1
|
Zhu J, Jin Y, Wu Y, Mo D, Zhang T, Xiang L, Cai K, Zhang J. Harnessing Nanoreactors with Coupled Optical and Molecular Modalities for Photoenzymatic Modulation of Active Species in Cancer Photo-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411336. [PMID: 40059567 DOI: 10.1002/smll.202411336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/10/2025] [Indexed: 03/17/2025]
Abstract
The dynamic process in tumor ablation requires both the generation of reactive oxygen species (ROS) to elicit immunogenic cell death (ICD) and the subsequent reduction of ROS levels to maintain the stimulatory activity of signaling proteins and recover T cells' immune function. Inspired by the regulation mechanism of redox homeostasis in myeloid-derived suppressor cells and the high-selectivity in alcohols/aldehydes conversions of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and Fe(III) synergistic catalysis, photoenzymatic modulators with contradictory but synergistic functions are developed for adaptive photo-immunotherapy of cancer. In particular, poly(caffeic acid) (PCA) nanospheres are synthesized by highly efficient oxidative polymerization of CA. The obtained π-conjugated structures have an extended absorbance in the near-infrared (NIR) region, narrow band energy (0.86 eV), and low exciton binding energy (43.56 meV) that lead to polymerization-enhanced type I photosensitization and photostability. Meanwhile, abundant semiquinone radicals existing in PCA bestow them with superior antioxidant function. Under NIR irradiation, the elevated superoxide radical yields (3.5-fold compared with CA) and heat stress elicit robust ICD. When irradiation ceases, active species downregulation and the infiltration of T lymphocytes increase by 2.7-fold compared with conventional photosensitizers. As envisaged, this work demonstrates a novel tactic to remodel redox and immune homeostasis for effective inhibition of tumor growth and metastasis.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yuxin Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Yunyun Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Dong Mo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, Renmin South Road, Chengdu, 610041, China
| | - Tingting Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Lunli Xiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
2
|
Menichetti A, Mordini D, Vicenzi S, Pane A, Montalti M. Unexplored Mechanisms of Photoprotection: Synergistic Light Absorption and Antioxidant Activity of Melanin. Antioxidants (Basel) 2025; 14:376. [PMID: 40298620 PMCID: PMC12024421 DOI: 10.3390/antiox14040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Light exposure has relevant effects both on living organisms and artificial materials. In particular, ultraviolet radiation is known to kill living cells and damage human skin but also degrade important artificial materials like plastics. In nature, the main pigment responsible for photoprotection is melanin, which is able both to prevent penetration of light by absorption and scattering and to block the action of light-generated radicals thanks to its antioxidant properties. The combination of light extinction with antioxidant action is still the most diffused and effective approach to photoprotection. Nevertheless, up to now, these two mechanisms, light extinction and antioxidant activity, have been considered independent. Recent studies showed that exposing melanin to light leads to an increase in its radical content and possibly in its antioxidant activity. Do light extinction and antioxidant activity work in synergy for photoprotection in nature? In this paper, we discuss the steps still needed to answer this intriguing question.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
- Tecnopolo di Rimini, via Dario Campana 71, 47922 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
| | - Silvia Vicenzi
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
| | - Agata Pane
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, via Francesco Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.); (A.P.)
- Tecnopolo di Rimini, via Dario Campana 71, 47922 Rimini, Italy
| |
Collapse
|
3
|
Petropoulos V, Mordini D, Montorsi F, Akturk M, Menichetti A, Olivati A, Petrozza A, Morandi V, Maiuri M, Gianneschi NC, Garavelli M, Valgimigli L, Cerullo G, Montalti M. Photochemical Pathways and Light-Enhanced Radical Scavenging Activity of 1,8-Dihydroxynaphthalene Allomelanin. J Am Chem Soc 2025; 147:10031-10043. [PMID: 40052704 PMCID: PMC11926873 DOI: 10.1021/jacs.5c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Melanins play important roles in nature, particularly in coloration and photoprotection, where interaction with light is essential. Biomimetic melanins represent an advantageous alternative to natural melanin for technological applications, sharing the same unique biocompatibility, as well as optoelectronic properties. Allomelanin, derived from 1,8-dihydroxynaphthalene, has been reported to exhibit even better photoprotective and antioxidant properties than the most studied example of biomimetic melanin, polydopamine. However, the interaction of allomelanin with light remains largely unexplored. Here we report the excited state dynamics of allomelanin in a wide range of time windows from femtoseconds to microseconds to minutes, using different experimental techniques, i.e., ultrafast transient absorption, nanosecond transient absorption, X-band electron paramagnetic resonance and radical quenching assays. We find that the photophysics of allomelanin starkly differs from that of the widely studied polydopamine, with broadband excitonically coupled states funneling the absorbed energy to a lower energy species in less than 1 ps. Independent of the excitation wavelength, a long-lived (>450 μs) photoproduct is populated in ≈24 ps. Quantum chemistry calculations suggest that the photoproduct primarily exhibits the character of localized 1,8-naphthoquinone radical anions. This light-driven increase in the anionic semiquinone-like radical concentration enhances the antioxidant activity of allomelanin. These results suggest that the two mechanisms considered at the basis of photoprotection, light-extinction and antioxidant action, are indeed synergistic in allomelanin and not independent, paving the way for new applications of allomelanin in nanomedicine, photocatalysis, energy conversion and environmental remediation.
Collapse
Affiliation(s)
- Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Dario Mordini
- Department of Chemistry "Giacomo Ciamician", University of Bologna,Via Selmi 2, Bologna 40126, Italy
| | - Francesco Montorsi
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, via Piero Gobetti 85, Bologna 40129, Italy
| | - Mert Akturk
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", University of Bologna,Via Selmi 2, Bologna 40126, Italy
| | - Andrea Olivati
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan 20134, Italy
| | - Annamaria Petrozza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan 20134, Italy
| | - Vittorio Morandi
- Istituto per la Microelettronica e i Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), via Gobetti 101, Bologna 40129, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Nathan C Gianneschi
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering and Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry &Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marco Garavelli
- Dipartimento di Chimica industriale "Toso Montanari", Università di Bologna, via Piero Gobetti 85, Bologna 40129, Italy
| | - Luca Valgimigli
- Department of Chemistry "Giacomo Ciamician", University of Bologna,Via Selmi 2, Bologna 40126, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", University of Bologna,Via Selmi 2, Bologna 40126, Italy
| |
Collapse
|
4
|
Bi S, He C, Zhou Y, Liu R, Chen C, Zhao X, Zhang L, Cen Y, Gu J, Yan B. Versatile conductive hydrogel orchestrating neuro-immune microenvironment for rapid diabetic wound healing through peripheral nerve regeneration. Biomaterials 2025; 314:122841. [PMID: 39293307 DOI: 10.1016/j.biomaterials.2024.122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Diabetic wound (DW), notorious for prolonged healing processes due to the unregulated immune response, neuropathy, and persistent infection, poses a significant challenge to clinical management. Current strategies for treating DW primarily focus on alleviating the inflammatory milieu or promoting angiogenesis, while limited attention has been given to modulating the neuro-immune microenvironment. Thus, we present an electrically conductive hydrogel dressing and identify its neurogenesis influence in a nerve injury animal model initially by encouraging the proliferation and migration of Schwann cells. Further, endowed with the synergizing effect of near-infrared responsive release of curcumin and nature-inspired artificial heterogeneous melanin nanoparticles, it can harmonize the immune microenvironment by restoring the macrophage phenotype and scavenging excessive reactive oxygen species. This in-situ formed hydrogel also exhibits mild photothermal therapy antibacterial efficacy. In the infected DW model, this hydrogel effectively supports nerve regeneration and mitigates the immune microenvironment, thereby expediting the healing progress. The versatile hydrogel exhibits significant therapeutic potential for application in DW healing through fine-tuning the neuro-immune microenvironment.
Collapse
Affiliation(s)
- Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China
| | - Yannan Zhou
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Chong Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Li Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610000, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
5
|
Ziegler K, Boecker M, Ball V, Kissmann AK, Moser J, Sanchez C, Boissière C, Ersen O, Ihiawakrim D, Marchesi D'Alvise T, Rosenau F, Weil T, Synatschke CV. Multifunctional Thick Films Obtained by Electrodeposition of 1,8-Dihydroxynaphtalene, an Allomelanin Precursor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3971-3985. [PMID: 39901561 DOI: 10.1021/acs.langmuir.4c04184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The deposition of conformal films from redox-active biological molecules, such as catechols, catecholamines, and other polyphenols, has demonstrated great versatility in terms of the substrate used. Precursors of allomelanins, mainly found in plants and fungi, have been largely overlooked as precursors for the design of conformal and robust coatings. Moreover, their potential application for the electrodeposition of films on conductive substrates has not yet been investigated. Here, the electrodeposition by cyclic voltammetry and chronoamperometry of 1,8-dihydroxynaphthalene (1,8-DHN), a precursor of allomelanin, onto gold electrodes and onto Co-Cr alloys from aqueous solution-ethanol mixtures yields films with potential sweep rate tunable thickness and swelling. The resulting films are antioxidants, and the reservoir of antioxidant moieties is not limited to their surface but also extends into the bulk of the film. In addition, the films produced after a limited energy supply (in the potential window -1 to +1 V vs Ag/AgCl) are strongly antimicrobial against two strains of Pseudomonas aeruginosa without further post-deposition treatment. In addition, their mechanical properties allow them to be detached from their substrates as free-standing films, opening avenues for diverse applications in biomedicine, energy storage, catalysis, sensing, and optoelectronics.
Collapse
Affiliation(s)
- Kévin Ziegler
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- INSERM UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg F-67000, France
| | - Marcel Boecker
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Vincent Ball
- INSERM UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, 1 rue Eugène Boeckel, Strasbourg F-67000, France
| | - Ann-Kathrin Kissmann
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Julia Moser
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Clément Sanchez
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condenséeede Paris, 75005 Paris, France
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg 67000, France
| | - Cédric Boissière
- Sorbonne Université, CNRS, Collège de France, Laboratoire Chimie de la Matière Condenséeede Paris, 75005 Paris, France
| | - Ovidiu Ersen
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, Strasbourg, BP 43 67034, Cedex 2, France
| | - Dris Ihiawakrim
- Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS-Université de Strasbourg, Strasbourg, BP 43 67034, Cedex 2, France
| | | | - Frank Rosenau
- Institute for Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | | |
Collapse
|
6
|
Pukalski J, Mokrzyński K, Chyc M, Potrzebowski MJ, Makowski T, Dulski M, Latowski D. Synthesis and characterization of allomelanin model from 1,8-dihydroxynaphthalene autooxidation. Sci Rep 2025; 15:567. [PMID: 39747342 PMCID: PMC11695988 DOI: 10.1038/s41598-024-84405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
In this work a novel method for synthesis of 1,8-dihydroxynaphthalene melanin was presented, as well as the physicochemical properties, molecular structure, and characteristics of the pigment. The proposed synthesis protocol is simple and cost-effective with no enzymes or catalysts needed. The final product is not adsorbed on any surface, since the pigment is the result of autooxidation of 1,8-dihydroxynaphthalene. Performed analyses revealed that the solubility, optical and paramagnetic properties are typical for melanins, and in the EPR spectra an unusual hyperfine structure was observed. The molecular structure of the pigment consists of three different layers forming polar and non-polar surfaces. Additionally, the presence of ether bonds presence was revealed. The developed method creates new opportunities for melanin research and eliminates the need to extract melanins from biological samples, which often lead to structural changes in isolated melanins, which undermines the reliability of analyses of the properties and structure of these polymers. On the other hand, the ubiquity of melanins in living organisms and the diversity of their biological functions have let to the growing interest of researchers in this group of pigments. The analyses carried out show that the obtained synthetic DHN polymer can be considered as a model DHN-melanin in mycological studies and material research.
Collapse
Affiliation(s)
- Jan Pukalski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Krystian Mokrzyński
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marek Chyc
- University of Applied Sciences in Tarnów, Mickiewicza 8, 33-100, Tarnów, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1A, 41-500, Chorzow, Poland
| | - Dariusz Latowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
7
|
An Q, Wang D, Huang L, Chen X, Wang C. Multifunctional nanomaterials composed entirely of active pharmaceutical ingredients for synergistically enhanced antitumor and antibacterial effects. Front Pharmacol 2024; 15:1498728. [PMID: 39498338 PMCID: PMC11532140 DOI: 10.3389/fphar.2024.1498728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction Multifunctional nanomaterials are emerging as promising tools for treating both cancer and bacterial infections. However, integrating dual therapeutic capabilities into a single system remains challenging. This study presents multifunctional nanoparticles (ECI-NPs) based on Epigallocatechin gallate (EGCG) oligomers, Curcumin (CUR), and Indocyanine Green (ICG) for combined cancer and bacterial treatment. Methods ECI-NPs were synthesized via oxidative coupling of EGCG, CUR, and ICG. The nanoparticles were characterized for stability, size, drug loading, and release profiles. Cellular uptake, phototoxicity in melanoma cells, and antibacterial activity against Escherichia coli and Staphylococcus aureus were also evaluated. Results ECI-NPs demonstrated optimal stability, high drug loading, and controlled release. Cellular studies showed increased uptake and greater phototoxicity in melanoma cells compared to free drugs. ECI-NPs also exhibited enhanced anticancer effects and strong antibacterial activity, outperforming the individual components. Discussion The polyphenol-based ECI-NPs offer synergistic therapeutic effects, overcoming the limitations of free drugs in terms of solubility and efficacy. This dual-function platform shows potential for broader biomedical applications, addressing challenges in cancer and bacterial infections. Further research will focus on in vivo studies and clinical translation.
Collapse
Affiliation(s)
- Qi An
- Scientific Reasearch and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Dongmei Wang
- Scientific Reasearch and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Liang Huang
- Scientific Reasearch and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Chuan Wang
- Scientific Reasearch and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Chen F, Jiang Q, Xu B, Huang Y, Xu K, Xu X, Yu D, Chen Y, Wang X. Ototoxicity-Alleviating and Cytoprotective Allomelanin Nanomedicine for Efficient Sensorineural Hearing Loss Treatment. ACS NANO 2024. [PMID: 39259947 DOI: 10.1021/acsnano.4c10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a significant clinical challenge, predominantly attributed to oxidative stress-related mechanisms. In this work, we report an innovative antioxidant strategy for mitigating SNHL, utilizing synthetically engineered allomelanin nanoparticles (AMNPs). Empirical evidence elucidates AMNPs' profound capability in free radical neutralization, substantiated by a significant decrement in reactive oxygen species (ROS) levels within HEI-OC1 auditory cells exposure to cisplatin or hydrogen peroxide (H2O2). Comparative analyses reveal that AMNPs afford protection against cisplatin-induced and noise-induced auditory impairments, mirroring the effect of dexamethasone (DEX), a standard pharmacological treatment for acute SNHL. AMNPs exhibit notable cytoprotective properties for auditory hair cells (HCs), effectively preventing ototoxicity from cisplatin or H2O2 exposure, as confirmed by both in vitro assays and cultured organ of Corti studies. Further in vivo research corroborates AMNPs' ability to reverse auditory brainstem response (ABR) threshold shifts resulting from acoustic injury, concurrently reducing HCs loss, ribbon synapse depletion, and spiral ganglion neuron degeneration. The therapeutic benefits of AMNPs are attributed to mitigating oxidative stress and inflammation within the cochlea, with transcriptome analysis indicating downregulated gene expression related to these processes post-AMNPs treatment. The pronounced antioxidative and anti-inflammatory effects of AMNPs position them as a promising alternative to DEX for SNHL treatment.
Collapse
Affiliation(s)
- Fengqiu Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Qingjun Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Xiaoju Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, China
| |
Collapse
|
9
|
Menichetti A, Mordini D, Montalti M. Melanin as a Photothermal Agent in Antimicrobial Systems. Int J Mol Sci 2024; 25:8975. [PMID: 39201661 PMCID: PMC11354747 DOI: 10.3390/ijms25168975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Bacterial infection is one of the most problematic issues for human health and the resistance of bacteria to traditional antibiotics is a matter of huge concern. Therefore, research is focusing on the development of new strategies to efficiently kill these microorganisms. Recently, melanin is starting to be investigated for this purpose. Indeed, this very versatile material presents outstanding photothermal properties, already studied for photothermal therapy, which can be very useful for the light-induced eradication of bacteria. In this review, we present antibacterial melanin applications based on the photothermal effect, focusing both on the single action of melanin and on its combination with other antibacterial systems. Melanin, also thanks to its biocompatibility and ease of functionalization, has been demonstrated to be easily applicable as an antimicrobial agent, especially for the treatment of local infections.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
10
|
Lee JS, Jeong JR, Lee MH, Kang K. Ultrathin and Smooth Pheomelanin-like Photoconductive Film. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31768-31775. [PMID: 38838199 DOI: 10.1021/acsami.4c03824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This study introduces a facile method for the substrate-independent deposition of pheomelanin-like films, revealing unique and promising electrical characteristics. The conventional darkening of a dopamine solution at a basic pH was significantly delayed by the addition of l-cysteine, resulting in a distinctive temporal pattern: an initial quiescent period without apparent color change followed by an abrupt and explosive burst. Surprisingly, within the quiescent period, the deposition of ultrathin and smooth pheomelanin-like films was observed, in addition to rough and thick films formed after the burst. Regardless of thickness or texture, these films exhibited common chemical properties, including moisture-capturing capability and dark- and bright-state conductivities. Particularly noteworthy were consistent photocurrent responses under bias voltage across various pheomelanin-like films, which were not observed in polydopamine films, highlighting the influential role of l-cysteine addition. These findings present a novel avenue for the potential application of pheomelanin-like films in bioelectronics, emphasizing their distinct electrical characteristics and prompting further exploration into their intricate conductive mechanisms. The study contributes to advancing our understanding of melanin-based materials and their potential in diverse scientific and technological domains.
Collapse
Affiliation(s)
- Jeong Sun Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Jae Ryeol Jeong
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Min Hyung Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| |
Collapse
|
11
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
12
|
He C, Bi S, Zhang R, Chen C, Liu R, Zhao X, Gu J, Yan B. A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing. J Control Release 2024; 370:543-555. [PMID: 38729434 DOI: 10.1016/j.jconrel.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Hyaluronic acid (HA)-based biopolymer hydrogels are promising therapeutic dressings for various wounds but still underperform in treating diabetic wounds. These wounds are extremely difficult to heal and undergo a prolonged and severe inflammatory process due to bacterial infection, overexpression of reactive oxygen species (ROS), and insufficient synthesis of NO. In this study, a dynamic crosslinked hyaluronic acid (HA) hydrogel dressing (Gel-HAB) loaded with allomelanin (AMNP)-N, N'-dis-sec-butyl-N, N'-dinitroso-1, 4-phenylenediamine (BNN6) nanoparticles (AMNP-BNN6) was developed for healing diabetic wounds. The dynamic acylhydrazone bond formed between hydrazide-modified HA (HA-ADH) and oxidized HA (OHA) makes the hydrogel injectable, self-healing, and biocompatible. The hydrogel, loaded with AMNP-BNN6 nanoparticles, exhibits promising ROS scavenging ability and on-demand release of nitric oxide (NO) under near-infrared (NIR) laser irradiation to achieve mild photothermal antibacterial therapy (PTAT) (∼ 48 °C). Notably, the Gel-HAB hydrogel effectively reduced the oxidative stress level, controlled infections, accelerated vascular regeneration, and promoted angiogenesis, thereby achieving rapid healing of diabetic wounds. The injectable self-healing nanocomposite hydrogel could serve as a mild photothermal-enhanced antibacterial, antioxidant, and nitric oxide release platform for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Changyuan He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Chong Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610000, China.
| | - Bin Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
13
|
Shan C, Cui X, Gao Z, Li M, Zhang X, Ashokkumar M, Song A, Cui J. Metal-Phenolic Network-Coated Nanoparticles as Stabilizers for the Engineering of Pickering Emulsions with Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27988-27997. [PMID: 38748900 DOI: 10.1021/acsami.4c05824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Pickering emulsions stabilized by functional nanoparticles (NPs) have received considerable attention for improving the physical stability and biological function of NPs. Herein, hydrophobic polyphenols were chosen as phenolic ligands to form metal-phenolic network (MPN) coatings on NPs (e.g., silica, polystyrene) mediated by the sono-Fenton reaction. The MPN coatings modulated the surface wettability and charges of NPs and achieved emulsification behavior for preparing Pickering emulsions with pH responsiveness and oxidation resistance. A series of polyphenols, including resveratrol, rutin, naringin, and curcumin, were used to form MPN coatings on NPs, which served as stabilizers for the engineering of functionalized oil-in-water (O/W) Pickering emulsions. This work provides a new avenue for the use of hydrophobic polyphenols to modulate NP emulsifiers, which broadens the application of polyphenols for constructing Pickering emulsions with antioxidant properties.
Collapse
Affiliation(s)
- Caiyun Shan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xunhui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | | | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
14
|
Menichetti A, Mordini D, Vicenzi S, Montalti M. Melanin for Photoprotection and Hair Coloration in the Emerging Era of Nanocosmetics. Int J Mol Sci 2024; 25:5862. [PMID: 38892049 PMCID: PMC11172709 DOI: 10.3390/ijms25115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Nanotechnology is revolutionizing fields of high social and economic impact. such as human health preservation, energy conversion and storage, environmental decontamination, and art restoration. However, the possible global-scale application of nanomaterials is raising increasing concerns, mostly related to the possible toxicity of materials at the nanoscale. The possibility of using nanomaterials in cosmetics, and hence in products aimed to be applied directly to the human body, even just externally, is strongly debated. Preoccupation arises especially from the consideration that nanomaterials are mostly of synthetic origin, and hence are often seen as "artificial" and their effects as unpredictable. Melanin, in this framework, is a unique material since in nature it plays important roles that specific cosmetics are aimed to cover, such as photoprotection and hair and skin coloration. Moreover, melanin is mostly present in nature in the form of nanoparticles, as is clearly observable in the ink of some animals, like cuttlefish. Moreover, artificial melanin nanoparticles share the same high biocompatibility of the natural ones and the same unique chemical and photochemical properties. Melanin is hence a natural nanocosmetic agent, but its actual application in cosmetics is still under development, also because of regulatory issues. Here, we critically discuss the most recent examples of the application of natural and biomimetic melanin to cosmetics and highlight the requirements and future steps that would improve melanin-based cosmetics in the view of future applications in the everyday market.
Collapse
Affiliation(s)
- Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
| | - Silvia Vicenzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.); (S.V.)
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
15
|
Petropoulos V, Mavridi-Printezi A, Menichetti A, Mordini D, Kabacinski P, Gianneschi NC, Montalti M, Maiuri M, Cerullo G. Sub-50 fs Formation of Charge Transfer States Rules the Fate of Photoexcitations in Eumelanin-Like Materials. J Phys Chem Lett 2024; 15:3639-3645. [PMID: 38530860 DOI: 10.1021/acs.jpclett.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Eumelanins play a crucial role as photoprotective agents for living organisms, yet the nature of the stationary and transient species involved in the light absorption and deactivation processes remains controversial. Moreover, the critical sub-100 fs time scale, which is key to the characterization of the primary excited species, has remained unexplored. Here, we study the eumelanin analogue polydopamine (PDA) and employ a combination of steady-state and transient optical spectroscopies to reveal the presence of spectrally broad coupled electronic transitions with, at least partial, charge-transfer (CT) character. We monitor the CT state dynamics using tunable sub-20 fs pulses. We find that high photon energy excitation results in accelerated (sub-20 fs) CT formation times while activating pathways, which lead to long-lived (≫1 ns), possibly reactive CT species. On the other hand, visible light excitation results in a slower (≈45 fs) formation of bound CT states, which, however, recombine on the ultrafast sub-2 ps time scale.
Collapse
Affiliation(s)
- Vasilis Petropoulos
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | - Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Dario Mordini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Piotr Kabacinski
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Nathan C Gianneschi
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering and Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Margherita Maiuri
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Istituto di Fotonica e Nanotecnologie (IFN)-Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
16
|
Mavridi-Printezi A, Giordani S, Menichetti A, Mordini D, Zattoni A, Roda B, Ferrazzano L, Reschiglian P, Marassi V, Montalti M. The dual nature of biomimetic melanin. NANOSCALE 2023; 16:299-308. [PMID: 38059484 DOI: 10.1039/d3nr04696f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Melanin-inspired nanomaterials offer unique photophysical, electronic and radical scavenging properties that are widely explored for health and environmental preservation, or energy conversion and storage. The incorporation of functional melanin building blocks in more complex nanostructures or surfaces is typically achieved via a bottom-up approach starting from a molecular precursor, in most cases dopamine. Here we demonstrate that indeed, the oxidative polymerization of dopamine, for the synthesis of melanin-like polydopamine (PDA), leads to the simultaneous formation of more than one nanosized species with different compositions, morphologies and properties. In particular, a low-density polymeric structure and dense nanoparticles (NP) are simultaneously formed. The two populations could be separated and analyzed in real time using a chromatographic technique free of any stationary phase (flow field fractionation, FFF). The results following the synthesis of melanin-like PDA showed that the NP are formed only during the first 6 hours as a result of a supramolecular self-assembly-driven polymerization, while the formation of the polymer continues for about 36 hours. The two populations were also separated and characterized using TEM, UV-vis absorption spectroscopy, fluorescence and light scattering spectroscopy, DLS, FTIR, ζ-potential measurements, gel electrophoresis and pH titrations. Interestingly, very different properties between the two populations were observed: in particular the polymer contains a higher number of catechol units (8 mmol g-1 -OH) with respect to the NP (1 mmol g-1 -OH) and presents a much higher antioxidant activity. The attenuation of light by NP is more efficient than that by the polymer especially in the Vis-NIR region. Moreover, while the NP scatter light with an efficiency up to 27% they are not fluorescent, and the polymer does not scatter light but shows an excitation wavelength-dependent fluorescence typical of multi-fluorophoric uncoupled systems.
Collapse
Affiliation(s)
| | - Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
- Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| | - Dario Mordini
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Lucia Ferrazzano
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | | | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126 Bologna, Italy.
- Tecnopolo di Rimini, Via Dario Campana, 71, 47922 Rimini, Italy
| |
Collapse
|
17
|
Zhang L, Sekhar KPC, Yang Y, Dong S, Song A, Hao J. Developing Safe Organohydrogel Sunscreens Using Polyelectrolyte-Betaine Surfactant Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17333-17341. [PMID: 37988122 DOI: 10.1021/acs.langmuir.3c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Oil-in-water emulsions are extensively used in skincare products due to their improved texture, stability, and effectiveness. There is limited success in developing effective delivery systems that can selectively target the active sunscreen ingredients onto the skin surface. Herein, an organohydrogel was prepared by physical cross-linking of an oil-in-water nanoemulsion with chitosan under neutral pH conditions. In the presence of a small quantity of coconut oil, lauramidopropyl betaine and glycerol were able to emulsify the active sunscreen ingredients into nanoscale droplets with enhanced ultraviolet light absorption. A facile pH-triggered interfacial cross-linking approach was applied to transform the nanoemulsion into an organohydrogel sunscreen. Furthermore, the organohydrogel sunscreen displayed encouraging characteristics including efficient UV-blocking capacity, resistance to water, simple removal, and minimal skin penetration. This facile approach provides an effective pathway for scaling up the organohydrogels, which are highly suitable for the safe application of sunscreen.
Collapse
Affiliation(s)
- Liquan Zhang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Yujie Yang
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| |
Collapse
|
18
|
Sun J, Han Y, Dong J, Lv S, Zhang R. Melanin/melanin-like nanoparticles: As a naturally active platform for imaging-guided disease therapy. Mater Today Bio 2023; 23:100894. [PMID: 38161509 PMCID: PMC10755544 DOI: 10.1016/j.mtbio.2023.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The development of biocompatible and efficient nanoplatforms that combine diagnostic and therapeutic functions is of great importance for precise disease treatment. Melanin, an endogenous biopolymer present in living organisms, has attracted increasing attention as a versatile bioinspired functional platform owing to its unique physicochemical properties (e.g., high biocompatibility, strong chelation of metal ions, broadband light absorption, high drug binding properties) and inherent antioxidant, photoprotective, anti-inflammatory, and anti-tumor effects. In this review, the fundamental physicochemical properties and preparation methods of natural melanin and melanin-like nanoparticles were outlined. A systematical description of the recent progress of melanin and melanin-like nanoparticles in single, dual-, and tri-multimodal imaging-guided the visual administration and treatment of osteoarthritis, acute liver injury, acute kidney injury, acute lung injury, brain injury, periodontitis, iron overload, etc. Was then given. Finally, it concluded with a reasoned discussion of current challenges toward clinical translation and future striving directions. Therefore, this comprehensive review provides insight into the current status of melanin and melanin-like nanoparticles research and is expected to optimize the design of novel melanin-based therapeutic platforms and further clinical translation.
Collapse
Affiliation(s)
- Jinghua Sun
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yahong Han
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Shuxin Lv
- Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- The Radiology Department of Shanxi Provincial People’ Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
19
|
Biyashev D, Siwicka ZE, Onay UV, Demczuk M, Xu D, Ernst MK, Evans ST, Nguyen CV, Son FA, Paul NK, McCallum NC, Farha OK, Miller SD, Gianneschi NC, Lu KQ. Topical application of synthetic melanin promotes tissue repair. NPJ Regen Med 2023; 8:61. [PMID: 37919305 PMCID: PMC10622536 DOI: 10.1038/s41536-023-00331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023] Open
Abstract
In acute skin injury, healing is impaired by the excessive release of reactive oxygen species (ROS). Melanin, an efficient scavenger of radical species in the skin, performs a key role in ROS scavenging in response to UV radiation and is upregulated in response to toxic insult. In a chemical injury model in mice, we demonstrate that the topical application of synthetic melanin particles (SMPs) significantly decreases edema, reduces eschar detachment time, and increases the rate of wound area reduction compared to vehicle controls. Furthermore, these results were replicated in a UV-injury model. Immune array analysis shows downregulated gene expression in apoptotic and inflammatory signaling pathways consistent with histological reduction in apoptosis. Mechanistically, synthetic melanin intervention increases superoxide dismutase (SOD) activity, decreases Mmp9 expression, and suppresses ERK1/2 phosphorylation. Furthermore, we observed that the application of SMPs caused increased populations of anti-inflammatory immune cells to accumulate in the skin, mirroring their decrease from splenic populations. To enhance antioxidant capacity, an engineered biomimetic High Surface Area SMP was deployed, exhibiting increased wound healing efficiency. Finally, in human skin explants, SMP intervention significantly decreased the damage caused by chemical injury. Therefore, SMPs are promising and effective candidates as topical therapies for accelerated wound healing, including via pathways validated in human skin.
Collapse
Affiliation(s)
- Dauren Biyashev
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zofia E Siwicka
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
| | - Ummiye V Onay
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Demczuk
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dan Xu
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madison K Ernst
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Spencer T Evans
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cuong V Nguyen
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Florencia A Son
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
| | - Navjit K Paul
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
| | - Naneki C McCallum
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Chemistry, University of California San Diego, San Diego, Ca, USA.
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
20
|
Mavridi-Printezi A, Mollica F, Lucernati R, Montalti M, Amorati R. Insight into the Antioxidant Activity of 1,8-Dihydroxynaphthalene Allomelanin Nanoparticles. Antioxidants (Basel) 2023; 12:1511. [PMID: 37627506 PMCID: PMC10451768 DOI: 10.3390/antiox12081511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Melanins are stable and non-toxic pigments with great potential as chemopreventive agents against oxidative stress for medical and cosmetic applications. Allomelanin is a class of nitrogen-free melanin often found in fungi. The artificial allomelanin obtained by the polymerization of 1,8-dihydroxynaphthalene (DHN), poly-DHN (PDHN), has been recently indicated as a better radical quencher than polydopamine (PDA), a melanin model obtained by the polymerization of dopamine (DA); however, the chemical mechanisms underlying this difference are unclear. Here we investigate, by experimental and theoretical methods, the ability of PDHN nanoparticles (PDHN-NP), in comparison to PDA-NP, to trap alkylperoxyl (ROO•) and hydroperoxyl (HOO•) radicals that are involved in the propagation of peroxidation in real conditions. Our results demonstrate that PDHN-NP present a higher antioxidant efficiency with respect to PDA-NP against ROO• in water at pH 7.4 and against mixed ROO• and HOO• in acetonitrile, showing catalytic cross-termination activity. The antioxidant capacity of PDHN-NP in water is 0.8 mmol/g (ROO• radicals quenched by 1 g of PDHN-NP), with a rate constant of 3 × 105 M-1 s-1 for each reactive moiety. Quantum-mechanical calculations revealed that, thanks to the formation of a H-bond network, the quinones in PDHN-NP have a high affinity for H-atoms, thus justifying the high reactivity of PDHN-NP with HOO• observed experimentally.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (F.M.)
| | - Riccardo Amorati
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (F.M.)
| |
Collapse
|
21
|
Li Q, Guo Y, Wu M, Deng F, Feng J, Liu J, Liu S, Ouyang C, Duan W, Yi S, Liao G. Fluorinated Polyimide/Allomelanin Nanocomposites for UV-Shielding Applications. Molecules 2023; 28:5523. [PMID: 37513395 PMCID: PMC10386243 DOI: 10.3390/molecules28145523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
A series of highly fluorinated polyimide/allomelanin nanoparticles (FPI/AMNPs) films were prepared with FPI as the matrix and AMNPs as the filler. Due to the formation of hydrogen bonds, significantly reinforced mechanical and UV-shielding properties are acquired. Stress-strain curves demonstrated a maximum tensile strength of 150.59 MPa and a fracture elongation of 1.40% (0.7 wt.% AMNPs), respectively, 1.78 and 1.56× that of pure FPI. The measurements of the UV-vis spectrum, photodegradation of curcumin and repeated running tests confirmed the splendid UV-shielding capabilities of FPI/AMNPs films. The enhancement mechanisms, such as synergistic UV absorption of the charge transfer complexes in FPI and AMNPs and photothermal conversion, were the reasons for its exceptional UV shielding. The excellent comprehensive properties above enable FPI/AMNPs nanocomposites to be potential candidates in the field of UV shielding.
Collapse
Affiliation(s)
- Qing Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Yujuan Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meijia Wu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Fei Deng
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Jieying Feng
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Jiafeng Liu
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Sheng Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Chaoliu Ouyang
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shunmin Yi
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning 530105, China
| | - Guangfu Liao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
22
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
23
|
Mavridi-Printezi A, Menichetti A, Mordini D, Amorati R, Montalti M. Recent Applications of Melanin-like Nanoparticles as Antioxidant Agents. Antioxidants (Basel) 2023; 12:antiox12040863. [PMID: 37107238 PMCID: PMC10135245 DOI: 10.3390/antiox12040863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nanosized antioxidants are highly advantageous in terms of versatility and pharmacokinetics, with respect to conventional molecular ones. Melanin-like materials, artificial species inspired by natural melanin, combine recognized antioxidant (AOX) activity with a unique versatility of preparation and modification. Due to this versatility and documented biocompatibility, artificial melanin has been incorporated into a variety of nanoparticles (NP) in order to give new platforms for nanomedicine with enhanced AOX activity. In this review article, we first discuss the chemical mechanisms behind the AOX activity of materials in the context of the inhibition of the radical chain reaction responsible for the peroxidation of biomolecules. We also focus briefly on the AOX properties of melanin-like NP, considering the effect of parameters such as size, preparation methods and surface functionalization on them. Then, we consider the most recent and relevant applications of AOX melanin-like NPs that are able to counteract ferroptosis and be involved in the treatment of important diseases that affect, e.g., the cardiovascular and nervous systems, as well as the kidneys, liver and articulations. A specific section will be dedicated to cancer treatment, since the role of melanin in this context is still very debated. Finally, we propose future strategies in AOX development for a better chemical understanding of melanin-like materials. In particular, the composition and structure of these materials are still debated, and they present a high level of variability. Thus, a better understanding of the mechanism behind the interaction of melanin-like nanostructures with different radicals and highly reactive species would be highly advantageous for the design of more effective and specific AOX nano-agents.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Dario Mordini
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Riccardo Amorati
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Montalti
- Department of Chemistry «Giacomo Ciamician», University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Tecnopolo di Rimini, Via Dario Campana 71, 47921 Rimini, Italy
| |
Collapse
|
24
|
Surface-facilitated formation of polydopamine and its implications in melanogenesis. Colloids Surf B Biointerfaces 2023; 222:113068. [PMID: 36481509 DOI: 10.1016/j.colsurfb.2022.113068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
This manuscript examines influences of differently functionalized surfaces on the formation of solution-dispersed polydopamine (pDA). Glass vials functionalized with different functional groups provided a set of conditions with which the relationship between the area of active surface and the rate of pDA formation could be systematically studied. The results suggest that charged and polar surfaces accelerate pDA formation in solution, with the effect of -NH2 surfaces being exceptionally strong. In the vials, pDA formed as both forms of dispersions in solution and films at solid-liquid interface. Further analyses confirmed that both forms of pDA formed with -NH2 surfaces were chemically similar to conventional pDA synthesized without help of functional surfaces. Among short peptide-based amyloid fibers with defined surface functional groups, and those displaying lysines (-NH2) greatly accelerated the formation of pDA, consistent with the results of -NH2-functionalized vials. The results suggest that pDA formation may be facilitated by surface functional groups of solid-liquid interfaces, and have implications for the overlooked roles of amyloid fibers in biological melanogenesis.
Collapse
|
25
|
Cao W, Mao H, McCallum NC, Zhou X, Sun H, Sharpe C, Korpanty J, Hu Z, Ni QZ, Burkart MD, Shawkey MD, Wasielewski MR, Gianneschi NC. Biomimetic pheomelanin to unravel the electronic, molecular and supramolecular structure of the natural product. Chem Sci 2023; 14:4183-4192. [PMID: 37063797 PMCID: PMC10094096 DOI: 10.1039/d2sc06418a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/18/2023] [Indexed: 04/03/2023] Open
Abstract
A robust route to synthetic pheomelanin gives insight into the electronic, molecular and supramolecular structure of the natural product, further advancing our understanding of this important subfamily of melanin.
Collapse
Affiliation(s)
- Wei Cao
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois, 60208, USA
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
- Institute for Sustainability and Energy at Northwestern University, Evanston, Illinois, 60208, USA
| | - Naneki C. McCallum
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
| | - Xuhao Zhou
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
| | - Hao Sun
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Chemistry and Chemical & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, Connecticut, 06516, USA
| | - Christopher Sharpe
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Joanna Korpanty
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
| | - Ziying Hu
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
| | - Qing Zhe Ni
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA
| | - Michael D. Burkart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, The University of Ghent, 9000, Ghent, Belgium
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
- Institute for Sustainability and Energy at Northwestern University, Evanston, Illinois, 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois, 60208, USA
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA
| |
Collapse
|
26
|
Lino V, Manini P, Galeotti M, Salamone M, Bietti M, Crescenzi O, Napolitano A, d'Ischia M. Antioxidant Activities of Hydroxylated Naphthalenes: The Role of Aryloxyl Radicals. Chempluschem 2023; 88:e202200449. [PMID: 36680302 DOI: 10.1002/cplu.202200449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Herein is delineated a first systematic framework for the definition of structure-antioxidant property relationships in the dihydroxynaphthalene (DHN) series. The results obtained by a combined experimental and theoretical approach revealed that 1,8-DHN is the best performing antioxidant platform, with its unique hydrogen-bonded peri-hydroxylation pattern contributing to a fast H atom transfer process. Moreover, the comparative analysis of the antioxidant properties of DHNs carried out by performing DPPH and FRAP assays and laser flash photolysis experiments, revealed the higher antioxidant power associated with an α-substitution pattern (i. e. in 1,8- and 1,6-DHN) with respect to DHNs exhibiting a β-substitution pattern (i. e. in 2,6- and 2,7-DHN). DFT calculations and isolation and characterization of the main oligomer intermediates formed during the oxidative polymerization of DHNs supported this evidence by providing unprecedented insight into the generation and fate of the intermediate naphthoxyl radicals, which emerged as the main factor governing the antioxidant activity of DHNs.
Collapse
Affiliation(s)
- Valeria Lino
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Paola Manini
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Orlando Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
27
|
Zhou X, Su S, Vanthournout B, Hu Z, Son FA, Zhang K, Siwicka ZE, Gong X, Paul N, Gnanasekaran K, Forman C, Farha OK, Shawkey MD, Gianneschi NC. Hydrophobic Melanin via Post-Synthetic Modification for Controlled Self-Assembly. ACS NANO 2022; 16:19087-19095. [PMID: 36343336 DOI: 10.1021/acsnano.2c08114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Allomelanin is a class of nitrogen-free melanin mostly found in fungi and, like all naturally occurring melanins, is hydrophilic. Herein, we develop a facile method to modify synthetic hydrophilic allomelanin to yield hydrophobic derivatives through post-synthetic modifications. Amine-functionalized molecules of various kinds can be conjugated to allomelanin nanoparticles under mild conditions with high loading efficiencies. Hydrophobicity is conferred by introducing amine-terminated alkyl groups with different chain lengths. We demonstrate that the resulting hydrophobic allomelanin nanoparticles undergo air/water interfacial self-assembly in a controlled fashion, which enables the generation of large-scale and uniform structural colors. This work provides an efficient and tunable surface chemistry modification strategy to broaden the scope of synthetic melanin structure and function beyond the known diversity found in nature.
Collapse
Affiliation(s)
| | | | - Bram Vanthournout
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent 9000, Belgium
| | | | | | | | | | | | | | | | | | | | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, Ghent 9000, Belgium
| | | |
Collapse
|
28
|
Kapoor U, Jayaraman A. Impact of Polydopamine Nanoparticle Surface Pattern and Roughness on Interactions with Poly(ethylene glycol) in Aqueous Solution: A Multiscale Modeling and Simulation Study. J Phys Chem B 2022; 126:6301-6313. [PMID: 35969690 DOI: 10.1021/acs.jpcb.2c03151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A significant research effort in the past few years has been devoted to engineering synthetic mimics of naturally occurring eumelanin. One such effort has involved the assembly of oligomers of 5,6-dihydroxyindole (DHI), a synthetic precursor of polydopamine (PDA), into melanin-mimicking nanoparticles for use in a variety of applications with desired optical, photonic, thermal, and electrical properties. In many of these applications, the PDA nanoparticles are mixed with other polymers or oligomers, thus motivating this specific study to understand how the surface characteristics of the assembled PDA-nanoparticles affect their interaction with poly(ethylene glycol) (PEG) chains in aqueous solution. We use molecular dynamics (MD) simulations to study the interaction of linear 20-mer PEG chains with different PDA-nanoparticles assembled using four types of oligomers of 5,6-DHI: two isomers of 5,6-DHI 2-mers with the monomers bonding either at the 2-2' position (A-type isomer) or 7-7' position (B-type isomer), denoted as A:2-mer and B:2-mer, respectively, and a 4-mer and an 8-mer of B-type chemistry denoted as B:4-mer and B:8-mer, respectively. Using explicit-solvent atomistic MD simulations, we find that PDA-nanoparticle surfaces assembled from B:8-mer exhibit smaller density fluctuations of water molecules and, as a result, are relatively more hydrophilic than the PDA-nanoparticle surfaces assembled from A:2-mer, B:2-mer, and B:4-mer. The surface composition of PDA-nanoparticles assembled from A:2-mer contains relatively fewer hydroxyl (-OH) groups compared to PDA-nanoparticles assembled from a B:2-mer, B:4-mer, or B:8-mer, yet the sample of PEG chains show more collapsed and adsorbed conformations on A:2-mer nanoparticles' surface. To explain the atomistically observed behavior of PEG chains on the nanoparticles' surfaces, we use coarse-grained (CG) MD simulations and explain the roles of the pattern formed by the attractive sites (e.g.,-OH groups) exposed on the surface and the roughness of the surface on interactions with a genric PEG-like copolymer chain. By comparing atomistic and CG MD simulation results, we confirm that the -OH groups' pattern on the surface of the PDA-nanoparticle assembled from A:2-mer is patchier than the random or string-like patterns on the PDA-nanoparticle assembled from B:2-mer, B:4-mer, or B:8-mer, and it is this -OH groups' surface pattern that dictates the PEG chain conformations and adsorption on the PDA-nanoparticle surface. Overall, these results guide the design of chemically and physically heterogeneous nanoparticle surfaces for the desired polymer interaction and conformations.
Collapse
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States.,Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
29
|
Singla S, Htut KZ, Zhu R, Davis A, Ma J, Ni QZ, Burkart MD, Maurer C, Miyoshi T, Dhinojwala A. Isolation and Characterization of Allomelanin from Pathogenic Black Knot Fungus-a Sustainable Source of Melanin. ACS OMEGA 2021; 6:35514-35522. [PMID: 34984283 PMCID: PMC8717558 DOI: 10.1021/acsomega.1c05030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Melanin, a widespread pigment found in many taxa, is widely recognized for its high refractive index, ultraviolet (UV) protection, radical quenching ability, metal binding, and many other unique properties. The aforementioned characteristic traits make melanin a potential candidate for biomedical, separation, structural coloration, and space applications. However, the commercially available natural (sepia) and synthetic melanin are very expensive, limiting their use in various applications. Additionally, eumelanin has been the primary focus in most of these studies. In the present study, we demonstrate that melanin can be extracted from the pathogenic black knot fungus Apiosporina morbosa with a yield of ∼10% using the acid-base extraction method. The extracted melanin shows irregular morphology. Chemical characterization using X-ray photoelectron spectroscopy, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy reveals that the melanin derived from black knots is the less explored nitrogen-free allomelanin. Additionally, the extracted melanin shows broadband UV absorption typical of other types of melanin. Because of the wide availability and low cost of black knots and the invasive nature of the fungus, black knots can serve as an alternative green source for obtaining allomelanin at a low cost, which could stimulate its use as an UV light absorber and antioxidant in cosmetics and packaging industries.
Collapse
Affiliation(s)
- Saranshu Singla
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - K. Zin Htut
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Runyao Zhu
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amara Davis
- Department
of Chemical Engineering, The University
of Akron, Akron, Ohio 44325, United
States
| | - Jiayang Ma
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Qing Zhe Ni
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093, United States
| | - Michael D. Burkart
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093, United States
| | | | - Toshikazu Miyoshi
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
30
|
Chamcheu JC, Walker AL, Noubissi FK. Natural and Synthetic Bioactives for Skin Health, Disease and Management. Nutrients 2021; 13:nu13124383. [PMID: 34959935 PMCID: PMC8705709 DOI: 10.3390/nu13124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana, Monroe, LA 71209-0497, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| | - Anthony Lynn. Walker
- School of Clinical Sciences, College of Pharmacy, University of Louisiana, Monroe, LA 71209-0497, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| | - Felicite Kamdem Noubissi
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| |
Collapse
|
31
|
Mavridi‐Printezi A, Menichetti A, Guernelli M, Montalti M. The Photophysics and Photochemistry of Melanin- Like Nanomaterials Depend on Morphology and Structure. Chemistry 2021; 27:16309-16319. [PMID: 34505731 PMCID: PMC9291563 DOI: 10.1002/chem.202102479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Melanin-like nanomaterials have found application in a large variety of high economic and social impact fields as medicine, energy conversion and storage, photothermal catalysis and environmental remediation. These materials have been used mostly for their optical and electronic properties, but also for their high biocompatibility and simplicity and versatility of preparation. Beside this, their chemistry is complex and it yields structures with different molecular weight and composition ranging from oligomers, to polymers as well as nanoparticles (NP). The comprehension of the correlation of the different compositions and morphologies to the optical properties of melanin is still incomplete and challenging, even if it is fundamental also from a technological point of view. In this minireview we focus on scientific papers, mostly recent ones, that indeed examine the link between composition and structural feature and photophysical and photochemical properties proposing this approach as a general one for future research.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”University of BolognaVia Selmi 240126BolognaItaly
| |
Collapse
|
32
|
A Melanin-like Nanoenzyme for Acute Lung Injury Therapy via Suppressing Oxidative and Endoplasmic Reticulum Stress Response. Pharmaceutics 2021; 13:pharmaceutics13111850. [PMID: 34834263 PMCID: PMC8622162 DOI: 10.3390/pharmaceutics13111850] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nanoenzyme-mediated catalytic activity is emerging as a novel strategy for reactive oxygen species (ROS) scavenging in acute lung injury (ALI) treatment. However, one of the main hurdles for these metal-containing nanoenzymes is their potential toxicity and single therapeutic mechanism. Herein, we uncovered a melanin-like nanoparticles derived from the self-polymerization of 1,8-dihydroxynaphthalene (PDH nanoparticles), showing a significant anti-inflammation therapeutic effect on ALI mice. The prepared PDH nanoparticles rich in phenol groups could not only act as radical scavengers to alleviate oxidative stress but could also chelate calcium overload to suppress the endoplasmic reticulum stress response. As revealed by the therapeutic effect in vivo, PDH nanoparticles significantly prohibited neutrophil infiltration and the secretion of proinflammatory cytokines (TNF-α and IL-6), thus improving the inflammatory cascade in the ALI model. Above all, our work provides an effective anti-inflammatory nanoplatform by using the inherent capability of melanin-like nanoenzymes, proposing the potential application prospects of these melanin-like nanoparticles for acute inflammation-induced injury treatment.
Collapse
|
33
|
Baschieri A, Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH •. A Review. Antioxidants (Basel) 2021; 10:1551. [PMID: 34679687 PMCID: PMC8533328 DOI: 10.3390/antiox10101551] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the progress made in recent years in understanding the mechanism of action of nanomaterials with antioxidant activity and in the chemical methods used to evaluate their activity. Nanomaterials represent one of the most recent frontiers in the research for improved antioxidants, but further development is hampered by a poor characterization of the ''antioxidant activity'' property and by using oversimplified chemical methods. Inhibited autoxidation experiments provide valuable information about the interaction with the most important radicals involved in the lipid oxidation, namely alkylperoxyl and hydroperoxyl radicals, and demonstrate unambiguously the ability to stop the oxidation of organic materials. It is proposed that autoxidation methods should always complement (and possibly replace) the use of assays based on the quenching of stable radicals (such as DPPH• and ABTS•+). The mechanisms leading to the inhibition of the autoxidation (sacrificial and catalytic radical trapping antioxidant activity) are described in the context of nanoantioxidants. Guidelines for the selection of the appropriate testing conditions and of meaningful kinetic analysis are also given.
Collapse
Affiliation(s)
- Andrea Baschieri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (ISOF-CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
34
|
Yang P, Zhang J, Xiang S, Jin Z, Zhu F, Wang T, Duan G, Liu X, Gu Z, Li Y. Green Nanoparticle Scavengers against Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39126-39134. [PMID: 34383476 DOI: 10.1021/acsami.1c12176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The usage of exogenous antioxidant materials to relieve oxidative stress offers an important strategy for the therapy of oxidative stress-induced injuries. However, the fabrication processes toward the antioxidant materials usually require the involvement of extra metal ions and organic agents, as well as sophisticated purification steps, which might cause tremendous environmental stress and induce unpredictable side effects in vivo. To address these issues, herein, we proposed a novel strategy to fabricate green nanoparticles for efficiently modulating oxidative stress, which was facilely prepared from tea polyphenol extracts (originated from green tea) via a green enzymatic polymerization-based chemistry method. The resulting nanoparticles possessed a uniform spherical morphology and good stability in water and biomedium and demonstrated excellent radical scavenging properties. These nanoparticle scavengers could effectively prevent intracellular oxidative damage, accelerate wound recovery, and protect the kidneys from reactive oxygen species damaging in the acute kidney injury model. We hope this work will inspire the further development of more types of green nanoparticles for antioxidant therapies via similar synthetic strategies using green biomass materials.
Collapse
Affiliation(s)
- Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Siying Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhekai Jin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Zhou X, Gong X, Cao W, Forman CJ, Oktawiec J, D'Alba L, Sun H, Thompson MP, Hu Z, Kapoor U, McCallum NC, Malliakas CD, Farha OK, Jayaraman A, Shawkey MD, Gianneschi NC. Anisotropic Synthetic Allomelanin Materials via Solid-State Polymerization of Self-Assembled 1,8-Dihydroxynaphthalene Dimers. Angew Chem Int Ed Engl 2021; 60:17464-17471. [PMID: 33913253 DOI: 10.1002/anie.202103447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Indexed: 01/15/2023]
Abstract
Melanosomes in nature have diverse morphologies, including spheres, rods, and platelets. By contrast, shapes of synthetic melanins have been almost entirely limited to spherical nanoparticles with few exceptions produced by complex templated synthetic methods. Here, we report a non-templated method to access synthetic melanins with a variety of architectures including spheres, sheets, and platelets. Three 1,8-dihydroxynaphthalene dimers (4-4', 2-4' and 2-2') were used as self-assembling synthons. These dimers pack to form well-defined structures of varying morphologies depending on the isomer. Specifically, distinctive ellipsoidal platelets can be obtained using 4-4' dimers. Solid-state polymerization of the preorganized dimers generates polymeric synthetic melanins while maintaining the initial particle morphologies. This work provides a new route to anisotropic synthetic melanins, where the building blocks are preorganized into specific shapes, followed by solid-state polymerization.
Collapse
Affiliation(s)
- Xuhao Zhou
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Xinyi Gong
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Cao
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Christopher J Forman
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Julia Oktawiec
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Liliana D'Alba
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, 9000, Ghent, Belgium
| | - Hao Sun
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew P Thompson
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Ziying Hu
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, Newark, DE, 19716, USA
| | - Naneki C McCallum
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Christos D Malliakas
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Omar K Farha
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructures Group, University of Ghent, 9000, Ghent, Belgium
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, 60208, USA.,Department of Materials Science and Engineering, and Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
36
|
Zhou X, Gong X, Cao W, Forman CJ, Oktawiec J, D'Alba L, Sun H, Thompson MP, Hu Z, Kapoor U, McCallum NC, Malliakas CD, Farha OK, Jayaraman A, Shawkey MD, Gianneschi NC. Anisotropic Synthetic Allomelanin Materials via Solid‐State Polymerization of Self‐Assembled 1,8‐Dihydroxynaphthalene Dimers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xuhao Zhou
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Xinyi Gong
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Wei Cao
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Christopher J. Forman
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Julia Oktawiec
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Liliana D'Alba
- Department of Biology Evolution and Optics of Nanostructures Group University of Ghent 9000 Ghent Belgium
| | - Hao Sun
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Matthew P. Thompson
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Ziying Hu
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering Colburn Laboratory University of Delaware Newark DE 19716 USA
| | - Naneki C. McCallum
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Christos D. Malliakas
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Omar K. Farha
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering Colburn Laboratory Department of Materials Science and Engineering University of Delaware Newark DE 19716 USA
| | - Matthew D. Shawkey
- Department of Biology Evolution and Optics of Nanostructures Group University of Ghent 9000 Ghent Belgium
| | - Nathan C. Gianneschi
- Department of Chemistry International Institute of Nanotechnology Simpson-Querrey Institute Chemistry of Life Processes Institute Lurie Cancer Center Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering, and Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| |
Collapse
|
37
|
Xie X, Tang J, Xing Y, Wang Z, Ding T, Zhang J, Cai K. Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: State-of-the-Art Designs and Biomedical Applications. Adv Healthc Mater 2021; 10:e2002138. [PMID: 33690982 DOI: 10.1002/adhm.202002138] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The translation of mussel-inspired wet adhesion to biomedical engineering fields have catalyzed the emergence of polydopamine (PDA)-based nanomaterials with privileged features and properties of conducting multiple interfacial interactions. Recent concerns and progress on the understanding of PDA's hierarchical structure and progressive assembly are inspiring approaches toward novel nanostructures with property and function advantages over simple nanoparticle architectures. Major breakthroughs in this field demonstrated the essential role of π-π stacking and π-cation interactions in the rational intervention of PDA self-assembly. In this review, the recently emerging concepts in the preparation and application of PDA nanomaterials, including 3D mesostructures, low-dimensional nanostructures, micelle/nanoemulsion based nanoclusters, as well as other multicomponent nanohybrids by the segregation and organization of PDA building blocks on nanoscale interfaces are outlined. The contribution of π-electron interactions on the interfacial loading/release of π electron-rich molecules (nucleic acids, drugs, photosensitizers) and the exogenous coupling of optical energy, as well as the impact of wet-adhesion interactions on the nano-bio interface interplay, are highlighted by discussing the structure-property relationships in their featured applications including fluorescent biosensing, gene therapy, drug delivery, phototherapy, combined therapy, etc. The limitations of current explorations, and future research directions are also discussed.
Collapse
Affiliation(s)
- Xiyue Xie
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jia Tang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Yuxin Xing
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Zhenqiang Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Tao Ding
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University No. 174 Shazheng Road Chongqing 400044 China
| |
Collapse
|
38
|
Jing Y, Deng Z, Yang X, Li L, Gao Y, Li W. Ultrathin two-dimensional polydopamine nanosheets for multiple free radical scavenging and wound healing. Chem Commun (Camb) 2021; 56:10875-10878. [PMID: 32940278 DOI: 10.1039/d0cc02888f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel 2D polydopamine nanosheets were successfully prepared by using a simple but effective "bottom-up" synthesis method. The ultrathin polydopamine nanosheets exhibit excellent multiple free radical scavenging activities including DPPH˙ and ABTS˙+ free radicals, especially O2˙-. Full-thickness skin defect regeneration was accelerated by treatment with the nanosheets.
Collapse
Affiliation(s)
- Yasun Jing
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Zhenru Deng
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Xiuyun Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Leijiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China. and Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ying Gao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, 132013, China.
| |
Collapse
|
39
|
Comparison of Polysaccharides Extracted from Cultivated Mycelium of Inonotus obliquus with Polysaccharide Fractions Obtained from Sterile Conk (Chaga) and Birch Heart Rot. J Fungi (Basel) 2021; 7:jof7030189. [PMID: 33800424 PMCID: PMC8000984 DOI: 10.3390/jof7030189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022] Open
Abstract
The polysaccharides of the sterile conk of Inonotus obliquus (Chaga) have demonstrated multiple bioactivities. The mycelium of this basidiomycete, obtained after submerged cultivation, has been considered a feasible alternative to the sterile conk for the production of polysaccharides. However, previous research has paid little attention to the differences in the structures of polymers obtained from the different resources. Moreover, the birch wood colonized by I. obliquus has never been investigated as a source of bioactive polysaccharides. In the present study, polysaccharide fractions produced from cultivated mycelium, sterile conks of different geographical origins, and birch heart rot were investigated. High amounts of phenolic compounds, possibly lignans, were bound to the sterile conk polysaccharides. Mycelial polysaccharides were rich in α- and β-glucans and had high (105 Da) and low (104 Da) molecular weight populations. On the other hand, sterile conk polysaccharides were mainly β-glucan of lower and monodispersed molecular weight (103 Da). Heart rot polysaccharides were comprised mainly of low molecular weight (103 Da) hemicelluloses. Nevertheless, fungal polysaccharides were identified in the extracts. The differences in structure and molecular properties among the polysaccharide fractions of mycelium, heart rot, and sterile conk are likely associated with differences in bioactivities and, therefore, in nutraceutical potential.
Collapse
|
40
|
McCallum NC, Son FA, Clemons TD, Weigand SJ, Gnanasekaran K, Battistella C, Barnes BE, Abeyratne-Perera H, Siwicka ZE, Forman CJ, Zhou X, Moore MH, Savin DA, Stupp SI, Wang Z, Vora GJ, Johnson BJ, Farha OK, Gianneschi NC. Allomelanin: A Biopolymer of Intrinsic Microporosity. J Am Chem Soc 2021; 143:4005-4016. [PMID: 33673734 DOI: 10.1021/jacs.1c00748] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanin is a ubiquitous natural pigment found in a diverse array of organisms. Allomelanin is a class of nitrogen-free melanin often found in fungi. Herein, we find artificial allomelanin analogues exhibit high intrinsic microporosity and describe an approach for further increasing and tuning that porosity. Notably, the synthetic method involves an oxidative polymerization of 1,8-DHN in water, negating the need for multiple complex templating steps and avoiding expensive or complex chemical precursors. The well-defined morphologies of these nanomaterials were elucidated by a combination of electron microscopy and scattering methods, yielding to high-resolution 3D reconstruction based on small-angle X-ray scattering (SAXS) results. Synthetic allomelanin nanoparticles exhibit high BET areas, up to 860 m2/g, and are capable of ammonia capture up to 17.0 mmol/g at 1 bar. In addition, these nanomaterials can adsorb nerve agent simulants in solution and as a coating on fabrics with high breathability where they prevent breakthrough. We also confirmed that naturally derived fungal melanin can adsorb nerve gas simulants in solution efficiently despite lower porosity than synthetic analogues. Our approach inspires further analysis of yet to be discovered biological materials of this class where melanins with intrinsic microporosity may be linked to evolutionary advantages in relevant organisms and may in turn inspire the design of new high surface area materials.
Collapse
Affiliation(s)
| | | | - Tristan D Clemons
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60208, United States
| | - Steven J Weigand
- DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center, Northwestern University, Argonne, Illinois 60208, United States
| | | | | | - Brooke E Barnes
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Hashanthi Abeyratne-Perera
- American Society for Engineering Education Postdoctoral Research Associate, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | | | | | | | - Martin H Moore
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Daniel A Savin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60208, United States.,Department of Medicine, Northwestern University, Chicago, Illinois 60208, United States
| | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Gary J Vora
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Brandy J Johnson
- Center for Bio/Molecular Science & Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | | | - Nathan C Gianneschi
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60208, United States.,Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
41
|
Cao W, Zhou X, McCallum NC, Hu Z, Ni QZ, Kapoor U, Heil CM, Cay KS, Zand T, Mantanona AJ, Jayaraman A, Dhinojwala A, Deheyn DD, Shawkey MD, Burkart MD, Rinehart JD, Gianneschi NC. Unraveling the Structure and Function of Melanin through Synthesis. J Am Chem Soc 2021; 143:2622-2637. [PMID: 33560127 DOI: 10.1021/jacs.0c12322] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five types-eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin-based on the various chemical precursors used in their biosynthesis. Despite its long history of study, the exact chemical makeup of melanin remains unclear, and it moreover has an inherent diversity and complexity of chemical structure, likely including many functions and properties that remain to be identified. Synthetic mimics have begun to play a broader role in unraveling structure and function relationships of natural melanins. In the past decade, polydopamine, which has served as the conventional form of synthetic eumelanin, has dominated the literature on melanin-based materials, while the synthetic analogues of other melanins have received far less attention. In this perspective, we will discuss the synthesis of melanin materials with a special focus beyond polydopamine. We will emphasize efforts to elucidate biosynthetic pathways and structural characterization approaches that can be harnessed to interrogate specific structure-function relationships, including electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. We believe that this timely Perspective will introduce this class of biopolymer to the broader chemistry community, where we hope to stimulate new opportunities in novel, melanin-based poly-functional synthetic materials.
Collapse
Affiliation(s)
| | | | | | | | - Qing Zhe Ni
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware 19716, United States
| | - Christian M Heil
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, Newark, Delaware 19716, United States
| | - Kristine S Cay
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Tara Zand
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Alex J Mantanona
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, United States
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, The University of Ghent, 9000 Ghent, Belgium
| | - Michael D Burkart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Jeffrey D Rinehart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Nathan C Gianneschi
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
42
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
43
|
Mavridi-Printezi A, Guernelli M, Menichetti A, Montalti M. Bio-Applications of Multifunctional Melanin Nanoparticles: From Nanomedicine to Nanocosmetics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2276. [PMID: 33212974 PMCID: PMC7698489 DOI: 10.3390/nano10112276] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Bioinspired nanomaterials are ideal components for nanomedicine, by virtue of their expected biocompatibility or even complete lack of toxicity. Natural and artificial melanin-based nanoparticles (MNP), including polydopamine nanoparticles (PDA NP), excel for their extraordinary combination of additional optical, electronic, chemical, photophysical, and photochemical properties. Thanks to these features, melanin plays an important multifunctional role in the design of new platforms for nanomedicine where this material works not only as a mechanical support or scaffold, but as an active component for imaging, even multimodal, and simple or synergistic therapy. The number of examples of bio-applications of MNP increased dramatically in the last decade. Here, we review the most recent ones, focusing on the multiplicity of functions that melanin performs in theranostics platforms with increasing complexity. For the sake of clarity, we start analyzing briefly the main properties of melanin and its derivative as well as main natural sources and synthetic methods, moving to imaging application from mono-modal (fluorescence, photoacoustic, and magnetic resonance) to multi-modal, and then to mono-therapy (drug delivery, anti-oxidant, photothermal, and photodynamic), and finally to theranostics and synergistic therapies, including gene- and immuno- in combination to photothermal and photodynamic. Nanomedicine aims not only at the treatment of diseases, but also to their prevention, and melanin in nature performs a protective action, in the form of nanopigment, against UV-Vis radiations and oxidants. With these functions being at the border between nanomedicine and cosmetics nanotechnology, recently examples of applications of artificial MNP in cosmetics are increasing, paving the road to the birth of the new science of nanocosmetics. In the last part of this review, we summarize and discuss these important recent results that establish evidence of the interconnection between nanomedicine and cosmetics nanotechnology.
Collapse
Affiliation(s)
- Alexandra Mavridi-Printezi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Moreno Guernelli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (M.G.); (A.M.)
- Tecnopolo di Rimini, Via Campana 71, 47922 Rimini, Italy
| |
Collapse
|
44
|
Wang X, Yang L, Yang P, Guo W, Zhang QP, Liu X, Li Y. Metal ion-promoted fabrication of melanin-like poly(L-DOPA) nanoparticles for photothermal actuation. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9797-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Cao W, McCallum NC, Ni QZ, Li W, Boyce H, Mao H, Zhou X, Sun H, Thompson MP, Battistella C, Wasielewski MR, Dhinojwala A, Shawkey MD, Burkart MD, Wang Z, Gianneschi NC. Selenomelanin: An Abiotic Selenium Analogue of Pheomelanin. J Am Chem Soc 2020; 142:12802-12810. [DOI: 10.1021/jacs.0c05573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Cao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Naneki C. McCallum
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Qing Zhe Ni
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States of America
| | - Weiyao Li
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States of America
| | - Hannah Boyce
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Xuhao Zhou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Hao Sun
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Matthew P. Thompson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Claudia Battistella
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States of America
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States of America
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, The University of Ghent, 9000 Ghent, Belgium
| | - Michael D. Burkart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States of America
| | - Zheng Wang
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, D.C. 20375, United States of America
| | - Nathan C. Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States of America
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, Illinois 60208, United States of America
| |
Collapse
|
46
|
Wang Z, Zou Y, Li Y, Cheng Y. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907042. [PMID: 32220006 DOI: 10.1002/smll.201907042] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polydopamine (PDA) is a major type of artificial melanin material with many interesting properties such as antioxidant activity, free-radical scavenging, high photothermal conversion efficiency, and strong metal-ion chelation. The high affinity of PDA to a wide range of metals/metal ions has offered a new class of functional metal-containing polydopamine (MPDA) nanomaterials with promising functions and extensive applications. Understanding and controlling the metal coordination environment is vital to achieve desirable functions for which such materials can be exploited. MPDA nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating. The current trends, limitations, and future directions of this area are also explored.
Collapse
Affiliation(s)
- Zhao Wang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
47
|
Liu H, Yang Y, Liu Y, Pan J, Wang J, Man F, Zhang W, Liu G. Melanin-Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903129. [PMID: 32274309 PMCID: PMC7141020 DOI: 10.1002/advs.201903129] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/31/2019] [Indexed: 05/03/2023]
Abstract
Developing efficient, sustainable, and biocompatible high-tech nanoplatforms derived from naturally existing components in living organisms is highly beneficial for diverse advanced biomedical applications. Melanins are nontoxic natural biopolymers owning widespread distribution in various biosystems, possessing fascinating physicochemical properties and playing significant physiological roles. The multifunctionality together with intrinsic biocompatibility renders bioinspired melanin-like nanomaterials considerably promising as a versatile and powerful nanoplatform with broad bioapplication prospects. This panoramic Review starts with an overview of the fundamental physicochemical properties, preparation methods, and polymerization mechanisms of melanins. A systematical and well-bedded description of recent advancements of melanin-like nanomaterials regarding diverse biomedical applications is then given, mainly focusing on biological imaging, photothermal therapy, drug delivery for tumor treatment, and other emerging biomedicine-related implementations. Finally, current challenges toward clinical translation with an emphasis on innovative design strategies and future striving directions are rationally discussed. This comprehensive and detailed Review provides a deep understanding of the current research status of melanin-like nanomaterials and is expected to motivate further optimization of the design of novel tailorable and marketable multifunctional nanoplatforms in biomedicine.
Collapse
Affiliation(s)
- Heng Liu
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Youyuan Yang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
| | - Yu Liu
- Department of UltrasoundThe First Affiliated HospitalArmy Medical UniversityChongqing400038China
| | - Jingjing Pan
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Fengyuan Man
- Department of RadiologyPLA Rocket Force Characteristic Medical CenterBeijing100088China
| | - Weiguo Zhang
- Department of RadiologyDaping HospitalArmy Medical UniversityChongqing400042China
- Chongqing Clinical Research Center for Imaging and Nuclear MedicineChongqing400042China
| | - Gang Liu
- Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
48
|
Kapoor U, Jayaraman A. Self-Assembly of Allomelanin Dimers and the Impact of Poly(ethylene glycol) on the Assembly: A Molecular Dynamics Simulation Study. J Phys Chem B 2020; 124:2702-2714. [DOI: 10.1021/acs.jpcb.0c00226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
49
|
d'Ischia M, Napolitano A, Pezzella A, Meredith P, Buehler M. Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco d'Ischia
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Alessandro Pezzella
- Department of Chemical Sciences University of Naples “Federico II” Via Cintia 4 80126 Naples Italy
| | - Paul Meredith
- Department of Physics Swansea University Vivian Building, Singleton Campus SA2 8PP Swansea UK
| | - Markus Buehler
- Laboratory for Atomistic and Molecular Mechanics School of Engineering Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
50
|
Melanin Biopolymers: Tailoring Chemical Complexity for Materials Design. Angew Chem Int Ed Engl 2020; 59:11196-11205. [DOI: 10.1002/anie.201914276] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/17/2022]
|