXenes present have been highlighted.
Collapse
Affiliation(s)
- Anu Mini Aravind
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | - Merin Tomy
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| | | | | | - Xavier Thankappan Suryabai
- Centre
for Advanced Materials Research, Department of Physics, Government
College for Women, University of Kerala, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
17
|
Zheng J, Li J, Fu Q, Zhang L, Zhu X, Liao Q. Boosting Carbon Dioxide Reduction in a Photocatalytic Fuel Cell with a Bubbling Fluidized Cathode: Dual Function of Titanium Carbide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16182-16190. [PMID: 37906836 DOI: 10.1021/acs.langmuir.3c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photoelectrochemical reduction of carbon dioxide (CO2) is a promising avenue to realize resourceful utilization of carbon dioxide and mitigate the energy shortage. Herein, a photocatalytic fuel cell with a bubbling fluidized cathode (PFC-BFC) is proposed to increase the performance of the photocatalytic CO2 reduction reaction (CO2RR). Titanium carbide (Ti3C2) is first used as a fluidized cathode catalyst with the dual features of superior capacitance and high CO2RR catalytic activity. Compared with the conventional PFC system, the as-proposed PFC-BFC system exhibits a higher gas production performance. Particularly, the generation rate and Faraday efficiency for CH4 production reach to 37.2 μmol g-1 h-1 and 72%, which are 10.9 and 6.5 times higher than that of the conventional PFC system, respectively. The bubbling fluidized cathode allows a rapid electron transfer between catalysts and the current collector and an efficient diffusion of catalysts in the whole solution, thus remarkably increasing the effective reaction area of the CO2RR. In addition, the fluidized reaction mechanism of charging/discharging-coupled CO2RR is investigated. Significantly, a magnified PFC-BFC system is designed and exhibits a similar gas generation rate compared to that of the small-scale system, indicating a good potential of scaling up in the industry applications. These results demonstrated that the proposed PFC-BFC system can maximize the utilization of catalyst active sites and enhance the reaction kinetics, providing an alternative design for the application of CO2RR.
Collapse
Affiliation(s)
- Jili Zheng
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Jun Li
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qian Fu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Liang Zhang
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Xun Zhu
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Qiang Liao
- Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| |
Collapse
|
18
|
Zhang A, Zhang Q, Fu H, Zong H, Guo H. Metal-Organic Frameworks and Their Derivatives-Based Nanostructure with Different Dimensionalities for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303911. [PMID: 37541305 DOI: 10.1002/smll.202303911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Indexed: 08/06/2023]
Abstract
With the urgent demand for the achievement of carbon neutrality, novel nanomaterials, and environmentally friendly nanotechnologies are constantly being explored and continue to drive the sustainable development of energy storage and conversion installations. Among various candidate materials, metal-organic frameworks (MOFs) and their derivatives with unique nanostructures have attracted increasing attention and intensive investigation for the construction of next generation electrode materials, benefitting from their unique intrinsic characteristics such as large specific surface area, high porosity, and chemical tunability as well as the interconnected channels. Nevertheless, the poor electrochemical conductivity severely limits their application prospects, hence a variety of nanocomposites with multifarious structures have been designed and proposed from different dimensionalities. In this review, recent advances based on MOFs and their derivatives in different dimensionalities ranging from 1D nanopowders to 2D nanofilms and 3D aerogels, as well as 4D self-supporting electrodes for supercapacitors are summarized and highlighted. Furthermore, the key challenges and perspectives of MOFs and their derivatives-based materials for the practical and sustainable electrochemical energy conversion and storage applications are also briefly discussed, which may be served as a guideline for the design of next-generation electrode materials from different dimensionalities.
Collapse
Affiliation(s)
- Aitang Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Quan Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hucheng Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hanwen Zong
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
19
|
Wang R, Zhang F, Yang K, Xiong Y, Tang J, Chen H, Duan M, Li Z, Zhang H, Xiong B. Review of two-dimensional nanomaterials in tribology: Recent developments, challenges and prospects. Adv Colloid Interface Sci 2023; 321:103004. [PMID: 37837702 DOI: 10.1016/j.cis.2023.103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
From our ordinary lives to various mechanical systems, friction and wear are often unavoidable phenomena that are heavily responsible for excessive expenditures of nonrenewable energy, the damages and failures of system movement components, as well as immense economic losses. Thus, achieving low friction and high anti-wear performance is critical for minimization of these adverse factors. Two-dimensional (2D) nanomaterials, including transition metal dichalcogenides, single elements, transition metal carbides, nitrides and carbonitrides, hexagonal boron nitride, and metal-organic frameworks have attracted remarkable interests in friction and wear reduction of various applications, owing to their atomic-thin planar morphologies and tribological potential. In this paper, we systematically review the current tribological progress on 2D nanomaterials when used as lubricant additives, reinforcement phases in the coatings and bulk materials, or a major component of superlubricity system. Additionally, the conclusions and prospects on 2D nanomaterials with the existing drawbacks, challenges and future direction in such tribological fields are briefly provided. Finally, we sincerely hope such a review will offer valuable lights for 2D nanomaterial-related researches dedicated on tribology in the future.
Collapse
Affiliation(s)
- Ruili Wang
- Faculty of Engineering, Huanghe Science and Technology University, Zhengzhou 450000, China
| | - Feizhi Zhang
- Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Central South University of Forestry & Technology, Changsha 410004, China; Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China.
| | - Kang Yang
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China.
| | - Yahui Xiong
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Jun Tang
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Hao Chen
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Mengchen Duan
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Zhenjie Li
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Honglei Zhang
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| | - Bangying Xiong
- Department of Mechanical Engineering, Anyang Institute of Technology, Avenue West of Yellow River, Anyang 455000, China
| |
Collapse
|
20
|
Zeng X, Zhao C, Jiang X, Yu R, Che R. Functional Tailoring of Multi-Dimensional Pure MXene Nanostructures for Significantly Accelerated Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303393. [PMID: 37291740 DOI: 10.1002/smll.202303393] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/21/2023] [Indexed: 06/10/2023]
Abstract
Transition metal carbide (Ti3 C2 Tx MXene), with a large specific surface area and abundant surface functional groups, is a promising candidate in the family of electromagnetic wave (EMW) absorption. However, the high conductivity of MXene limits its EMW absorption ability, so it remains a challenge to obtain outstanding EMW attenuation ability in pure MXene. Herein, by integrating HF etching, KOH shearing, and high-temperature molten salt strategies, layered MXene (L-MXene), network-like MXene nanoribbons (N-MXene NRs), porous MXene monolayer (P-MXene ML), and porous MXene layer (P-MXene L) are rationally constructed with favorable microstructures and surface states for EMW absorption. HF, KOH, and KCl/LiCl are used to functionalize MXene to tune its microstructure and surface state (F- , OH- , and Cl- terminals), thereby improving the EMW absorption capacity of MXene-based nanostructures. Impressively, with the unique structure, proper electrical conductivity, large specific surface area, and abundant porous defects, MXene-based nanostructures achieve good impedance matching, dipole polarization, and conduction loss, thus inheriting excellent EMW absorption performance. Consequently, L-MXene, N-MXene NRs, P-MXene ML, and P-MXene L enable a reflection loss (RL ) value of -43.14, -63.01, -60.45, and -56.50 dB with a matching thickness of 0.95, 1.51, 3.83, and 4.65 mm, respectively.
Collapse
Affiliation(s)
- Xiaojun Zeng
- Advanced Ceramic Materials Research Institute, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Chao Zhao
- Advanced Ceramic Materials Research Institute, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Xiao Jiang
- Advanced Ceramic Materials Research Institute, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
21
|
Zhang T, Chang L, Xiao X. Surface and Interface Regulation of MXenes: Methods and Properties. SMALL METHODS 2023; 7:e2201530. [PMID: 36732820 DOI: 10.1002/smtd.202201530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Since the discovery of Ti3 C2 Tx in 2011, 2D transition metal carbides, nitrides, and carbonitrides, known as MXenes, have been attracting great attention as the emerging member of 2D materials. The surface terminations, intercalants, and the interfaces between MXenes and other substances are of importance for tuning the properties of MXenes. For instance, surface termination of MXenes can change the density of states at the Fermi levels to make MXenes electronically tunable. Different terminations can lead to band opening and changes in behavior from metallic to semiconducting, as well as dramatic changes in the work function of MXenes. On the other hand, electron transfer occurring at the interface between MXenes and other substances due to the physical interaction/chemical bonding, changes the electron configuration of MXenes and realizes the functionalization. In this review, the most up-to-date progress of the surface and interface regulation of MXenes is comprehensively summarized, introducing the effect of various synthesis methods on the surface and interface chemistry, the routes on tuning the surface and interface chemistry, and the related potential applications. Finally, the perspective of the future research directions and challenges on surface and interface regulation is outlined.
Collapse
Affiliation(s)
- Tianze Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
- School of Physics, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Libo Chang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
- School of Physics, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Xu Xiao
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, China
- School of Physics, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| |
Collapse
|
22
|
Cho I, Selvaraj AR, Bak J, Kim H, Prabakar K. Mechanochemical Pretreated M n+1AX n (MAX) Phase to Synthesize 2D-Ti 3C 2T x MXene Sheets for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111741. [PMID: 37299644 DOI: 10.3390/nano13111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) MXenes sheet-like micro-structures have attracted attention as an effective electrochemical energy storage material due to their efficient electrolyte/cation interfacial charge transports inside the 2D sheets which results in ultrahigh rate capability and high volumetric capacitance. In this article, Ti3C2Tx MXene is prepared by a combination of ball milling and chemical etching from Ti3AlC2 powder. The effects of ball milling and etching duration on the physiochemical properties are also explored, as well as the electrochemical performance of as-prepared Ti3C2 MXene. The electrochemical performances of 6 h mechanochemically treated and 12 h chemically etched MXene (BM-12H) exhibit an electric double layer capacitance behavior with an enhanced specific capacitance of 146.3 F g-1 compared to 24 and 48 h treated samples. Moreover, 5000-cycle stability tested sample's (BM-12H) charge/discharge show increased specific capacitance due to the termination of the -OH group, intercalation of K+ ion and transformation to TiO2/Ti3C2 hybrid structure in a 3 M KOH electrolyte. Interestingly, a symmetric supercapacitor (SSC) device fabricated in a 1 M LiPF6 electrolyte in order to extend the voltage window up to 3 V shows a pseudocapacitance behavior due to Li on interaction/de-intercalation. In addition, the SSC shows an excellent energy and power density of 138.33 W h kg-1 and 1500 W kg-1, respectively. The ball milling pre-treated MXene exhibited an excellent performance and stability due to the increased interlayer distance between the MXene sheets and intercalation and deintercalation of Li+ ions.
Collapse
Affiliation(s)
- Inho Cho
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Aravindha Raja Selvaraj
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jinsoo Bak
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Heeje Kim
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Kandasamy Prabakar
- Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
23
|
Tan XQ, Mo W, Lin X, Loh JY, Mohamed AR, Ong WJ. Retrospective insights into recent MXene-based catalysts for CO 2 electro/photoreduction: how far have we gone? NANOSCALE 2023; 15:6536-6562. [PMID: 36942445 DOI: 10.1039/d2nr05718b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electro/photocatalytic CO2 reduction reaction (CO2RR) is a long-term avenue toward synthesizing renewable fuels and value-added chemicals, as well as addressing the global energy crisis and environmental challenges. As a result, current research studies have focused on investigating new materials and implementing numerous fabrication approaches to increase the catalytic performances of electro/photocatalysts toward the CO2RR. MXenes, also known as 2D transition metal carbides, nitrides, and carbonitrides, are intriguing materials with outstanding traits. Since their discovery in 2011, there has been a flurry of interest in MXenes in electrocatalysis and photocatalysis, owing to their several benefits, including high mechanical strength, tunable structure, surface functionality, high specific surface area, and remarkable electrical conductivity. Herein, this review serves as a milestone for the most recent development of MXene-based catalysts for the electrocatalytic and photocatalytic CO2RR. The overall structure of MXenes is described, followed by a summary of several synthesis pathways classified as top-down and bottom-up approaches, including HF-etching, in situ HF-formation, electrochemical etching, and halogen etching. Additionally, the state-of-the-art development in the field of both the electrocatalytic and photocatalytic CO2RR is systematically reviewed. Surface termination modulation and heterostructure engineering of MXene-based electro/photocatalysts, and insights into the reaction mechanism for the comprehension of the structure-performance relationship from the CO2RR via density functional theory (DFT) have been underlined toward activity enhancement. Finally, imperative issues together with future perspectives associated with MXene-based electro/photocatalysts are proposed.
Collapse
Affiliation(s)
- Xin-Quan Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Wuwei Mo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Xinlong Lin
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Jian Yiing Loh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Abdul Rahman Mohamed
- Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, 14300 Pulau Pinang, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363216, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
24
|
Xu J, Liu Z, Wang Q, Li J, Huang Y, Wang M, Cao L, Yao W, Wu H, Chen C. Facile Tailoring of Surface Terminations of MXenes by Doping Nb Element: Toward Extraordinary Pseudocapacitance Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15367-15376. [PMID: 36924166 DOI: 10.1021/acsami.2c21838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
MXenes show promising potential in supercapacitors due to their unique two-dimensional (2D) structure and abundant surface functional groups. However, most studies about MXenes have focused on tailoring surface structures by alternating synthesis methods or post-etch treatments, and little is known about the inherent relationship between surface groups and M elements. Herein, we propose a simple and novel strategy to adjust the surface structure of few-layered MXene flakes by adding a small amount of Nb element. Because of the strong affinity between Nb and O elements, the as-received V1.8Nb0.2CTx and Ti2.7Nb0.3C2Tx MXenes have much fewer -F functional groups and a higher O content than V2CTx and Ti3C2Tx MXenes, respectively. Thus, both V1.8Nb0.2CTx and Ti2.7Nb0.3C2Tx MXenes show enhanced pseudocapacitance performance. Especially, V1.8Nb0.2CTx delivers an ultrahigh volumetric capacitance of 1698 F/cm3 at a scan rate of 2 mV/s. Moreover, benefiting from the high activity of MAX precursors obtained through a fast self-propagating high-temperature synthesis, the etching time to produce V-based MXenes is much shorter than that in previous reports. Therefore, the results presented here are applicable to the surface engineering and rational design of 2D MXene materials and develop them into promising, cost-effective electrode materials for supercapacitors or other energy-storage equipment.
Collapse
Affiliation(s)
- Jianguang Xu
- School of Materials and Energy, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Zhiyong Liu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Qiang Wang
- School of Materials and Energy, Shanghai Key Laboratory of Engineering Materials Application and Evaluation, Shanghai Polytechnic University, Shanghai 201209, P. R. China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Junsheng Li
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Yuxiang Huang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, P. R. China
| | - Mengnan Wang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Linyu Cao
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Wei Yao
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, P. R. China
| | - Haijiang Wu
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, P. R. China
- Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, Hunan, P. R. China
| | - Chi Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, and Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| |
Collapse
|
25
|
Mokkath JH. Photo-response of water intercalated Ti 3C 2O 2 MXene. Phys Chem Chem Phys 2023; 25:9522-9531. [PMID: 36939062 DOI: 10.1039/d3cp00600j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides (MXenes) have drawn a lot of attention because of their unique physicochemical properties. Recent experimental and theoretical findings reveal that water intercalation in MXene results in surface reconstruction and hydrolysis. In the current study, we investigated the electronic and optical characteristics of the water-intercalated Ti3C2O2 MXene using first-principles quantum simulations via density functional theory (DFT) and time-dependent density functional theory (TD-DFT). We show that water intercalation impacts the electronic states close to the Fermi level, which has a considerable effect on the electronic and optical properties of Ti3C2O2 MXene. Importantly, we linked hydrolysis with the changes in the HOMO and LUMO states and with the optical properties. The findings in this study contribute to a better understanding of the photo-response of the water-intercalated MXene.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science And Technology, Doha Area, 7th Ring Road, P.O. Box 27235, Kuwait.
| |
Collapse
|
26
|
Otgonbayar Z, Yang S, Kim IJ, Oh WC. Recent Advances in Two-Dimensional MXene for Supercapacitor Applications: Progress, Challenges, and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:919. [PMID: 36903797 PMCID: PMC10005138 DOI: 10.3390/nano13050919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
MXene is a type of two-dimensional (2D) transition metal carbide and nitride, and its promising energy storage materials highlight its characteristics of high density, high metal-like conductivity, tunable terminals, and charge storage mechanisms known as pseudo-alternative capacitance. MXenes are a class of 2D materials synthesized by chemical etching of the A element in MAX phases. Since they were first discovered more than 10 years ago, the number of distinct MXenes has grown substantially to include numerous MnXn-1 (n = 1, 2, 3, 4, or 5), solid solutions (ordered and disordered), and vacancy solids. To date, MXenes used in energy storage system applications have been broadly synthesized, and this paper summarizes the current developments, successes, and challenges of using MXenes in supercapacitors. This paper also reports the synthesis approaches, various compositional issues, material and electrode topology, chemistry, and hybridization of MXene with other active materials. The present study also summarizes MXene's electrochemical properties, applicability in pliant-structured electrodes, and energy storage capabilities when using aqueous/non-aqueous electrolytes. Finally, we conclude by discussing how to reshape the face of the latest MXene and what to consider when designing the next generation of MXene-based capacitors and supercapacitors.
Collapse
Affiliation(s)
- Zambaga Otgonbayar
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Republic of Korea
| | - Sunhye Yang
- Korea Electrotechnology Reserch Institute, Next Generation Battery Research Center, 12, Jeongiui-gil, Seongsan-gu, Changwon-si 51543, Republic of Korea
| | - Ick-Jun Kim
- Korea Electrotechnology Reserch Institute, Next Generation Battery Research Center, 12, Jeongiui-gil, Seongsan-gu, Changwon-si 51543, Republic of Korea
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Republic of Korea
| |
Collapse
|
27
|
Peng J, Chen ZJ, Ding B, Cheng HM. Recent Advances for the Synthesis and Applications of 2-Dimensional Ternary Layered Materials. RESEARCH (WASHINGTON, D.C.) 2023; 6:0040. [PMID: 37040520 PMCID: PMC10076031 DOI: 10.34133/research.0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Layered materials with unique structures and symmetries have attracted tremendous interest for constructing 2-dimensional (2D) structures. The weak interlayer interaction renders them to be readily isolated into various ultrathin nanosheets with exotic properties and diverse applications. In order to enrich the library of 2D materials, extensive progress has been made in the field of ternary layered materials. Consequently, many brand-new materials are derived, which greatly extend the members of 2D realm. In this review, we emphasize the recent progress made in synthesis and exploration of ternary layered materials. We first classify them in terms of stoichiometric ratio and summarize their difference in interlayer interaction, which is of great importance to produce corresponding 2D materials. The compositional and structural characteristics of resultant 2D ternary materials are then discussed so as to realize desired structures and properties. As a new family of 2D materials, we overview the layer-dependent properties and related applications in the fields of electronics, optoelectronics, and energy storage and conversion. The review finally provides a perspective for this rapidly developing field.
Collapse
Affiliation(s)
- Jing Peng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zheng-jie Chen
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Baofu Ding
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
28
|
Xia Q, Fan Y, Li S, Zhou A, Shinde N, Mane RS. MXene-based chemical gas sensors: Recent developments and challenges. DIAMOND AND RELATED MATERIALS 2023; 131:109557. [PMID: 36415485 PMCID: PMC9671876 DOI: 10.1016/j.diamond.2022.109557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 06/01/2023]
Abstract
The long-running Covid-19 pandemic has forced researchers across the globe to develop novel sensors and sensor materials for detecting minute quantities of biogenic viruses with high accuracy in a short period. In this context, MXene galleries comprising carbon/nitride two-dimensional nanolayered materials have emerged as excellent host materials in chemical gas sensors owing to their multiple advantages, including high surface area, high electrical conductivity, good thermal/chemical conductivity and chemical stability, composition diversity, and layer-spacing tunability; furthermore, they are popular in clinical, medical, food production, and chemical industries. This review summarizes recent advances in the synthesis, structure, and gas-sensing properties of MXene materials. Current opportunities and future challenges for obtaining MXene-based chemical gas sensors with high sensitivity, selectivity, response/recovery time, and chemical durability are addressed. This review provides a rational and in-depth understanding of the relationship between the gas-sensing properties of MXenes and structure/components, which will promote the further development of two-dimensional MXene-based gas sensors for technical device fabrication and industrial processing applications.
Collapse
Affiliation(s)
- Qixun Xia
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yulong Fan
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shiwen Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Aiguo Zhou
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Nanasaheb Shinde
- Department of Chemical Engineering (BK21 FOUR), Dong-A University, 37 Nakdong-daero, Saha-gu, Busan 49315, Republic of Korea
| | - Rajaram S Mane
- School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, India
| |
Collapse
|
29
|
Aghayar Z, Malaki M, Zhang Y. MXene-Based Ink Design for Printed Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234346. [PMID: 36500969 PMCID: PMC9736873 DOI: 10.3390/nano12234346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 05/16/2023]
Abstract
MXenes are a class of two-dimensional nanomaterials with a rich chemistry, hydrophilic surface and mechano-ceramic nature, and have been employed in a wide variety of applications ranging from medical and sensing devises to electronics, supercapacitors, electromagnetic shielding, and environmental applications, to name a few. To date, the main focus has mostly been paid to studying the chemical and physical properties of MXenes and MXene-based hybrids, while relatively less attention has been paid to the optimal application forms of these materials. It has been frequently observed that MXenes show great potential as inks when dispersed in solution. The present paper aims to comprehensively review the recent knowledge about the properties, applications and future horizon of inks based on 2D MXene sheets. In terms of the layout of the current paper, 2D MXenes have briefly been presented and followed by introducing the formulation of MXene inks, the process of turning MAX to MXene, and ink compositions and preparations. The chemical, tribological and rheological properties have been deeply discussed with an eye to the recent developments of the MXene inks in energy, health and sensing applications. The review ends with a summary of research pitfalls, challenges, and future directions in this area.
Collapse
Affiliation(s)
- Zahra Aghayar
- Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-11314, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Correspondence: (M.M.); (Y.Z.)
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China
- Correspondence: (M.M.); (Y.Z.)
| |
Collapse
|
30
|
Li H, Li A, Zhang D, Wu Q, Mao P, Qiu Y, Zhao Z, Yu P, Su X, Bai M. First-Principles Study on the Structural, Electronic, and Lithium Storage Properties of Ti 3C 2T 2 (T = O, F, H, OH) MXene. ACS OMEGA 2022; 7:40578-40585. [PMID: 36385825 PMCID: PMC9647848 DOI: 10.1021/acsomega.2c05913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 05/28/2023]
Abstract
The structures of bare Ti3C2 and functionalized Ti3C2T2 (T = O, F, H, OH) MXenes were constructed, and the effect of surface functional groups T2 (T = O, F, H, OH) on the structural, electronic, and lithium storage properties were investigated by first-principles calculations. The results show that the proximity of surface functional groups will induce some lattice distortion of Ti3C2T2 MXene. The degree of lattice distortion depends mainly on the adsorption position of functional groups and the types of surface functional groups. From the point of view of forming energy, the surface functional groups tend to be located at the CCP site. From the energy band and DOS results, the presence of surface functional groups has a significant effect on the valence band, while it has a slight impact on the conduction band. In terms of lithium storage, lithium atom adsorption starts from the HCP position for bare Ti3C2, while functionalized Ti3C2T2 starts from the CCP position. The double-layer lithium storage capacity of bare Ti3C2 and Ti3C2O2 were 639.78 mAh/g and 537.22 mAh/g, respectively. And the single-layer lithium storage capacity of Ti3C2F2 was 130.77 mAh/g.
Collapse
Affiliation(s)
- Hui Li
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Anping Li
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Dandan Zhang
- School
of Chemical Engineering, Northwest University, Xi’an710069, Shaanxi, People’s Republic
of China
| | - Qianpeng Wu
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Peng Mao
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Yixuan Qiu
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Zhiguo Zhao
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Pengfei Yu
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Xinghua Su
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| | - Min Bai
- School
of Materials Science and Engineering, Chang’an
University, Xi’an710064, Shaanxi, People’s Republic of China
| |
Collapse
|
31
|
Perini G, Rosenkranz A, Friggeri G, Zambrano D, Rosa E, Augello A, Palmieri V, De Spirito M, Papi M. Advanced usage of Ti3C2Tx MXenes for photothermal therapy on different 3D breast cancer models. Biomed Pharmacother 2022; 153:113496. [DOI: 10.1016/j.biopha.2022.113496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
|
32
|
|
33
|
Zhang J, Yao Z, Zou W, Shen Q, Fan M, Ma T. Trimetal NiCoMn sulfides cooperated with two-dimensional Ti3C2 for high performance hybrid supercapacitor. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Devi RK, Ganesan M, Chen TW, Chen SM, Al-Hemaid FM, Ali MA, Al-Mohaimeed AM. Vanadium carbide and nitrogen-doped graphene nanosheets based layered architecture for electrochemical evaluation of clioquinol detection and energy storage application. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
36
|
Xu Q, Zong B, Li Q, Fang X, Mao S, Ostrikov KK. H 2S sensing under various humidity conditions with Ag nanoparticle functionalized Ti 3C 2T x MXene field-effect transistors. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127492. [PMID: 34678565 DOI: 10.1016/j.jhazmat.2021.127492] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 05/27/2023]
Abstract
Despite the critical need to monitor H2S, a hazardous gas, in environmental and medical settings, there are currently no reliable methods for rapid and sufficiently discriminative H2S detection in real-world humid environments. Herein, targeted hybridizing of Ti3C2Tx MXene with Ag nanoparticles on a field-effect transistor (FET) platform has led to a step change in MXene sensing performance down to ppb levels, and enabled the very high selectivity and fast response/recovery time under room temperature for H2S detection in humid conditions. For the first time, we present a novel relative humidity (RH) self-calibration strategy for the accurate detection of H2S. This strategy can eliminate the influence of humidity and enables the accurate quantitative detection of gas in the total RH range. We further elucidate that the superior H2S sensing performance is attributed to the electron and chemical sensitization effects. This study opens new avenues for the development of high-performance MXene-based sensors and offers a viable approach for addressing real-world humidity effect for gas sensors generally.
Collapse
Affiliation(s)
- Qikun Xu
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xian Fang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
37
|
Li G, Wang W, Liu Y, Fang Q, Lu N, Chen J, Xu S, Liu F. Solar-catalytic membranes constructed by graphene oxide and prussian blue@covalent triazine framework “active mega cubes” for ultrafast water transport. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Liu L, Orbay M, Luo S, Duluard S, Shao H, Harmel J, Rozier P, Taberna PL, Simon P. Exfoliation and Delamination of Ti 3C 2T x MXene Prepared via Molten Salt Etching Route. ACS NANO 2022; 16:111-118. [PMID: 34787390 DOI: 10.1021/acsnano.1c08498] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MXenes are two-dimensional metal carbides or nitrides that are currently proposed in many applications thanks to their unique attributes including high conductivity and accessible surface. Recently, a synthetic route was proposed to prepare MXenes from the molten salt etching of precursors allowing for the preparation of MXene (denoted as MS-MXenes, for molten salt MXene) with tuned surface termination groups, resulting in improved electrochemical properties. However, further delamination of as-prepared multilayer MS-MXenes still remains a major challenge. Here, we report on the successful exfoliation of MS-Ti3C2Tx via the intercalation of the organic molecule TBAOH (tetrabutylammonium hydroxide), followed by sonication to separate the layers. The treatment time could be adapted to tune the wetting behavior of the MS-Ti3C2Tx. As a result, a self-supported Cl-terminated MXene film could be prepared by filtration. Finally, MS-Ti3C2Tx used as a Li-ion battery anode could achieve a high specific capacity of 225 mAh g-1 at a 1C rate together with an excellent rate capability of 95 mAh g-1 at 167C. These results also show that tuning of the surface chemistry of MXene is of key importance to this field with the likely result being increased electrochemical performance.
Collapse
Affiliation(s)
- Liyuan Liu
- CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
| | - Metin Orbay
- CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
| | - Sha Luo
- CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), The Key Laboratory of Catalytic Engineering of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, Gansu, People's Republic of China
| | - Sandrine Duluard
- CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
| | - Hui Shao
- CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
| | - Justine Harmel
- CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
| | - Patrick Rozier
- CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
| | - Pierre-Louis Taberna
- CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
| | - Patrice Simon
- CIRIMAT, UMR CNRS 5085, Université Paul Sabatier Toulouse III, 118 Route de Narbonne, 31062 Toulouse, France
- RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
39
|
A test strip electrochemical disposable by 3D MXA/AuNPs DNA-circuit for the detection of miRNAs. Mikrochim Acta 2022; 189:50. [PMID: 34989879 DOI: 10.1007/s00604-021-05150-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/07/2021] [Indexed: 02/01/2023]
Abstract
The simple and reliable detection of microRNAs is of great significance for studying the biological functions, molecular diagnosis, disease treatment and targeted drug therapy of microRNA. In this study, we introduced a novel Ti3C2Tx (MXene) aerogels (denoted as MXA) composite gold nano-particles (AuNPs)-modified disposable carbon fiber paper (CFP) electrode for the label-free and sensitive detection of miRNA-155. Firstly, in the presence of MXene, graphene oxide (GO) and ethylenediamine (EDA), the 3D MXene hydrogel was formed by self-assembly method, and then adding the freeze-dried 3D MXA dropwise to CFP. Subsequently, electrodepositing AuNPs on the CFP/MXA was done to construct a 3D disposable DNA-circuit test strip with excellent interface. Under the optimum experimental conditions, the detection limit of 3D disposable DNA circuit strip for miRNA-155 was 136 aM (S/N = 3). The CFP/MXA/AuNPs (CMA) electrode also has a wide dynamic range (20 fM to 0.4 μM), with a span of 4 orders of magnitude. Notably, we also tested the practicality of the sensor in 8 clinical samples. The technological innovations in the detection and quantification of microRNA in this work may be helpful to the study new aspects of microRNA biology and the development of diagnosis.
Collapse
|
40
|
Baig MM, Gul IH, Baig SM, Shahzad F. 2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors – A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Wen Y, Li R, Liu J, Wei Z, Li S, Du L, Zu K, Li Z, Pan Y, Hu H. A temperature-dependent phosphorus doping on Ti 3C 2T x MXene for enhanced supercapacitance. J Colloid Interface Sci 2021; 604:239-247. [PMID: 34265684 DOI: 10.1016/j.jcis.2021.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/29/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
A novel type of phosphorus doped Ti3C2Tx MXene nanosheets (P-Ti3C2Tx) is synthesized via a facile and controllable strategy of annealing MXene nanosheets with the presence of sodium hypophosphite. A combination of theoretical density functional theory calculation and experimental X-ray photoelectron spectroscopy discloses that the doped P atoms are prone to fill into Ti vacancies first due to their lowest formation free energy (ΔGP* = -0.028 eV·Å-2) and next to bond with surface terminals on MXene layers (ΔGP* = 0.013 eV·Å-2), forming P-C and P-O species, respectively. More importantly, the as-obtained P-Ti3C2Tx is, for the first time, investigated as the electrode material for supercapacitors, demonstrating a significantly boosted electrochemical performance by P doping. As a result, P-Ti3C2Tx electrode delivers a high specific capacitance of 320 F·g-1 at a current density of 0.5 A·g-1 (much higher than 131 F·g-1 for undoped MXene), an ultrahigh rate retention of 83.8% capacitance at 30 A·g-1, and a high cycling stability over continuous 5000 cycles.
Collapse
Affiliation(s)
- Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Rui Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jiaohao Liu
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhiting Wei
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Shihan Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Lili Du
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Kai Zu
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhenxing Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Yuanyuan Pan
- School of Chemical Engineering, China University of Petroleum (East), Qingdao 266580, China.
| | - Han Hu
- School of Chemical Engineering, China University of Petroleum (East), Qingdao 266580, China.
| |
Collapse
|
42
|
Zaman W, Matsumoto RA, Thompson MW, Liu YH, Bootwala Y, Dixit MB, Nemsak S, Crumlin E, Hatzell MC, Cummings PT, Hatzell KB. In situ investigation of water on MXene interfaces. Proc Natl Acad Sci U S A 2021; 118:e2108325118. [PMID: 34845014 PMCID: PMC8670518 DOI: 10.1073/pnas.2108325118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
A continuum of water populations can exist in nanoscale layered materials, which impacts transport phenomena relevant for separation, adsorption, and charge storage processes. Quantification and direct interrogation of water structure and organization are important in order to design materials with molecular-level control for emerging energy and water applications. Through combining molecular simulations with ambient-pressure X-ray photoelectron spectroscopy, X-ray diffraction, and diffuse reflectance infrared Fourier transform spectroscopy, we directly probe hydration mechanisms at confined and nonconfined regions in nanolayered transition-metal carbide materials. Hydrophobic (K+) cations decrease water mobility within the confined interlayer and accelerate water removal at nonconfined surfaces. Hydrophilic cations (Li+) increase water mobility within the confined interlayer and decrease water-removal rates at nonconfined surfaces. Solutes, rather than the surface terminating groups, are shown to be more impactful on the kinetics of water adsorption and desorption. Calculations from grand canonical molecular dynamics demonstrate that hydrophilic cations (Li+) actively aid in water adsorption at MXene interfaces. In contrast, hydrophobic cations (K+) weakly interact with water, leading to higher degrees of water ordering (orientation) and faster removal at elevated temperatures.
Collapse
Affiliation(s)
- Wahid Zaman
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Ray A Matsumoto
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Matthew W Thompson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235
| | - Yu-Hsuan Liu
- Department of Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Yousuf Bootwala
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Marm B Dixit
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235
| | - Slavomir Nemsak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ethan Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Marta C Hatzell
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Peter T Cummings
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235;
| | - Kelsey B Hatzell
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544;
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235
- Andlinger Center for Energy and Environment, Princeton University, Princeton, NJ 08540
| |
Collapse
|
43
|
Zhao S, Liu Z, Xie G, Guo X, Guo Z, Song F, Li G, Chen C, Xie X, Zhang N, Sun B, Guo S, Wang G. Achieving High‐Performance 3D K
+
‐Pre‐intercalated Ti
3
C
2
T
x
MXene for Potassium‐Ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuoqing Zhao
- Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Ultimo NSW 2007 Australia
| | - Zhichao Liu
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Guanshun Xie
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Xin Guo
- Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Ultimo NSW 2007 Australia
| | - Ziqi Guo
- Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Ultimo NSW 2007 Australia
| | - Fei Song
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Guohao Li
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Chi Chen
- Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 P. R. China
| | - Xiuqiang Xie
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Nan Zhang
- College of Materials Science and Engineering Hunan University Changsha 410082 P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Ultimo NSW 2007 Australia
| | - Shaojun Guo
- School of Materials Science and Engineering College of Engineering Peking University Beijing 100871 P. R. China
| | - Guoxiu Wang
- Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Ultimo NSW 2007 Australia
| |
Collapse
|
44
|
Lv S, Song B, Han F, Li Z, Fan B, Zhang R, Zhang J, Li J. MXene-based hybrid system exhibits excellent synergistic antibiosis. NANOTECHNOLOGY 2021; 33:085101. [PMID: 34757944 DOI: 10.1088/1361-6528/ac385d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/09/2021] [Indexed: 05/21/2023]
Abstract
MXenes are a group of inorganic two-dimensional (2D) nanomaterial, and have raised significant interests in biomedical areas. Ti3C2Tx, as an important member of MXene family, is widely studied because of its biodegradability and low-cytotoxicity. However, their single antibacterial mechanism and poor stability in aqueous solution need to be improved, especially for the antimicrobial applications. In this work, a MXene-based hybrid antibacterial system (M-HAS) was developed and its synergistic antibacterial activity was investigated. In the M-HAS, 2D few-layer Ti3C2Tx(FL-Ti3C2Tx) was modified with hydrophilic polymers and thereby used as carriers for silver nanoparticles (Ag NPs). By assembling these two substrates, photodynamic performance of the prepared system is significantly improved with a large amount of reactive oxygen species produced under 660 nm laser. Antibacterial effects of the M-HAS are enhanced by over 4 times with irradiation. In another word, the developed hybrid system displays excellent photodynamic antibacterial synergistic properties. This work takes advantage of the photodynamic properties of each component in the M-HAS to achieve efficient antibacterial activity and proposes an innovative approach to develop the 2D FL-Ti3C2Tx-based antibacterial platform.
Collapse
Affiliation(s)
- Shupei Lv
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bo Song
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Fengqi Han
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhanrong Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Bingbing Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- School of Material Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, People's Republic of China
| | - Junjie Zhang
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
| | - Jingguo Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, People's Republic of China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
45
|
Peng W, Sun F, Liang Y, Kang J, Chen J, Wang W, Cao Y, Xiang M. Exploring the Effects of MXene on Nonisothermal Crystallization and Melting Behavior of β-Nucleated Isotactic Polypropylene. Polymers (Basel) 2021; 13:3815. [PMID: 34771377 PMCID: PMC8587744 DOI: 10.3390/polym13213815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
In this study, one of the commonly used MXene (Ti3C2Tx) and β nucleated isotactic polypropylene (β-iPP)/MXene composites of different compositions were fabricated. The effects of MXene on non-isothermal crystallization and polymorphic behavior of β-iPP/MXene composites were comparatively studied. The non-isothermal crystallization kinetics indicates that for all samples, the lower cooling rates promote composites to crystallize at higher temperatures. When MXene and β-Nucleating agent (β-NA) are added separately, the crystallization temperature of composites shifts towards higher temperatures at all cooling rates. When MXene and β-NA are added simultaneously, the composite shows different cooling rate dependence, and the effects of improving crystallization temperatures is more obvious under rapid cooling. The activation energy of four samples iPP, iPP/MXene, iPP/β-NA, and iPP/MXene/β-NA were -167.5, -185.5, -233.8, and -218.1 kJ/mol respectively, which agree with the variation tendency of crystallization temperatures. The polymorphic behavior analysis obtained from Differential Scanning calorimetry (DSC) is affected by two factors: the ability to form β-crystals and the thermal stability of β-crystals. Because β-crystals tend to recrystallize to α-crystals below a critical temperature, to eliminate the effect of β-α recrystallization, the melting curves at end temperatures Tend = 50 °C and Tend = 100 °C are comparatively studied. The results show that more thermally unstable β-crystals would participate in β-α recrystallization with higher cooling rates. Moreover, thermal stability of β-crystals is improved by adding MXene. To further verify these findings, samples of three different thermal conditions were synthesized and analyzed by DSC, X-Ray Diffraction (XRD), and Polarized Light Optical Microscopy (PLOM), and the results were consistent with the above findings. New understandings of synthesizing β-iPP/MXene composites with adjustable morphologies and polymorphic behavior were proposed.
Collapse
Affiliation(s)
- Wanxin Peng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (W.P.); (Y.L.); (J.K.); (Y.C.); (M.X.)
| | - Furui Sun
- Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China;
| | - Yuke Liang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (W.P.); (Y.L.); (J.K.); (Y.C.); (M.X.)
| | - Jian Kang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (W.P.); (Y.L.); (J.K.); (Y.C.); (M.X.)
| | - Jinyao Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (W.P.); (Y.L.); (J.K.); (Y.C.); (M.X.)
| | - Wei Wang
- Science and Technology on Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China;
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (W.P.); (Y.L.); (J.K.); (Y.C.); (M.X.)
| | - Ming Xiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; (W.P.); (Y.L.); (J.K.); (Y.C.); (M.X.)
| |
Collapse
|
46
|
Pang S, Io W, Hao J. Facile Atomic-Level Tuning of Reactive Metal-Support Interactions in the Pt QDs@ HF-Free MXene Heterostructure for Accelerating pH-Universal Hydrogen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102207. [PMID: 34612021 PMCID: PMC8596115 DOI: 10.1002/advs.202102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/16/2021] [Indexed: 05/19/2023]
Abstract
Supported metallic nanoparticles render highly tunable physical and chemical properties to mixed-dimensionality materials in electrocatalysts. However, some supports are susceptible to being dissolved in acidic solution or are unstable in ambient air. The development of high-performance catalysts has been facing the major hurdles of the sluggish activity in alkaline solution and requesting high energy to stabilize the nanoparticles on their supports, challenging the pH-universality and the applicability of the supported metallic nanoparticles. Here, a one-step strategy is proposed to modulate the growth of Pt quantum dots (QDs) on HF-free MXene under atomic-level by a low-temperature metal-support interaction reaction. By controllable tailoring in the morphology and strain induced by terminations, Pt (111) QDs with a sub-nanoscale size of 1.15 nm are grown as 0D/1D heterostructure to overcome the restrictions of employing reduction gas and high annealing temperature. The catalyst exhibits a low overpotential of 33.3 mV for acidic solution, while 65.1 mV for alkaline solution at a specific current density of 10 mA cm-2 . This study not only paves a scalable pathway to developing cost-efficient catalysts in moderate conditions, but also demonstrates an effective surface modulation strategy for 0D/1D heterostructures.
Collapse
Affiliation(s)
- Sin‐Yi Pang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Weng‐Fu Io
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongP. R. China
| | - Jianhua Hao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongP. R. China
| |
Collapse
|
47
|
3D Cross-linked Ti 3C 2T x-Ca-SA films with expanded Ti 3C 2T x interlayer spacing as freestanding electrode for all-solid-state flexible pseudocapacitor. J Colloid Interface Sci 2021; 610:295-303. [PMID: 34923268 DOI: 10.1016/j.jcis.2021.10.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022]
Abstract
Ti3C2Tx, a member of the MXene, has attracted extensive interest because of its high conductivity, unique two-dimensional (2D) structure and intrinsic pseudocapacitance for supercapacitors. Flexible and freestanding Ti3C2Tx films are promising electrodes for functioned supercapacitors used in wearable and portable electronic devices. However, the severe self-restacking of 2D Ti3C2Tx nanosheets restraints their practical application. Herein, freestanding and flexible three-dimensional (3D) cross-linked Ti3C2Tx-Ca-SA (sodium alginate) films with expanded Ti3C2Tx interlayer spacing are reported. The expanded interlayer spacing allows more electrolyte ions to quickly intercalate providing more intercalation pseudocapacitance, while the 3D cross-linked microstructure ensures a continuous conductive network facilitating charges transport. Attributing to the unique structure, the Ti3C2Tx-Ca-SA film delivers an outstanding areal capacitance (633 mF cm-2 at 5 mV s-1). Meanwhile, the assembled all-solid-state pseudocapacitor shows good flexibility and capacity stability under various bending conditions. The device exhibits a high energy density up to 12.6 µWh cm-2 at the power density of 375 µW cm-2 and excellent cycling stability, which are much better than prior reported state-of-the-art supercapacitors. This research exploits a simple method to optimize the structure of MXene as state-of-the-art electrodes for high-performance flexible energy-storage devices.
Collapse
|
48
|
Zhao S, Liu Z, Xie G, Guo X, Guo Z, Song F, Li G, Chen C, Xie X, Zhang N, Sun B, Guo S, Wang G. Achieving High-Performance 3D K + -Pre-intercalated Ti 3 C 2 T x MXene for Potassium-Ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angew Chem Int Ed Engl 2021; 60:26246-26253. [PMID: 34590399 DOI: 10.1002/anie.202112090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/26/2021] [Indexed: 11/06/2022]
Abstract
The development of high-performance anode materials for potassium-based energy storage devices with long-term cyclability requires combined innovations from rational material design to electrolyte optimization. A three-dimensional K+ -pre-intercalated Ti3 C2 Tx MXene with enlarged interlayer distance was constructed for efficient electrochemical potassium-ion storage. We found that the optimized solvation structure of the concentrated ether-based electrolyte leads to the formation of a thin and inorganic-rich solid electrolyte interphase (SEI) on the K+ -pre-intercalated Ti3 C2 Tx electrode, which is beneficial for interfacial stability and reaction kinetics. As a proof of concept, 3D K+ -Ti3 C2 Tx //activated carbon (AC) potassium-ion hybrid capacitors (PIHCs) were assembled, which exhibited promising electrochemical performances. These results highlight the significant roles of both rational structure design and electrolyte optimization for highly reactive MXene-based anode materials in energy storage devices.
Collapse
Affiliation(s)
- Shuoqing Zhao
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Zhichao Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guanshun Xie
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xin Guo
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ziqi Guo
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Fei Song
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guohao Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chi Chen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Xiuqiang Xie
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Nan Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shaojun Guo
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
49
|
Zhao P, Jia Y, Liang Y, Zheng J, Yang M, Huo D, Wang Y, Hou C. A Prussian blue-doped RGO/MXene composite aerogel with peroxidase-like activity for real-time monitoring of H 2O 2 secretion from living cells. Chem Commun (Camb) 2021; 57:9870-9873. [PMID: 34490866 DOI: 10.1039/d1cc03957a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we develop a novel 3D composite aerogel (3D PB/GMA) and apply it to the real-time monitoring of H2O2 secretion from living cells. The 3D PB/GMA shows an obvious porous structure and superior peroxidase-like activity. The electrochemical sensor based on 3D PB/GMA shows an excellent electrocatalytic performance towards H2O2. When applied to the real-time tracking of H2O2 secretion from living cells, it can satisfactorily distinguish cancer cell lines from normal cell lines, revealing a good application potential in pathological diagnosis.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Yuanyuan Jia
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Yi Liang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Jilin Zheng
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China. .,Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China. .,National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
50
|
Liu X, Fang Y, Liang P, Xu J, Xing B, Zhu K, Liu Y, Zhang J, Yi J. Surface-tuned two-dimension MXene scaffold for highly reversible zinc metal anode. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|