1
|
Cheng Y, Wang T, Zhu H, Hu X, Mi J, Li L, Zhang Y, Yang J, Dong L, Li Y, Sun W, Lu X, Wang W, Cao Y, Xue B. Molecular Engineering of Amino Acid Crystals with Enhanced Piezoelectric Performance for Biodegradable Sensors. Angew Chem Int Ed Engl 2025; 64:e202500334. [PMID: 39868665 DOI: 10.1002/anie.202500334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
Amino acid crystals have emerged as promising piezoelectric materials for biodegradable and biocompatible sensors; however, their relatively low piezoelectric coefficients constrain practical applications. Here, we introduce a fluoro-substitution strategy to overcome this limitation and enhance the piezoelectric performance of amino acid crystals. Specifically, we substituted hydrogen atoms on the aromatic rings of L-tryptophan, L-phenylalanine, and N-Cbz-L-phenylalanine with fluorine, resulting in significantly elevated piezoelectric coefficients. Density functional theory calculations further indicate that fluorination strengthens polarization by modifying molecular dipole moments. Consequently, these fluoro-substituted crystals achieve piezoelectric coefficients of up to 50.36 pm/V, surpassing those of other organic piezoelectric materials such as polyvinylidene fluoride (PVDF), poly(L-lactic acid) (PLLA), and gelatin. When integrated into flexible, biodegradable force sensors, the fluoro-substituted crystals exhibit a broad sensing range, high sensitivity, and stable in vivo operation over extended periods. This work establishes a versatile route for boosting piezoelectricity in biomaterials, thereby broadening their scope in biomedical applications.
Collapse
Affiliation(s)
- Yuanqi Cheng
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Tianjian Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Haoqi Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Xueli Hu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Jing Mi
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lan Li
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yu Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Jiapeng Yang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| | - Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wenxu Sun
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- School of Physics and Technology, Nantong University, Nantong, 226019, China
| | - Xiaomei Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
- Institute for Brain Sciences, Nanjing University, Nanjing, 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China
| |
Collapse
|
2
|
Liu Z, Fang JJ, Wang ZY, Xie YP, Lu X. Modulation of Optical and Electrochemical Properties of Cu(I) Alkynyl Clusters by Carboxylic Acid Ligands. Chemistry 2025:e202500230. [PMID: 40128117 DOI: 10.1002/chem.202500230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Surface ligands play a pivotal role in the functional design of atomically precise Cu(I) nanoclusters. They act as protective agents, ensuring the stability of the Cu(I) clusters, while also influencing their structure and properties. This study delves into the synthesis, structure, and properties of innovative Cu(I) nanoclusters co-stabilized by carboxylic acid and alkynyl ligands. The findings reveal that these surface ligands wield a significant impact on the cluster's structure and can even modulate the luminescent characteristics of the Cu(I) alkynyl clusters. Moreover, density-functional theory (DFT) calculations shed light on how different carboxylic acid ligands affect the UV-visible absorptivity of paired Cu(I) clusters. In addition, ferrocene carboxylic acids were employed as protective ligands to impart electrochemical properties to the Cu(I) clusters. This research presents an effective methodology for synthesizing atomically precise Cu(I) clusters shielded by carboxylic acid ligands.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Zhi-Yi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| |
Collapse
|
3
|
Saikia J, Sarkar M, Ramakrishnan V. Factors affecting the physical stability of peptide self-assembly in neurodegenerative disorders. Neuropeptides 2025; 111:102517. [PMID: 40112745 DOI: 10.1016/j.npep.2025.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Biological systems comprise of diverse biomolecules, including proteins, nucleic acids, lipids, and carbohydrates. Peptides, which are short chains of amino acids, exhibit unique properties when assembled to nano-level architectures. Self-assembling peptides possess a remarkable ability to organize into structured aggregates such as nanofibers, nanotubes, nanoribbons, and nanovesicles. These intricate structures are linked to neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Prion disease, Huntington's disease, and type II diabetes. Peptide nano assembly can be guided by external stimuli, such as temperature, pH, ultrasound, electric and magnetic fields. In this review, the discussion will be centred around the various factors that influence the self-assembly of peptides alongside therapeutic interventions that align with the fundamental principles of thermodynamics and kinetics to modulate the aggregation characteristics of peptide self-assembly.
Collapse
Affiliation(s)
- Jahnu Saikia
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Mouli Sarkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Mehta Family School of Data Science & Artificial Intelligence, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
4
|
Tiwari OS, Rawat V, Rencus-Lazar S, Gazit E. Phenylalanine-embedded carbazole-based fluorescent 'turn-off' chemosensor for the detection of metal ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125277. [PMID: 39423558 DOI: 10.1016/j.saa.2024.125277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Fluorescent chemosensors are highly important for various applications including medical diagnostics, environmental monitoring, and industrial processing. Significant advancements have been made to produce sensors capable of detecting biologically and environmentally relevant ions. Specifically, carbazole-derived fluorophores are chemically stable agents with the ability to detect anions, cations, and small bioorganic molecules. However, most carbazole-based fluorescent probes for the detection of metal ions are Schiff bases and require stringent pH control to prevent hydrolysis. On the other hand, amide-based sensors that utilize stable amino acid scaffolds provide a robust sensing platform as well as a soft-chemical environment for detecting both soft and heavy metal ions. Herein, we explored an aromatic amino acid Phe-containing carbazole-based "turn-off" fluorescent chemosensor to improve the sensor specificity using π-conjugation and additional binding sites. The structure of the novel chemosensor was characterized by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. In addition, the sensing properties towards metal ions were studied using UV-vis and fluorescence spectroscopy. Among the various metal ions tested, the chemosensor showed high selectivity and sensitivity towards Co2+, Ni2+, and Cu2+ ions. The detection limits for Co2+, Ni2+, and Cu2+ ions were found to be 4.78 µM, 3.50 µM, and 5.17 µM respectively. Furthermore, the interaction of Phe-amino-carbazole with the various tested metal ions resulted in a flakes-like supramolecular structure, similar to the native Phe-amino-carbazole, whereas the interaction of the designed chemosensor with the Pb2+ metal ion resulted in a uniform 3D-circular disc-like supramolecular structure, as confirmed by electron microscopy experiment. This highlights the potential of the Phe-containing carbazole-derived chemosensor for the detection of multiple cations with a decrease in the fluorescence response with a lower detection limit.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Varun Rawat
- School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sigal Rencus-Lazar
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
5
|
Vishwakarma S, Tiwari OS, Shukla R, Gazit E, Makam P. Amyloid inspired single amino acid (phenylalanine)-based supramolecular functional assemblies: from disease to device applications. Chem Soc Rev 2025; 54:465-483. [PMID: 39585081 DOI: 10.1039/d4cs00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In the evolving landscape of biomolecular supramolecular chemistry, recent studies on phenylalanine (Phe) have revealed important insights into the versatile nature of this essential aromatic amino acid. Phe can spontaneously self-assemble into fibrils with amyloid-like properties linked to the neurological disorder phenylketonuria (PKU). Apart from its pathological implications, Phe also displays complex phase behavior and can undergo structural changes in response to external stimuli. Its ability to co-assemble with other amino acids opens up new possibilities for studying biomolecular interactions. Furthermore, Phe's coordination with metal ions has led to the development of enzyme-mimicking catalytic systems for applications in organic chemistry, environmental monitoring, and healthcare. Research on L and D enantiomers of Phe, particularly on bio-MOFs, has highlighted their potential in advanced technologies, including bioelectronic devices. This review provides a comprehensive overview of the advancements in Phe-based supramolecular assemblies, emphasizing their interdisciplinary relevance. The Phe assemblies show great potential for future therapeutic and functional biomaterial developments, from disease treatments to innovations in bionanozymes and bioelectronics. This review presents a compelling case for the ongoing exploration of Phe's biomolecular supramolecular chemistry as a fundamental framework for developing sustainable and efficient methodologies across various scientific disciplines.
Collapse
Affiliation(s)
- Subrat Vishwakarma
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| | - Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ruchi Shukla
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Pandeeswar Makam
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| |
Collapse
|
6
|
Yang Y, Li W, Wu D, Wu Y, Li L, Li G. Facile synthesis of magnetic ionic covalent organic framework and dispersive magnetic solid phase extraction of aromatic amino acid oxidation products in thermally processed foods. Food Chem 2025; 462:140936. [PMID: 39232273 DOI: 10.1016/j.foodchem.2024.140936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Aromatic amino acid oxidation products (AAAOPs) are newly discovered risk substances of thermal processes. Due to its significant polarity and trace level in food matrices, there are no efficient pre-treatment methods available to enrich AAAOPs. Herein, we proposed a magnetic cationic covalent organic framework (Fe3O4@EB-iCOF) as an adsorbent for dispersive magnetic solid-phase extraction (DMSPE). Benefiting from the unique charged characteristics of Fe3O4@EB-iCOF, AAAOPs can be enriched through electrostatic interaction and π-π interactions. Under the optimal DMSPE conditions, the combined HPLC-MS/MS method demonstrated good linearity (R2 ≥ 0.990) and a low detection limit (0.11-7.5 μg·kg-1) for AAAOPs. In addition, the method was applied to real sample and obtained satisfactory recoveries (86.8 % ∼ 109.9 %). Especially, we applied this method to the detection of AAAOPs in meat samples and conducted a preliminarily study on its formation rules, which provides a reliable basis for assessing potential dietary risks.
Collapse
Affiliation(s)
- Yujie Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT95DL, United Kingdom
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Hu T, Lee JP, Huang P, Ong AJ, Yu J, Zhu S, Jiang Y, Zhang Z, Reches M, Lee PS. Promoting Piezoelectricity in Amino Acids by Fluorination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413049. [PMID: 39551989 DOI: 10.1002/adma.202413049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/20/2024] [Indexed: 11/19/2024]
Abstract
Bioinspired piezoelectric amino acids and peptides are attracting attention due to their designable sequences, versatile structures, low cost, and biodegradability. However, it remains a challenge to design amino acids and peptides with high piezoelectricity. Herein, a high piezoelectric amino acid by simple fluorination in its side chain is presented. The three phenylalanine derivatives are designed: Cbz-Phe, Cbz-Phe(4F), and Cbz-pentafluoro-Phe. The effect of fluorination on self-assembly and piezoelectricity is investigated. Cbz-Phe(4F) can self-assemble into crystals with a C2 space group, while Cbz-Phe and Cbz-pentafluoro-Phe form aggregated self-assemblies. Moreover, Cbz-Phe(4F) crystals exhibit a remarkably higher piezoelectric coefficient (d 33 e f f $d_{\ 33}^{\ eff}$ ) of ≈17.9 pm V-1 than Cbz-Phe and Cbz-pentafluoro-Phe. When fabricated as a piezoelectric nanogenerator, it generates an open-circuit voltage of ≈2.4 V. Importantly, Cbz-Phe(4F) crystals serve as a flexible piezoelectric sensor for the classification of various nuts and their quality sorting, which includes those as small as individual pumpkin seeds with high sensitivity and accuracy of sorting and quality checks. When mounted onto soft grippers, the sensor performs the tactile self-sensing functions. This work provides a promising approach to designing high piezoelectric amino acids by simple fluorination, offering exciting prospects for advancements in bioinspired piezoelectric materials in the application of smart agriculture and soft robotics.
Collapse
Affiliation(s)
- Tan Hu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Jin Pyo Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Peiwen Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Amanda Jiamin Ong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Jian Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shuihong Zhu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yixuan Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuo Zhang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Meital Reches
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), The Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, 138602, Singapore
| |
Collapse
|
8
|
Li Z, Thomas M, Berač CM, Stach OS, Besenius P, Matson JB. Regulating H 2S release from self-assembled peptide H 2S-donor conjugates using cysteine derivatives. Org Biomol Chem 2024; 22:8173-8181. [PMID: 39291596 PMCID: PMC11409224 DOI: 10.1039/d4ob01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Self-assembled peptides provide a modular and diverse platform for drug delivery, and innovative delivery methods are needed for delivery of hydrogen sulfide (H2S), an endogenous signaling molecule (gasotransmitter) with significant therapeutic potential. Of the available types of H2S donors, peptide/protein H2S donor conjugates (PHDCs) offer significant versatility. Here we discuss the design, synthesis, and in-depth study of a PHDC containing three covalently linked components: a thiol-triggered H2S donor based on an S-aroylthiooxime (SATO), a GFFF tetrapeptide, and a tetraethylene glycol (TEG) dendron. Conventional transmission electron microscopy showed that the PHDC self-assembled into spherical structures without heat or stirring, but it formed nanofibers with gentle heat (37 °C) and stirring. Circular dichroism (CD) spectroscopy data collected during self-assembly under nanofiber-forming conditions suggested an increase in β-sheet character and a decrease in organization of the SATO units. Release of H2S from the nanofibers was studied through triggering with various thiols. The release rate and total amount of H2S released over both short (5 h) and long (7 d) time scales varied with the charge state: negatively charged and zwitterionic thiols (e.g., Ac-Cys-OH and H-Cys-OH) triggered release slowly while a neutral thiol (Ac-Cys-OMe) showed ∼10-fold faster release, and a positively charged thiol (H-Cys-OMe) triggered H2S release nearly 50-fold faster than the negatively charged thiols. CD spectroscopy studies monitoring changes in secondary structure over time during H2S release showed similar trends. This study sheds light on the driving forces behind self-assembling nanostructures and offers insights into tuning H2S release through thiol charge state modulation.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Marius Thomas
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Oliver S Stach
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - John B Matson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA.
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
9
|
Nie S, Zhao H, Sun J, Liu Q, Cui Y, Li W. Amino Acid-Derived Supramolecular Assembly and Soft Materials. Molecules 2024; 29:4705. [PMID: 39407633 PMCID: PMC11477530 DOI: 10.3390/molecules29194705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Amino acids (AAs), serving as the primary monomer of peptides and proteins, are widely present in nature. Benefiting from their inherent advantages, such as chemical diversity, low cost, ease of modification, chirality, biosafety, and bio-absorbability, AAs have been extensively exploited to create self-assembled nanostructures and supramolecular soft materials. In this review article, we systematically describe the recent progress regarding amino acid-derived assembly and functional soft materials. A brief background and several classified assemblies of AAs and their derivatives (chemically modified AAs) are summarized. The key non-covalent interactions to drive the assembly of AAs are emphasized based on the reported systems of self-assembled and co-assembled AAs. We discuss the molecular design of AAs and the general rules behind the hierarchical nanostructures. The resulting soft materials with interesting properties and potential applications are demonstrated. The conclusion and remarks on AA-based supramolecular assemblies are also presented from the viewpoint of chemistry, materials, and bio-applications.
Collapse
Affiliation(s)
- Shuaishuai Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| | - He Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| | - Jiayi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| | - Qingtao Liu
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China;
| | - Yongming Cui
- National Local Joint Engineering Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China;
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (S.N.); (H.Z.); (J.S.)
| |
Collapse
|
10
|
Bhowmik S, Rit T, Sanghvi YS, Das AK. Enzyme Fueled Dissipative Self-assembly of Guanine Functionalized Molecules and Their Cellular Behaviour. Chemistry 2024:e202402687. [PMID: 39158121 DOI: 10.1002/chem.202402687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Generally, an esterase lipase enzyme can hydrolyze specific substrates called esters in an aqueous solution. Herein, we investigate how a G-quadruplex self-assembly affects the hydrolysis equilibrium in reverse. The biocatalyst, lipase, activates the individual building-blocks through fuel consumption, causing them to undergo a higher degree of self-organization into nanofibers within spheres. We have synthesized five peptide-lipid-conjugated guanine base functionalized molecules to explore how the equilibrium can be shifted through reverse hydrolysis. Among these, NAC5 self-assembled into a G-quadruplex structure which has been confirmed by various spectroscopic techniques. The wide-angle powder XRD, ThT dye binding assay and circular dichroism study is carried out to support the presence of the G-quadruplex structure. The biocatalytic formation of nanofibers enclosed spheres is analyzed using CLSM, FE-SEM and HR-TEM experiments. Additionally, we assess the biocompatibility of the enzyme fueled dissipative self-assembled fibers enclosed spheres, as they have potential applications as a biomaterial in protocells. MTT assay is performed to check the cytotoxicity of G-quadruplex hydrogel, using HEK 293 and McCoy cell lines for viability assessment. Finally, the utility of the novel NAC5 hydrogel as a wound repairing biomaterial is demonstrated by cell migration experiment in a scratch assay.
Collapse
Affiliation(s)
- Sourav Bhowmik
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, India
| | - Tanmay Rit
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, 92024-6615, Encinitas, California, United States
| | - Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, India
| |
Collapse
|
11
|
Zhang Q, Hao A, Xing P. Diastereoselective Supramolecular Encapsulation and Chirality Transfer Between Cholesteryl Binaphthyl Conjugates and Polyaromatic Hydrocarbon. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400089. [PMID: 38682727 DOI: 10.1002/smll.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Diastereoselective effect plays an important role in the synthesis of chiral complexes and macrocyclic compounds, while its function in selective coassembly and chirality transfer has yet to be unveiled. In this work, two pairs of diastereomers containing R/S- binaphthyl and homochiral cholesteryl domains are synthesized, which provide multiple sites to encapsulate polyaromatic hydrocarbon through π-π and CH-π interactions. X-ray structures and computational studies suggest the binaphthol derivatives feature CH-π folding into butterfly-like open geometry, while binaphthylenediamine derivatives adopt closed geometry supported by van der Waals between cholesteryl domains. Driven by solvophobic forces, the building units self-assemble into vesicles and nanofibers in the aqueous and methanol phases, respectively. Binaphthol derivatives selectively encapsulate pyrene by naphthalene domains in the vesicle phase, while binaphthylenediamine derivatives encapsulate pyrene by cholesteryl domains in the nanofiber phase. Density functional theory-based calculations and circular dichroism spectra evidence the closed geometry of binaphthylenediamine derivatives facilitates a clamp-type host to increase the affinity toward pyrene in spite of the strong solvation competition. This work unveils the diastereoselectivity in the chiral coassembly, deepening the understanding of the precise synthesis of functional chiroptical complexes.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
12
|
Veloso SRS, Rosa M, Diaferia C, Fernandes C. A Review on the Rheological Properties of Single Amino Acids and Short Dipeptide Gels. Gels 2024; 10:507. [PMID: 39195036 DOI: 10.3390/gels10080507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Self-assembled peptide-based hydrogels have attracted considerable interest from the research community. Particularly, low molecular weight gelators (LMWGs) consisting of amino acids and short peptides are highly suitable for biological applications owing to their facile synthesis and scalability, as well as their biocompatibility, biodegradability, and stability in physiological conditions. However, challenges in understanding the structure-property relationship and lack of design rules hinder the development of new gelators with the required properties for several applications. Hereby, in the plethora of peptide-based gelators, this review discusses the mechanical properties of single amino acid and dipeptide-based hydrogels. A mutual analysis of these systems allows us to highlight the relationship between the gel mechanical properties and amino acid sequence, preparation methods, or N capping groups. Additionally, recent advancements in the tuning of the gels' rheological properties are reviewed. In this way, the present review aims to help bridge the knowledge gap between structure and mechanical properties, easing the selection or design of peptides with the required properties for biological applications.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies (LaPMET), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Mariangela Rosa
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi "Carlo Pedone" (CIRPeB), University of Naples "Federico II", Via Tommaso de Amicis 95, 80131 Naples, Italy
| | - Célio Fernandes
- Transport Phenomena Research Centre (CEFT), Department of Mechanical Engineering, Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centre of Mathematics (CMAT), School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
13
|
Bassan R, Mondal B, Varshney M, Roy S. 1-Naphthylacetic acid appended amino acids-based hydrogels: probing of the supramolecular catalysis of ester hydrolysis reaction. NANOSCALE ADVANCES 2024; 6:3399-3409. [PMID: 38933855 PMCID: PMC11197428 DOI: 10.1039/d4na00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
A 1-naphthaleneacetic acid-appended phenylalanine-derivative (Nap-F) forms a stable hydrogel with a minimum gelation concentration (MGC) of 0.7% w/v (21 mM) in phosphate buffer of pH 7.4. Interestingly, Nap-F produces two-component [Nap-F + H = Nap-FH, Nap-F + K = Nap-FK and Nap-F + R = Nap-FR], three-component [Nap-F + H + K = Nap-FH-K, Nap-F + H + R = Nap-FH-R and Nap-F + K + R = Nap-FK-R] and four-component [Nap-F + H + K + R = Nap-FH-K-R] hydrogels in water with all three natural basic amino acids (H = histidine, K = lysine and R = arginine) at various combinations below its MGC. Nap-F-hydrogel forms a nice entangled nanofibrillar network structure as evidenced by field emission scanning electron microscopy (FE-SEM). Interestingly, lysine-based co-assembled two- (Nap-FK), three- (Nap-FH-K and Nap-FK-R) and four-component (Nap-FH-K-R) xerogels exhibit helical nanofibrillar morphology, which was confirmed by circular dichroism spectroscopy, FE-SEM and TEM imaging. However, histidine and arginine-based two-component (Nap-FH and Nap-FR) and three-component (Nap-FH-R) co-assembled xerogels exhibiting straight nanofibrillar morphology. In their co-assembled states, these two-, three- and four-component supramolecular hydrogels show promising esterase-like activity below their MGCs. The enhanced catalytic activity of helical fibers compared to obtained straight fibers (other than lysine-based assembled systems) suggests that the helical fibrillar nanostructure is involved in ordering the esterase-like although all supramolecular assemblies are chemically different from one another.
Collapse
Affiliation(s)
- Ruchika Bassan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| | - Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata-700034 West Bengal India
| | - Mayank Varshney
- Senior Application Scientist, Characterization Division, Anton Paar India Pvt. Ltd. 582, Phase V, Udyog Vihar Industrial Area Gurgaon 122016 Haryana India
| | - Subhasish Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
14
|
Devi R, Singh G, Singh A, Singh J, Kaur N, Singh N. Silver and Copper Nanoparticle-Loaded Self-Assembled Pseudo-Peptide Thiourea-Based Organic-Inorganic Hybrid Gel with Antibacterial and Superhydrophobic Properties for Antifouling Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:4162-4174. [PMID: 38769764 DOI: 10.1021/acsabm.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The escalating threat of antimicrobial resistance has become a global health crisis. Therefore, there is a rising momentum in developing biomaterials with self-sanitizing capabilities and inherent antibacterial properties. Despite their promising antimicrobial properties, metal nanoparticles (MNPs) have several disadvantages, including increased toxicity as the particle size decreases, leading to oxidative stress and DNA damage that need consideration. One solution is surface functionalization with biocompatible organic ligands, which can improve nanoparticle dispersibility, reduce aggregation, and enable targeted delivery to microbial cells. The existing research predominantly concentrates on the advancement of peptide-based hydrogels for coating materials to prevent bacterial infection, with limited exploration of developing surface coatings using organogels. Herein, we have synthesized organogel-based coatings doped with MNPs that can offer superior hydrophobicity, oleophobicity, and high stability that are not easily achievable with hydrogels. The self-assembled gels displayed distinct morphologies, as revealed by scanning electron microscopy and atomic force microscopy. The cross-linked matrix helps in the controlled and sustained release of MNPs at the site of bacterial infection. The synthesized self-assembled gel@MNPs exhibited excellent antibacterial properties against harmful bacteria such as Escherichia coli and Staphylococcus aureus and reduced bacterial viability up to 95% within 4 h. Cytotoxicity testing against metazoan cells demonstrated that the gels doped with MNPs were nontoxic (IC50 > 100 μM) to mammalian cells. Furthermore, in this study, we coated the organogel@MNPs on cotton fabric and tested it against Gram +ve and Gram -ve bacteria. Additionally, the developed cotton fabric exhibited superhydrophobic properties and developed a barrier that limits the interaction between bacteria and the surface, making it difficult for bacteria to adhere and colonize, which holds potential as a valuable resource for self-cleaning coatings.
Collapse
Affiliation(s)
- Renu Devi
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Anoop Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Jagdish Singh
- Bioprocess Technology Laboratory, Department of Biotechnology, Mata Gujri College Fatehgarh Sahib, Fatehgarh Sahib, Punjab 140406, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University Chandigarh, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
15
|
Zhou H, Liu Y, Jin C, Shi Z, Tang C, Zhang W, Zhu L, Liu G, Huo S, Kong Z. Fabrication of lignosulfonate-derived porous carbon via pH-tunable self-assembly strategy for efficient atrazine removal. Int J Biol Macromol 2024; 270:132148. [PMID: 38723800 DOI: 10.1016/j.ijbiomac.2024.132148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Herein, a straightforward protocol was developed for the one-pot synthesis of N-doped lignosulfonate-derived carbons (NLDCs) with a tunable porous structure using natural amino acids-templated self-assembly strategy. Specifically, histidine was employed as a template reagent, leading to the preparation of 10-NLDC-21 with remarkable characteristics, including the large specific surface area (SBET = 1844.5 m2/g), pore volume (Vmes = 1.22 cm3/g) and efficient adsorption for atrazine (ATZ) removal. The adsorption behavior of ATZ by NLDCs followed the Langmuir and pseudo-second-order models, suggesting a monolayer chemisorption nature of ATZ adsorption with the maximum adsorption capacity reached up to 265.77 mg/g. Furthermore, NLDCs exhibited excellent environmental adaptability and recycling performance. The robust affinity could be attributed to multi-interactions including pore filling, electrostatic attraction, hydrogen bonding and π-π stacking between the adsorbents and ATZ molecules. This approach offers a practical method for exploring innovative bio-carbon materials for sewage treatment.
Collapse
Affiliation(s)
- Hongyan Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yunlong Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Can Jin
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China.
| | - Zhenyu Shi
- Environment Monitoring Center of Jiangsu Province, Nanjing 210036, China
| | - Chunmei Tang
- College of Mechanics and Engineering Sciences, Hohai University, Nanjing, Jiangsu 210098, China
| | - Wei Zhang
- College of Environment, Hohai University, Nanjing, Jiangsu 210098, China
| | - Liang Zhu
- College of Environment, Hohai University, Nanjing, Jiangsu 210098, China
| | - Guifeng Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China
| | - Shuping Huo
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China
| | - Zhenwu Kong
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Nanjing 210042, China.
| |
Collapse
|
16
|
Gao C, Li S, Zhao C, Sun Q, Sun X, Ge L, Wang L, Xi Z, Han J, Guo R. Self-Assembled Metal-Coordination Nanohelices as Efficient and Robust Chiral Supramolecular Catalysts for Enantioselective Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310234. [PMID: 38155520 DOI: 10.1002/smll.202310234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Indexed: 12/30/2023]
Abstract
The development of chiral nanostructures-based supramolecular catalysts with satisfied enantioselectivity remains a significantly more challenging task. Herein, the synthesis and self-assembly of various amino acid amphiphiles as chiral supramolecular catalysts after metal ion coordination is reported and systematically investigate their enantioselectivity in asymmetric Diels-Alder reactions. In particular, the self-assembly of l/d-phenylglycine-based amphiphiles (l/d-PhgC16) and Cu(II) into chiral supramolecular catalysts in the methanol/water solution mixture is described, which features the interesting M/P nanohelices (diameter ≈8 nm) and mostly well-aligned M/P nanoribbons (NRs). The M/P supramolecular catalysts show both high but inverse enantioselectivity (>90% ee) in Diels-Alder reactions, while their monomeric counterparts display nearly racemic products. Analysis of the catalytic results suggests the outstanding enantioselectivities are closely related to the specific stereochemical microenvironment provided by the arrangement of the amphiphiles in the supramolecular assembly. Based on the experimental evidence of chirality transfer from supramolecular nanohelices to coordinated Cu(II) and substrate aza-chalcone and the molecular dynamics simulations, the enantioselective catalytic mechanisms are proposed. Moreover, the relationships between molecular structures of amino acid amphiphiles (the hydrophilic head group and hydrophobic alkyl chain length) in supramolecular catalysts and enantioselectivity in Diels-Alder reactions are elaborated.
Collapse
Affiliation(s)
- Cong Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Shixin Li
- School of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Cici Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Qingqing Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Zheng Xi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| |
Collapse
|
17
|
Simonyan H, Palumbo R, Petrosyan S, Mkrtchyan A, Galstyan A, Saghyan A, Scognamiglio PL, Vicidomini C, Fik-Jaskólka M, Roviello GN. BSA Binding and Aggregate Formation of a Synthetic Amino Acid with Potential for Promoting Fibroblast Proliferation: An In Silico, CD Spectroscopic, DLS, and Cellular Study. Biomolecules 2024; 14:579. [PMID: 38785986 PMCID: PMC11118884 DOI: 10.3390/biom14050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents the chemical synthesis, purification, and characterization of a novel non-natural synthetic amino acid. The compound was synthesized in solution, purified, and characterized using NMR spectroscopy, polarimetry, and melting point determination. Dynamic Light Scattering (DLS) analysis demonstrated its ability to form aggregates with an average size of 391 nm, extending to the low micrometric size range. Furthermore, cellular biological assays revealed its ability to enhance fibroblast cell growth, highlighting its potential for tissue regenerative applications. Circular dichroism (CD) spectroscopy showed the ability of the synthetic amino acid to bind serum albumins (using bovine serum albumin (BSA) as a model), and CD deconvolution provided insights into the changes in the secondary structures of BSA upon interaction with the amino acid ligand. Additionally, molecular docking using HDOCK software elucidated the most likely binding mode of the ligand inside the BSA structure. We also performed in silico oligomerization of the synthetic compound in order to obtain a model of aggregate to investigate computationally. In more detail, the dimer formation achieved by molecular self-docking showed two distinct poses, corresponding to the lowest and comparable energies, with one pose exhibiting a quasi-coplanar arrangement characterized by a close alignment of two aromatic rings from the synthetic amino acids within the dimer, suggesting the presence of π-π stacking interactions. In contrast, the second pose displayed a non-coplanar configuration, with the aromatic rings oriented in a staggered arrangement, indicating distinct modes of interaction. Both poses were further utilized in the self-docking procedure. Notably, iterative molecular docking of amino acid structures resulted in the formation of higher-order aggregates, with a model of a 512-mer aggregate obtained through self-docking procedures. This model of aggregate presented a cavity capable of hosting therapeutic cargoes and biomolecules, rendering it a potential scaffold for cell adhesion and growth in tissue regenerative applications. Overall, our findings highlight the potential of this synthetic amino acid for tissue regenerative therapeutics and provide valuable insights into its molecular interactions and aggregation behavior.
Collapse
Affiliation(s)
- Hayarpi Simonyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Satenik Petrosyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Anna Mkrtchyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Armen Galstyan
- Department of Chemistry, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | - Ashot Saghyan
- Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian Str., Yerevan 0025, Armenia
| | | | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marta Fik-Jaskólka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
18
|
Pradhan MK, Misra N, Sahala F, Pradhan NP, Srivastava A. Divergent self-assembly propensity of enantiomeric phenylalanine amphiphiles that undergo pH-induced nanofiber-to-nanoglobule conversion. SOFT MATTER 2024; 20:3602-3611. [PMID: 38576362 DOI: 10.1039/d4sm00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This study presents the pathway diversity in the self-assembly of enantiomeric single phenylalanine derived amphiphiles (single F-PDAs), viz.L-NapF-EDA and D-NapF-EDA, that form supramolecular hydrogels at varied concentrations (≥1 mg mL-1 and ≥3 mg mL-1, respectively). By fitting the variable temperature circular dichroism (VT-CD) data to the isodesmic model, various thermodynamic parameters associated with their self-assembly, such as association constant (K), changes in enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG), were extracted. The self-assembly of these single F-PDAs was found to be enthalpy-driven but entropically-disfavored. Although self-assembly of the D-isomer was slow, it also exhibited greater free energy of association than the L-isomer. Consequently, thermally and mechanically more robust self-assemblies were formed by the D-isomer than the L-isomer. We term these results as the "butterfly effect in self-assembly" wherein the difference in the stereochemical orientation of the residues at a single chiral center present in these molecules resulted in strong differences in the self-assembly propensity as well as in their thermal and mechanical stability. These single F-PDAs form helical nanofibers of opposite chirality upon self-assembly at basic pH (≥8) that produce intense CD signals. However, upon decreasing the pH, a gradual nanofiber-to-nanoglobular transformation was noticed due to protonation-induced structural changes in the PDAs.
Collapse
Affiliation(s)
- Manas Kumar Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Nayanika Misra
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Fathima Sahala
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Nyaya Prakash Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| |
Collapse
|
19
|
Bhatt P, Garad PS, Rayala VVSPK, Radhakrishnanand P, Sankaranarayanan K. Non-thermal plasma modulated l-tyrosine self-assemblies: a potential avenue for fabrication of supramolecular self-assembled biomaterials. RSC Adv 2024; 14:13984-13996. [PMID: 38686299 PMCID: PMC11056826 DOI: 10.1039/d4ra01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Aromatic amino acids (AAs) have garnered particular interest due to their pivotal roles in numerous biological processes and disorders. Variations in AA self-assembly not only affect protein structures and functions, but their non-covalent interactions such as hydrogen bonding, van der Waals forces, and π-π stacking, yield versatile assemblies vital in bio-inspired material fabrication. Tyrosine (Tyr), a non-essential aromatic amino acid, holds multifaceted significance in the body as a protein building block, neurotransmitter precursor, thyroid hormone contributor, and melanin synthesis regulator. The proficiency of Cold Atmospheric Plasma (CAP) in generating a spectrum of reactive oxygen and nitrogen species has spurred innovative research avenues in the studies of biomolecular components, including its potential for targeted cancer cell ablation and biomolecule modification. In this work, we have assessed the chemical as well as the structural changes in Tyrosine-derived self-assembled structures arising from the CAP-induced reactive species. For a comprehensive understanding of the mechanism, different treatment times, feed gases, and the role of solvent acidification are compared using various spectroscopic and microscopic techniques. LC-ESI-QQQ mass spectra unveiled the emergence of oxygenated and nitro derivatives of l-tyrosine following its interaction with CAP-derived ROS/RNS. SEM and TEM images demonstrated an enhanced surface size of self-assembled structures and the formation of novel nanomaterial-shaped assemblies following CAP treatment. Overall, this study aims to explore CAP's interaction with a single-amino acid, hypothesizing the creation of novel supramolecular structures and scrutinizing CAP-instigated transformations in l-tyrosine self-assembled structures, potentially advancing biomimetic-attributed nanomaterial fabrication which might present a novel frontier in the field of designing functional biomaterials.
Collapse
Affiliation(s)
- Priya Bhatt
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
- Academy of Scientific and Innovative Research (AcSIR), Campus Postal Staff College Area Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Prajakta Sharad Garad
- Department of Medical Device, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - V V S Prasanna Kumari Rayala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research SilaKatamur (Halugurisuk), P.O.: Changsari, Dist: Kamrup Guwahati Assam-781101 India
| | - Kamatchi Sankaranarayanan
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, (An Autonomous Institute Under DST, Govt. of India) Vigyan Path, Paschim Boragaon, Garchuk Guwahati Assam 781035 India
| |
Collapse
|
20
|
Prajapati KP, Mittal S, Ansari M, Mahato OP, Bharati S, Singh AP, Ahlawat S, Tiku AB, Anand BG, Kar K. Pleiotropic Nanostructures Built from l-Histidine Show Biologically Relevant Multicatalytic Activities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18268-18284. [PMID: 38564419 DOI: 10.1021/acsami.3c14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The essential amino acid histidine plays a central role in the manifestation of several metabolic processes, including protein synthesis, enzyme-catalysis, and key biomolecular interactions. However, excess accumulation of histidine causes histidinemia, which shows brain-related medical complications, and the molecular mechanism of such histidine-linked complications is largely unknown. Here, we show that histidine undergoes a self-assembly process, leading to the formation of amyloid-like cytotoxic and catalytically active nanofibers. The kinetics of histidine self-assembly was favored in the presence of Mg(II) and Co(II) ions. Molecular dynamics data showed that preferential noncovalent interactions dominated by H-bonds between histidine molecules facilitate the formation of histidine nanofibers. The histidine nanofibers induced amyloid cross-seeding reactions in several proteins and peptides including pathogenic Aβ1-42 and brain extract components. Further, the histidine nanofibers exhibited oxidase activity and enhanced the oxidation of neurotransmitters. Cell-based studies confirmed the cellular internalization of histidine nanofibers in SH-SY5Y cells and subsequent cytotoxic effects through necrosis and apoptosis-mediated cell death. Since several complications including behavioral abnormality, developmental delay, and neurological disabilities are directly linked to abnormal accumulation of histidine, our findings provide a foundational understanding of the mechanism of histidine-related complications. Further, the ability of histidine nanofibers to catalyze amyloid seeding and oxidation reactions is equally important for both biological and materials science research.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Bharati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhilesh Pratap Singh
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shobha Ahlawat
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashu Bhan Tiku
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
21
|
Guo S, Hu LY, Meng QY, Zhang YY, Zhang CC, Xing LJ, Yu H, Sun HL. Photocontrolled chiroptical switch based on the self-assembly of azobenzene-bridged bis-tryptophan enantiomers. J Colloid Interface Sci 2024; 657:913-920. [PMID: 38091914 DOI: 10.1016/j.jcis.2023.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024]
Abstract
Chirality dynamic tuning plays fundamental roles in chemistry, material science and biological system. Herein, a pair of azobenzene-bridged bis-tryptophan enantiomers (Azo-di-d/l-Trp) were designed and synthesized via simple reactions. With the fuel of glucono-δ-lactone (GdL), releasing protons during its hydrolysis, the alkaline solution of Azo-di-d/l-Trp gradually self-assembled into contrast chiral helical structures and displayed magnitude and mirror image of circular dichroism (CD) signals. While the chiral helices converted to CD silent nanoparticles when the azobenzene moiety isomerized from trans- to cis-form under UV irradiation. More importantly, this chiroptical switch, displaying reversible interconversion between chiral amplification and silent, can be smartly controlled via photoirradiation at various wavelengths.
Collapse
Affiliation(s)
- Shuo Guo
- College of Chemistry and Materials Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Lin-Yi Hu
- College of Chemistry and Materials Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Qing-Yu Meng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yu-Ying Zhang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Cai-Cai Zhang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Li-Juan Xing
- College of Chemistry and Materials Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - Haitao Yu
- College of Chemistry and Materials Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - He-Lue Sun
- College of Chemistry and Materials Science, Hebei Key Laboratory of Organic Functional Molecules, Hebei Normal University, Shijiazhuang 050024, PR China.
| |
Collapse
|
22
|
Wang T, Ménard-Moyon C, Bianco A. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10532-10544. [PMID: 38367060 DOI: 10.1021/acsami.3c18463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Materials made of assembled biomolecules such as amino acids have drawn much attention during the past decades. Nevertheless, research on the relationship between the chemical structure of building block molecules, supramolecular interactions, and self-assembled structures is still necessary. Herein, the self-assembly and the coassembly of fluorenylmethoxycarbonyl (Fmoc)-protected aromatic amino acids (tyrosine, tryptophan, and phenylalanine) were studied. The individual self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH in water formed nanofibers, while Fmoc-Trp-OH self-assembled into nanoparticles. Moreover, when Fmoc-Tyr-OH or Fmoc-Phe-OH was coassembled with Fmoc-Trp-OH, the nanofibers were transformed into nanoparticles. UV-vis spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectroscopy were used to investigate the supramolecular interactions leading to the self-assembled architectures. π-π stacking and hydrogen bonding were the main driving forces leading to the self-assembly of Fmoc-Tyr-OH and Fmoc-Phe-OH forming nanofibers. Further, a mechanism involving a two-step coassembly process is proposed based on nucleation and elongation/growth to explain the structural transformation. Fmoc-Trp-OH acted as a fiber inhibitor to alter the molecular interactions in the Fmoc-Tyr-OH or Fmoc-Phe-OH self-assembled structures during the coassembly process, locking the coassembly in the nucleation step and preventing the formation of nanofibers. This structural transformation is useful for extending the application of amino acid self- or coassembled materials in different fields. For example, the amino acids forming nanofibers could be applied for tissue engineering, while they could be exploited as drug nanocarriers when they form nanoparticles.
Collapse
Affiliation(s)
- Tengfei Wang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| |
Collapse
|
23
|
Tiwari OS, Gazit E. Characterization of amyloid-like metal-amino acid assemblies with remarkable catalytic activity. Methods Enzymol 2024; 697:181-209. [PMID: 38816123 DOI: 10.1016/bs.mie.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
While enzymes are potentially useful in various applications, their limited operational stability and production costs have led to an extensive search for stable catalytic agents that will retain the efficiency, specificity, and environmental-friendliness of natural enzymes. Despite extensive efforts, there is still an unmet need for improved enzyme mimics and novel concepts to discover and optimize such agents. Inspired by the catalytic activity of amyloids and the formation of amyloid-like assemblies by metabolites, our group pioneered the development of novel metabolite-metal co-assemblies (bio-nanozymes) that produce nanomaterials mimicking the catalytic function of common metalloenzymes that are being used for various technological applications. In addition to their notable activity, bio-nanozymes are remarkably safe as they are purely composed of amino acids and minerals that are harmless to the environment. The bio-nanozymes exhibit high efficiency and exceptional robustness, even under extreme conditions of temperature, pH, and salinity that are impractical for enzymes. Our group has recently also demonstrated the formation of ordered amino acid co-assemblies showing selective and preferential interactions comparable to the organization of residues in folded proteins. The identified bio-nanozymes can be used in various applications including environmental remediation, synthesis of new materials, and green energy.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Hu T, Zhang Z, Reches M. A self-standing superhydrophobic material formed by the self-assembly of an individual amino acid. J Colloid Interface Sci 2024; 655:899-908. [PMID: 37979295 DOI: 10.1016/j.jcis.2023.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
HYPOTHESIS There is a growing interest in designing superhydrophobic materials for many applications including self-clean surfaces, separation systems, and antifouling solutions. Peptides and amino acids offer attractive building blocks for these materials since they are biocompatible and biodegradable and can self-assemble into complex ordered structures. EXPERIMENTS AND SIMULATIONS We designed a self-standing superhydrophobic material through the self-assembly of an individual functionalized aromatic amino acid, Cbz-Phe(4F). The self-assembly of Cbz-Phe(4F) was investigated by experimental and computational methods. Moreover, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. The mechanical properties and chemical stability of this self-standing superhydrophobic material were demonstrated. FINDINGS The designed Cbz-Phe(4F) self-assembled into fibrous structures in solution. Molecular dynamics (MD) simulations revealed that the fibrous backbone of Cbz-Phe(4F) aggregations was stabilized through hydrogen bonds, whereas the isotropic growth of the aggregates was driven by hydrophobic interactions. Importantly, when drop-casted three times on a solid support, it formed a self-standing superhydrophobic material. Moreover, this material had a high mechanical strength, with a Young's modulus of 53 GPa, resistance to enzymatic degradation, and thermal stability up to 200 ℃. This study provides a simple strategy to generate smart and functional materials by the simple self-assembly of functional individual amino acids.
Collapse
Affiliation(s)
- Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhuo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
25
|
Nandi S, Sarkar N. Interactions between Lipid Vesicle Membranes and Single Amino Acid Fibrils: Probable Origin of Specific Neurological Disorders. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1971-1987. [PMID: 38240221 DOI: 10.1021/acs.langmuir.3c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Amyloid fibrils are known to be responsible for several neurological disorders, like Alzheimer's disease (AD), Parkinson's disease (PD), etc. For decades, mostly proteins and peptide-based amyloid fibrils have been focused on, and the topic has acknowledged the rise, development, understanding of, and controversy, as well. However, the single amino acid based amyloid fibrils, responsible for several disorders, such as phenylketonuria, tyrosenimia type II, hypermethioninemia, etc., have gotten scientific attention lately. To understand the molecular level pathogenesis of such disorders originated due to the accumulation of single amino acid-based amyloid fibrils, interaction of these fibrils with phospholipid vesicle membranes is found to be an excellent cell-free in vitro setup. Based on such an in vitro setup, these fibrils show a generic mechanism of membrane insertion driven by electrostatic and hydrophobic effects inside the membrane that reduces the integral rigidity of the membrane. Alteration of such fundamental properties of the membrane, therefore, might be referred to as one of the prime pathological factors for the development of these neurological disorders. Hence, such interactions must be investigated in cellular and intracellular compartments to design suitable therapeutic modulators against fibrils.
Collapse
Affiliation(s)
- Sourav Nandi
- Yale School of Medicine, Yale University, New Haven, Connecticut 06510, United States
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
26
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
27
|
Guo J, Duan Y, Jia Y, Zhao Z, Gao X, Liu P, Li F, Chen H, Ye Y, Liu Y, Zhao M, Tang Z, Liu Y. Biomimetic chiral hydrogen-bonded organic-inorganic frameworks. Nat Commun 2024; 15:139. [PMID: 38167785 PMCID: PMC10762213 DOI: 10.1038/s41467-023-43700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 01/05/2024] Open
Abstract
Assembly ubiquitously occurs in nature and gives birth to numerous functional biomaterials and sophisticated organisms. In this work, chiral hydrogen-bonded organic-inorganic frameworks (HOIFs) are synthesized via biomimicking the self-assembly process from amino acids to proteins. Enjoying the homohelical configurations analogous to α-helix, the HOIFs exhibit remarkable chiroptical activity including the chiral fluorescence (glum = 1.7 × 10-3) that is untouched among the previously reported hydrogen-bonded frameworks. Benefitting from the dynamic feature of hydrogen bonding, HOIFs enable enantio-discrimination of chiral aliphatic substrates with imperceivable steric discrepancy based on fluorescent change. Moreover, the disassembled HOIFs after recognition applications are capable of being facilely regenerated and self-purified via aprotic solvent-induced reassembly, leading to at least three consecutive cycles without losing the enantioselectivity. The underlying mechanism of chirality bias is decoded by the experimental isothermal titration calorimetry together with theoretic simulation.
Collapse
Affiliation(s)
- Jun Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China.
| | - Yulong Duan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China
| | - Yunling Jia
- School of Materials Science and Engineering, Tiangong University, 300387, Tianjin, P. R. China
| | - Zelong Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, 325000, Wenzhou, P. R. China
| | - Pai Liu
- School of Materials Science and Engineering, Tiangong University, 300387, Tianjin, P. R. China
| | - Fangfang Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China
| | - Hongli Chen
- School of Materials Science and Engineering, Tiangong University, 300387, Tianjin, P. R. China
| | - Yutong Ye
- School of Materials Science and Engineering, Tiangong University, 300387, Tianjin, P. R. China
| | - Yujiao Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China
| | - Meiting Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, P. R. China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, P. R. China.
| | - Yi Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry, Tiangong University, 300387, Tianjin, P. R. China.
| |
Collapse
|
28
|
Wu Y, Li H, Liu T, Xu M. Versatile Protein and Its Subunit Biomolecules for Advanced Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305063. [PMID: 37474115 DOI: 10.1002/adma.202305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Rechargeable batteries are of great significance for alleviating the growing energy crisis by providing efficient and sustainable energy storage solutions. However, the multiple issues associated with the diverse components in a battery system as well as the interphase problems greatly hinder their applications. Proteins and their subunits, peptides, and amino acids, are versatile biomolecules. Functional groups in different amino acids endow these biomolecules with unique properties including self-assembly, ion-conducting, antioxidation, great affinity to exterior species, etc. Besides, protein and its subunit materials can not only work in solid forms but also in liquid forms when dissolved in solutions, making them more versatile to realize materials engineering via diverse approaches. In this review, it is aimed to offer a comprehensive understanding of the properties of proteins and their subunits, and research progress of using these versatile biomolecules to address the engineering issues of various rechargeable batteries, including alkali-ion batteries, lithium-sulfur batteries, metal-air batteries, and flow batteries. The state-of-the-art advances in electrode, electrolyte, separator, binder, catalyst, interphase modification, as well as recycling of rechargeable batteries are involved, and the impacts of biomolecules on electrochemical properties are particularly emphasized. Finally, perspectives on this interesting field are also provided.
Collapse
Affiliation(s)
- Yulun Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P.R. China
| | - Huangxu Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, P.R. China
| | - Tiancheng Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, P.R. China
| | - Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
29
|
Hong T, Zhou W, Tan S, Cai Z. A cooperation tale of biomolecules and nanomaterials in nanoscale chiral sensing and separation. NANOSCALE HORIZONS 2023; 8:1485-1508. [PMID: 37656443 DOI: 10.1039/d3nh00133d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The cooperative relationship between biomolecules and nanomaterials makes up a beautiful tale about nanoscale chiral sensing and separation. Biomolecules are considered a fabulous chirality 'donor' to develop chiral sensors and separation systems. Nature has endowed biomolecules with mysterious chirality. Various nanomaterials with specific physicochemical attributes can realize the transmission and amplification of this chirality. We focus on highlighting the advantages of combining biomolecules and nanomaterials in nanoscale chirality. To enhance the sensors' detection sensitivity, novel cooperation approaches between nanomaterials and biomolecules have attracted tremendous attention. Moreover, innovative biomolecule-based nanocomposites possess great importance in developing chiral separation systems with improved assay performance. This review describes the formation of a network based on nanomaterials and biomolecules mainly including DNA, proteins, peptides, amino acids, and polysaccharides. We hope this tale will record the perpetual relation between biomolecules and nanomaterials in nanoscale chirality.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan 410013, China
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| | - Zhiqiang Cai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
- Jiangsu Dawning Pharmaceutical Co., Ltd, Changzhou, Jiangsu 213100, China
| |
Collapse
|
30
|
Prajapati KP, Ansari M, Yadav DK, Mittal S, Anand BG, Kar K. A robust yet simple method to generate fluorescent amyloid nanofibers. J Mater Chem B 2023; 11:8765-8774. [PMID: 37661927 DOI: 10.1039/d3tb01203d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covalent tagging of fluorophores is central to the mechanistic understanding of important biological processes including protein-protein interaction and protein aggregation. Hence, studies on fluorophore-tagged peptides help in elucidating the molecular mechanism of amyloidogenesis, its cellular internalization, and crosstalk potential. Despite the many advantages the covalently tagged proteins offer, difficulties such as expensive and tedious synthesis and purification protocols have become a matter of concern. Importantly, covalently tagged fluorophores could introduce structural constraints, which may influence the conformation of the monomeric and aggregated forms of proteins. Here, we describe a robust-yet-simple method to make fluorescent-amyloid nanofibers through a coassembly-reaction route that does not alter the aggregation kinetics and the characteristic β-sheet-conformers of resultant nanofibers. Fluorescent amyloid nanofibers derived from insulin, lysozyme, Aβ1-42, and metabolites were successfully fabricated in our study. Importantly, the incorporated fluorophores exhibited remarkable stability, remaining intact without leaching even after undergoing serial dilutions and prolonged storage periods. This method enables monitoring of cellular internalization of the fluorescent-amyloid-nanofibers and the detection of FRET-signals during interfibrillar interactions. This simple and affordable protocol may significantly help amyloid researchers working on both in vitro and animal models.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Deepak Kumar Yadav
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Bibin Gnanadhason Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
31
|
Mosseri A, Sancho-Albero M, Mercurio FA, Leone M, De Cola L, Romanelli A. Tryptophan-PNA gc Conjugates Self-Assemble to Form Fibers. Bioconjug Chem 2023; 34:1429-1438. [PMID: 37486977 PMCID: PMC10436247 DOI: 10.1021/acs.bioconjchem.3c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Indexed: 07/26/2023]
Abstract
Peptide nucleic acids and their conjugates to peptides can self-assemble and generate complex architectures. In this work, we explored the self-assembly of PNA dimers conjugated to the dipeptide WW. Our studies suggest that the indole ring of tryptophan promotes aggregation of the conjugates. The onset of fluorescence is observed upon self-assembly. The structure of self-assembled WWgc is concentration-dependent, being spherical at low concentrations and fibrous at high concentrations. As suggested by molecular modeling studies, fibers are stabilized by stacking interactions between tryptophans and Watson-Crick hydrogen bonds between nucleobases.
Collapse
Affiliation(s)
- Andrea Mosseri
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| | - María Sancho-Albero
- Department
of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Flavia Anna Mercurio
- Istituto
di Biostrutture e Bioimmagini—CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Marilisa Leone
- Istituto
di Biostrutture e Bioimmagini—CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Luisa De Cola
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alessandra Romanelli
- Dipartimento
di Scienze Farmaceutiche, Università
Degli Studi di Milano, via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
32
|
Andino MS, Mora JR, Paz JL, Márquez EA, Perez-Castillo Y, Agüero-Chapin G. Elucidating the Racemization Mechanism of Aliphatic and Aromatic Amino Acids by In Silico Tools. Int J Mol Sci 2023; 24:11877. [PMID: 37569252 PMCID: PMC10418343 DOI: 10.3390/ijms241511877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The racemization of biomolecules in the active site can reduce the biological activity of drugs, and the mechanism involved in this process is still not fully comprehended. The present study investigates the impact of aromaticity on racemization using advanced theoretical techniques based on density functional theory. Calculations were performed at the ωb97xd/6-311++g(d,p) level of theory. A compelling explanation for the observed aromatic stabilization via resonance is put forward, involving a carbanion intermediate. The analysis, employing Hammett's parameters, convincingly supports the presence of a negative charge within the transition state of aromatic compounds. Moreover, the combined utilization of natural bond orbital (NBO) analysis and intrinsic reaction coordinate (IRC) calculations confirms the pronounced stabilization of electron distribution within the carbanion intermediate. To enhance our understanding of the racemization process, a thorough examination of the evolution of NBO charges and Wiberg bond indices (WBIs) at all points along the IRC profile is performed. This approach offers valuable insights into the synchronicity parameters governing the racemization reactions.
Collapse
Affiliation(s)
- Mateo S. Andino
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Av. Interoceánica, Quito 170157, Ecuador;
| | - José R. Mora
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Diego de Robles s/n y Av. Interoceánica, Quito 170157, Ecuador;
| | - José L. Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Edgar A. Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Yunierkis Perez-Castillo
- Bio-Chemoinformatics Research Group and Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito 170504, Ecuador;
| | - Guillermin Agüero-Chapin
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
33
|
Dolai G, Shill S, Roy S, Mandal B. Atomic Insight on Inhibition of Fibrillization of Dipeptides by Replacement of Phenylalanine with Tryptophan. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37339161 DOI: 10.1021/acs.langmuir.3c00823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Tryptophan (Trp) conjugates destabilize amyloid fibrils responsible for amyloidoses. However, the mechanism of such destabilization is obscure. Herein the self-assembly of four synthesized Trp-containing dipeptides Boc-xxx-Trp-OMe (xxx: Val, Leu, Ile, and Phe) has been investigated and compared with the existing report on their Phe congeners. Two among them are the C-terminal tryptophan analogs of Boc-Val-Phe-OMe (VF, Aβ18-19) and Boc-Phe-Phe-OMe (FF, Aβ19-20), part of the central hydrophobic region of amyloid-β (Aβ1-42). While Boc-Val-Trp-OMe (VW), Boc-Leu-Trp-OMe (LW), Boc-Ile-Trp-OMe (IW), and Boc-Phe-Trp-OMe (FW) displayed a spherical morphology in FESEM and AFM images, the corresponding phenylalanine-containing dipeptides displayed various fibrous structures. Single-crystal X-ray diffraction (SC-XRD) indicated that peptides VW and IW exhibited structures containing parallel β-sheet, cross-β-structure, sheet-like layer structure, and helical arrangement in the solid state. Interestingly, peptide FW displayed inverse γ-turn conformation (similar to open-turn structure), antiparallel β-sheet structure, columnar structure, supramolecular nanozipper structure, sheet-like layer arrangement, and helical architecture in the solid state. The open-turn conformation and nanozipper structure formation by FW may be the first example of a dipeptide that forms such structures. The minute but consistent differences in molecular packing at the atomic level between Trp and Phe congeners may be responsible for their remarkably different supramolecular structure generation. This molecular-level structural analysis may be helpful for the de novo design of peptide nanostructures and therapeutics. Similar studies by the Debasish Haldar group are reported, but they investigated the inhibition of fibrillization of dipeptides by tyrosine and interactions are expectedly different.
Collapse
Affiliation(s)
- Gobinda Dolai
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sukesh Shill
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sayanta Roy
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhubaneswar Mandal
- Department of Chemistry, Laboratory of Peptide and Amyloid Research, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
34
|
Li X, Jian H, Han Q, Wang A, Li J, Man N, Li Q, Bai S, Li J. Three-dimensional (3D) bioprinting of medium toughened dipeptide hydrogel scaffolds with Hofmeister effect. J Colloid Interface Sci 2023; 639:1-6. [PMID: 36796110 DOI: 10.1016/j.jcis.2023.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Short peptide self-assembled hydrogels as 3D bioprinting inks show excellent biocompatibility and diverse functional expansion, and have broad application prospects in cell culture and tissue engineering. However, the preparation of biological hydrogel inks with adjustable mechanical strength and controllable degradation for 3D bioprinting still faces big challenges. Herein, we develop dipeptide bio-inks that can be gelled in-situ based on Hofmeister sequence, and prepare hydrogel scaffold by using a layer-by-layer 3D printing strategy. Excitingly, after the introduction of Dulbecco's Modified Eagle's medium (DMEM), which is necessary for cell culture, the hydrogel scaffolds show an excellent toughening effect, which matches the needs of cell culture. It's notable that in the whole process of preparation and 3D printing of hydrogel scaffolds, no cross-linking agent, ultraviolet (UV), heating or other exogenous factors are involved, ensuring high biosafety and biocompatibility. After two weeks of 3D culture, millimeter-sized cell spheres are obtained. This work provides an opportunity for the development of short peptide hydrogel bioinks without exogenous factors in 3D printing, tissue engineering, tumor simulant reconstruction and other biomedical fields.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningyuan Man
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Shen Y, Su R, Hao D, Xu X, Reches M, Min J, Chang H, Yu T, Li Q, Zhang X, Wang Y, Wang Y, Qi W. Enzymatic polymerization of enantiomeric L-3,4-dihydroxyphenylalanine into films with enhanced rigidity and stability. Nat Commun 2023; 14:3054. [PMID: 37237008 DOI: 10.1038/s41467-023-38845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
L-3,4-dihydroxyphenylalanine is an important molecule in the adhesion of mussels, and as an oxidative precursor of natural melanin, it plays an important role in living system. Here, we investigate the effect of the molecular chirality of 3,4-dihydroxyphenylalanine on the properties of the self-assembled films by tyrosinase-induced oxidative polymerization. The kinetics and morphology of pure enantiomers are completely altered upon their co-assembly, allowing the fabrication of layer-to-layer stacked nanostructures and films with improved structural and thermal stability. The different molecular arrangements and self-assembly mechanisms of the L+D-racemic mixtures, whose oxidation products have increased binding energy, resulting in stronger intermolecular forces, which significantly increases the elastic modulus. This study provides a simple pathway for the fabrication of biomimetic polymeric materials with enhanced physicochemical properties by controlling the chirality of monomers.
Collapse
Affiliation(s)
- Yuhe Shen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, 300072, Tianjin, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China
| | - Dongzhao Hao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Xiaojian Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Meital Reches
- Institute of Chemistry, the Hebrew University, Jerusalem, 91904, Israel
| | - Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Heng Chang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Tao Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
| | - Xiaoyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, China.
- Haihe Laboratory of Modern Chinese Medicine, 301617, Tianjin, China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, 300072, Tianjin, P. R. China.
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, 215123, Suzhou, China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, 300072, Tianjin, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, P. R. China.
| |
Collapse
|
36
|
Carmeli I, Bounioux CM, Mickel P, Richardson MB, Templeman Y, Scofield JMP, Qiao GG, Rosen BA, Yusupov Y, Meshi L, Voelcker NH, Diéguez O, Miloh T, Král P, Cohen H, Richter SE. Unidirectional rotation of micromotors on water powered by pH-controlled disassembly of chiral molecular crystals. Nat Commun 2023; 14:2869. [PMID: 37208331 DOI: 10.1038/s41467-023-38308-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Biological and synthetic molecular motors, fueled by various physical and chemical means, can perform asymmetric linear and rotary motions that are inherently related to their asymmetric shapes. Here, we describe silver-organic micro-complexes of random shapes that exhibit macroscopic unidirectional rotation on water surface through the asymmetric release of cinchonine or cinchonidine chiral molecules from their crystallites asymmetrically adsorbed on the complex surfaces. Computational modeling indicates that the motor rotation is driven by a pH-controlled asymmetric jet-like Coulombic ejection of chiral molecules upon their protonation in water. The motor is capable of towing very large cargo, and its rotation can be accelerated by adding reducing agents to the water.
Collapse
Affiliation(s)
- Itai Carmeli
- Department of Materials Science and Engineering, Faculty of Engineering & University Center for Nano Science and Nanotechnology, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Celine M Bounioux
- Department of Materials Science and Engineering, Faculty of Engineering & University Center for Nano Science and Nanotechnology, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Philip Mickel
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Yael Templeman
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105 POB 653, Israel
| | - Joel M P Scofield
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Greg G Qiao
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Brian Ashley Rosen
- Department of Materials Science and Engineering, Faculty of Engineering & University Center for Nano Science and Nanotechnology, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Yelena Yusupov
- Department of Materials Science and Engineering, Faculty of Engineering & University Center for Nano Science and Nanotechnology, Tel Aviv University, Tel-Aviv, 6997801, Israel
| | - Louisa Meshi
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105 POB 653, Israel
| | - Nicolas H Voelcker
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Oswaldo Diéguez
- Department of Materials Science and Engineering, Faculty of Engineering & University Center for Nano Science and Nanotechnology, Tel Aviv University, Tel-Aviv, 6997801, Israel
- The Raymond and Beverly Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Touvia Miloh
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
- Department of Physics, Pharmaceutical Sciences, and Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Hagai Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shachar E Richter
- Department of Materials Science and Engineering, Faculty of Engineering & University Center for Nano Science and Nanotechnology, Tel Aviv University, Tel-Aviv, 6997801, Israel.
| |
Collapse
|
37
|
Wang Z, Shang Y, Luo H, Yang C, Yang Z, Ren C, Liu J. Achieving higher hierarchical structures by cooperative assembly of tripeptides with reverse sequences. NANOSCALE 2023; 15:7502-7509. [PMID: 37017562 DOI: 10.1039/d3nr00983a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Hierarchical self-assembly based on peptides in nature is a multi-component interaction process, providing a broad platform for various bionanotechnological applications. However, the study of controlling the hierarchical structure transformation via the cooperation rules of different sequences is still rarely reported. Herein, we report a novel strategy of achieving higher hierarchical structures through cooperative self-assembly of hydrophobic tripeptides with reverse sequences. We unexpectedly found that Nap-FVY and its reverse sequence Nap-YVF self-assembled into nanospheres, respectively, while their mixture formed nanofibers, obviously exhibiting a low-to-high hierarchical structure transformation. Further, this phenomenon was demonstrated by the other two collocations. The cooperation of Nap-VYF and Nap-FYV afforded the transformation from nanofibers to twisted nanoribbons, and the cooperation of Nap-VFY and Nap-YFV realized the transformation from nanoribbons to nanotubes. The reason may be that the cooperative systems in the anti-parallel β-sheet conformation created more hydrogen bond interactions and in-register π-π stacking, promoting a more compact molecular arrangement. This work provides a handy approach for controlled hierarchical assembly and the development of various functional bionanomaterials.
Collapse
Affiliation(s)
- Zhongyan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Yuna Shang
- College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Hongjing Luo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China.
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China.
| |
Collapse
|
38
|
Du J, Xie F, Liu C, Ji B, Wei W, Wang M, Xia Z. Chiral zinc oxide functionalized quartz crystal microbalance sensor for enantioselective recognition of amino acids. Talanta 2023; 259:124496. [PMID: 37031543 DOI: 10.1016/j.talanta.2023.124496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Chiral transition metal oxides with tunable structures and multiple physicochemical features have been increasingly applied for chiral sensing and detection. In this work, chiral zinc oxide (ZnO) was first applied as selector to construct quartz crystal microbalance (QCM) sensor for enantioselective recognition of amino acids. The chiral ZnO was prepared by a methionine-induced self-assembly strategy and its high topological chirality was confirmed by several techniques such as circular dichroism spectrum. The chiral discrimination factors were calculated by frequency shifts in response to aspartic acid, phenylalanine, lysine and arginine on L-ZnO surface, achieving 1.89 ± 0.04, 1.76 ± 0.11, 1.66 ± 0.07 and 1.54 ± 0.09, respectively. Notably, L-enantiomers preferred stronger absorptions on L-ZnO surface as compared to D-forms. It was further found that this sensor was appropriate for quantitative analysis and enantiomer excess analysis and adsorption kinetics study. Furthermore, molecular docking revealed the recognition mechanism, where chiral distinction was caused by the different steric interactions between enantiomers and chiral ZnO. This method enjoyed merits of high enantioselectivity, simple preparation and low cost, offering newly chiral sensing method for other molecules.
Collapse
Affiliation(s)
- Jiayin Du
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Fengfeng Xie
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Chunlan Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Baian Ji
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Weili Wei
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
39
|
Xiang Y, Mao H, Tong SC, Liu C, Yan R, Zhao L, Zhu L, Bao C. A Facile and Versatile Approach to Construct Photoactivated Peptide Hydrogels by Regulating Electrostatic Repulsion. ACS NANO 2023; 17:5536-5547. [PMID: 36892586 DOI: 10.1021/acsnano.2c10896] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Short peptides that can respond to external stimuli have been considered as the preferred building blocks to construct hydrogels for biomedical applications. In particular, photoresponsive peptides that are capable of triggering the formation of hydrogels upon light irradiation allow the properties of hydrogels to be changed remotely by precise and localized actuation. Here, we used the photochemical reaction of the 2-nitrobenzyl ester group (NB) to develop a facile and versatile strategy for constructing photoactivated peptide hydrogels. The peptides with high aggregation propensity were designed as hydrogelators, which were photocaged by a positively charged dipeptide (KK) to provide strong charge repulsion and prevent self-assembly in water. Light irradiation led to the removal of KK and triggered the self-assembly of peptides and the formation of hydrogel. Light stimulation endows spatial and temporal control, which enables the formation of hydrogel with precisely tunable structure and mechanical properties. Cell culture and behavior study indicated that the optimized photoactivated hydrogel was suitable for 2D and 3D cell culture, and its photocontrollable mechanical strength could regulate the spreading of stem cells on its surface. Therefore, our strategy provides an alternative way to construct photoactivated peptide hydrogels with wide applications in biomedical areas.
Collapse
Affiliation(s)
- Yanxin Xiang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huanv Mao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Si-Cheng Tong
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Can Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
40
|
Sheehan FK, Wang H, Podbevšek D, Naranjo E, Rivera-Cancel J, Moran C, Ulijn RV, Chen X. Aromatic Zipper Topology Dictates Water-Responsive Actuation in Phenylalanine-Based Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207773. [PMID: 36971275 DOI: 10.1002/smll.202207773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Water-responsive (WR) materials that reversibly deform in response to relative humidity (RH) changes are gaining increasing interest for their potential in energy harvesting and soft robotics applications. Despite progress, there are significant gaps in the understanding of how supramolecular structure underpins the reconfiguration and performance of WR materials. Here, three crystals are compared based on the amino acid phenylalanine (F) that contain water channels and F packing domains that are either layered (F), continuously connected (phenylalanyl-phenylalanine, FF), or isolated (histidyl-tyrosyl-phenylalanine, HYF). Hydration-induced reconfiguration is analyzed through changes in hydrogen-bond interactions and aromatic zipper topology. F crystals show the greatest WR deformation (WR energy density of 19.8 MJ m-3 ) followed by HYF (6.5 MJ m-3 ), while FF exhibits no observable response. The difference in water-responsiveness strongly correlates to the deformability of aromatic regions, with FF crystals being too stiff to deform, whereas HYF is too soft to efficiently transfer water tension to external loads. These findings reveal aromatic topology design rules for WR crystals and provide insight into general mechanisms of high-performance WR actuation. Moreover, the best-performing crystal, F emerges as an efficient WR material for applications at scale and low cost.
Collapse
Affiliation(s)
- Fahmeed K Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Haozhen Wang
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| | - Darjan Podbevšek
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
| | - Elma Naranjo
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Department of Chemical Engineering, The City College of New York, 275 Convent Ave, New York, NY, 10031, USA
| | - Janel Rivera-Cancel
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
| | - Cooper Moran
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
- Department of Chemistry, Hunter College, 695 Park Ave, New York, NY, 10065, USA
| | - Xi Chen
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY, 10031, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY, 10016, USA
- Department of Chemical Engineering, The City College of New York, 275 Convent Ave, New York, NY, 10031, USA
| |
Collapse
|
41
|
van Teijlingen A, Smith MC, Tuttle T. Short Peptide Self-Assembly in the Martini Coarse-Grain Force Field Family. Acc Chem Res 2023; 56:644-654. [PMID: 36866851 PMCID: PMC10035038 DOI: 10.1021/acs.accounts.2c00810] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
ConspectusPivotal to the success of any computational experiment is the ability to make reliable predictions about the system under study and the time required to yield these results. Biomolecular interactions is one area of research that sits in every camp of resolution vs the time required, from the quantum mechanical level to in vivo studies. At an approximate midpoint, there is coarse-grained molecular dynamics, for which the Martini force fields have become the most widely used, fast enough to simulate the entire membrane of a mitochondrion though lacking atom-specific precision. While many force fields have been parametrized to account for a specific system under study, the Martini force field has aimed at casting a wider net with more generalized bead types that have demonstrated suitability for broad use and reuse in applications from protein-graphene oxide coassembly to polysaccharides interactions.In this Account, the progressive (Martini versions 1 through 3) and peripheral (Sour Martini, constant pH, Martini Straight, Dry Martini, etc.) developmental trajectory of the Martini force field will be analyzed in terms of self-assembling systems with a focus on short (two to three amino acids) peptide self-assembly in aqueous environments. In particular, this will focus on the effects of the Martini solvent model and compare how changes in bead definitions and mapping have effects on different systems. Considerable effort in the development of Martini has been expended to reduce the "stickiness" of amino acids to better simulate proteins in bilayers. We have included in this Account a short study of dipeptide self-assembly in water, using all mainstream Martini force fields, to examine their ability to reproduce this behavior. The three most recently released versions of Martini and variations in their solvents are used to simulate in triplicate all 400 dipeptides of the 20 gene-encoded amino acids. The ability of the force fields to model the self-assembly of the dipeptides in aqueoues environments is determined by the measurement of the aggregation propensity, and additional descriptors are used to gain further insight into the dipeptide aggregates.
Collapse
Affiliation(s)
| | - Melissa C Smith
- Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Tell Tuttle
- Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
42
|
Yi J, Qin Y, Zhang Y. Synthesis and Self-Assembly of Hyperbranched Multiarm Copolymer Lysozyme Conjugates Based on Light-Induced Metal-Free Atrp. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061017. [PMID: 36985911 PMCID: PMC10053904 DOI: 10.3390/nano13061017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/12/2023]
Abstract
In recent years, the coupling of structurally and functionally controllable polymers with biologically active protein materials to obtain polymer-protein conjugates with excellent overall properties and good biocompatibility has been important research in the field of polymers. In this study, the hyperbranched polymer hP(DEGMA-co-OEGMA) was first prepared by combining self-condensation vinyl polymerization (SCVP) with photo-induced metal-free atom transfer radical polymerization (ATRP), with 2-(2-bromo-2-methylpropanoyloxy) ethyl methacrylate (BMA) as inimer, and Di (ethylene glycol) methyl ether methacrylate (DEGMA) and (oligoethylene glycol) methacrylate (OEGMA, Mn = 300) as the copolymer monomer. Then, hP(DEGMA-co-OEGMA) was used as a macroinitiator to continue the polymerization of a segment of pyridyl disulfide ethyl methacrylate (DSMA) monomer to obtain the hyperbranched multiarm copolymers hP(DEGMA-co-OEGMA)-star-PDSMA. Finally, the lysozyme with sulfhydryl groups was affixed to the hyperbranched multiarm copolymers by the exchange reaction between sulfhydryl groups and disulfide bonds to obtain the copolymer protein conjugates hP(DEGMA-co-OEGMA)-star-PLZ. Three hyperbranched multiarm copolymers with relatively close molecular weights but different degrees of branching were prepared, and all three conjugates could self-assemble to form nanoscale vesicle assemblies with narrow dispersion. The biological activity and secondary structure of lysozyme on the assemblies remained essentially unchanged.
Collapse
Affiliation(s)
- Jianguo Yi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yan Qin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| | - Yue Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
- Hebei Key Laboratory of Functional Polymers, Tianjin 300130, China
| |
Collapse
|
43
|
Tiwari OS, Aizen R, Meli M, Colombo G, Shimon LJW, Tal N, Gazit E. Entropically-Driven Co-assembly of l-Histidine and l-Phenylalanine to Form Supramolecular Materials. ACS NANO 2023; 17:3506-3517. [PMID: 36745579 DOI: 10.1021/acsnano.2c09872] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Molecular self- and co-assembly allow the formation of diverse and well-defined supramolecular structures with notable physical properties. Among the associating molecules, amino acids are especially attractive due to their inherent biocompatibility and simplicity. The biologically active enantiomer of l-histidine (l-His) plays structural and functional roles in proteins but does not self-assemble to form discrete nanostructures. In order to expand the structural space to include l-His-containing materials, we explored the co-assembly of l-His with all aromatic amino acids, including phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), all in both enantiomeric forms. In contrast to pristine l-His, the combination of this building block with all aromatic amino acids resulted in distinct morphologies including fibers, rods, and flake-like structures. Electrospray ionization mass spectrometry (ESI-MS) indicated the formation of supramolecular co-assemblies in all six combinations, but time-of-flight secondary-ion mass spectrometry (ToF-SIMS) indicated the best seamless co-assembly occurs between l-His and l-Phe while in the other cases, different degrees of phase separation could be observed. Indeed, isothermal titration calorimetry (ITC) suggested the highest affinity between l-His and l-Phe where the formation of co-assembled structures was driven by entropy. In accordance, among all the combinations, the co-assembly of l-His and l-Phe produced single crystals. The structure revealed the formation of a 3D network with nanocavities stabilized by hydrogen bonding between -N (l-His) and -NH (l-Phe). Taken together, using the co-assembly approach we expanded the field of amino acid nanomaterials and showed the ability to obtain discrete supramolecular nanostructures containing l-His based on its specific interactions with l-Phe.
Collapse
Affiliation(s)
- Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Ruth Aizen
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | | | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noam Tal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| |
Collapse
|
44
|
Zhang Y, Li Q, Wu H, Wang Y, Wang Y, Rencus-Lazar S, Zhao Y, Wang J, Mei D, Xu H, Gazit E, Tao K. Racemic Amino Acid Assembly Enables Supramolecular β-Sheet Transition with Property Modulations. ACS NANO 2023; 17:2737-2744. [PMID: 36696300 DOI: 10.1021/acsnano.2c11006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amino acids are the most simplistic bio-building blocks and perform a variety of functions in metabolic activities. Increasing publications report that amino acid-based superstructures present amyloid-like characteristics, arising from their supramolecular β-sheet secondary structures driven by hydrogen-bonding-connected supramolecular β-strands, which are formed by head-to-tail hydrogen bonds between terminal amino and carboxyl groups of the adjacent residues. Therefore, the establishment of the structure-function relationships is critical for exploring the properties and applications of amino acid assemblies. Among the naturally encoded self-assembling amino acids, tyrosine (Y)-based superstructures have been found to show diverse properties and functions including high rigidity, promoting melanin formations, mood regulations, and preventing anxiety, thus showing promising potential as next-generation functional biomaterials for biomedical and bio-machine interface applications. However, the development of Y-based organizations of functional features is severely limited due to the intrinsic difficulty of modulating the energetically stable supramolecular β-sheet structures. Herein, we report that by the racemic assembly of l-Y and d-Y, the supramolecular secondary structures are modulated from the antiparallel β-sheets in the enantiomeric assemblies to the parallel ones in the racemate counterparts, thus leading to higher degrees of freedom, which finally induce distinct organization kinetics and modulation of the physicochemical properties including the optical shifts, elastic softening, and the piezoelectric outputs of the superstructures.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, China
| | - Haoran Wu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
| | - Yan Wang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Sigal Rencus-Lazar
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yurong Zhao
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Jiqian Wang
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
| | - Hai Xu
- Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Ehud Gazit
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Kai Tao
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou310030, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou311200, China
| |
Collapse
|
45
|
Yang L, Zhang J, Wang M, Wang Y, Qi W, He Z. Probing the effect of microenvironment on the enzyme-like behavior of catalytic peptide assemblies. J Colloid Interface Sci 2023; 629:683-693. [PMID: 36183647 DOI: 10.1016/j.jcis.2022.09.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
As bridging species between short peptides and macromolecular proteins, peptide assemblies not only provide a supramolecular approach for the fabrication of controllable molecular machines with enzyme-like functions, but also a simplified model for understanding the catalytic mechanism of natural enzymes. In this study, we focused on probing the effect of microenvironment on the catalytic behavior of peptide assemblies. Upon simply replacing the X residue in Fmoc-FFXAH-CONH2, we realized the modulation of the microenvironment of the amyloid assemblies, which thus appeared esterase-like function with different catalytic abilities. The chemistry, structure and activity were analyzed to explore the principles that how the hydrophobic, charged, polar and chiral microenvironment deciding the catalytic behavior of the esterase mimic. In addition, we also presented the potential of the catalytic assemblies in the encapsulation, delivery and enzymatic metabolization of a mutual prodrug. This work sheds new insights for understanding the structure-function relationship of catalytic peptide assemblies and natural enzymes, and also provides a new avenue for the designing of artificial enzymes with better functions.
Collapse
Affiliation(s)
- Lijun Yang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; School of Life Sciences. Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Yutong Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300350, PR China.
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
46
|
Prajapati KP, Anand BG, Ansari M, Tiku AB, Kar K. Tryptophan self-assembly yields cytotoxic nanofibers containing amyloid-mimicking and cross-seeding competent conformers. NANOSCALE 2022; 14:16270-16285. [PMID: 36300424 DOI: 10.1039/d2nr03544h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dietary consumption of Trp via protein-based foods is essential for the maintenance of crucial metabolic processes including the synthesis of proteins and several vital metabolites such as serotonin, melatonin, acetyl CoA, and NADP. However, the abnormal build-up of Trp is known to cause familial hypertryptophanemia and several brain-related medical complications. The molecular mechanism of the onset of such Trp-driven health issues is largely unknown. Here, we show that Trp, under the physiologically mimicked conditions of temperature and buffer, undergoes a concentration driven self-assembly process, yielding amyloid-mimicking nanofibers. Viable H-bonds, π-π interactions and hydrophobic contacts between optimally coordinated Trp molecules become important factors for the formation of a Trp nanoassembly that displays a hydrophobic exterior and a hydrophilic interior. Importantly, Trp nanofibers were found to possess high affinity for native proteins, and they act as cross-seeding competent conformers capable of nucleating amyloid formation in globular proteins including whey protein β-lactoglobulin and type II diabetes linked insulin hormone. Moreover, these amyloid mimicking Trp nanostructures showed toxic effects on neuroblastoma cells. Since the key symptoms in hypertryptophanemia such as behavioural defects and brain-damaging oxidative stress are also observed in amyloid related disorders, our findings on amyloid-like Trp-nanofibers may help in the mechanistic understanding of Trp-related complications and these findings are equally important for innovation in applied nanomaterials design and strategies.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Bibin Gnanadhason Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ashu Bhan Tiku
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
47
|
Bera S, Cazade PA, Bhattacharya S, Guerin S, Ghosh M, Netti F, Thompson D, Adler-Abramovich L. Molecular Engineering of Rigid Hydrogels Co-assembled from Collagenous Helical Peptides Based on a Single Triplet Motif. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46827-46840. [PMID: 36206330 PMCID: PMC9585512 DOI: 10.1021/acsami.2c09982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The potential of ultra-short peptides to self-assemble into well-ordered functional nanostructures makes them promising minimal components for mimicking the basic ingredient of nature and diverse biomaterials. However, selection and modular design of perfect de novo sequences are extremely tricky due to their vast possible combinatorial space. Moreover, a single amino acid substitution can drastically alter the supramolecular packing structure of short peptide assemblies. Here, we report the design of rigid hybrid hydrogels produced by sequence engineering of a new series of ultra-short collagen-mimicking tripeptides. Connecting glycine with different combinations of proline and its post-translational product 4-hydroxyproline, the single triplet motif, displays the natural collagen-helix-like structure. Improved mechanical rigidity is obtained via co-assembly with the non-collagenous hydrogelator, fluorenylmethoxycarbonyl (Fmoc) diphenylalanine. Characterizations of the supramolecular interactions that promote the self-supporting and self-healing properties of the co-assemblies are performed by physicochemical experiments and atomistic models. Our results clearly demonstrate the significance of sequence engineering to design functional peptide motifs with desired physicochemical and electromechanical properties and reveal co-assembly as a promising strategy for the utilization of small, readily accessible biomimetic building blocks to generate hybrid biomolecular assemblies with structural heterogeneity and functionality of natural materials.
Collapse
Affiliation(s)
- Santu Bera
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
and The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Pierre-Andre Cazade
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Sarah Guerin
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Moumita Ghosh
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
and The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Francesca Netti
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
and The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Lihi Adler-Abramovich
- Department
of Oral Biology, The Goldschleger School of Dental Medicine, Sackler
Faculty of Medicine, The Center for Nanoscience and Nanotechnology,
and The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
48
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Das P, Bhowmick A, Sarkar K, Mukherjee S, Saha R, Bhattacharjee S. Solvent‐ and Substrate‐Induced Chiroptical Inversion in Amphiphilic, Biocompatible Glycoconjugate Supramolecules: Shape‐Persistent Gelation, Self‐Healing, and Antibacterial Activity. Chemistry 2022; 28:e202201621. [DOI: 10.1002/chem.202201621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN Sector V Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur 732103 West Bengal India
| | - Priyanka Das
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Arpita Bhowmick
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Keka Sarkar
- Department of Microbiology University of Kalyani Kalyani, Nadia 741235 West Bengal India
| | - Suprabhat Mukherjee
- Department of Animal Science Kazi Nazrul University Asansol 713340 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
49
|
Nayak K, Sahoo S, De P. Chirality and solvent assisted gelation modulation with stearoyl appended macromolecules. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
50
|
Chatterjee A, Ghosh S, Ghosh C, Das D. Fluorescent Microswimmers Based on Cross-β Amyloid Nanotubes and Divergent Cascade Networks. Angew Chem Int Ed Engl 2022; 61:e202201547. [PMID: 35578748 DOI: 10.1002/anie.202201547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/21/2022]
Abstract
Shaped through millions of years of evolution, the spatial localization of multiple enzymes in living cells employs extensive cascade reactions to enable highly coordinated multimodal functions. Herein, by utilizing a complex divergent cascade, we exploit the catalytic potential as well as templating abilities of streamlined cross-β amyloid nanotubes to yield two orthogonal roles simultaneously. The short peptide based paracrystalline nanotube surfaces demonstrated the generation of fluorescence signals within entangled networks loaded with alcohol dehydrogenase (ADH). The nanotubular morphologies were further used to generate cascade-driven microscopic motility through surface entrapment of sarcosine oxidase (SOX) and catalase (Cat). Moreover, a divergent cascade network was initiated by upstream catalysis of the substrate molecules through the surface mutation of catalytic moieties. Notably, the resultant downstream products led to the generation of motile fluorescent microswimmers by utilizing the two sets of orthogonal properties and, thus, mimicked the complex cascade-mediated functionalities of extant biology.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Souvik Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|