1
|
Chen Z, Wang Y, Zhang S, Qiao H, Zhang S, Wang H, Zhang XD. Advances in the Treatment of Spinal Cord Injury with Nanozymes. Bioconjug Chem 2025; 36:627-651. [PMID: 40163781 DOI: 10.1021/acs.bioconjchem.5c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Spinal cord injury (SCI) with increasing incidence can lead to severe disability. The pathological process involves complex mechanisms such as oxidative stress, inflammation, and neuron apoptosis. Current treatment strategies focusing on the relief of oxidative stress and inflammation have achieved good effects, while many problems and challenges remain such as the side effect and short half-life of the therapeutic agents. Nanozymes exhibiting good biocatalytic activities can sustainably scavenge free radicals, inhibit neuroinflammation, and protect the neurons. With high stability in physiological conditions and cost-effectiveness, the nanozymes provide a new strategy for SCI treatment. In this Review, we outline the advances of nanozymes and their enzyme-mimicking activities and highlight the progress in the intervention of SCI-adopting nanozymes. We also propose future directions and clinical translation for the nanozyme strategy against SCI.
Collapse
Affiliation(s)
- Zuohong Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuquan Zhang
- Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Zong L, Yang X, Sun X, Xi Z, Han J. Crystal Facet Effect in Chiral PdPt 3 Hollow Nanocages as Nanozymes for Use in Enantiomer Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8889-8897. [PMID: 40153612 DOI: 10.1021/acs.langmuir.5c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2025]
Abstract
Understanding the crystal facet effect in chiral enantiomer recognition plays an important role in designing and fabricating chiral nanozymes for biosensing and biodetection applications. Herein, we design an ideal platform to study the crystal facet effect in chiral enantiomer recognition using cubic and icosahedral PdPt3 hollow nanocages (NCs) as peroxidase mimics via surface ligand decoration of l/d-cysteine (l/d-Cys). The two PdPt3 NCs have the same structure of surface ligand, particle size, wall thickness, surface area, and elemental composition, with the only difference of exposed crystal facets, i.e., {100} for cubic PdPt3 NC-l/d-Cys and {111} for icosahedral PdPt3 NC-l/d-Cys. The cubic PdPt3 {100} facet demonstrates 2.2-fold higher peroxidase-like catalytic activity than the icosahedral PdPt3 {111} facet, which also leads to the better enantiomer recognition performance of discerning 3,4-dihydroxy-l/d-phenylalanine. Our work provides the concept of crystal facet tuning for designing chiral nanozymes with high stereoselective properties.
Collapse
Affiliation(s)
- Liying Zong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Xiaoqiao Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| |
Collapse
|
3
|
Liu P, Du L, Luan F, Shi C, Liu Y, Gai Z, Yang F, Yang Y. Multifunctional Nanozyme with Aptamer-Based Ratiometric Fluorescent and Colorimetric Dual Detection of Prostate-Specific Antigen. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7553-7567. [PMID: 39838272 DOI: 10.1021/acsami.4c22799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The adsorption of DNA probes onto nanomaterials represents a promising bioassay technique, generally employing fluorescence or catalytic activity to generate signals. A significant challenge is maintaining the catalytic activity of chromogenic catalysts during detection while enhancing accuracy by overcoming the limitations of single-signal transmission. This article presents an innovative multimodal analysis approach that synergistically combines the oxidase-like activity of Fe-N-C nanozyme (Fe-NC) with red fluorescent carbon quantum dots (R-CQDs), further advancing the dual-mode analysis method utilizing R-CQDs@Fe-NC. In this system, R-CQDs integrate with Fe-NC to provide a steady reference red fluorescence signal, while Fe-NC serves as the catalytic active site. The adsorption of 6-carboxyfluorescein-labeled aptamers (FAM-apt) significantly enhanced the electron transfer capability of R-CQDs@Fe-NC, enhancing its catalytic performance and resulting in increased oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Concurrently, the green fluorescence of FAM-apt diminishes due to energy competition, photoinduced electron transfer, and the internal filtration effect by R-CQDs@Fe-NC, while the red fluorescence from R-CQDs@Fe-NC remains stable. Upon recognizing and binding to prostate-specific antigen (PSA), FAM-apt detaches from the surface of R-CQDs@Fe-NC. This leads to simultaneous variations in both the fluorescence signal of the system and the colorimetric signal of TMB. Based on these properties, a colorimetric/fluorescence dual-mode detection method for PSA was established, with detection limits of 0.054 and 0.16 ng/mL, respectively. Furthermore, a smartphone-based sensing device facilitated rapid and convenient detection. This study presents a multisignal output sensing strategy and a simple capillary sensing device, presenting a promising approach for PSA diagnostic analysis and the potential detection of other biomarkers.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Linqing Du
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250118, China
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250098, China
| | - Fang Luan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250118, China
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250098, China
| | - Chuanwei Shi
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yeping Liu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhexu Gai
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
4
|
Moulton C, Baroni A, Quagliarini E, Leone L, Digiacomo L, Morotti M, Caracciolo G, Podda MV, Tasciotti E. Navigating the nano-bio immune interface: advancements and challenges in CNS nanotherapeutics. Front Immunol 2024; 15:1447567. [PMID: 39600701 PMCID: PMC11588692 DOI: 10.3389/fimmu.2024.1447567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, significant advancements have been made in utilizing nanoparticles (NPs) to modulate immune responses within the central nervous system (CNS), offering new opportunities for nanotherapeutic interventions in neurological disorders. NPs can serve as carriers for immunomodulatory agents or platforms for delivering nucleic acid-based therapeutics to regulate gene expression and modulate immune responses. Several studies have demonstrated the efficacy of NP-mediated immune modulation in preclinical models of neurological diseases, including multiple sclerosis, stroke, Alzheimer's disease, and Parkinson's disease. While challenges remain, advancements in NPs engineering and design have led to the development of NPs using diverse strategies to overcome these challenges. The nano-bio interface with the immune system is key in the conceptualization of NPs to efficiently act as nanotherapeutics in the CNS. The biomolecular corona plays a pivotal role in dictating NPs behavior and immune recognition within the CNS, giving researchers the opportunity to optimize NPs design and surface modifications to minimize immunogenicity and enhance biocompatibility. Here, we review how NPs interact with the CNS immune system, focusing on immunosurveillance of NPs, NP-induced immune reprogramming and the impact of the biomolecular corona on NPs behavior in CNS immune responses. The integration of NPs into CNS nanotherapeutics offers promising opportunities for addressing the complex challenges of acute and chronic neurological conditions and pathologies, also in the context of preventive and rehabilitative medicine. By harnessing the nano-bio immune interface and understanding the significance of the biomolecular corona, researchers can develop targeted, safe, and effective nanotherapeutic interventions for a wide range of CNS disorders to improve treatment and rehabilitation. These advancements have the potential to revolutionize the treatment landscape of neurological diseases, offering promising solutions for improved patient care and quality of life in the future.
Collapse
Affiliation(s)
| | - Anna Baroni
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Leone
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Morotti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Vittoria Podda
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ennio Tasciotti
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, Università telematica San Raffaele, Rome, Italy
| |
Collapse
|
5
|
Zhang X, Wei J, Jia H, Liu J, Li G, Liu L, Wu Y, Liu C, Zhang XD, Li Y. Pursuing Extreme Descriptive Power and Generality in Chemical Bond Theories: A Method to Decipher "Interatomic Genomes" from Interatomic Electron Structures. J Chem Theory Comput 2024; 20:8482-8493. [PMID: 39285173 DOI: 10.1021/acs.jctc.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The description and analysis of chemical bonds have been difficult following the popularization of electronic structure calculations. Although many attempts have been made from the perspective of electronic structure, the sheer volume of information in the electronic structure has left contemporary chemical bond analysis methods grappling with an inescapable "Trilemma" where the model briefness, generality, and descriptiveness (descriptive power) cannot be obtained simultaneously. To push the generality and descriptiveness to their extremes, herein a general machine learning-based framework is introduced to compact chemical bonds into a detailed residue-by-residue "genome" with matched encoding/decoding tools. The framework fuses the quantum mechanical aspects, auto feature extraction, nanostructures and/or simulations, and generative models. The encoded genomes are information-dense and decodable, where 100% generality is guaranteed. The descriptiveness of genomes appears to be broader than most known models. As a proof of concept, the realization presented in this work compacts the complete information regarding two critical chemical bonds in thiolate-protected gold nanoclusters, the S-Au and Au-Au bonds, from a Bosonic-Fermionic character perspective into 8-valued genomes. The machine learning component is trained based on 26,528 density functional theory simulated electron localization function images. With an exploration of the space span for the genome, bond polarization, hybridization, intrusion of other atoms, alignments, crystal orientation, atomic motions, and more details are observed. Furthermore, it has emerged from extensive generation tests that molecules and solids can be integrated in such a concise manner than is typically achieved with purely geometric representations. To showcase the intraclass complexity of S-Au and Au-Au bonds visually, a roadmap is plotted by summarizing and correlating the similarities of 8-value-genomes. Furthermore, genomes can be associated with realistic indices easily with a simple multilayer perception architecture as a simple calculating tool. Besides, there are 3 sets of applications, including a set of chemisorption, a set of molecular dynamical analysis, and a set of ultrafast processes, showcasing the interpretability potentials of interatomic genomes in the geometric structures, kinetic properties, and vibration characteristics of molecular systems. As the framework rose to the challenge of nanoclusters from a complicated mesoscopic family of material, the displayed generality and comprehensiveness indicate that the model may "understand" chemical bonds in a machine's way.
Collapse
Affiliation(s)
- Xinxu Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiahao Wei
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Hui Jia
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiamin Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Guo Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yulong Wu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Changlong Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
6
|
Tian F, Zhang S, Wang M, Yan Y, Cao Y, Wang Y, Fan K, Wang H, Zhang J, Zhang XD. Clinical Grade Fibroin Sutures with Bioactive Gold Clusters Enhance Surgical Wound Healing via Inflammation Modulation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359176 DOI: 10.1021/acsami.4c10451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Silk sutures are common in surgeries, and silk-based textiles are widely used in clinical medicine on account of their great mechanical properties and biodegradability. However, due to the lack of biocatalytic activity, silk sutures show unsatisfactory anti-inflammatory properties and healing speed. To address this constraint, we construct clinical grade bioactive gold cluster-sutures through a heterojunction. The antioxidant activity of bioactive gold cluster-sutures is ∼160 times more than that of clinical sutures. Meanwhile, the suture displays superb reactive oxygen species (ROS) scavenging, superoxide dismutase-like (SOD-like, 5 times more than the silk suture), and catalase-like (CAT-like) activities. The clusters assemble on the surface of silk through hydrogen bonding, leading to a durable catalytic and structural stability for 15 months without decay. Subsequently, the suture significantly accelerates wound healing by exerting excellent anti-inflammatory effects, improving neovascularization and collagen deposition. Clinical grade bioactive gold clusters with high bioactivity, stability, and biocompatibility hold promise for clinical translation and pave the way for other implanted biomaterials from wound healing to intelligent textiles.
Collapse
Affiliation(s)
- Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Miaoyu Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yiyao Cao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
7
|
Garg S, Jana A, Khan J, Gupta S, Roy R, Gupta V, Ghosh S. Logic "AND Gate Circuit" Based Mussel Inspired Polydopamine Nanocomposite as Bioactive Antioxidant for Management of Oxidative Stress and Neurogenesis in Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36168-36193. [PMID: 38954488 DOI: 10.1021/acsami.4c07694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the intricate landscape of Traumatic Brain Injury (TBI), the management of TBI remains a challenging task due to the extremely complex pathophysiological conditions and excessive release of reactive oxygen species (ROS) at the injury site and the limited regenerative capacities of the central nervous system (CNS). Existing pharmaceutical interventions are limited in their ability to efficiently cross the blood-brain barrier (BBB) and expeditiously target areas of brain inflammation. In response to these challenges herein, we designed novel mussel inspired polydopamine (PDA)-coated mesoporous silica nanoparticles (PDA-AMSNs) with excellent antioxidative ability to deliver a new potential therapeutic GSK-3β inhibitor lead small molecule abbreviated as Neuro Chemical Modulator (NCM) at the TBI site using a neuroprotective peptide hydrogel (PANAP). PDA-AMSNs loaded with NCM (i.e., PDA-AMSN-D) into the matrix of PANAP were injected into the damaged area in an in vivo cryogenic brain injury model (CBI). This approach is specifically built while keeping the logic AND gate circuit as the primary focus. Where NCM and PDA-AMSNs act as two input signals and neurological functional recovery as a single output. Therapeutically, PDA-AMSN-D significantly decreased infarct volume, enhanced neurogenesis, rejuvenated BBB senescence, and accelerated neurological function recovery in a CBI.
Collapse
Affiliation(s)
- Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 62, Surpura Bypass Road, Karwar, Rajasthan 342037, India
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, Karwar, Rajasthan 342037, India
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| |
Collapse
|
8
|
Phan-Xuan T, Breitung B, Dailey LA. Nanozymes for biomedical applications: Multi-metallic systems may improve activity but at the cost of higher toxicity? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1981. [PMID: 39044339 DOI: 10.1002/wnan.1981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Nanozymes are nanomaterials with intrinsic enzyme-like activity with selected advantages over native enzymes such as simple synthesis, controllable activity, high stability, and low cost. These materials have been explored as surrogates to natural enzymes in biosensing, therapeutics, environmental protection, and many other fields. Among different nanozymes classes, metal- and metal oxide-based nanozymes are the most widely studied. In recent years, bi- and tri-metallic nanomaterials have emerged often showing improved nanozyme activity, some of which even possess multifunctional enzyme-like activity. Taking this concept even further, high-entropy nanomaterials, that is, complex multicomponent alloys and ceramics like oxides, may potentially enhance activity even further. However, the addition of various elements to increase catalytic activity may come at the cost of increased toxicity. Since many nanozyme compositions are currently being explored for in vivo biomedical applications, such as cancer therapeutics, toxicity considerations in relation to nanozyme application in biomedicine are of vital importance for translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Thuong Phan-Xuan
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
- School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
| | - Ben Breitung
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Lea Ann Dailey
- Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Fu Z, Fan K, He X, Wang Q, Yuan J, Lim KS, Tang JN, Xie F, Cui X. Single-Atom-Based Nanoenzyme in Tissue Repair. ACS NANO 2024; 18:12639-12671. [PMID: 38718193 DOI: 10.1021/acsnano.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.
Collapse
Affiliation(s)
- Ziliang Fu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Kexin Fan
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xingjian He
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518001, China
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Jun-Nan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Henan Province Key Laboratory of Cardiac Injury and Repair, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fangxi Xie
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai, Guangdong 519082, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
10
|
Arshad F, Nurul Azian Zakaria S, Uddin Ahmed M. Nanohybrid nanozyme based colourimetric immunosensor for porcine gelatin. Food Chem 2024; 438:137947. [PMID: 37979269 DOI: 10.1016/j.foodchem.2023.137947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Enzyme mimicking nanomaterials, nanozymes, have gained considerable interest in the scientific community because of their superior properties compared to natural enzymes, including their high stability at extreme conditions, cheaper availability, and ease of synthesis. Herein, we report novel colloidal gold nanoparticles - graphene nanoplatelets - chitosan (CS) with peroxidase mimicking properties used to carry out highly sensitive and selective immunoassay for porcine gelatin detection. The interaction between anti-gelatin antibody conjugated nanozyme with porcine gelatin proteins produced an ultrasensitive immunoassay response in the form of a colourimetric signal directly proportional to the porcine gelatin protein concentration. The nanozyme produced a colourimetric response in the presence of its substrate, 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), demonstrating its peroxidase mimicking properties. The results revealed that the nanozyme exhibited remarkable selectivity and sensitivity in the assay, detecting proteins at concentrations as low as 86.42 pg/mL. Additionally, the immunosensor demonstrated a broad linear detection range spanning from 200 pg/mL to 2 ng/mL.
Collapse
Affiliation(s)
- Fareeha Arshad
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Siti Nurul Azian Zakaria
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Integrated Science Building, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei.
| |
Collapse
|
11
|
Wang J, Wu R, Liu Z, Qi L, Xu H, Yang H, Li Y, Liu L, Feng G, Zhang L. Core-Shell Structured Nanozyme with PDA-Mediated Enhanced Antioxidant Efficiency to Treat Early Intervertebral Disc Degeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5103-5119. [PMID: 38233333 DOI: 10.1021/acsami.3c15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Early intervention during intervertebral disc degeneration (IDD) plays a vital role in inhibiting its deterioration and activating the regenerative process. Aiming at the high oxidative stress (OS) in the IDD microenvironment, a core-shell structured nanozyme composed of Co-doped NiO nanoparticle (CNO) as the core encapsulated with a polydopamine (PDA) shell, named PDA@CNO, was constructed, hoping to regulate the pathological environment. The results indicated that the coexistence of abundant Ni3+/Ni2+and Co3+/Co2+redox couples in CNO provided rich catalytic sites; meanwhile, the quinone and catechol groups in the PDA shell could enable the proton-coupled electron transfer, thus endowing the PDA@CNO nanozyme with multiple antioxidative enzyme-like activities to scavenge •O2-, H2O2, and •OH efficiently. Under OS conditions in vitro, PDA@CNO could effectively reduce the intracellular ROS in nucleus pulposus (NP) into friendly H2O and O2, to protect NP cells from stagnant proliferation, abnormal metabolism (senescence, mitochondria dysfunction, and impaired redox homeostasis), and inflammation, thereby reconstructing the extracellular matrix (ECM) homeostasis. The in vivo local injection experiments further proved the desirable therapeutic effects of the PDA@CNO nanozyme in a rat IDD model, suggesting great potential in prohibiting IDD from deterioration.
Collapse
Affiliation(s)
- Jing Wang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ruibang Wu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zheng Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Qi
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Huilun Xu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Cui M, Qian L, Wu M, Dai P, Pang X, Xu W, Feng Z, Zhao Q, Wang H, Song B, He Y. Phosphorescence Enzyme-Mimics for Time-Resolved Sensitive Diagnostics and Environment-Adaptive Specific Catalytic Therapeutics. ACS NANO 2023; 17:21262-21273. [PMID: 37870459 DOI: 10.1021/acsnano.3c05552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Enzyme mimics (EMs) with intrinsic catalysis activity have attracted enormous interest in biomedicine. However, there is a lack of environmentally adaptive EMs for sensitive diagnosis and specific catalytic therapeutics in simultaneous manners. Herein, the coordination modulation strategy is designed to synthesize silicon-based phosphorescence enzyme-mimics (SiPEMs). Specifically, the atomic-level engineered Co-N4 structure in SiPEMs enables the environment-adaptive peroxidase, oxidase, and catalase-like activities. More intriguingly, the internal Si-O networks are able to stabilize the triplet state, exhibiting long-lived phosphorescence with lifetime of 124.5 ms, suitable for millisecond-range time-resolved imaging of tumor cells and tissue in mice (with high signal-to-background ratio values of ∼60.2 for in vitro and ∼611 for in vivo). Meanwhile, the SiPEMs act as an oxidative stress amplifier, allowing the production of ·OH via cascade reactions triggered by the tumor microenvironment (∼136-fold enhancement in peroxidase catalytic efficiency); while the enzyme-mimics can scavenge the accumulation of reactive oxygen species to alleviate the oxidative damage in normal cells, they are therefore suitable for environment-adaptive catalytic treatment of cancer in specific manners. We innovate a systematic strategy to develop high-performance enzymemics, constructing a promising breakthrough for replacing traditional enzymes in cancer treatment applications.
Collapse
Affiliation(s)
- Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Lulu Qian
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Menglin Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xueke Pang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Wenxin Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Zhixia Feng
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Bardi G, Boselli L, Pompa PP. Anti-inflammatory potential of platinum nanozymes: mechanisms and perspectives. NANOSCALE 2023; 15:14284-14300. [PMID: 37584343 DOI: 10.1039/d3nr03016d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Inflammation is a complex process of the body in response to pathogen infections or dysregulated metabolism, involving the recruitment and activation of immune system components. Repeated dangerous stimuli or uncontrolled immune effector mechanisms can result in tissue injury. Reactive Oxygen Species (ROS) play key roles in physiological cell signaling as well as in the destruction of internalized pathogens. However, aberrant ROS production and release have deleterious effects on the surrounding environment, making ROS regulation a priority to reduce inflammation. Most of the current anti-inflammatory therapies rely on drugs that impair the release of pro-inflammatory mediators. Nevertheless, increasing the enzymatic activity to reduce ROS levels could be an alternative or complementary therapeutic approach to decrease inflammation. Nanozymes are nanomaterials with high catalytic activity that mimic natural enzymes, allowing biochemical reactions to take place. Such functional particles typically show different and regenerable oxidation states or catalytically reactive surfaces offering long-term activity and stability. In this scenario, platinum-based nanozymes (PtNZs) exhibit broad and efficient catalytic functionalities and can reduce inflammation mainly through ROS scavenging, e.g. by catalase and superoxide dismutase reactions. Dose-dependent biocompatibility and immune compatibility of PtNZs have been shown in different cells and tissues, both in vitro and in vivo. Size/shape/surface engineering of the nanozymes could also potentiate their efficacy to act at different sites and/or steps of the inflammation process, such as cytokine removal or specific targeting of activated leukocytes. In the present review, we analyze key inflammation triggering processes and the effects of platinum nanozymes under exemplificative inflammatory conditions. We further discuss potential platinum nanozyme design and improvements to modulate and expand their anti-inflammatory action.
Collapse
Affiliation(s)
- Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
14
|
Liu K, Niu J, Liu L, Tian F, Nie H, Liu X, Chen K, Zhao R, Sun S, Jiao M, Tian M, Sun X, Niu L, Sun X, Wang H, Long W, Feng L, Mu X, Zhang XD. LUMO-Mediated Se and HOMO-Mediated Te Nanozymes for Selective Redox Biocatalysis. NANO LETTERS 2023; 23:5131-5140. [PMID: 37191492 DOI: 10.1021/acs.nanolett.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Selenium (Se) and tellurium (Te) nanomaterials with novel chain-like structures have attracted widespread interest owing to their intriguing properties. Unfortunately, the still-unclear catalytic mechanisms have severely limited the development of biocatalytic performance. In this work, we developed chitosan-coated Se nanozymes with a 23-fold higher antioxidative activity than Trolox and bovine serum albumin coated Te nanozymes with stronger prooxidative biocatalytic effects. Based on density functional theory calculations, we first propose that the Se nanozyme with Se/Se2- active centers favored reactive oxygen species (ROS) clearance via a LUMO-mediated mechanism, while the Te nanozyme with Te/Te4+ active centers promoted ROS production through a HOMO-mediated mechanism. Furthermore, biological experiments confirmed that the survival rate of γ-irritated mice treated with the Se nanozyme was maintained at 100% for 30 days by inhibiting oxidation. However, the Te nanozyme had the opposite biological effect via promoting radiation oxidation. The present work provides a new strategy for improving the catalytic activities of Se and Te nanozymes.
Collapse
Affiliation(s)
- Kaijin Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiaxue Niu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ling Liu
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Fangzhen Tian
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongmei Nie
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Xiaoyu Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Ke Chen
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ruoli Zhao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Menglu Jiao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Maoye Tian
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Xinyu Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Lanfei Niu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Xinyi Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Hao Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Liefeng Feng
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, People's Republic of China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
15
|
Huang J, Gu H, Wang G, Wu R, Sun M, Chen Z. Visual Sensor Arrays for Distinction of Phenolic Acids Based on Two Single-Atom Nanozymes. Anal Chem 2023. [PMID: 37257081 DOI: 10.1021/acs.analchem.3c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although great achievements have been made in the study of artificial enzymes, the design of nanozymes with high catalytic activities of natural enzymes and the further establishment of sensitive biosensors still remain challenging. Here, two nanozymes, i.e., ZnCoFe three-atom nanozyme (TAzyme) and Sn single-atom nanozyme (SAzyme)/Ti3C2Tx, are developed, which show peroxidase-like catalytic activities by catalyzing the reaction of hydrogen peroxide (H2O2), 4-aminoantipyrine (4-AAP), and phenolic acids to generate colorimetric reactions. The involvement of different phenolic acids leads to the generation of different color products. These subtle color-variation profiles between these phenolic acids prompt us to exploit an electronic tongue based on the two nanozymes to distinguish phenolic acids. Data interpretation by the pattern recognition method, such as linear discriminant analysis (LDA), displays good clustering separation of six different phenolic acids at concentrations of 0.1 μM to 1 mM, validating the effectiveness of the colorimetric nanozyme sensor array.
Collapse
Affiliation(s)
- Juan Huang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hongfei Gu
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Rufen Wu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Mengru Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
16
|
Xue S, Chen G, Zhang J, Che R. Insight into Surface Electronic Effects on Pd Nanostructures as Efficient Electrocatalysts. NANO LETTERS 2023; 23:2778-2785. [PMID: 37010265 DOI: 10.1021/acs.nanolett.3c00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Although the unique properties of nanomaterials have endowed enzyme-mimic catalysts with broad applications, the development of catalysts still relies on trial-and-error strategies without predictive indicators. Surface electronic structures have rarely been studied in enzyme-mimic catalysts. Herein, we present a platform for understanding the impact of surface electronic structures on electrocatalysis toward H2O2 decomposition, using the Pd icosahedra (Pd ico), Pd octahedra (Pd oct) and Pd cubic nanocrystals as electrocatalysts. The electronic properties on Pd were modulated with a correlation of surface orientation. We revealed the relationship between the electronic properties and electrocatalytic performance, in which the surface electron accumulation can boost the electrocatalytic activity of the enzyme-mimic catalysts. As a result, the Pd icodimer exhibits the highest electrocatalytic and sensing efficiency. This work offers new perspectives for the investigation of structure-activity relationships and provides an effective knob for utilizing the surface electronic structures to boost the catalytic performance for enzyme-mimics.
Collapse
Affiliation(s)
- Shuyan Xue
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, P. R. China
| | - Guanyu Chen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, P. R. China
| | | | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, P. R. China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
17
|
Wei Z, Peng G, Zhao Y, Chen S, Wang R, Mao H, Xie Y, Zhao C. Engineering Antioxidative Cascade Metal-Phenolic Nanozymes for Alleviating Oxidative Stress during Extracorporeal Blood Purification. ACS NANO 2022; 16:18329-18343. [PMID: 36356207 DOI: 10.1021/acsnano.2c06186] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Oxidative stress is a compelling risk factor in chronic kidney diseases and is further aggravated for individuals during extracorporeal blood purification, ultimately leading to multiple complications. Herein, antioxidative cascade metal-phenolic nanozymes (metal-tannic acid nanozymes, M-TA NMs) are synthesized via metal ions-mediated oxidative coupling of polyphenols; then M-TA NMs engineered hemoperfusion microspheres (Cu-TAn@PMS) are constructed for alleviating oxidative stress. M-TA NMs show adjustable broad-spectrum antioxidative activities toward multiple reactive nitrogen and oxygen species (RNOS) due to the adjustable catalytic active centers. Importantly, M-TA NMs could mimic the cascade processes of superoxide dismutase and catalase to maintain intracellular redox balance. Detailed structural and spectral analyses reveal that the existence of a transition metal could decrease the electronic energy band gaps of M-TA NMs to offer better electron transfers for RNOS scavenging. Notably, dynamic blood experiments demonstrate that Cu-TAn@PMS could serve as an antioxidant defense system for blood in hemoperfusion to scavenge intracellular reactive oxygen species (ROS) effectively even in the complex blood environment and further protect endogenous antioxidative enzymes and molecules. In general, this work developed antioxidative cascade nanozymes engineered microspheres with excellent therapeutic efficacy for the treatment of oxidative stress-related diseases, which exhibited potential for clinical blood purification and extended the biomedical applications of nanozymes.
Collapse
Affiliation(s)
| | | | | | | | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | | | - Yi Xie
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | | |
Collapse
|
18
|
Liang S, Tian X, Wang C. Nanozymes in the Treatment of Diseases Caused by Excessive Reactive Oxygen Specie. J Inflamm Res 2022; 15:6307-6328. [PMID: 36411826 PMCID: PMC9675353 DOI: 10.2147/jir.s383239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 10/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) may generate deleterious effects on biomolecules, such as DNA damage, protein oxidation and lipid peroxidation, causing cell and tissue damage and eventually leading to the pathogenesis of diseases, such as neurodegenerative diseases, ischemia/reperfusion ((I/R)) injury, and inflammatory diseases. Therefore, the modulation of ROS can be an efficient means to relieve the aforementioned diseases. Several studies have verified that antioxidants such as Mitoquinone (a mitochondrial-targeted coenzyme Q10 derivative) can scavenge ROS and attenuate related diseases. Nanozymes, defined as nanomaterials with intrinsic enzyme-like properties that also possess antioxidant properties, are hence expected to be promising alternatives for the treatment of ROS-related diseases. This review introduces the types of nanozymes with inherent antioxidant activities, elaborates on various strategies (eg, controlling the size or shape of nanozymes, regulating the composition of nanozymes and environmental factors) for modulating their catalytic activities, and summarizes their performances in treating ROS-induced diseases.
Collapse
Affiliation(s)
- Shufeng Liang
- Department of Molecular Biology, Shanxi Province Cancer Hospital/Shanxi Hospital, Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
- Institute of Environmental Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, People’s Republic of China
| | - Chunyan Wang
- Department of Transfusion, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
19
|
Guo S, Yang X, Guan S, Lu J, Zhou S. Bioinspired Construction of an Enzyme-Mimetic Supramolecular Nanoagent for RNS-Augmented Cascade Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46252-46261. [PMID: 36197447 DOI: 10.1021/acsami.2c12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inspired by natural enzymes, specific enzyme-like cascade catalytic reactions can be obtained by imitating the metal active sites of natural enzymes and assembling inorganic materials at the molecular level via supramolecular interactions, which can greatly expand their application in biology. Herein, it is reported that a bioinspired SNP/MgMnFe-LDH (denoted as S2MFL) supramolecular nanoagent has been successfully synthesized via the intercalation between nitroprusside (SNP) and MgMnFe-layered double hydroxides (denoted as 2MFL). Initially, the resulting S2MFL possesses peroxidase-, catalase-, and oxidase (OXD)-like activities under tumor microenvironment (TME) stimulation. It should be noted that this S2MFL demonstrates a high OXD-like activity rate level of 9.508 × 10-6 Ms-1 in the chemodynamic therapy (CDT) study. Furthermore, the superoxide anions (O2•-) generated via OXD-like activity can react with NO (GSH-responsive), followed by the production of reactive nitrogen species (RNS). The synergistic reactive oxygen species (ROS) and RNS generation destroys the intratumoral redox balance and extensively promotes cancer cell inhibition without additional energy introduction and has excellent T1/T2-weighted magnetic resonance imaging (MRI) ability. Overall, this RNS-enhanced CDT strategy provides a novel approach for TME-mediated therapy.
Collapse
Affiliation(s)
- Shuaitian Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xueting Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jun Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beisanhuan East Road 15, Beijing 100029, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
20
|
Li Y, Fu R, Duan Z, Zhu C, Fan D. Artificial Nonenzymatic Antioxidant MXene Nanosheet-Anchored Injectable Hydrogel as a Mild Photothermal-Controlled Oxygen Release Platform for Diabetic Wound Healing. ACS NANO 2022; 16:7486-7502. [PMID: 35533294 DOI: 10.1021/acsnano.1c10575] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hypoxia, excessive reactive oxygen species (ROS), impaired angiogenesis, lasting inflammation, and bacterial infection, are key problems impeding diabetic wound healing. Particularly, controllable oxygen release and ROS scavenging capacities are critical during the wound healing process. Here, an injectable hydrogel based on hyaluronic acid-graft-dopamine (HA-DA) and polydopamine (PDA) coated Ti3C2 MXene nanosheets is developed catalytically cross-linked by an oxyhemoglobin/hydrogen (HbO2/H2O2) system combined with mild photothermal stimulation for diabetic wound healing. HbO2 not only acts as a horseradish peroxidase-like to catalyze the hydrogel formation but also as an oxygen carrier to controllably release oxygen when activated by the mild heat produced from near-infrared (NIR) irradiation. Specifically, HbO2 can provide oxygen repeatedly by binding oxygen in the air when the NIR is off. The stable photoresponsive heating behavior of MXene ensures the repeatable oxygen release. Additionally, artificial nonenzymatic antioxidant MXene nanosheets are proposed to scavenge excessive reactive nitrogen species and ROS including H2O2, O2•-, and •OH, keeping the intracellular redox homeostasis and alleviating oxidative stress, and eradicate bacteria to avoid infection. The antioxidant and antibacterial abilities of MXene are further improved by PDA coating, which also promotes the MXene nanosheets cross-linking into the network of the hydrogel. HA-DA molecules endow the hydrogel with the capacity to regulate macrophage polarization from M1 to M2 to achieve anti-inflammation. More importantly, the MXene-anchored hydrogel with multifunctions including tissue adhesion, self-healing, injectability, and hemostasis, combined with mild photothermal stimulation, greatly promotes human umbilical vein endothelial cell proliferation and migration and notably facilitates infected diabetic wound healing.
Collapse
Affiliation(s)
- Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zhiguang Duan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
21
|
Mei C, Zhang Y, Pan L, Dong B, Chen X, Gao Q, Xu H, Xu W, Fang H, Liu S, McAlinden C, Paschalis EI, Wang Q, Yang M, Huang J, Yu AY. A One-Step Electrochemical Aptasensor Based on Signal Amplification of Metallo Nanoenzyme Particles for Vascular Endothelial Growth Factor. Front Bioeng Biotechnol 2022; 10:850412. [PMID: 35615476 PMCID: PMC9124786 DOI: 10.3389/fbioe.2022.850412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a one-step electrochemical aptasensor was developed to detect the biomarker vascular endothelial growth factor (VEGF), an important protein in the pathogenesis of many retinal diseases, including age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. The aptamer has a good affinity and can rapidly identify and capture VEGF based on its unique structure. We designed a VEGF aptasensor based on the aptamer recognition and complex metallo nanoenzyme particles as an electron exchange center and bridge between capture DNA and electrode. The aptamers maintained the hairpin structure to avoid nonspecific surface adsorption and expose the capture sequence outwards when the target was inexistent. Conversely, the aptamers opened the hairpin structure to release space to accomplish binding between VEGF and DNA, resulting in increased impedance. The performance of the electrochemical aptasensor is detected by electrochemical impedance spectroscopy (EIS). The limit of detection by EIS was as low as 8.2 pg ml-1, and the linear range was 10 pg ml-1-1 μg ml-1. The electrochemical aptasensor also showed high specificity and reproducibility.
Collapse
Affiliation(s)
- ChenYang Mei
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Zhang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Luting Pan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Bin Dong
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Xingwei Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Qingyi Gao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Hang Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Wenjin Xu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Hui Fang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Siyu Liu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Colm McAlinden
- Department of Ophthalmology, Singleton Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Eleftherios I. Paschalis
- Harvard Medical School, Boston, MA, United States
- Disruptive Technology Laboratory (D.T.L.), Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Qinmei Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Mei Yang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - A-Yong Yu
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Niu X, Liu B, Hu P, Zhu H, Wang M. Nanozymes with Multiple Activities: Prospects in Analytical Sensing. BIOSENSORS 2022; 12:bios12040251. [PMID: 35448311 PMCID: PMC9030423 DOI: 10.3390/bios12040251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 05/17/2023]
Abstract
Given the superiorities in catalytic stability, production cost and performance tunability over natural bio-enzymes, artificial nanomaterials featuring enzyme-like characteristics (nanozymes) have drawn extensive attention from the academic community in the past decade. With these merits, they are intensively tested for sensing, biomedicine and environmental engineering. Especially in the analytical sensing field, enzyme mimics have found wide use for biochemical detection, environmental monitoring and food analysis. More fascinatingly, rational design enables one fabrication of enzyme-like materials with versatile activities, which show great promise for further advancement of the nanozyme-involved biochemical sensing field. To understand the progress in such an exciting field, here we offer a review of nanozymes with multiple catalytic activities and their analytical application prospects. The main types of enzyme-mimetic activities are first introduced, followed by a summary of current strategies that can be employed to design multi-activity nanozymes. In particular, typical materials with at least two enzyme-like activities are reviewed. Finally, opportunities for multi-activity nanozymes applied in the sensing field are discussed, and potential challenges are also presented, to better guide the development of analytical methods and sensors using nanozymes with different catalytic features.
Collapse
Affiliation(s)
- Xiangheng Niu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence:
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Panwang Hu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (B.L.); (P.H.); (H.Z.); (M.W.)
| |
Collapse
|
23
|
Crawley JM, Gow IE, Lawes N, Kowalec I, Kabalan L, Catlow CRA, Logsdail AJ, Taylor SH, Dummer NF, Hutchings GJ. Heterogeneous Trimetallic Nanoparticles as Catalysts. Chem Rev 2022; 122:6795-6849. [PMID: 35263103 PMCID: PMC8949769 DOI: 10.1021/acs.chemrev.1c00493] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Indexed: 12/13/2022]
Abstract
The development and application of trimetallic nanoparticles continues to accelerate rapidly as a result of advances in materials design, synthetic control, and reaction characterization. Following the technological successes of multicomponent materials in automotive exhausts and photovoltaics, synergistic effects are now accessible through the careful preparation of multielement particles, presenting exciting opportunities in the field of catalysis. In this review, we explore the methods currently used in the design, synthesis, analysis, and application of trimetallic nanoparticles across both the experimental and computational realms and provide a critical perspective on the emergent field of trimetallic nanocatalysts. Trimetallic nanoparticles are typically supported on high-surface-area metal oxides for catalytic applications, synthesized via preparative conditions that are comparable to those applied for mono- and bimetallic nanoparticles. However, controlled elemental segregation and subsequent characterization remain challenging because of the heterogeneous nature of the systems. The multielement composition exhibits beneficial synergy for important oxidation, dehydrogenation, and hydrogenation reactions; in some cases, this is realized through higher selectivity, while activity improvements are also observed. However, challenges related to identifying and harnessing influential characteristics for maximum productivity remain. Computation provides support for the experimental endeavors, for example in electrocatalysis, and a clear need is identified for the marriage of simulation, with respect to both combinatorial element screening and optimal reaction design, to experiment in order to maximize productivity from this nascent field. Clear challenges remain with respect to identifying, making, and applying trimetallic catalysts efficiently, but the foundations are now visible, and the outlook is strong for this exciting chemical field.
Collapse
Affiliation(s)
- James
W. M. Crawley
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Isla E. Gow
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Naomi Lawes
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Igor Kowalec
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Lara Kabalan
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - C. Richard A. Catlow
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 OFA, U.K.
- Department
of Chemistry, University College London, Gordon Street, London WC1H 0AJ, U.K.
| | - Andrew J. Logsdail
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Stuart H. Taylor
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Nicholas F. Dummer
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
| | - Graham J. Hutchings
- Max
Planck−Cardiff Centre on the Fundamentals of Heterogeneous
Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10
3AT, United Kingdom
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 OFA, U.K.
| |
Collapse
|
24
|
Jiang J, Kan X. Mimetic peroxidase based on a gold amalgam for the colorimetric sensing of trace mercury( ii) in water samples. Analyst 2022; 147:2388-2395. [DOI: 10.1039/d2an00560c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and effective AuNPs/H-rGO/CC colorimetric sensing interface was constructed for the sensitive, selective, and facile determination of Hg2+ in water samples.
Collapse
Affiliation(s)
- Jing Jiang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education;Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of ChemoBiosensing, Anhui Key Laboratory of Functional Molecular Solids, China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China
| |
Collapse
|
25
|
Guo M, Zhao R, Liu H, Ma H, Guo J, Yang H, Liu Y, Zhang X, Huang Y, Zhang G, Wang J, Long W, Zhang XD. Ligand-Modulated Catalytic Selectivity of Ag Clusterzyme for Relieving Multiorgan Injury via Inhabiting Acute Oxidative Stress. Bioconjug Chem 2021; 32:2342-2352. [PMID: 34643081 DOI: 10.1021/acs.bioconjchem.1c00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The artificial enzymes at the atomic level have shown great potential in chemical biology and nanomedicine, and modulation of catalytic selectivity is also critical to the application of nanozymes. In this work, atomic precision Ag25 clusterzymes protected by single- and dual-ligand were developed. Further, the catalytic activity and selectivity of Ag25 clusterzymes were modulated by adjusting doping elements and ligand. The Ag24Pt1 shows more prominent antioxidant activity characteristics in the dual-ligand system, while the Ag24Cu1 possesses the superoxide dismutase-like (SOD-like) activity regardless of the single- or dual-ligand system, indicating modulated catalytic selectivity. In vitro experiments showed the Ag24Pt1-D can recover radiation induced DNA damages and eliminate the excessive reactive oxygen species (ROS) generated from radiation. Subsequent in vivo radiation protection experiments reveal that Ag24Cu1-S and Ag24Pt1-D can improve the survival rate of irradiated mice from 0 to 40% and 30%, respectively. The detailed biological experiments confirm that the Ag24Cu1-S and Ag24Pt1-D can recover the SOD and 3,4-methylenedioxyamphetamine (MDA) levels via suppressing the chronic inflammation reaction. Nearly 60% of Ag24Cu1-S and Ag24Pt1-D can be excreted after a 1 day injection, and no obvious toxicological reactions were observed 30 days after injection.
Collapse
Affiliation(s)
- Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Ruiying Zhao
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Huizhen Ma
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Jiao Guo
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Haiyu Yang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ya Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoning Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - You Huang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Gang Zhang
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Junying Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Science, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
26
|
Li Q, Liu Y, Dai X, Jiang W, Zhao H. Nanozymes Regulate Redox Homeostasis in ROS-Related Inflammation. Front Chem 2021; 9:740607. [PMID: 34746091 PMCID: PMC8567209 DOI: 10.3389/fchem.2021.740607] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS), in moderate amounts, play an essential role in regulating different physiological functions in organisms. However, increased amounts of ROS may cause oxidative stress and damage to biomolecules, leading to a variety of diseases including inflammation and even cancer. Therefore, ROS scavenging reagents are needed to maintain healthy levels of ROS. With considerable advances in nanotechnology, nanozymes possess SOD or CAT-like activities with outstanding free radical scavenging activity, facile synthesis conditions, and excellent biocompatibility. Based on these extraordinary properties, nanozymes has been used to modulate the redox homeostasis and relieve the ROS-related injury. This has led to the emergence of nanozyme-based therapies. In the current review, we presented recently developed applications of nanozymes to treat ROS-dependent disorders with an emphasis on inflammatory and brain diseases.
Collapse
Affiliation(s)
- Qing Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xianglin Dai
- Department of Oncology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Application Center for Precision Medicine, Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
| |
Collapse
|
27
|
Zhang Y, Sun S, Liu H, Ren Q, Hao W, Xin Q, Xu J, Wang H, Zhang XD. Catalytically active gold clusters with atomic precision for noninvasive early intervention of neurotrauma. J Nanobiotechnology 2021; 19:319. [PMID: 34645450 PMCID: PMC8513369 DOI: 10.1186/s12951-021-01071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Neurotrauma is a worldwide public health problem which can be divided into primary and secondary damge. The primary damge is caused by external forces and triggers the overproduction of peroxides and superoxides, leading to long-lasting secondary damage including oxidative stress, wound infection and immunological reactions. The emerging catalysts have shown great potential in the treatment of brain injury and neurogenic inflammation, but are limited to biosafety issues and delivery efficiency. Results Herein, we proposed the noninvasive delivery route to brain trauma by employing highly active gold clusters with enzyme-like activity to achieve the early intervention. The decomposition rate to H2O2 of the ultrasmall gold clusters is 10 times that of glassy carbon (GC) electrodes, indicating excellent catalytic activity. The gold clusters can relieve the oxidative stress and decrease the excessive O2·− and H2O2 both in vitro and in vivo. Besides, gold clusters can accelerate the wound healing of brain trauma and alleviate inflammation via inhibiting the activation of astrocytes and microglia through noninvasive adminstration. decrease the peroxide and superoxide of brain tissue. Conclusions Present work shows noninvasive treatment is a promising route for early intervention of brain trauma. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01071-4.
Collapse
Affiliation(s)
- Yunguang Zhang
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
| | - Si Sun
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Haile Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Qinjuan Ren
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Wenting Hao
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiangang Xu
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China. .,Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
28
|
Liu Y, Wang X, Li X, Qiao S, Huang G, Hermann DM, Doeppner TR, Zeng M, Liu W, Xu G, Ren L, Zhang Y, Liu W, Casals E, Li W, Wang YC. A Co-Doped Fe 3O 4 Nanozyme Shows Enhanced Reactive Oxygen and Nitrogen Species Scavenging Activity and Ameliorates the Deleterious Effects of Ischemic Stroke. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46213-46224. [PMID: 34546708 DOI: 10.1021/acsami.1c06449] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acute ischemic stroke has become the major cause of mortality and disability worldwide. Following ischemic stroke, the reperfusion injury is mainly mediated by the burst of reactive oxygen and nitrogen species (RONS). Therefore, blocking the excessive production or removing RONS holds great promise as a potential therapeutic strategy. Herein, we developed a Co-doped Fe3O4 nanozyme that is capable of scavenging H2O2, O2•-, •NO, and ONOO- in vitro and in vivo and provides neuroprotection against ischemic stroke. In vitro experiments showed that pre-incubation with the Co-Fe3O4 nanozyme could prevent neurotoxicity and neuroinflammation induced by H2O2 or lipopolysaccharide, respectively, in HT22 cells. After intravenous administration, the Co-Fe3O4 nanozyme showed no signs of toxicity in peripheral organs of C57BL/6J mice, even after prolonged delivery for 4 weeks. In permanent photothrombotic stroke model and transient middle cerebral artery occlusion stroke model, the Co-Fe3O4 nanozyme specifically accumulated in the infarct rim at 72 h post-stroke and was endocytosed by neurons, astrocytes, microglia, and endothelial cells. Importantly, the Co-Fe3O4 nanozyme delivery reduced the infarct volume in both stroke models. The observation that the Co-Fe3O4 nanozyme was efficacious in two well-characterized ischemic stroke models provides strong evidence that it represents a powerful tool for targeting oxidative and nitrosative stress in the ischemic brain.
Collapse
Affiliation(s)
- Yunsheng Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Xiaojun Wang
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiangzhu Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Shanshan Qiao
- The Central Laboratory of Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | | | | | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wei Liu
- School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Gelin Xu
- Department of Neurology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Lijie Ren
- Department of Neurology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Yuan Zhang
- The Central Laboratory of Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Wenlan Liu
- The Central Laboratory of Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Weiping Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518035, China
| | - Ya-Chao Wang
- The Institute Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| |
Collapse
|
29
|
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. NANO-MICRO LETTERS 2021; 13:154. [PMID: 34241715 PMCID: PMC8271064 DOI: 10.1007/s40820-021-00674-8] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 05/19/2023]
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| | - Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
30
|
Sun S, Liu H, Xin Q, Chen K, Ma H, Liu S, Mu X, Hao W, Liu S, Gao Y, Wang Y, Pei J, Zhao R, Zhang S, Zhang X, Wang H, Li Y, Zhang XD. Atomic Engineering of Clusterzyme for Relieving Acute Neuroinflammation through Lattice Expansion. NANO LETTERS 2021; 21:2562-2571. [PMID: 33720739 DOI: 10.1021/acs.nanolett.0c05148] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural enzymes are efficient and versatile biocatalysts but suffer in their environmental tolerance and catalytic stability. As artificial enzymes, nanozymes can improve the catalytic stability, but it is still a challenge to achieve high catalytic activity. Here, we employed atomic engineering to build the artificial enzyme named Au24Ag1 clusterzyme that hosts an ultrahigh catalytic activity as well as strong physiological stability via atom manipulation. The designed Au24Ag1 clusterzyme activates the Ag-S active site via lattice expansion in the oligomer atom layer, showing an antioxidant property 72 times higher than that of natural antioxidant Trolox. Enzyme-mimicked studies find that Au24Ag1 clusterzyme exhibits high catalase-like (CAT-like) and glutathione peroxidase-like (GPx-like) activity with a maximum reaction rate of 68.9 and 17.8 μM/min, respectively. Meanwhile, the unique catalytic landscape exhibits distinctive reactions against inflammation by inhibiting the cytokines at an early stage in the brain. Atomic engineering of clusterzymes provides a powerful and attractive platform with satisfactory atomic dispersion for tailoring biocatalysts freely at the atomic level.
Collapse
Affiliation(s)
- Si Sun
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Haile Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ke Chen
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Huizhen Ma
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Shuhu Liu
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Wenting Hao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yalong Gao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jiahui Pei
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ruoli Zhao
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiaoning Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yonghui Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Tian R, Xu J, Luo Q, Hou C, Liu J. Rational Design and Biological Application of Antioxidant Nanozymes. Front Chem 2021; 8:831. [PMID: 33644000 PMCID: PMC7905316 DOI: 10.3389/fchem.2020.00831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Nanozyme is a type of nanostructured material with intrinsic enzyme mimicking activity, which has been increasingly studied in the biological field. Compared with natural enzymes, nanozymes have many advantages, such as higher stability, higher design flexibility, and more economical production costs. Nanozymes can be used to mimic natural antioxidant enzymes to treat diseases caused by oxidative stress through reasonable design and modification. Oxidative stress is caused by imbalances in the production and elimination of reactive oxygen species (ROS) and reactive nitrogen species (RNS). This continuous oxidative stress can cause damage to some biomolecules and significant destruction to cell structure and function, leading to many physiological diseases. In this paper, the methods to improve the antioxidant properties of nanozymes were reviewed, and the applications of nanozyme antioxidant in the fields of anti-aging, cell protection, anti-inflammation, wound repair, cancer, traumatic brain injury, and nervous system diseases were introduced. Finally, the future challenges and prospects of nanozyme as an ideal antioxidant were discussed.
Collapse
Affiliation(s)
- Ruizhen Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
32
|
Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS NANO 2021; 15:2005-2037. [PMID: 33566564 DOI: 10.1021/acsnano.0c06962] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Single-atom catalysts (SACs) featuring the complete atomic utilization of metal, high-efficient catalytic activity, superior selectivity, and excellent stability have been emerged as a frontier in the catalytic field. Recently, increasing interests have been drawn to apply SACs in biomedical fields for enzyme-mimic catalysis and disease therapy. To fulfill the demand of precision and personalized medicine, precisely engineering the structure and active site toward atomic levels is a trend for nanomedicines, promoting the evolution of metal-based biomedical nanomaterials, particularly biocatalytic nanomaterials, from nanoparticles to clusters and now to SACs. This review outlines the syntheses, characterizations, and catalytic mechanisms of metal clusters and SACs, with a focus on their biomedical applications including biosensing, antibacterial therapy, and cancer therapy, as well as an emphasis on their in vivo biological safeties. Challenges and future perspectives are ultimately prospected for SACs in diverse biomedical applications.
Collapse
Affiliation(s)
- Yu Fan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shange Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
33
|
Liu H, Li Y, Sun S, Xin Q, Liu S, Mu X, Yuan X, Chen K, Wang H, Varga K, Mi W, Yang J, Zhang XD. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat Commun 2021; 12:114. [PMID: 33414464 PMCID: PMC7791071 DOI: 10.1038/s41467-020-20275-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
Emerging artificial enzymes with reprogrammed and augmented catalytic activity and substrate selectivity have long been pursued with sustained efforts. The majority of current candidates have rather poor catalytic activity compared with natural molecules. To tackle this limitation, we design artificial enzymes based on a structurally well-defined Au25 cluster, namely clusterzymes, which are endowed with intrinsic high catalytic activity and selectivity driven by single-atom substitutions with modulated bond lengths. Au24Cu1 and Au24Cd1 clusterzymes exhibit 137 and 160 times higher antioxidant capacities than natural trolox, respectively. Meanwhile, the clusterzymes demonstrate preferential enzyme-mimicking catalytic activities, with Au25, Au24Cu1 and Au24Cd1 displaying compelling selectivity in glutathione peroxidase-like (GPx-like), catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities, respectively. Au24Cu1 decreases peroxide in injured brain via catalytic reactions, while Au24Cd1 preferentially uses superoxide and nitrogenous signal molecules as substrates, and significantly decreases inflammation factors, indicative of an important role in mitigating neuroinflammation.
Collapse
Affiliation(s)
- Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Qi Xin
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Shuhu Liu
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), 100049, Beijing, China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, China
| | - Ke Chen
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Hao Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Kalman Varga
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
| | - Wenbo Mi
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, 510060, Guangzhou, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, 300350, Tianjin, China.
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
34
|
Zhang S, Liu Y, Sun S, Wang J, Li Q, Yan R, Gao Y, Liu H, Liu S, Hao W, Dai H, Liu C, Sun Y, Long W, Mu X, Zhang XD. Catalytic patch with redox Cr/CeO 2 nanozyme of noninvasive intervention for brain trauma. Theranostics 2021; 11:2806-2821. [PMID: 33456574 PMCID: PMC7806487 DOI: 10.7150/thno.51912] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a sudden injury to the brain, accompanied by the production of large amounts of reactive oxygen and nitrogen species (RONS) and acute neuroinflammation responses. Although traditional pharmacotherapy can effectively decrease the immune response of neuron cells via scavenging free radicals, it always involves in short reaction time as well as rigorous clinical trial. Therefore, a noninvasive topical treatment method that effectively eliminates free radicals still needs further investigation. Methods: In this study, a type of catalytic patch based on nanozymes with the excellent multienzyme-like activity is designed for noninvasive treatment of TBI. The enzyme-like activity, free radical scavenging ability and therapeutic efficacy of the designed catalytic patch were assessed in vitro and in vivo. The structural composition was characterized by the X-ray diffraction, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy technology. Results: Herein, the prepared Cr-doped CeO2 (Cr/CeO2) nanozyme increases the reduced Ce3+ states, resulting in its enzyme-like activity 3-5 times higher than undoped CeO2. Furthermore, Cr/CeO2 nanozyme can improve the survival rate of LPS induced neuron cells via decreasing excessive RONS. The in vivo experiments show the Cr/CeO2 nanozyme can promote wound healing and reduce neuroinflammation of mice following brain trauma. The catalytic patch based on nanozyme provides a noninvasive topical treatment route for TBI as well as other traumas diseases. Conclusions: The catalytic patch based on nanozyme provides a noninvasive topical treatment route for TBI as well as other traumas diseases.
Collapse
Affiliation(s)
- Shaofang Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ying Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Si Sun
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Junying Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Qifeng Li
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruijuan Yan
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Yalong Gao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haile Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Shuangjie Liu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Wenting Hao
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Changlong Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Yuanming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoyu Mu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
35
|
Tian L, Zhang Y, Wang L, Geng Q, Liu D, Duan L, Wang Y, Cui J. Ratiometric Dual Signal-Enhancing-Based Electrochemical Biosensor for Ultrasensitive Kanamycin Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52713-52720. [PMID: 33170623 DOI: 10.1021/acsami.0c15898] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Based on the signal amplification elements of planar VS2/AuNPs nanocomposites and CoFe2O4 nanozyme, we herein developed an electrochemical biosensor for sensitive kanamycin (Kana) quantification. A ratiometric sensing platform was presented by incorporating VS2/AuNPs nanocomposites as a support material with excellent conductivity and high specific surface area, as well as hairpin DNA (hDNA) with complementary hybridization of biotinylated Kana-aptamer. In addition, streptavidin-functionalized CoFe2O4 nanozyme with superior peroxidase-like catalytic activity were immobilized onto the aptasensor, hence the peroxidase-like catalytic reaction could yield amplified electrochemical signals. With the presence of Kana, the aptamer-biorecognition resulted in a quantitative decrease of nanozyme accumulation and an increase of methylene blue response. Under optimal conditions, the electrochemical signal ratio of the aptasensor revealed a linear relation along with the logarithmic concentration of Kana from 1 pM to 1 μM, with the limit of detection reaching to 0.5 pM. Moreover, this aptasensor exhibited excellent precision, as well as high repeatability, hence possessing potentials in real samples and for diverse targets detection by easy replacement of the matched aptamer.
Collapse
Affiliation(s)
- Liang Tian
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| | - Yi Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| | - Liubo Wang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| | - Qingjun Geng
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| | - Daxi Liu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| | - Lili Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jiansheng Cui
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P. R. China
| |
Collapse
|
36
|
Han D, Yan Y, Bian X, Wang J, Zhao M, Duan X, Kong L, Cheng W, Ding S. A novel electrochemical biosensor based on peptidoglycan and platinum-nickel-copper nano-cube for rapid detection of Gram-positive bacteria. Mikrochim Acta 2020; 187:607. [PMID: 33052497 DOI: 10.1007/s00604-020-04581-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022]
Abstract
A novel non-enzyme electrochemical biosensor for the rapid detection of Gram-positive bacteria has been constructed that relys on a stable and efficient combination between the peptidoglycan layer and platinum-nickel-copper nanocubes (Pt-Ni-Cu NCs). Briefly, bacteria were first captured by a specific antibody. Then, the electrochemical signal materials (Pt-Ni-Cu NCs) were bound to the bacteria peptidoglycan layer using specific structural and surface features. The rapid and sensitive bacterial detection was then achieved using intrinsic electrochemical characteristics and superoxidase-like activity of the Pt-Ni-Cu NCs. Moreover, the nature of peptidoglycan covering the whole bacteria provided the premise for signal amplification. Under optimal conditions, the electrochemical signal variation was proportional to the concentration of bacteria ranging from 1.5 × 102 to 1.5 × 108 CFU/mL with a detection limit of 42 CFU/mL using a working potential of - 0.4 V. This electrochemical biosensor has been successfully applied to detect bacteria concentrations in urine samples, and the recoveries range from 90.4 to 107%. The proposed biosensor could be applied for broad-spectrum detection of Gram-positive bacteria since most Gram-positive bacteria possess a thick peptidoglycan layer. The developed electrochemical biosensing strategy might be used as a potential tool for clinical pathogenic bacteria detection and point-of-care testing (POCT).
Collapse
Affiliation(s)
- Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianmin Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.,Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Liangsheng Kong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
37
|
Hao W, Liu S, Liu H, Mu X, Chen K, Xin Q, Zhang XD. In Vivo Neuroelectrophysiological Monitoring of Atomically Precise Au 25 Clusters at an Ultrahigh Injected Dose. ACS OMEGA 2020; 5:24537-24545. [PMID: 33015471 PMCID: PMC7528291 DOI: 10.1021/acsomega.0c03005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 05/14/2023]
Abstract
Atomically precise Au25(SG)18 clusters have shown great promise in near-infrared II cerebrovascular imaging, X-ray imaging, and cancer radiotherapy due to their high atomic number, unique molecular-like electronic structure, and renal clearable properties. Therefore, it is important to study the in vivo toxicity of Au25 clusters. Unfortunately, previous toxicological investigations focused on low injected doses (<100 mg kg-1) and routine research methods, such as blood chemistry and biochemistry, which cannot reflect neurotoxicity or tiny changes in neural activity. In this work, in vivo neuroelectrophysiology of Au25 clusters at ultrahigh injected doses (200, 300, and 500 mg kg-1) was investigated. Local field potential showed that the Au25-treated mice showed a spike in delta rhythm and moved to lower frequency over time. The power spectrum showed a 38.3% reduction in the peak value at 10 h post-injection of Au25 clusters compared with 3 h post-injection, which gradually became close to the normal level, indicating no permanent damage to the nervous system. Moreover, no significant structural changes were found in both neurons and glial cells at the histological level. These results of in vivo neuroelectrophysiology will encourage scientists to make more exciting discoveries on nervous system diseases by employing Au25 clusters even at ultrahigh injected doses.
Collapse
Affiliation(s)
- Wenting Hao
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuangjie Liu
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Haile Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiaoyu Mu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Qi Xin
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department
of Pathology, Tianjin Third Central Hospital, Tianjin Key Laboratory
of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital affiliated to Nankai University, Tianjin 300170, China
| | - Xiao-Dong Zhang
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
38
|
Wang H, Zhang M, Ma Y, Wang B, Huang H, Liu Y, Shao M, Kang Z. Carbon Dots Derived from Citric Acid and Glutathione as a Highly Efficient Intracellular Reactive Oxygen Species Scavenger for Alleviating the Lipopolysaccharide-Induced Inflammation in Macrophages. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41088-41095. [PMID: 32805964 DOI: 10.1021/acsami.0c11735] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reactive oxygen species (ROSs), acting as functionalized molecules in intracellular enzyme reactions and intercellular communication of immune response, play vital roles in biological metabolism. However, the inevitably excessive ROS-induced oxidative stress is harmful for organ tissue, causing unexpected local anaphylaxis or inflammation. Here, we demonstrate carbon dots (CDs), made of citric acid and glutathione via one-step hydrothermal method, as a highly efficient intracellular ROS scavenger for alleviating the lipopolysaccharide (LPS)-induced inflammation in macrophage. These CDs have broad-spectrum antioxidant properties and the total antioxidant activity exceeds 51.6% higher than that of the precursor, namely, glutathione, in the same mass concentration. Moreover, their antioxidative performance in macrophage inflammation induced by LPS was investigated, and it was found that CDs can efficiently remove up to 98% of intracellular ROS, notably inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, and decrease the expression level of inflammatory factor IL-12. Our results suggested that CDs can serve as a highly efficient intracellular ROS scavenger and could be employed to cope with oxidative stress-induced diseases.
Collapse
Affiliation(s)
- Huibo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - MengLing Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yurong Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Bo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| |
Collapse
|
39
|
Wu S, Qiao Z, Li Y, Hu S, Ma Y, Wei S, Zhang L. Persistent Luminescence Nanoplatform with Fenton-like Catalytic Activity for Tumor Multimodal Imaging and Photoenhanced Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25572-25580. [PMID: 32412741 DOI: 10.1021/acsami.0c04438] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reactive oxygen species-mediated tumor chemodynamic therapy and photodynamic therapy have captured extensive attention in practical cancer combination therapies. However, the severe treatment conditions and the hypoxic microenvironment of solid tumors significantly limit the efficacy of these therapies. This work demonstrates the design and fabrication of a multifunctional persistent luminescence nanoplatform (PHFI, refers to PLNP-HSA-Fe3+-IR780) for cancer multimodal imaging and effective photoenhanced combination therapy. The near-infrared-emitted persistent luminescence nanoparticles (PLNP) was modified with human serum albumin (HSA) combined with an IR780 probe and Fe3+. The synthesized PHFI possesses high longitudinal relaxivity, obvious photoacoustic contrast signals, and long-lasting persistent luminescence, indicating that PHFI can be used for cancer magnetic resonance imaging, photoacoustic imaging, and persistent luminescence multimodal imaging. PHFI shows intrinsic photoenhanced Fenton-like catalytic activities as well as photodynamic and photothermal effects and thereby can effectively overcome severe treatment conditions for killing tumor cells. It is worth noting that PHFI serving as a rechargeable internal light source for photoenhanced combination therapy was first disclosed. We believe that our work shows the great potential of PHFI for cancer theranostics and will advance the development of PLNP-based nanoplatforms in tumor catalytic therapy.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zihan Qiao
- Honor College, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Sunpei Hu
- Honor College, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Siyi Wei
- Department of Cardiology, Shaanxi Provincial Crops Hospital, Chinese People's Armed Police Forces, Xi'an 710054, China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
40
|
Zhang Y, Liu Q, Ma CB, Wang Q, Yang M, Du Y. Point-of-care assay for drunken driving with Pd@Pt core-shell nanoparticles-decorated ploy(vinyl alcohol) aerogel assisted by portable pressure meter. Am J Cancer Res 2020; 10:5064-5073. [PMID: 32308768 PMCID: PMC7163434 DOI: 10.7150/thno.42601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol abuse causes health problems and security accidents. A reliable and sensitive detection system for alcohol has been an instinctive demand in law enforcement and forensic. More efforts are demanded in developing new sensing strategy preferably with portable and non-invasive traits for the pushforward of point-of-care (POC) device popularization. Methods: We developed a POC diagnosis system for alcohol assay with the aid of alcohol oxidase (AOX) pre-joining in the system as well as Pd@Pt core-shell nanoparticles (abbreviated to Pd@Pt) that were decorated on ploy(vinyl alcohol) aerogel with amphiphilicity. Biological samples like saliva and whole blood can be absorbed by the aerogel in a quick process, in which the analyte would go through a transformation from alcohol, H2O2, to a final production of O2, causing an analyte dose-dependent signal change in the commercial portable pressure meter. The cascade reactions are readily catalyzed by AOX and Pd@Pt, of which the latter one possesses excellent peroxidase-like activity. Results: Our design has smartness embodied in the aerogel circumvents the interference from methanol which is more ready to be catalyzed by AOX. Under the optimal conditions, the limit of detection for alcohol was 0.50 mM in saliva, and is able to distinguish the driving under the influence (DUI) (1.74 mM in saliva) and driving while impaired (DWI) (6.95 mM in saliva) in the national standard of China. Conclusion: Our proof-of-concept study provides the possibility for the establishment of POC device for alcohol and other target detection, not only owing to the sensing qualification but also thanks to the architecture of such sensor that has great flexibility by replacing the AOX with glucose oxidase (GOX), thenceforth realizing the accurate detection of glucose in 0.5% whole blood sample. With the advantages of easy accessibility and anti-interference ability, our sensor exhibits great potential for quantitative diagnostics in biological system.
Collapse
|
41
|
Zhang Y, Li S, Liu H, Long W, Zhang XD. Enzyme-Like Properties of Gold Clusters for Biomedical Application. Front Chem 2020; 8:219. [PMID: 32309272 PMCID: PMC7145988 DOI: 10.3389/fchem.2020.00219] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, the rapid development of nanoscience and technology has provided a new opportunity for the development and preparation of new inorganic enzymes. Nanozyme is a new generation of artificial mimetic enzyme, which like natural enzymes, can efficiently catalyze the substrate of enzyme under mild conditions, exhibiting catalytic efficiency, and enzymatic reaction kinetics similar to natural enzymes. However, nanozymes exist better stability than native enzymes, it can still maintain 85 % catalytic activity in strong acid and alkali (pH 2~10) or large temperature range (4~90°C). This provides conditions for designing complex catalytic systems. In this review, we discussed the enzymatic attributes and biomedical applications of gold nanoclusters, including peroxidase-like, catalase-like, detection of heavy metal ions, and therapy of brain and cancer etc. This review can help us understand the current research status nanozymes.
Collapse
Affiliation(s)
- Yunguang Zhang
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Shuo Li
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| | - Wei Long
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, China
| |
Collapse
|
42
|
Zhang X, Han G, Zhang R, Huang Z, Shen H, Su P, Song J, Yang Y. Co2V2O7 Particles with Intrinsic Multienzyme Mimetic Activities as an Effective Bioplatform for Ultrasensitive Fluorometric and Colorimetric Biosensing. ACS APPLIED BIO MATERIALS 2020; 3:1469-1480. [DOI: 10.1021/acsabm.9b01107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaotong Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Gaojie Han
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ruiqi Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ze Huang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hao Shen
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
43
|
Wu Y, Wu J, Jiao L, Xu W, Wang H, Wei X, Gu W, Ren G, Zhang N, Zhang Q, Huang L, Gu L, Zhu C. Cascade Reaction System Integrating Single-Atom Nanozymes with Abundant Cu Sites for Enhanced Biosensing. Anal Chem 2020; 92:3373-3379. [DOI: 10.1021/acs.analchem.9b05437] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yu Wu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jiabin Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Lei Jiao
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Weiqing Xu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hengjia Wang
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiaoqian Wei
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wenling Gu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guoxi Ren
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Nian Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Chengzhou Zhu
- Key Laboratory of Pesticides and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
44
|
He H, Shi X, Wang J, Wang X, Wang Q, Yu D, Ge B, Zhang X, Huang F. Reactive Oxygen Species-Induced Aggregation of Nanozymes for Neuron Injury. ACS APPLIED MATERIALS & INTERFACES 2020; 12:209-216. [PMID: 31840496 DOI: 10.1021/acsami.9b17509] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanozymes show excellent enzyme activity and robust catalytic properties, but the targeting capability to disease organs is limited because of lack of specificity. Herein, we developed an ultrasmall (∼3 nm) organic nanozyme that can gradually aggregate under a reactive oxygen species (ROS)-rich environment via a spontaneous reaction, namely, ROS-induced aggregation. The size of nanozymes is 75 and 100 times higher than the original size under •OH and H2O2 environments without losing enzyme activity. In vitro experiments confirm that nanozymes prefer to aggregate in mitochondria under ROS-rich conditions. Importantly, the nanozymes show in situ ROS-induced aggregation in the brain, ∼9 times higher uptake than ordinary nanozymes, indicating their potential for treating ROS-related diseases in the central nervous system.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xinjian Shi
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Junying Wang
- Department of Physics, School of Science , Tianjin University , Tianjin 300350 , China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xiaodong Zhang
- Department of Physics, School of Science , Tianjin University , Tianjin 300350 , China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| |
Collapse
|
45
|
Su Y, Zhang Q, Miao X, Wen S, Yu S, Chu Y, Lu X, Jiang LP, Zhu JJ. Spatially Engineered Janus Hybrid Nanozyme toward SERS Liquid Biopsy at Nano/Microscales. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41979-41987. [PMID: 31621282 DOI: 10.1021/acsami.9b17618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanomaterials with intrinsic enzyme-mimicking properties (nanozymes) have been widely considered as artificial enzymes in biomedicine. However, manipulating inorganic nanozymes for multivariant targeted bioanalysis is still challenging because of the insufficient catalytic efficiency and biological blocking effect. Here, we rationally designed a spatially engineered hollow Janus hybrid nanozyme vector (h-JHNzyme) based on the bifacial modulation of Ag-Au nanocages. The silver face inside the h-JHNzyme served as an interior gate to promote the enzymatic activity of the Ag-Au nanozyme, whereas two-dimensional DNAzyme-motif nanobrushes deposited on the exterior surface of the h-JHNzyme endowed it with the targeting function and tremendously enhanced the peroxidase-mimicking activity. We demonstrated that the spatially separated modulation of the h-JHNzyme propelled it as a powerful "all-in-one" enzymatic vector with excellent biocompatibility, specific vectorization, remarkable enzymatic performance, and clinical practicability. Further, we programmed it into a stringent catalytic surface-enhanced Raman scattering (SERS) liquid biopsy platform to trace multidimensional tumor-related biomarkers, such as microRNAs and circulating tumor cells, with a limit of detection of fM and single cell level, respectively. The developed enzymatic platform showed great potential in facilitating reliable quantitative SERS liquid biopsy for on-demand clinical diagnosis.
Collapse
Affiliation(s)
- Yu Su
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Qi Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Xuran Miao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Shengping Wen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Sha Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Yanxin Chu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
46
|
Yan R, Sun S, Yang J, Long W, Wang J, Mu X, Li Q, Hao W, Zhang S, Liu H, Gao Y, Ouyang L, Chen J, Liu S, Zhang XD, Ming D. Nanozyme-Based Bandage with Single-Atom Catalysis for Brain Trauma. ACS NANO 2019; 13:11552-11560. [PMID: 31553878 DOI: 10.1021/acsnano.9b05075] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Neurotrauma is one of the most serious traumatic injuries, which can induce an excess amount of reactive oxygen and nitrogen species (RONS) around the wound, triggering a series of biochemical responses and neuroinflammation. Traditional antioxidant-based bandages can effectively decrease infection via preventing oxidative stress, but its effectiveness is limited to a short period of time due to the rapid loss of electron-donating ability. Herein, we developed a nanozyme-based bandage using single-atom Pt/CeO2 with a persistent catalytic activity for noninvasive treatment of neurotrauma. Single-atom Pt induced the lattice expansion and preferred distribution on (111) facets of CeO2, enormously increasing the endogenous catalytic activity. Pt/CeO2 showed a 2-10 times higher scavenging activity against RONS as well as 3-10 times higher multienzyme activities compared to CeO2 clusters. The single-atom Pt/CeO2 retained the long-lasting catalytic activity for up to a month without obvious decay due to enhanced electron donation through the Mars-van Krevelen reaction. In vivo studies disclosed that the nanozyme-based bandage at the single-atom level can significantly improve the wound healing of neurotrauma and reduce neuroinflammation.
Collapse
Affiliation(s)
- Ruijuan Yan
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou 510060 , China
| | - Wei Long
- Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Number 238, Baidi Road , Tianjin 300192 , China
| | - Junying Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Qifeng Li
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System , Tianjin Medical University General Hospital , Tianjin 300052 , China
| | - Wenting Hao
- Tianjin International Joint Reserch Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine , Tianjin University , Tianjin 300072 , China
| | - Shaofang Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Yalong Gao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System , Tianjin Medical University General Hospital , Tianjin 300052 , China
| | - Lufei Ouyang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Junchi Chen
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Shuangjie Liu
- Tianjin International Joint Reserch Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine , Tianjin University , Tianjin 300072 , China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences , Tianjin University , Tianjin 300350 , China
- Tianjin International Joint Reserch Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine , Tianjin University , Tianjin 300072 , China
| | - Dong Ming
- Tianjin International Joint Reserch Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
47
|
Jiao L, Xu W, Yan H, Wu Y, Liu C, Du D, Lin Y, Zhu C. Fe-N-C Single-Atom Nanozymes for the Intracellular Hydrogen Peroxide Detection. Anal Chem 2019; 91:11994-11999. [PMID: 31436084 DOI: 10.1021/acs.analchem.9b02901] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recently, in situ detection of hydrogen peroxide (H2O2) generated from live cells have caused tremendous attention, because it is of great significance in the control of multiple biological processes. Herein, Fe-N-C single-atom nanozymes (Fe-N-C SAzymes) with intrinsic peroxidase-like activity were successfully prepared via high-temperature calcination using FeCl2, glucose, and dicyandiamide as precursors. The Fe-N-C SAzymes with FeNx as active sites were similar to natural metalloproteases, which can specifically enhance the peroxidase-like activity rather than oxidase-like activity. Accordingly, owing to the excellent catalytic efficiency of the Fe-N-C SAzymes, colorimetric biosensing of H2O2 in vitro was performed via a typical 3,3',5,5'-tetramethylbenzidine induced an allochroic reaction, demonstrating the satisfactory specificity and sensitivity. With regard to the practical application, in situ detection of H2O2 generated from the Hela cells by the Fe-N-C SAzymes was also performed, which can expand the applications of the newborn SAzymes.
Collapse
Affiliation(s)
- Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| | - Dan Du
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry , Central China Normal University , Wuhan , 430079 , People's Republic of China
| |
Collapse
|