1
|
Yang J, Li X, Li T, Mei J, Chen Y. Recent advances in biomimetic nanodelivery systems for cancer Immunotherapy. Mater Today Bio 2025; 32:101726. [PMID: 40270890 PMCID: PMC12017925 DOI: 10.1016/j.mtbio.2025.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/26/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025] Open
Abstract
Tumor immunotherapy is a developing and promising therapeutic method. However, the mechanism of tumor immune microenvironment and individual differences of patients make the clinical application of immunotherapy still very limited. The resulting targeting of the tumor environment and immune system is a suitable strategy for tumor therapy. Biomimetic nanodelivery systems (BNDS) coated with nanoparticles has brought new hope for tumor immunotherapy. Due to its high targeting, maximum drug delivery efficiency and immune escape, BNDS has become one of the options for tumor immunotherapy in the future. BNDS combines the advantages of natural cell membranes and nanoparticles and has good targeting properties. This review summarizes the relationship between tumor and immune microenvironment, classification of immunotherapy, engineering modification of cell membrane, and a comprehensive overview of different types of membrane BNDS in immunotherapy. Furthermore, the prospects and challenges of biomimetic nanoparticles coated with membranes in tumor immunotherapy are further discussed.
Collapse
Affiliation(s)
- Jiawei Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China, No. 508 North Second Ring East Road, Ningbo, 315302, Zhejiang, China
| | - Xueqi Li
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China, No. 508 North Second Ring East Road, Ningbo, 315302, Zhejiang, China
| | - Tongyu Li
- Department of Hematology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Jin Mei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China, No. 508 North Second Ring East Road, Ningbo, 315302, Zhejiang, China
- Institute of Engineering Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, China
| | - Ying Chen
- Institute of Engineering Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, 315010, China
| |
Collapse
|
2
|
Li L, Yao X, Li G, Guo Q, Yue J, Liu W, Fang Y, Midgley A, Zhao M, Nishinari K. Recent progress of artificial cells in structure design, functionality and the prospects in food biotechnology. Mater Today Bio 2025; 31:101565. [PMID: 40026621 PMCID: PMC11869102 DOI: 10.1016/j.mtbio.2025.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Artificial cells have bridged the gap between non-living systems and biological cells. In recent years, artificial cells designed to simulate cellular structure and function have garnered significant attention. These artificial cells demonstrate vast potential for advancements in various biomedical areas, including simulating cell structure and function, creating innovative biosensors, facilitating bioactives transport, enabling micro and nanoreactors, and improving the targeted therapy for chronic foodborne diseases. In the interdisciplinary field of artificial cell construction, based on their constituent components, these systems can be categorized into lipid/polymer vesicles, coacervate, colloidosome, and metal-organic framework (MOF) artificial cells. They are anticipated to significantly enhance advancements in food science, particularly in cellular structure optimization, precise nutrition delivery, targeted nutrient release, and rapid detection methods. Consequently, this paper will comprehensively cover the historical background, fabrication techniques, and structural characteristics of artificial cells. From a functional design perspective, this review examines the growth and division mechanisms, energy production processes, encapsulation and reaction vessels, carriers, and information exchange systems of artificial cells. Ultimately, it provides a comprehensive evaluation of the safety of artificial cells from both biological and environmental viewpoints, to introduce and expand the application scenarios of this innovative biotechnology in food science.
Collapse
Affiliation(s)
- Li Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Qianqian Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Juan Yue
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Wenguang Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, 430068, China
| |
Collapse
|
3
|
Gomes F, Wasserberg D, Edelbroek R, van Weerd J, Jonkheijm P, Leijten J. OPSALC: On-Particle Solvent-Assisted Lipid Coating to Create Erythrocyte Membrane-like Coatings with Improved Hemocompatibility. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18179-18193. [PMID: 40079786 PMCID: PMC11955951 DOI: 10.1021/acsami.5c02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Particles are essential building blocks in nanomedicine and cell engineering. Their administration often involves blood contact, which demands a hemocompatible material profile. Coating particles with isolated cell membranes is a common strategy to improve hemocompatibility, but this solution is nonscalable and potentially immunogenic. Cell membrane-like lipid coatings are a promising alternative, as lipids can be synthesized on a large scale and used to create safe cell membrane-like supported bilayers. However, a method to controllably and scalably lipid-coat a wide range of particles has remained elusive. Here, an on-particle solvent-assisted lipid coating (OPSALC) method is introduced as an innovative technique to endow various types of particles with cell membrane-like coatings. Coating formation efficiency is shown to depend on lipid concentration, buffer addition rate, and solvent:buffer ratio, as these parameters determine lipid assembly and lipid-surface interactions. Four lipid formulations with various levels of erythrocyte membrane mimicry are explored in terms of hemocompatibility, demonstrating a reduced particle-induced hemolysis and plasma coagulation time. Interestingly, formulations with higher mimicry levels show the lowest levels of complement activation and highest colloidal stability. Overall, OPSALC represents a simple yet scalable strategy to endow particles with cell membrane-like lipid coatings to facilitate blood-contact applications.
Collapse
Affiliation(s)
- Francisca
L. Gomes
- Department
of Bioengineering Technologies, Leijten Laboratory, Faculty of Science
and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
- Department
of Molecules and Materials, Laboratory of Biointerface Chemistry,
Faculty of Science and Technology, Technical Medical Centre and MESA+
Institute, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
| | - Dorothee Wasserberg
- Department
of Molecules and Materials, Laboratory of Biointerface Chemistry,
Faculty of Science and Technology, Technical Medical Centre and MESA+
Institute, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
- LipoCoat
BV, Hengelosestraat 535, Enschede 7521AG, The Netherlands
| | - Rick Edelbroek
- Department
of Molecules and Materials, Laboratory of Biointerface Chemistry,
Faculty of Science and Technology, Technical Medical Centre and MESA+
Institute, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
| | - Jasper van Weerd
- LipoCoat
BV, Hengelosestraat 535, Enschede 7521AG, The Netherlands
| | - Pascal Jonkheijm
- Department
of Molecules and Materials, Laboratory of Biointerface Chemistry,
Faculty of Science and Technology, Technical Medical Centre and MESA+
Institute, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
| | - Jeroen Leijten
- Department
of Bioengineering Technologies, Leijten Laboratory, Faculty of Science
and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede 7522NB, The Netherlands
| |
Collapse
|
4
|
Yang B, Luo G, Nie T, Ban Z, Ning Q, Zhang J, Liu X, Lin Y, Xie X, Chen Q, Zhong H, Huang Y, Liao P, Liu Y, Guo C, Cheng C, Sun E. Biomimetic bioreactor for potentiated uricase replacement therapy in hyperuricemia and gout. Front Bioeng Biotechnol 2025; 12:1520663. [PMID: 39840134 PMCID: PMC11746906 DOI: 10.3389/fbioe.2024.1520663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Uricase replacement therapy is a promising approach for managing hyperuricemia and gout but is hindered by challenges such as short blood circulation time, reduced catalytic activity, and excessive hydrogen peroxide (H2O2) production. These limitations necessitate innovative strategies to enhance therapeutic efficacy and safety. Methods We designed and synthesized RBC@SeMSN@Uri, a red blood cell-coated biomimetic self-cascade bioreactor, which encapsulates uricase (Uri) and a selenium-based nano-scavenger (SeMSN) within RBC membranes. This design aims to reduce immunogenicity, extend systemic circulation, and maintain enzymatic activity. In vitro assays were conducted to evaluate biocompatibility, anti-inflammatory effects, and oxidative stress protection. In vivo experiments in hyperuricemia and gout models assessed therapeutic efficacy, biodistribution, and biosafety. Results RBC@SeMSN@Uri effectively degraded uric acid (UA) into allantoin and converted H2O2 into water, preventing oxidative damage and inflammation. In vitro assays demonstrated excellent biocompatibility and reduced H2O2-induced inflammatory responses compared to free uricase. In vivo, the bioreactor prolonged circulation time, significantly reduced uric acid levels, alleviated kidney damage, and mitigated symptoms of hyperuricemia and gout. It also targeted inflamed joints, reducing swelling and inflammation in gouty arthritis models. Discussion This study presents RBC@SeMSN@Uri as a novel biomimetic strategy for enzyme replacement therapy in hyperuricemia and gout. By integrating uricase and selenium-based nano-scavenger within RBC membranes, the bioreactor addresses key limitations of traditional therapies, offering enhanced stability, reduced immunogenicity, and superior therapeutic efficacy. This platform holds potential for broader applications in protein or antibody delivery for enzyme replacement therapies in other diseases.
Collapse
Affiliation(s)
- Bin Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Guihu Luo
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Tailei Nie
- Department of Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhenglan Ban
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Quanxin Ning
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Jialin Zhang
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xiangru Liu
- Xingtan Hospital Affiliated of Southern Medical University Shunde Hospital, Foshan, China
| | - Yanhua Lin
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qianyun Chen
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Han Zhong
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Ying Huang
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Pan Liao
- Department of Rheumatology and Immunology, Hunan University of Medicine General Hospital, HuaiHua, China
| | - Yan Liu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Chenyang Guo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Chuanxu Cheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China
- Department of Rheumatology and Immunology, Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| |
Collapse
|
5
|
Gomes FL, Conceição F, Teixeira LM, Leijten J, Jonkheijm P. Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration. Pharmaceutics 2025; 17:64. [PMID: 39861712 PMCID: PMC11768317 DOI: 10.3390/pharmaceutics17010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g., drugs, peroxides), providing an optimal solution for numerous biomedical purposes, such as drug delivery or oxygen therapeutics. The intravascular administration of hydrophobic microparticles requires a safe-to-flow particle profile, which typically corresponds to a maximum size of 5 µm-the generally accepted diameter for the thinnest blood vessels in humans. However, the production of hydrophobic microparticles below this size range remains largely unexplored. In this work, we investigate the fabrication of hydrophobic microparticles at safe-to-inject and safe-to-flow sizes (<5 µm) for intravascular administration. Methods: Polycaprolactone microparticles (PCL MPs) are produced using a double-emulsification method with tip ultrasonication, for which various production parameters (PCL molecular weight, PCL concentration, type of stabilizer, and filtration) are optimized to obtain particles at sizes below 5 µm. Results: We achieve a PCL MP size distribution of 99.8% below this size limit, and prove that these particles can flow without obstruction through a microfluidic model emulating a thin human blood capillary (4.1 µm × 3.0 µm width × heigh). Conclusions: Overall, we demonstrate that hydrophobic microparticles can be fabricated at safe-to-flow sizes using a simple and scalable setup, paving the way towards their applicability as new intravascular injectables.
Collapse
Affiliation(s)
- Francisca L. Gomes
- Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands;
- Leijten Laboratory, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands
| | - Francisco Conceição
- Department of BioEngineering Technologies, Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands; (F.C.); (L.M.T.)
| | - Liliana Moreira Teixeira
- Department of BioEngineering Technologies, Advanced Organ Bioengineering and Therapeutics, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands; (F.C.); (L.M.T.)
- Organ-on-Chip Centre Twente, MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands
| | - Jeroen Leijten
- Leijten Laboratory, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, The Netherlands
| | - Pascal Jonkheijm
- Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands;
- Organ-on-Chip Centre Twente, MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands
| |
Collapse
|
6
|
Hadi Barhaghtalab R, Tanimowo Aiyelabegan H, Maleki H, Mirzavi F, Gholizadeh Navashenaq J, Abdi F, Ghaffari F, Vakili-Ghartavol R. Recent advances with erythrocytes as therapeutics carriers. Int J Pharm 2024; 665:124658. [PMID: 39236775 DOI: 10.1016/j.ijpharm.2024.124658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems. We also cover current developments in the erythrocyte-based nanocarrier, which could be used for both active and passive targeting of disease tissues, particularly those of the reticuloendothelial system (RES) and cancer tissues. We also go over the most recent discoveries about the in vivo and in vitro uses of erythrocytes for medicinal and diagnostic purposes. Moreover, the clinical relevance of erythrocytes is discussed in order to improve comprehension and enable the potential use of erythrocyte carriers in the management of various disorders.
Collapse
Affiliation(s)
| | | | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fereshteh Abdi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Faezeh Ghaffari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Gomes FL, Jeong SH, Shin SR, Leijten J, Jonkheijm P. Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315879. [PMID: 39386164 PMCID: PMC11460667 DOI: 10.1002/adfm.202315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 10/12/2024]
Abstract
Blood scarcity is one of the main causes of healthcare disruptions worldwide, with blood shortages occurring at an alarming rate. Over the last decades, blood substitutes has aimed at reinforcing the supply of blood, with several products (e.g., hemoglobin-based oxygen carriers, perfluorocarbons) achieving a limited degree of success. Regardless, there is still no widespread solution to this problem due to persistent challenges in product safety and scalability. In this Review, we describe different advances in the field of blood substitution, particularly in the development of artificial red blood cells, otherwise known as engineered erythrocytes. We categorize the different strategies into natural, synthetic, or hybrid approaches, and discuss their potential in terms of safety and scalability. We identify synthetic engineered erythrocytes as the most powerful approach, and describe erythrocytes from a materials engineering perspective. We review their biological structure and function, as well as explore different methods of assembling a material-based cell. Specifically, we discuss how to recreate size, shape, and deformability through particle fabrication, and how to recreate the functional machinery through synthetic biology and nanotechnology. We conclude by describing the versatile nature of synthetic erythrocytes in medicine and pharmaceuticals and propose specific directions for the field of erythrocyte engineering.
Collapse
Affiliation(s)
- Francisca L Gomes
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
| |
Collapse
|
8
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
9
|
Luo J, Wang H, Chen J, Wei X, Feng J, Zhang Y, Zhou Y. The Application of Drugs and Nano-Therapies Targeting Immune Cells in Hypoxic Inflammation. Int J Nanomedicine 2024; 19:3441-3459. [PMID: 38617798 PMCID: PMC11015843 DOI: 10.2147/ijn.s456533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Immune cells are pivotal in the dynamic interplay between hypoxia and inflammation. During hypoxic conditions, HIF-1α, a crucial transcription factor, facilitates the adaptation of immune cells to the hypoxic micro-environment. This adaptation includes regulating immune cell metabolism, significantly impacting inflammation development. Strategies for anti-inflammatory and hypoxic relief have been proposed, aiming to disrupt the hypoxia-inflammation nexus. Research extensively focuses on anti-inflammatory agents and materials that target immune cells. These primarily mitigate hypoxic inflammation by encouraging M2-macrophage polarization, restraining neutrophil proliferation and infiltration, and maintaining Treg/TH17 balance. Additionally, oxygen-releasing nano-materials play a significant role. By alleviating hypoxia and clearing reactive oxygen species (ROS), these nano-materials indirectly influence immune cell functions. This paper delves into the response of immune cells under hypoxic conditions and the resultant effects on inflammation. It provides a comprehensive overview of various therapies targeting specific immune cells for anti-inflammatory purposes and explores nano-materials that either carry or generate oxygen to alleviate anoxic micro-environments.
Collapse
Affiliation(s)
- Jiaxin Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingxia Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Xuyan Wei
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jian Feng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
10
|
Xu R, Xu Q. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation. MICROMACHINES 2024; 15:468. [PMID: 38675279 PMCID: PMC11052276 DOI: 10.3390/mi15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.
Collapse
Affiliation(s)
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| |
Collapse
|
11
|
Zhang Q, Zeng Y, Zhao Y, Peng X, Ren E, Liu G. Bio-Hybrid Magnetic Robots: From Bioengineering to Targeted Therapy. Bioengineering (Basel) 2024; 11:311. [PMID: 38671732 PMCID: PMC11047666 DOI: 10.3390/bioengineering11040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Magnetic robots possess an innate ability to navigate through hard-to-reach cavities in the human body, making them promising tools for diagnosing and treating diseases minimally invasively. Despite significant advances, the development of robots with desirable locomotion and full biocompatibility under harsh physiological conditions remains challenging, which put forward new requirements for magnetic robots' design and material synthesis. Compared to robots that are synthesized with inorganic materials, natural organisms like cells, bacteria or other microalgae exhibit ideal properties for in vivo applications, such as biocompatibility, deformability, auto-fluorescence, and self-propulsion, as well as easy for functional therapeutics engineering. In the process, these organisms can provide autonomous propulsion in biological fluids or external magnetic fields, while retaining their functionalities with integrating artificial robots, thus aiding targeted therapeutic delivery. This kind of robotics is named bio-hybrid magnetic robotics, and in this mini-review, recent progress including their design, engineering and potential for therapeutics delivery will be discussed. Additionally, the historical context and prominent examples will be introduced, and the complexities, potential pitfalls, and opportunities associated with bio-hybrid magnetic robotics will be discussed.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Yun Zeng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Yang Zhao
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Xuqi Peng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - En Ren
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- Key Laboratory of Advanced Drug Delivery Systems, Zhejiang Province College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gang Liu
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
13
|
Dong H, Lin J, Tao Y, Jia Y, Sun L, Li WJ, Sun H. AI-enhanced biomedical micro/nanorobots in microfluidics. LAB ON A CHIP 2024; 24:1419-1440. [PMID: 38174821 DOI: 10.1039/d3lc00909b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human beings encompass sophisticated microcirculation and microenvironments, incorporating a broad spectrum of microfluidic systems that adopt fundamental roles in orchestrating physiological mechanisms. In vitro recapitulation of human microenvironments based on lab-on-a-chip technology represents a critical paradigm to better understand the intricate mechanisms. Moreover, the advent of micro/nanorobotics provides brand new perspectives and dynamic tools for elucidating the complex process in microfluidics. Currently, artificial intelligence (AI) has endowed micro/nanorobots (MNRs) with unprecedented benefits, such as material synthesis, optimal design, fabrication, and swarm behavior. Using advanced AI algorithms, the motion control, environment perception, and swarm intelligence of MNRs in microfluidics are significantly enhanced. This emerging interdisciplinary research trend holds great potential to propel biomedical research to the forefront and make valuable contributions to human health. Herein, we initially introduce the AI algorithms integral to the development of MNRs. We briefly revisit the components, designs, and fabrication techniques adopted by robots in microfluidics with an emphasis on the application of AI. Then, we review the latest research pertinent to AI-enhanced MNRs, focusing on their motion control, sensing abilities, and intricate collective behavior in microfluidics. Furthermore, we spotlight biomedical domains that are already witnessing or will undergo game-changing evolution based on AI-enhanced MNRs. Finally, we identify the current challenges that hinder the practical use of the pioneering interdisciplinary technology.
Collapse
Affiliation(s)
- Hui Dong
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jiawen Lin
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
| | - Yihui Tao
- Department of Automation Control and System Engineering, University of Sheffield, Sheffield, UK
| | - Yuan Jia
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China
| | - Lining Sun
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Wen Jung Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
- Research Center of Aerospace Mechanism and Control, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
14
|
Li Z, Xue L, Yang J, Wuttke S, He P, Lei C, Yang H, Zhou L, Cao J, Sinelshchikova A, Zheng G, Guo J, Lin J, Lei Q, Brinker CJ, Liu K, Zhu W. Synthetic Biohybrids of Red Blood Cells and Cascaded-Enzymes@ Metal-Organic Frameworks for Hyperuricemia Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305126. [PMID: 38054350 PMCID: PMC10837374 DOI: 10.1002/advs.202305126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Indexed: 12/07/2023]
Abstract
Hyperuricemia, caused by an imbalance between the rates of production and excretion of uric acid (UA), may greatly increase the mortality rates in patients with cardiovascular and cerebrovascular diseases. Herein, for fast-acting and long-lasting hyperuricemia treatment, armored red blood cell (RBC) biohybrids, integrated RBCs with proximal, cascaded-enzymes of urate oxidase (UOX) and catalase (CAT) encapsulated within ZIF-8 framework-based nanoparticles, have been fabricated based on a super-assembly approach. Each component is crucial for hyperuricemia treatment: 1) RBCs significantly increase the circulation time of nanoparticles; 2) ZIF-8 nanoparticles-based superstructure greatly enhances RBCs resistance against external stressors while preserving native RBC properties (such as oxygen carrying capability); 3) the ZIF-8 scaffold protects the encapsulated enzymes from enzymatic degradation; 4) no physical barrier exists for urate diffusion, and thus allow fast degradation of UA in blood and neutralizes the toxic by-product H2 O2 . In vivo results demonstrate that the biohybrids can effectively normalize the UA level of an acute hyperuricemia mouse model within 2 h and possess a longer elimination half-life (49.7 ± 4.9 h). They anticipate that their simple and general method that combines functional nanomaterials with living cell carriers will be a starting point for the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Zeyu Li
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Liecong Xue
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Junxian Yang
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510000P. R. China
| | - Stefan Wuttke
- BCMaterialsBasque Center for MaterialsUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Peiying He
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Chuanyi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Haowei Yang
- China National Tobacco CorporationNo.55 South Yuetan Boulevard Xicheng DistrictBeijing100045P. R. China
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | | | - Guansheng Zheng
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jimin Guo
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jiangguo Lin
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510000P. R. China
| | - Qi Lei
- The Second Affiliated HospitalState Key Laboratory of Respiratory DiseaseGuangdong Provincial Key Laboratory of Allergy and Clinical ImmunologyGuangzhou Medical UniversityGuangzhou510260P.R. China
| | - C. Jeffrey Brinker
- Center for Micro‐Engineered Materials and the Department of Chemical and Biological EngineeringThe University of New MexicoAlbuquerqueNM87131USA
| | - Kaisheng Liu
- Guangdong Provincial Clinical Research Center for GeriatricsShenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)Shenzhen518020P. R. China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and MedicinesSchool of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
| |
Collapse
|
15
|
Han X, Gong C, Yang Q, Zheng K, Wang Z, Zhang W. Biomimetic Nano-Drug Delivery System: An Emerging Platform for Promoting Tumor Treatment. Int J Nanomedicine 2024; 19:571-608. [PMID: 38260239 PMCID: PMC10802790 DOI: 10.2147/ijn.s442877] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
With the development of nanotechnology, nanoparticles (NPs) have shown broad prospects as drug delivery vehicles. However, they exhibit certain limitations, including low biocompatibility, poor physiological stability, rapid clearance from the body, and nonspecific targeting, which have hampered their clinical application. Therefore, the development of novel drug delivery systems with improved biocompatibility and high target specificity remains a major challenge. In recent years, biofilm mediated biomimetic nano-drug delivery system (BNDDS) has become a research hotspot focus in the field of life sciences. This new biomimetic platform uses bio-nanotechnology to encapsulate synthetic NPswithin biomimetic membrane, organically integrating the low immunogenicity, low toxicity, high tumor targeting, good biocompatibility of the biofilm with the adjustability and versatility of the nanocarrier, and shows promising applications in the field of precision tumor therapy. In this review, we systematically summarize the new progress in BNDDS used for optimizing drug delivery, providing a theoretical reference for optimizing drug delivery and designing safe and efficient treatment strategies to improve tumor treatment outcomes.
Collapse
Affiliation(s)
- Xiujuan Han
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Chunai Gong
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, People’s Republic of China
| | - Qingru Yang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Kaile Zheng
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
| | - Zhuo Wang
- Department of Pharmacy, First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, 200433, People’s Republic of China
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, People’s Republic of China
| | - Wei Zhang
- Department of Pharmacy, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
16
|
Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio 2023; 23:100877. [PMID: 38075249 PMCID: PMC10701372 DOI: 10.1016/j.mtbio.2023.100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zeping Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Liang Lu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
17
|
Duan Y, Zhou J, Zhou Z, Zhang E, Yu Y, Krishnan N, Silva-Ayala D, Fang RH, Griffiths A, Gao W, Zhang L. Extending the In Vivo Residence Time of Macrophage Membrane-Coated Nanoparticles through Genetic Modification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305551. [PMID: 37635117 DOI: 10.1002/smll.202305551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Nanoparticles coated with natural cell membranes have emerged as a promising class of biomimetic nanomedicine with significant clinical potential. Among them, macrophage membrane-coated nanoparticles hold particular appeal due to their versatility in drug delivery and biological neutralization applications. This study employs a genetic engineering approach to enhance their in vivo residence times, aiming to further improve their performance. Specifically, macrophages are engineered to express proline-alanine-serine (PAS) peptide chains, which provide additional protection against opsonization and phagocytosis. The resulting modified nanoparticles demonstrate prolonged residence times when administered intravenously or introduced intratracheally, surpassing those coated with the wild-type membrane. The longer residence times also contribute to enhanced nanoparticle efficacy in inhibiting inflammatory cytokines in mouse models of lipopolysaccharide-induced lung injury and sublethal endotoxemia, respectively. This study underscores the effectiveness of genetic modification in extending the in vivo residence times of macrophage membrane-coated nanoparticles. This approach can be readily extended to modify other cell membrane-coated nanoparticles toward more favorable biomedical applications.
Collapse
Affiliation(s)
- Yaou Duan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Edward Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Daniela Silva-Ayala
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| |
Collapse
|
18
|
Chen M, Leng Y, He C, Li X, Zhao L, Qu Y, Wu Y. Red blood cells: a potential delivery system. J Nanobiotechnology 2023; 21:288. [PMID: 37608283 PMCID: PMC10464085 DOI: 10.1186/s12951-023-02060-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Red blood cells (RBCs) are the most abundant cells in the body, possessing unique biological and physical properties. RBCs have demonstrated outstanding potential as delivery vehicles due to their low immunogenicity, long-circulating cycle, and immune characteristics, exhibiting delivery abilities. There have been several developments in understanding the delivery system of RBCs and their derivatives, and they have been applied in various aspects of biomedicine. This article compared the various physiological and physical characteristics of RBCs, analyzed their potential advantages in delivery systems, and summarized their existing practices in biomedicine.
Collapse
Affiliation(s)
- Mengran Chen
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yamei Leng
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chuan He
- Guang'an People's Hospital, Guang'an, 638001, Sichuan, People's Republic of China
| | - Xuefeng Li
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Zhao
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ying Qu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
19
|
Li Y, Feng M, Guo T, Wang Z, Zhao Y. Tailored Beta-Lapachone Nanomedicines for Cancer-Specific Therapy. Adv Healthc Mater 2023; 12:e2300349. [PMID: 36970948 DOI: 10.1002/adhm.202300349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nanotechnology shows the power to improve efficacy and reduce the adverse effects of anticancer agents. As a quinone-containing compound, beta-lapachone (LAP) is widely employed for targeted anticancer therapy under hypoxia. The principal mechanism of LAP-mediated cytotoxicity is believed due to the continuous generation of reactive oxygen species with the aid of NAD(P)H: quinone oxidoreductase 1 (NQO1). The cancer selectivity of LAP relies on the difference between NQO1 expression in tumors and that in healthy organs. Despite this, the clinical translation of LAP faces the problem of narrow therapeutic window that is challenging for dose regimen design. Herein, the multifaceted anticancer mechanism of LAP is briefly introduced, the advance of nanocarriers for LAP delivery is reviewed, and the combinational delivery approaches to enhance LAP potency in recent years are summarized. The mechanisms by which nanosystems boost LAP efficacy, including tumor targeting, cellular uptake enhancement, controlled cargo release, enhanced Fenton or Fenton-like reaction, and multidrug synergism, are also presented. The problems of LAP anticancer nanomedicines and the prospective solutions are discussed. The current review may help to unlock the potential of cancer-specific LAP therapy and speed up its clinical translation.
Collapse
Affiliation(s)
- Yaru Li
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Meiyu Feng
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Tao Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Zheng Wang
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
20
|
Zhang Q, Inagaki NF, Ito T. Recent advances in micro-sized oxygen carriers inspired by red blood cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2223050. [PMID: 37363800 PMCID: PMC10288928 DOI: 10.1080/14686996.2023.2223050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Supplementing sufficient oxygen to cells is always challenging in biomedical engineering fields such as tissue engineering. Originating from the concept of a 'blood substitute', nano-sized artificial oxygen carriers (AOCs) have been studied for a long time for the optimization of the oxygen supplementation and improvement of hypoxia environments in vitro and in vivo. When circulating in our bodies, micro-sized human red blood cells (hRBCs) feature a high oxygen capacity, a unique biconcave shape, biomechanical and rheological properties, and low frictional surfaces, making them efficient natural oxygen carriers. Inspired by hRBCs, recent studies have focused on evolving different AOCs into microparticles more feasibly able to achieve desired architectures and morphologies and to obtain the corresponding advantages. Recent micro-sized AOCs have been developed into additional categories based on their principal oxygen-carrying or oxygen-releasing materials. Various biomaterials such as lipids, proteins, and polymers have also been used to prepare oxygen carriers owing to their rapid oxygen transfer, high oxygen capacity, excellent colloidal stability, biocompatibility, suitable biodegradability, and long storage. In this review, we concentrated on the fabrication techniques, applied biomaterials, and design considerations of micro-sized AOCs to illustrate the advances in their performances. We also compared certain recent micro-sized AOCs with hRBCs where applicable and appropriate. Furthermore, we discussed existing and potential applications of different types of micro-sized AOCs.
Collapse
Affiliation(s)
- Qiming Zhang
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Natsuko F. Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Azizi M, Jahanban-Esfahlan R, Samadian H, Hamidi M, Seidi K, Dolatshahi-Pirouz A, Yazdi AA, Shavandi A, Laurent S, Be Omide Hagh M, Kasaiyan N, Santos HA, Shahbazi MA. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20:100672. [PMID: 37273793 PMCID: PMC10232915 DOI: 10.1016/j.mtbio.2023.100672] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Over the past three decades, nanoscience has offered a unique solution for reducing the systemic toxicity of chemotherapy drugs and for increasing drug therapeutic efficiency. However, the poor accumulation and pharmacokinetics of nanoparticles are some of the key reasons for their slow translation into the clinic. The is intimately linked to the non-biological nature of nanoparticles and the aberrant features of solid cancer, which together significantly compromise nanoparticle delivery. New findings on the unique properties of tumors and their interactions with nanoparticles and the human body suggest that, contrary to what was long-believed, tumor features may be more mirage than miracle, as the enhanced permeability and retention based efficacy is estimated to be as low as 1%. In this review, we highlight the current barriers and available solutions to pave the way for approved nanoformulations. Furthermore, we aim to discuss the main solutions to solve inefficient drug delivery with the use of nanobioengineering of nanocarriers and the tumor environment. Finally, we will discuss the suggested strategies to overcome two or more biological barriers with one nanocarrier. The variety of design formats, applications and implications of each of these methods will also be evaluated.
Collapse
Affiliation(s)
- Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Samadian
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Khaled Seidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amirhossein Ahmadieh Yazdi
- Department of Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles-BioMatter Unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons – UMONS, Mons, Belgium
| | - Mahsa Be Omide Hagh
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Kasaiyan
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA, Utrecht, Netherlands
| | - Hélder A. Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| |
Collapse
|
22
|
Guo R, Wang L, Huang J, Pang H, Wang L, Zhu B, Tang Y, Ma L, Qiu L. Ultrasound-Targeted Microbubble Destruction-Mediated Cell-Mimetic Nanodrugs for Treating Rheumatoid Arthritis. ACS Biomater Sci Eng 2023. [PMID: 37184981 DOI: 10.1021/acsbiomaterials.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects joints, and it can lead to disability and damage to vital organs if not diagnosed and treated in time. However, all current therapeutic agents for RA have limitations such as high dose, severe side effects, long-term use, and unsatisfactory therapeutic effects. The long-term use and dose escalation of methotrexate (MTX) may cause mild and severe side effects. To overcome the limitations, it is critical to target drug delivery to the inflamed joints. In this work, we constructed a folic acid-targeted and cell-mimetic nanodrug, MTX-loaded mesoporous silica composite nanoplatform (MMPRF), which can regulate drug release under ultrasound (US) and microbubble (MB) mediation. The targeted delivery and drug therapy were investigated through in vitro RAW264.7 cell experiments and in vivo collagen-induced arthritis animal experiments. The result showed that the targeting ability to the joints of MMPRF was strong and was more significant after US and MB mediation, which can potently reduce joint swelling, bone erosion, and inflammation in joints. This work indicated that the US- and MB-mediated MMPRF not only would be a promising method for synergistic targeted treatment of RA but also may show high potential for serving as a nanomedicine for many other biomedical fields.
Collapse
Affiliation(s)
- Ruiqian Guo
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Wang
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Jianbo Huang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Houqing Pang
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Liyun Wang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bihui Zhu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanjiao Tang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Probing the Interaction Between Supercarrier RBC Membrane and Nanoparticles for Optimal Drug Delivery. J Mol Biol 2023; 435:167539. [PMID: 35292348 DOI: 10.1016/j.jmb.2022.167539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Red blood cell (RBC) membrane-hitchhiking nanoparticles (NPs) have been an increasingly popular supercarrier for targeted drug delivery. However, the kinetic details of the shear-induced NP detachment process from RBC in blood flow remain unclear. Here, we perform detailed computational simulations of the traversal dynamics of an RBC-NP composite supercarrier with tunable properties. We show that the detachment of NPs from RBC occurs in a shear-dependent manner which is consistent with previous experiment results. We quantify the NP detachment rate in the microcapillary flow, and our simulation results suggest that there may be an optimal adhesion strength span of 25-40 μJ/m2 for rigid spherical NPs to improve the supercarrier performance and targeting efficiency. In addition, we find that the stiffness and the shape of NPs alter the detachment efficiency by changing the RBC-NP contact areas. Together, these findings provide unique insights into the shear-dependent NP release from the RBC surface, facilitating the clinical utility of RBC-NP composite supercarriers in targeted and localized drug delivery with high precision and efficiency.
Collapse
|
24
|
Butler K, Brinker CJ, Leong HS. Bridging the In Vitro to In Vivo gap: Using the Chick Embryo Model to Accelerate Nanoparticle Validation and Qualification for In Vivo studies. ACS NANO 2022; 16:19626-19650. [PMID: 36453753 PMCID: PMC9799072 DOI: 10.1021/acsnano.2c03990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
We postulate that nanoparticles (NPs) for use in therapeutic applications have largely not realized their clinical potential due to an overall inability to use in vitro results to predict NP performance in vivo. The avian embryo and associated chorioallantoic membrane (CAM) has emerged as an in vivo preclinical model that bridges the gap between in vitro and in vivo, enabling rapid screening of NP behavior under physiologically relevant conditions and providing a rapid, accessible, economical, and more ethical means of qualifying nanoparticles for in vivo use. The CAM is highly vascularized and mimics the diverging/converging vasculature of the liver, spleen, and lungs that serve as nanoparticle traps. Intravital imaging of fluorescently labeled NPs injected into the CAM vasculature enables immediate assessment and quantification of nano-bio interactions at the individual NP scale in any tissue of interest that is perfused with a microvasculature. In this review, we highlight how utilization of the avian embryo and its CAM as a preclinical model can be used to understand NP stability in blood and tissues, extravasation, biocompatibility, and NP distribution over time, thereby serving to identify a subset of NPs with the requisite stability and performance to introduce into rodent models and enabling the development of structure-property relationships and NP optimization without the sacrifice of large populations of mice or other rodents. We then review how the chicken embryo and CAM model systems have been used to accelerate the development of NP delivery and imaging agents by allowing direct visualization of targeted (active) and nontargeted (passive) NP binding, internalization, and cargo delivery to individual cells (of relevance for the treatment of leukemia and metastatic cancer) and cellular ensembles (e.g., cancer xenografts of interest for treatment or imaging of cancer tumors). We conclude by showcasing emerging techniques for the utilization of the CAM in future nano-bio studies.
Collapse
Affiliation(s)
- Kimberly
S. Butler
- Molecular
and Microbiology, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - C. Jeffrey Brinker
- Department
of Chemical and Biological Engineering and the Comprehensive Cancer
Center, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hon Sing Leong
- Department
of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto M5G 1L7, Canada
- Biological
Sciences Platform, Sunnybrook Hospital, Toronto M4N 3M5, Canada
| |
Collapse
|
25
|
Yin M, Tong J, Meng F, Liu C, Liu X, Fang F, He Z, Qin X, Liu C, Ni D, Gao Y, Liang H, Zhang X, Luo L. Near-Infrared-II Activatable Symbiotic 2D Carbon-Clay Nanohybrids for Dual Imaging-Guided Combinational Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49471-49482. [PMID: 36301911 DOI: 10.1021/acsami.2c11340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) nanomaterials hold great potential for cancer theranostic applications, yet their clinical translation faces great challenges of high toxicity and limited therapeutic/diagnostic modality. Here, we have created a kind of symbiotic 2D carbon-2D clay nanohybrids, which are composed of a novel 2D carbon nanomaterial (carbon nanochips, or CNC), prepared by carbonizing a conjugated polymer polydiiodobutadiyne, and a 2D layered aluminosilicate clay mineral montmorillonite (MMT). Intriguingly, with the formation of the nanohybrids, MMT can help the dispersion of CNC, while CNC can significantly reduce the hemolysis and toxicity of MMT. The symbiotic combination of CNC and MMT also leads to a synergistic anti-cancer theranostic effect. CNC has a strong absorption and high photothermal conversion efficiency in the second near-infrared region (NIR-II, 1000-1700 nm), while MMT contains Fe3+ that can facilitate the generation of reactive oxygen species from highly expressed H2O2 in tumor microenvironment. The nanohybrids not only enable a synergy of photothermal therapy and chemodynamic therapy to suppress the extremely rapid growth of RM1 tumors in mice but also allow for dual photoacoustic and magnetic imaging to guide the drug delivery and NIR-II irradiation execution, hence establishing a highly efficient and biosafe "all-in-one" theranostic platform for precision nanomedicine.
Collapse
Affiliation(s)
- Mingming Yin
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenchen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Fang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenyan He
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojuan Qin
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Ni
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuting Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
26
|
Zhou L, Lei Q, Guo J, Gao Y, Shi J, Yu H, Yin W, Cao J, Xiao B, Andreo J, Ettlinger R, Jeffrey Brinker C, Wuttke S, Zhu W. Long-term whole blood DNA preservation by cost-efficient cryosilicification. Nat Commun 2022; 13:6265. [PMID: 36270991 PMCID: PMC9587218 DOI: 10.1038/s41467-022-33759-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
Deoxyribonucleic acid (DNA) is the blueprint of life, and cost-effective methods for its long-term storage could have many potential benefits to society. Here we present the method of in situ cryosilicification of whole blood cells, which allows long-term preservation of DNA. Importantly, our straightforward approach is inexpensive, reliable, and yields cryosilicified samples that fulfill the essential criteria for safe, long-term DNA preservation, namely robustness against external stressors, such as radical oxygen species or ultraviolet radiation, and long-term stability in humid conditions at elevated temperatures. Our approach could enable the room temperature storage of genomic information in book-size format for more than one thousand years (thermally equivalent), costing only 0.5 $/person. Additionally, our demonstration of 3D-printed DNA banking artefacts, could potentially allow 'artificial fossilization'.
Collapse
Affiliation(s)
- Liang Zhou
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Qi Lei
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Jimin Guo
- grid.266832.b0000 0001 2188 8502Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131 USA
| | - Yuanyuan Gao
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Jianjun Shi
- grid.459319.30000 0001 0175 0741Science and Technology on Advanced Functional Composites Technology, Aerospace Research Institute of Materials & Processing Technology, Beijing, 100076 P. R. China
| | - Hong Yu
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Wenxiang Yin
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Jiangfan Cao
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Botao Xiao
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Jacopo Andreo
- grid.473251.60000 0004 6475 7301BCMaterials, Basque Center for Materials, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Romy Ettlinger
- grid.11914.3c0000 0001 0721 1626School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | - C. Jeffrey Brinker
- grid.266832.b0000 0001 2188 8502Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131 USA
| | - Stefan Wuttke
- grid.473251.60000 0004 6475 7301BCMaterials, Basque Center for Materials, UPV/EHU Science Park, 48940 Leioa, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Wei Zhu
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| |
Collapse
|
27
|
Elasticity regulates nanomaterial transport as delivery vehicles: Design, characterization, mechanisms and state of the art. Biomaterials 2022; 291:121879. [DOI: 10.1016/j.biomaterials.2022.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022]
|
28
|
Miao Y, Yang Y, Guo L, Chen M, Zhou X, Zhao Y, Nie D, Gan Y, Zhang X. Cell Membrane-Camouflaged Nanocarriers with Biomimetic Deformability of Erythrocytes for Ultralong Circulation and Enhanced Cancer Therapy. ACS NANO 2022; 16:6527-6540. [PMID: 35426300 DOI: 10.1021/acsnano.2c00893] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite considerable advancements in cell membrane-camouflaged nanocarriers to leverage natural cell functions, artificial nanocarriers that can accurately mimic both the biological and physical properties of cells are urgently needed. Herein, inspired by the important effect of the stiffness and deformability of natural red blood cells (RBCs) on their life span and flowing through narrow vessels, we report the construction of RBC membrane-camouflaged nanocarriers that can mimic RBCs at different life stages and study how the deformability of RBC-derived nanocarriers affects their biological behaviors. RBC membrane-coated elastic poly(ethylene glycol) diacrylate hydrogel nanoparticles (RBC-ENPs) simulating dynamic RBCs exhibited high immunocompatibility with minimum immunoglobulin adsorption in the surface protein corona, resulting in reduced opsonization in macrophages and ultralong circulation. Furthermore, RBC-ENPs can deform like RBCs and achieve excellent diffusion in tumor extracellular matrix, leading to improved multicellular spheroid penetration and tumor tissue accumulation. In mouse cancer models, doxorubicin-loaded RBC-ENPs demonstrated superior antitumor efficacy to the first-line chemotherapeutic drug PEGylated doxorubicin liposomes. Our work highlights that tuning the physical properties of cell membrane-derived nanocarriers may offer an alternative approach for the bionic design of nanomedicines in the future.
Collapse
Affiliation(s)
- Yunqiu Miao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuting Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linmiao Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingshu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuge Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Di Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Gan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xinxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
29
|
Yu X, Zhou L, Wang G, Wang L, Dou H. Hierarchical Structures in Macromolecule-assembled Synthetic Cells. Macromol Rapid Commun 2022; 43:e2100926. [PMID: 35445490 DOI: 10.1002/marc.202100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Various models of synthetic cells have been developed as researchers have sought to explore the origin of life. Based on the fact that structural complexity is the foundation of higher-order functions, this review will focus on hierarchical structures in synthetic cell models that are inspired by living systems, in which macromolecules are the dominant participants. We discuss the underlying advantages and functions provided by biomimetic higher-order structures from four perspectives, including hierarchical structures in membranes, in the composite construction of membrane-coated artificial cytoplasm, in organelle-like subcellular compartments, as well as in synthetic cell-cell assembled synthetic tissues. In parallel, various feasible driving forces and approaches for the fabrication of such higher-order structures are showcased. Furthermore, we highlight both the implemented and potential applications of biomimetic systems, bottom-up biosynthesis, biomedical tissue engineering, and disease therapy. This thriving field is gradually narrowing the gap between fundamental research and applied science. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Long Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Gangyang Wang
- Gangyang Wang, Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Lei Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
30
|
Wang C, Wang M, Zhang Y, Jia H, Chen B. Cyclic arginine-glycine-aspartic acid-modified red blood cells for drug delivery: Synthesis and in vitro evaluation. J Pharm Anal 2022; 12:324-331. [PMID: 35582403 PMCID: PMC9091773 DOI: 10.1016/j.jpha.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Red blood cells (RBCs) are an excellent choice for cell preparation research because of their biocompatibility, high drug loading, and long half-life. In this study, doxorubicin (DOX) was encapsulated with RBCs as the carrier. The biotin-avidin system binding principle was used to modify biotinylated cyclic arginine-glycine-aspartic acid (cRGD) onto RBC surfaces for accurate targeting, high drug loading, and sustained drug release. The RBC drug delivery system (DDS) was characterized, and the concentration of surface sulfur in the energy spectrum was 6.330%. The physical and chemical properties of RBC DDS were as follows: drug content, 0.857 mg/mL; particle size, 3339 nm; potential value, -12.5 mV; and cumulative release rate, 81.35%. There was no significant change in RBC morphology for up to seven days. The results of the targeting and cytotoxicity studies of RBC DDS showed that many RBCs covered the surfaces of U251 cells, and the fluorescence intensity was higher than that of MCF-7 cells. The IC50 value of unmodified drug-loaded RBCs was 2.5 times higher than that of targeted modified drug-loaded RBCs, indicating that the targeting of cancer cells produced satisfactory inhibition. This study confirms that the RBC DDS has the characteristics of accurate targeting, high drug loading, and slow drug release, which increases its likelihood of becoming a clinical cancer treatment in the future.
Collapse
Affiliation(s)
- Chen Wang
- Department of Pharmaceutics, School of Pharmacy, Xiamen Medical College, Xiamen, Fujian, 361023, China
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Min Wang
- Department of Pharmaceutics, School of Pharmacy, Xiamen Medical College, Xiamen, Fujian, 361023, China
| | - Yan Zhang
- Department of Pharmaceutics, School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Hongxin Jia
- Department of Pharmaceutics, School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Binbin Chen
- Department of Pharmacy, Xiamen Xianyue Hospital, Xiamen, Fujian, 361012, China
| |
Collapse
|
31
|
Quashie D, Benhal P, Chen Z, Wang Z, Mu X, Song X, Jiang T, Zhong Y, Cheang UK, Ali J. Magnetic bio-hybrid micro actuators. NANOSCALE 2022; 14:4364-4379. [PMID: 35262134 DOI: 10.1039/d2nr00152g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past two decades, there has been a growing body of work on wireless devices that can operate on the length scales of biological cells and even smaller. A class of these devices receiving increasing attention are referred to as bio-hybrid actuators: tools that integrate biological cells or subcellular parts with synthetic or inorganic components. These devices are commonly controlled through magnetic manipulation as magnetic fields and gradients can be generated with a high level of control. Recent work has demonstrated that magnetic bio-hybrid actuators can address common challenges in small scale fabrication, control, and localization. Additionally, it is becoming apparent that these magnetically driven bio-hybrid devices can display high efficiency and, in many cases, have the potential for self-repair and even self-replication. Combining these properties with magnetically driven forces and torques, which can be transmitted over significant distances, can be highly controlled, and are biologically safe, gives magnetic bio-hybrid actuators significant advantages over other classes of small scale actuators. In this review, we describe the theory and mechanisms required for magnetic actuation, classify bio-hybrid actuators by their diverse organic components, and discuss their current limitations. Insights into the future of coupling cells and cell-derived components with magnetic materials to fabricate multi-functional actuators are also provided.
Collapse
Affiliation(s)
- David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Zhi Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Zihan Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xueliang Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Teng Jiang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| |
Collapse
|
32
|
Guo Y, Li W, Liu S, Jing D, Wang Y, Feng Q, Zhang K, Xu J. Construction of nanocarriers based on endogenous cell membrane and its application in nanomedicine. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Wenxin Li
- School of Chemistry and Chemical Engineering Linyi University Linyi 276005 China
| | - Shiwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Dan Jing
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yifan Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Qingfang Feng
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Centre of Chemistry for Life Sciences Nanjing University, 163 Xianlin Road Nanjing 210023 China
| |
Collapse
|
33
|
Wang W, Wang S. Cell-based biocomposite engineering directed by polymers. LAB ON A CHIP 2022; 22:1042-1067. [PMID: 35244136 DOI: 10.1039/d2lc00067a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biological cells such as bacterial, fungal, and mammalian cells always exploit sophisticated chemistries and exquisite micro- and nano-structures to execute life activities, providing numerous templates for engineering bioactive and biomorphic materials, devices, and systems. To transform biological cells into functional biocomposites, polymer-directed cell surface engineering and intracellular functionalization have been developed over the past two decades. Polymeric materials can be easily adopted by various cells through polymer grafting or in situ hydrogelation and can successfully bridge cells with other functional materials as interfacial layers, thus achieving the manufacture of advanced biocomposites through bioaugmentation of living cells and transformation of cells into templated materials. This review article summarizes the recent progress in the design and construction of cell-based biocomposites by polymer-directed strategies. Furthermore, the applications of cell-based biocomposites in broad fields such as cell research, biomedicine, and bioenergy are discussed. Last, we provide personal perspectives on challenges and future trends in this interdisciplinary area.
Collapse
Affiliation(s)
- Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Polymer nanoarchitectonics for synthetic vesicles with human erythrocyte-like morphology transformation. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04958-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Guo J, Amini S, Lei Q, Ping Y, Agola JO, Wang L, Zhou L, Cao J, Franco S, Noureddine A, Miserez A, Zhu W, Brinker CJ. Robust and Long-Term Cellular Protein and Enzymatic Activity Preservation in Biomineralized Mammalian Cells. ACS NANO 2022; 16:2164-2175. [PMID: 35143166 DOI: 10.1021/acsnano.1c08103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Preservation of evolved biological structure and function in robust engineering materials is of interest for storage of biological samples before diagnosis and development of vaccines, sensors, and enzymatic reactors and has the potential to avoid cryopreservation and its associated cold-chain issues. Here, we demonstrate that "freezing cells in amorphous silica" is a powerful technique for long-term preservation of whole mammalian cell proteomic structure and function at room temperature. Biomimetic silicification employs the crowded protein microenvironment of mammalian cells as a catalytic framework to proximally transform monomeric silicic acid into silicates forming a nanoscopic silica shell over all biomolecular interfaces. Silicification followed by dehydration preserves and passivates proteomic information within a nanoscale thin silica coating that exhibits size selective permeability (<3.6 nm), preventing protein leaching and protease degradation of cellular contents, while providing access of small molecular constituents for cellular enzymatic reaction. Exposure of dehydrated silicified cells to mild etchant or prolonged hydrolysis removes the silica, completely rerevealing biomolecular components and restoring their accessibility and functionality.
Collapse
Affiliation(s)
- Jimin Guo
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Shahrouz Amini
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jacob Ongudi Agola
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Stefan Franco
- Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Achraf Noureddine
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ali Miserez
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
36
|
Nano/Micromotors in Active Matter. MICROMACHINES 2022; 13:mi13020307. [PMID: 35208431 PMCID: PMC8878230 DOI: 10.3390/mi13020307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Nano/micromotors (NMMs) are tiny objects capable of converting energy into mechanical motion. Recently, a wealth of active matter including synthetic colloids, cytoskeletons, bacteria, and cells have been used to construct NMMs. The self-sustained motion of active matter drives NMMs out of equilibrium, giving rise to rich dynamics and patterns. Alongside the spontaneous dynamics, external stimuli such as geometric confinements, light, magnetic field, and chemical potential are also harnessed to control the movements of NMMs, yielding new application paradigms of active matter. Here, we review the recent advances, both experimental and theoretical, in exploring biological NMMs. The unique dynamical features of collective NMMs are focused on, along with some possible applications of these intriguing systems.
Collapse
|
37
|
Li J, Dekanovsky L, Khezri B, Wu B, Zhou H, Sofer Z. Biohybrid Micro- and Nanorobots for Intelligent Drug Delivery. CYBORG AND BIONIC SYSTEMS 2022; 2022:9824057. [PMID: 36285309 PMCID: PMC9494704 DOI: 10.34133/2022/9824057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 08/12/2023] Open
Abstract
Biohybrid micro- and nanorobots are integrated tiny machines from biological components and artificial components. They can possess the advantages of onboard actuation, sensing, control, and implementation of multiple medical tasks such as targeted drug delivery, single-cell manipulation, and cell microsurgery. This review paper is to give an overview of biohybrid micro- and nanorobots for smart drug delivery applications. First, a wide range of biohybrid micro- and nanorobots comprising different biological components are reviewed in detail. Subsequently, the applications of biohybrid micro- and nanorobots for active drug delivery are introduced to demonstrate how such biohybrid micro- and nanorobots are being exploited in the field of medicine and healthcare. Lastly, key challenges to be overcome are discussed to pave the way for the clinical translation and application of the biohybrid micro- and nanorobots.
Collapse
Affiliation(s)
- Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Lukas Dekanovsky
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Bahareh Khezri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Bing Wu
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Huaijuan Zhou
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
38
|
Hou K, Zhang Y, Bao M, Xin C, Wei Z, Lin G, Wang Z. A Multifunctional Magnetic Red Blood Cell-Mimetic Micromotor for Drug Delivery and Image-Guided Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3825-3837. [PMID: 35025195 DOI: 10.1021/acsami.1c21331] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by nature, innovative devices have been made to imitate the morphology and functions of natural red blood cells (RBCs). Here, we report a red blood cell-mimetic micromotor (RBCM), which was fabricated based on a layer-by-layer assembly method and precisely controlled by an external rotating uniform magnetic field. The main framework of the RBCM was constructed by the natural protein zein and finally camouflaged with the RBC membrane. Functional cargos such as Fe3O4 nanoparticles and the chemotherapeutic agent doxorubicin were loaded within the wall part of the RBCM for tumor therapy. Due to the massive loading of Fe3O4 nanoparticles, the RBCM can be precisely navigated by an external rotating uniform magnetic field and be used as a magnetic resonance imaging contrast agent for tumor imaging. The RBCM has been proven to be biocompatible, biodegradable, magnetically manipulated, and imageable, which are key requisites to take micromotors from the chalkboard to clinics. We expect the RBC-inspired biohybrid device to achieve wide potential applications.
Collapse
Affiliation(s)
- Kexin Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Yandong Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Meili Bao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Zengyan Wei
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Guochang Lin
- School of Astronautics, Harbin Institute of Technology, 150001 Harbin, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
39
|
Wang Z, Xu Z, Zhu B, Zhang Y, Lin J, Wu Y, Wu D. Design, fabrication and application of magnetically actuated micro/nanorobots: a review. NANOTECHNOLOGY 2022; 33:152001. [PMID: 34915458 DOI: 10.1088/1361-6528/ac43e6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Magnetically actuated micro/nanorobots are typical micro- and nanoscale artificial devices with favorable attributes of quick response, remote and contactless control, harmless human-machine interaction and high economic efficiency. Under external magnetic actuation strategies, they are capable of achieving elaborate manipulation and navigation in extreme biomedical environments. This review focuses on state-of-the-art progresses in design strategies, fabrication techniques and applications of magnetically actuated micro/nanorobots. Firstly, recent advances of various robot designs, including helical robots, surface walkers, ciliary robots, scaffold robots and biohybrid robots, are discussed separately. Secondly, the main progresses of common fabrication techniques are respectively introduced, and application achievements on these robots in targeted drug delivery, minimally invasive surgery and cell manipulation are also presented. Finally, a short summary is made, and the current challenges and future work for magnetically actuated micro/nanorobots are discussed.
Collapse
Affiliation(s)
- Zhongbao Wang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Zhenjin Xu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Bin Zhu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Yang Zhang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Jiawei Lin
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Yigen Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Dezhi Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| |
Collapse
|
40
|
|
41
|
Ferenz K, Karaman O, Shah SB. Artificial red blood cells. NANOTECHNOLOGY FOR HEMATOLOGY, BLOOD TRANSFUSION, AND ARTIFICIAL BLOOD 2022:397-427. [DOI: 10.1016/b978-0-12-823971-1.00018-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Biointeraction of Erythrocyte Ghost Membranes with Gold Nanoparticles Fluorescents. MATERIALS 2021; 14:ma14216390. [PMID: 34771916 PMCID: PMC8585292 DOI: 10.3390/ma14216390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022]
Abstract
The application of new technologies for treatments against different diseases is increasingly innovative and effective. In the case of nanomedicine, the combination of nanoparticles with biological membranes consists of a “camouflage” technique, which improves biological interaction and minimizes the secondary effects caused by these remedies. In this work, gold nanoparticles synthesized by chemical reduction (Turkevich ≈13 nm) were conjugated with fluorescein isothiocyanate to amplify their optical properties. Fluorescent nanoparticles were deposited onto the surface of hemoglobin-free erythrocytes. Ghost erythrocytes were obtained from red blood cells by density gradient separation in a hypotonic medium and characterized with fluorescence, optical, and electron microscopy; the average size of erythrocyte ghosts was 9 µm. Results show that the functional groups of sodium citrate (COO-) and fluorophore (-N=C=S) adhere by electrostatic attraction to the surface of the hemoglobin-free erythrocyte membrane, forming the membrane–particle–fluorophore. These interactions can contribute to imaging applications, by increasing the sensitivity of measurement caused by surface plasmon resonance and fluorescence, in the context of biological membranes.
Collapse
|
43
|
Design and Optimization of the Circulatory Cell-Driven Drug Delivery Platform. Stem Cells Int 2021; 2021:8502021. [PMID: 34603454 PMCID: PMC8481068 DOI: 10.1155/2021/8502021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Achievement of high targeting efficiency for a drug delivery system remains a challenge of tumor diagnoses and nonsurgery therapies. Although nanoparticle-based drug delivery systems have made great progress in extending circulation time, improving durability, and controlling drug release, the targeting efficiency remains low. And the development is limited to reducing side effects since overall survival rates are mostly unchanged. Therefore, great efforts have been made to explore cell-driven drug delivery systems in the tumor area. Cells, particularly those in the blood circulatory system, meet most of the demands that the nanoparticle-based delivery systems do not. These cells possess extended circulation times and innate chemomigration ability and can activate an immune response that exerts therapeutic effects. However, new challenges have emerged, such as payloads, cell function change, cargo leakage, and in situ release. Generally, employing cells from the blood circulatory system as cargo carriers has achieved great benefits and paved the way for tumor diagnosis and therapy. This review specifically covers (a) the properties of red blood cells, monocytes, macrophages, neutrophils, natural killer cells, T lymphocytes, and mesenchymal stem cells; (b) the loading strategies to balance cargo amounts and cell function balance; (c) the cascade strategies to improve cell-driven targeting delivery efficiency; and (d) the features and applications of cell membranes, artificial cells, and extracellular vesicles in cancer treatment.
Collapse
|
44
|
Wu P, Jiang X, Yin S, Yang Y, Liu T, Wang K. Biomimetic recombinant of red blood cell membranes for improved photothermal therapy. J Nanobiotechnology 2021; 19:213. [PMID: 34275480 PMCID: PMC8286575 DOI: 10.1186/s12951-021-00949-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Background RBC membrane derived nanoparticles (NPs) represent an emerging platform with prolonged circulation capacity for the delivery of active substances. For functionalize derived RBCs NPs, various strategies, such as biomimetic rebuilding of RBCs, chemical modification or inserting ligands, have been carried out to improve their performance. However, one potential adverse effect for these methods is the structural failure of membrane proteins, consequently affecting its original immune escape function. Results In this study, we reported a green technology of “disassembly-reassembly” to prepare biomimetic reconstituted RBCs membrane (rRBCs) by separating the endogenous proteins and lipids from nature RBC membrane. IR780 iodide was used as a pattern drug to verify the property and feasibility of rRBCs by constructing IR780@rRBC NPs with IR780@RBC NPs and free IR780 as controls. The results demonstrated the superiority of IR780@rRBC NPs in toxicity, stability, pharmacokinetics and pharmacodynamics compared with IR780@rRBC and free IR780. Conclusions The reported “disassembly-reassembly” strategy shows great potential to produce controllable and versatile rRBC membrane-inspired delivery platform, which may be used to overcome the deficiency of functionalization in cell membrane coated nanoparticles . Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00949-7.
Collapse
Affiliation(s)
- Pengkai Wu
- School of Pharmacy, Nantong University, 226001, Nantong, China.,Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, 210093, Nanjing, China
| | - Xing Jiang
- College of Nursing, Nanjing University of Chinese Medicine, 210029, Nanjing, China
| | - Shuai Yin
- School of Pharmacy, Nantong University, 226001, Nantong, China
| | - Ying Yang
- School of Pharmacy, Nantong University, 226001, Nantong, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, 2145, Westmead, Australia
| | - Kaikai Wang
- School of Pharmacy, Nantong University, 226001, Nantong, China. .,Nantong Municipal Hospital of Traditional Chinese Medicine, 226001, Nantong, China.
| |
Collapse
|
45
|
|
46
|
Ahmed H, Stokke BT. Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach. LAB ON A CHIP 2021; 21:2232-2243. [PMID: 33903873 DOI: 10.1039/d1lc00111f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Micron-sized alginate hydrogel beads are extensively employed as an encapsulation medium for biochemical and biomedical applications. Here we report on the microfluidic assisted fabrication of calcium alginate (Ca-alginate) beads by on-chip picoinjection of aqueous calcium chloride (CaCl2) in emulsified aqueous sodium alginate (Na-alginate) droplets or by picoinjection of Na-alginate solution in emulsified aqueous CaCl2 droplets. There is no added chelator to reduce the Ca activity in either of the two strategies. The two fabrication strategies are implemented using a flow-focusing and picoinjection modules in a single PDMS chip. Aqueous alginate solution was emulsified and infused with CaCl2 solution as the squeezed droplet pass the picoinjection channel; consequently, monodisperse, spherical, and structurally homogeneous Ca-alginate beads were obtained. Monodisperse alginate microgel populations with a mean diameter in the range of 8 to 28 μm and standard deviation less than 1 μm were successfully generated using microfluidic channels with various dimensions and controlling the flow parameters. Monodisperse but also non-spherical particles with diameters 6 to 15 μm were also fabricated when picoinjecting Na-alginate solution in emulsified aqueous CaCl2 droplets. The Ca-alginate microbeads fabricated with tailormade size in the range from sub-cellular and upwards were in both strategies realized without any use of chelators or change in pH conditions, which is considered a significant advantage for further exploitation as encapsulation process for improved enzymatic activity and cell viability.
Collapse
Affiliation(s)
- Husnain Ahmed
- Biophysics and Medical Technology, Dept. of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Dept. of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
47
|
Lei Q, Guo J, Kong F, Cao J, Wang L, Zhu W, Brinker CJ. Bioinspired Cell Silicification: From Extracellular to Intracellular. J Am Chem Soc 2021; 143:6305-6322. [PMID: 33826324 DOI: 10.1021/jacs.1c00814] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In nature, biosilicification directs the formation of elaborate amorphous silica exoskeletons that provide diatoms mechanically strong, chemically inert, non-decomposable silica armor conferring chemical and thermal stability as well as resistance to microbial attack, without changing the optical transparency or adversely effecting nutrient and waste exchange required for growth. These extraordinary silica/cell biocomposites have inspired decades of biomimetic research aimed at replication of diatoms' hierarchically organized exoskeletons, immobilization of cells or living organisms within silica matrices and coatings to protect them against harmful external stresses, genetic re-programming of cellular functions by virtue of physico-chemical confinement within silica, cellular integration into devices, and endowment of cells with non-native, abiotic properties through facile silica functionalization. In this Perspective, we focus our discussions on the development and concomitant challenges of bioinspired cell silicification ranging from "cells encapsulated within 3D silica matrices" and "cells encapsulated within 2D silica shells" to extra- and intracellular silica replication, wherein all biomolecular interfaces are encased within nanoscopic layers of amorphous silica. We highlight notable examples of advances in the science and technology of biosilicification and consider challenges to advancing the field, where we propose cellular "mineralization" with arbitrary nanoparticle exoskeletons as a generalizable means to impart limitless abiotic properties and functions to cells, and, based on the interchangeability of water and silicic acid and analogies between amorphous ice and amorphous silica, we consider "freezing" cells within amorphous silica as an alternative to cryo-preservation.
Collapse
Affiliation(s)
- Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jimin Guo
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Fanhui Kong
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
48
|
Iida A, Naito H, Nojima T, Yumoto T, Yamada T, Fujisaki N, Nakao A, Mikane T. State-of-the-art methods for the treatment of severe hemorrhagic trauma: selective aortic arch perfusion and emergency preservation and resuscitation-what is next? Acute Med Surg 2021; 8:e641. [PMID: 33791103 PMCID: PMC7995927 DOI: 10.1002/ams2.641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 01/30/2023] Open
Abstract
Trauma is a primary cause of death globally, with non‐compressible torso hemorrhage constituting an important part of “potentially survivable trauma death.” Resuscitative endovascular balloon occlusion of the aorta has become a popular alternative to aortic cross‐clamping under emergent thoracotomy for non‐compressible torso hemorrhage in recent years, however, it alone does not improve the survival rate of patients with severe shock or traumatic cardiac arrest from non‐compressible torso hemorrhage. Development of novel advanced maneuvers is essential to improve these patients’ survival, and research on promising methods such as selective aortic arch perfusion and emergency preservation and resuscitation is ongoing. This review aimed to provide physicians in charge of severe trauma cases with a broad understanding of these novel therapeutic approaches to manage patients with severe hemorrhagic trauma, which may allow them to develop lifesaving strategies for exsanguinating trauma patients. Although there are still hurdles to overcome before their clinical application, promising research on these novel strategies is in progress, and ongoing development of synthetic red blood cells and techniques that reduce ischemia‐reperfusion injury may further maximize their effects. Both continuous proof‐of‐concept studies and translational clinical evaluations are necessary to clinically apply these hemostasis approaches to trauma patients.
Collapse
Affiliation(s)
- Atsuyoshi Iida
- Department of Emergency Medicine Japanese Red Cross Okayama Hospital 2-1-1 Aoe, Kita ward Okayama Okayama 7008607 Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Tetsuya Yumoto
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Taihei Yamada
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Noritomo Fujisaki
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care, and Disaster Medicine Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences 2-5-1 Sikatatyo Okayama Okayama 7008558 Japan
| | - Takeshi Mikane
- Department of Emergency Medicine Japanese Red Cross Okayama Hospital 2-1-1 Aoe, Kita ward Okayama Okayama 7008607 Japan
| |
Collapse
|
49
|
Subhan MA, Attia SA, Torchilin VP. Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sci 2021; 274:119337. [PMID: 33713664 DOI: 10.1016/j.lfs.2021.119337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
RNA interference (RNAi) represents a promising therapeutic method that uses siRNA for cancer treatment. Although the RNAi technique has been increasingly used for clinical trials, systemic siRNA delivery into targeted cells is still challenging. The barriers impeding siRNA therapeutics delivery and impacting the treatment outcome must overcome with negligible systemic toxicity for a desirable and successful delivery of siRNA to MDR cancer cells. Nano delivery strategies have been investigated for nanocarrier functionalization, cancer immunotherapy and cancer targeting. Lipid nanoparticles (LNPs), dynamic polyconjugates (DPC™), GalNAc-siRNA conjugates, exosome and RBC systems have shown potential for efficient delivery of siRNA to cancer cells. Delivery of siRNA to tumor cells, immune cells to regulate T cell functions for immunotherapy are promising approaches.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Sara Aly Attia
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
50
|
Choi J, Hwang J, Kim J, Choi H. Recent Progress in Magnetically Actuated Microrobots for Targeted Delivery of Therapeutic Agents. Adv Healthc Mater 2021; 10:e2001596. [PMID: 33331143 DOI: 10.1002/adhm.202001596] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/13/2020] [Indexed: 12/17/2022]
Abstract
Therapeutic agents, such as drugs and cells, play an essential role in virtually every treatment of injury, illness, or disease. However, the conventional practices of drug delivery often result in undesirable side effects caused by drug overdose and off-target delivery. In the case of cell delivery, the survival rate of the transplanted cells is extremely low and difficulties with the administration route of cells remain a problem. Recently, magnetically actuated microrobots have started offering unique opportunities in targeted therapeutic delivery due to their tiny size and ability to access hard-to-reach lesions in a minimally invasive manner; considerable advances in this regard have been made over the past decade. Here, recent progress in magnetically actuated microrobots, developed for targeted drug/cell delivery, is presented, with a focus on their design features and mechanisms for controlled therapeutic release. Additionally, the practical challenges faced by the microrobots, and future research directions toward the swift bench-to-bedside translation of the microrobots are addressed.
Collapse
Affiliation(s)
- Junhee Choi
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Junsun Hwang
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Jin‐young Kim
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
- DGIST‐ETH Microrobotics Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| |
Collapse
|