1
|
Huang S, Xu Z, Zhuang Y. Development of indole hybrids for potential lung cancer treatment - part II. Future Med Chem 2025; 17:961-977. [PMID: 40159771 PMCID: PMC12036489 DOI: 10.1080/17568919.2025.2485867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Lung cancer has become the most prevalent cancer for the past three decades, and the 5-years survival rate of lung cancer is only ~20% nowadays. Chemotherapy is the mainstay of lung cancer therapy, especially for non-small cell lung cancer. However, drug resistance represents a principal cause of therapeutic failure in non-small cell lung cancer leading to therapeutic insensitivity, tumor recurrence, and disease progression. Indole hybrids have the potential to conquer drug resistance, enhance efficacy, reduce adverse events, and improve pharmacokinetic properties due to their capacity to inhibit multiple targets simultaneously. Moreover, indole hybrids osimertinib, mobocertinib, cediranib, and vizimpro are currently applied in clinics for lung cancer therapy, demonstrating that indole hybrids are valuable scaffolds in the treatment and eradication of lung cancer. This review provides a comprehensive overview of the evolving landscape of indole hybrids with the in vitro and in vivo efficacy against lung cancer, and the structure-activity relationships as well as mechanisms of action are also discussed, covering articles published from 2021 onward.
Collapse
Affiliation(s)
- Shanshan Huang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China
| | - Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute, Huanghuai University, Zhumadian, Henan, China
| | - Yafei Zhuang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
2
|
Vanthiya V, Jaroenchuensiri T, Faikhruea K, Pang-Eaem P, Plianjantuek N, Limpanuparb T, Vilaivan T, Aonbangkhen C, Chuawong P. Indole-Boron-Difluoride Complexes with Anticancer and Fluorescence Properties. Chem Asian J 2025:e202401698. [PMID: 40088095 DOI: 10.1002/asia.202401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/17/2025]
Abstract
Eight indole-boron-difluoride complexes were synthesized from 2,3-arylpyridylindole derivatives via Sonogashira coupling and Larock heteroannulation. These complexes exhibited distinct photophysical properties. Solvent polarity influenced their spectral behavior showing hypsochromic absorption, bathochromic emission shifts, and aggregation-induced emission (AIE) in mixed solvents. The ¹⁹F NMR shifts and photophysical properties, including excitation, emission maxima, and Stokes shift, correlated with Hammett substituent constants highlighting electronic effects on molecular properties. The synthesized complexes exhibited a range of intramolecular charge transfer (ICT) behaviors, as evidenced by their Lippert-Mataga parameters. TD-DFT calculations aligned with experimental data, offering insight into spectroscopic behavior. Notably, the indole-boron-difluoride complex bearing a methyl ester group exhibited significant anticancer activity against HeLa cells and potential for fluorescence imaging, indicating its promise for biomedical applications in cell imaging and therapy.
Collapse
Affiliation(s)
- Veerapattha Vanthiya
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
| | - Theeranuch Jaroenchuensiri
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kriangsak Faikhruea
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pitchayanin Pang-Eaem
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
| | - Napongchayon Plianjantuek
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
| | - Taweetham Limpanuparb
- Science Division, Mahidol University International College, Mahidol University, Salaya, 73170, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Special Research Unit for Advanced Magnetic Resonance (AMR), Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
3
|
Shaheen MA, Darwish KM, Kishk SM, El-Sayed MAA, Salama I. Development of 1,2,3-triazole hybrids as multi-faced anticancer agents co-targeting EGFR/mTOR pathway and tubulin depolymerization. Bioorg Chem 2025; 156:108153. [PMID: 39855112 DOI: 10.1016/j.bioorg.2025.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Novel 1,2,3-triazole hybrids bearing various substituents have been synthesized as potential anticancer agents. Ligand-based approach has been adopted to design these compounds relying on the hybridization of 1,2,3-triazole with α,β-unsaturated carbonyl, 5- and 6-membered heterocyclic scaffolds. All synthesized members were investigated for their cytotoxic potency against nine types comprising 60 panels of human cancerous cells by the US National Cancer Institute: Development Therapeutic Program (US_NCI_DTP). Among the tested members, 4b, 4e, and 4h showed prominent cytotoxic effects (> 80 % growth inhibition: GI) on a wide panel of tested cancer cell lines, mainly melanoma and colorectal cancer redeeming their selection for five dose testing. Presenting low nanomolar GI50 concentrations, two representative potent anticancer compounds 4b and 4e were subjected to cytotoxicity testing on colon normal cell (FHC) to investigate their safety window and they showed less toxicity to normal cells at the concentration required to produce anticancer effect. Furthermore, 4b and 4e were exposed to additional mechanistic studies in colorectal cancer cell HCT-116 suggesting multifaceted mechanisms of action. A study into the effects of cytotoxic chemicals 4b and 4e on cell cycle progression regulation showed triggered the arrest of cell cycles during the G1 and S phases. Moreover, 4b and 4e caused cell death mainly through apoptosis the thing that has been reinforced by the elevated Bax: Bcl2 ratio, as well as concentrations of caspases 3 and 9 within HCT-116. Further, both compounds showed prominent inhibition profiles against tubulin polymerization as well as EGFR catalytic activity reaching down to low-digit micromolar and sub-micromolar concentrations, respectively, as compared to positive reference controls. Compounds' impacts on gene expression of cancer-associated and EGFR-downstream signaling markers including TNFα, IL-6, and mTOR, were explored in HCT-116 highlighted significant downregulations versus the untreated cells. Docking studies demonstrated the specific fit of 4b and 4e into EGFR and the colchicine binding site of tubulin.
Collapse
Affiliation(s)
- Mennatallah A Shaheen
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, Egypt.
| | - Khaled M Darwish
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt; Medicinal Chemistry Department, Faculty of Pharmacy, Galala University, New Galala 43511 Egypt.
| | - Safaa M Kishk
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt.
| | - Magda A-A El-Sayed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Ismail Salama
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522 Egypt.
| |
Collapse
|
4
|
Naglah AM, Almehizia AA, Ghazwani M, Al-Wasidi AS, Naglah AA, Aboulthana WM, Hassan AS. In Vitro Enzymatic and Computational Assessments of Pyrazole-Isatin and Pyrazole-Indole Conjugates as Anti-Diabetic, Anti-Arthritic, and Anti-Inflammatory Agents. Pharmaceutics 2025; 17:293. [PMID: 40142957 PMCID: PMC11946580 DOI: 10.3390/pharmaceutics17030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Recently, the prevalence of diseases such as diabetes, arthritis, and inflammatory diseases, along with their complications, has become a significant health problem. This is in addition to the various biomedical applications of pyrazole, isatin, and indole derivatives. Accordingly, cooperation will continue between chemistry scientists, pharmaceutical scientists, and human doctors to produce hybrid compounds from pyrazole with isatin or indole possessing biological activities as anti-diabetic, anti-arthritic, and anti-inflammatory agents. Methods: The two series of pyrazole-isatin conjugates 12a-h and pyrazole-indole conjugates 14a-d were prepared from our previous works via the direct reaction of 5-amino-pyrazoles 10a-d with N-alkyl isatin 11a,b, and 1H-indole-3-carbaldehyde (13), respectively, using the previously reported procedure. The potential biological activities of 12a-h and 14a-d as anti-diabetic, anti-arthritic, and anti-inflammatory agents were assessed through estimated inhibition percentage (%) and the median inhibitory concentrations (IC50) using methods described in the literature. Further, the computational assessments of 12a-h and 14a-d such as toxic doses (the median lethal dose, LD50), toxicity classes, drug-likeness model scores (DLMS), molecular lipophilicity potential (MLP) maps, polar surface area (PSA) maps, and topological polar surface area (TPSA) values were predicted using available free websites. Results: The in vitro enzymatic assessment results showed that pyrazole-indole conjugate 14b possesses powerful activities against (i) α-amylase (% = 65.74 ± 0.23, IC50 = 4.21 ± 0.03 µg/mL) and α-glucosidase (% = 55.49 ± 0.23, IC50 = 2.76 ± 0.01 µg/mL); (ii) the protein denaturation enzyme (% = 49.30 ± 0.17) and against the proteinase enzyme (% = 46.55 ± 0.17) with an IC50 value of 6.77 ± 0.01 µg/mL; (iii) the COX-1, COX-2, and 5-LOX enzymes with an IC50 of 5.44 ± 0.03, 5.37 ± 0.04, and 7.52 ± 0.04, respectively, which is almost close to the IC50 of the indomethacin and zileuton drugs. Also, the computational assessment results showed (i) the conjugate 14b possesses lipophilic surface properties thus can cross cell membranes, and is effective for treatment; (ii) all the conjugates possess a TPSA value of more than 140 Å2 thus possess good intestinal absorption. Conclusions: The two series of pyrazole-isatin conjugates 12a-h and pyrazole-indole conjugates 14a-d were synthesized from our previous works. The results of these in vitro enzymatic and computational assessments concluded that the pyrazole-indole conjugate 14b possesses powerful activities against various studied enzymes and possesses good computational results. In the future, our research team will present in vitro, in vivo biological, and computational assessments to hopefully obtain effectual agents such as anti-diabetic, anti-arthritic, and anti-inflammatory.
Collapse
Affiliation(s)
- Ahmed M. Naglah
- Drug Exploration & Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdulrahman A. Almehizia
- Drug Exploration & Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia;
| | - Asma S. Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | | | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
5
|
Odeh DM, Odeh MM, Hafez TS, Hassan AS. Bioactive Fused Pyrazoles Inspired by the Adaptability of 5-Aminopyrazole Derivatives: Recent Review. Molecules 2025; 30:366. [PMID: 39860235 PMCID: PMC11767260 DOI: 10.3390/molecules30020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Heterocyclic compounds, especially those containing the pyrazole moiety, are highly significant in organic chemistry and possess remarkable and diverse biological properties. The 5-aminopyrazole derivatives are key starting materials for the synthesis of numerous bioactive compounds such as pyrazolopyridine, pyrazolopyrimidine, pyrazoloquinazoline, and pyrazolotriazine derivatives. Many compounds inspired by the 5-aminopyrazole derivatives possess a wide spectrum of biological activities and medicinal applications such as antioxidants, anticancer agents, enzyme inhibitors, antimicrobials, and anti-tuberculosis activities. This review summarizes the recently reported synthesis methods and biological activities of fused pyrazole and pyrazole-based derivatives based on 5-aminopyrazole compounds within the last 5 years (2020 to present). One of the important goals of this review is to illustrate future strategies for the design, development, and utilization of pyrazole products as potent drugs.
Collapse
Affiliation(s)
- Dana M. Odeh
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, P.O. Box 733, Irbid 21110, Jordan
| | - Mohanad M. Odeh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Taghrid S. Hafez
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| |
Collapse
|
6
|
Bhalodiya SS, Parmar MP, Patel CD, Patel SG, Vala DP, Suresh N, Jayachandran B, Kumar Arumugam M, Narayan M, Patel HM. Acetic Acid-Driven One-Pot Synthesis of 4,7-dihydro-[1,2,3]thiadiazolo[5,4-b]pyridine-6-carboxamides and Pharmacological Evaluations. ChemMedChem 2025; 20:e202400595. [PMID: 39395196 DOI: 10.1002/cmdc.202400595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
A diverse set of 4,7-dihydro-[1,2,3]thiadiazolo[5,4-b]pyridine-6-carboxamides 4(a-o) was synthesized via a one-pot reaction of 5-amino-[1,2,3]thiadiazole, various aromatic aldehydes, and different acetoacetanilides, using glacial acetic acid. The resulting compounds were obtained in moderate to good yields. All the newly synthesized compounds were evaluated for their antimicrobial activity. Among them, compound 4 e demonstrated superior efficacy against the Salinivibrio proteolyticus strain of Gram-negative bacteria compared to ciprofloxacin. Compound 4 d exhibited the highest potency against the fungal strain Candida albicans, surpassing amphotericin B. The physicochemical characteristics of 4 d and 4 e were assessed. According to docking analysis, DHTDAPy 4 e shows a higher binding affinity of -7.2 kcal/mol in the binding cavity of the receptor. These findings illustrate the safety, tolerability, and potency of the newly synthesized DHTDAPy compounds against fungal and bacterial infections.
Collapse
Affiliation(s)
- Savan S Bhalodiya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Mehul P Parmar
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Chirag D Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Subham G Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Disha P Vala
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Nandhakumar Suresh
- Cancer biology lab, Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Bhuvaneshwari Jayachandran
- Cancer biology lab, Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Madan Kumar Arumugam
- Cancer biology lab, Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mahesh Narayan
- Biochemistry Division, Department of Chemistry and Biochemistry, CCSB 2.0202, University of Texas at El Paso 500 W. University Ave., El Paso, TX 79968, USA
| | - Hitendra M Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| |
Collapse
|
7
|
Alsfouk AA, Othman IMM, Anwar MM, Saleh A, Nossier ES. Design, synthesis, and in silico studies of new quinazolinones tagged thiophene, thienopyrimidine, and thienopyridine scaffolds as antiproliferative agents with potential p38α MAPK kinase inhibitory effects. RSC Adv 2025; 15:1407-1424. [PMID: 39822569 PMCID: PMC11737299 DOI: 10.1039/d4ra06744d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
The current work focuses on the creation of novel derivatives of the quinazolinone ring system, with various substituted thiophene, thienopyrimidine, and thienopyridine scaffolds 3a,b-11. Employing the standard MTT assay, every target compound's in vitro antiproliferative efficacy was evaluated in comparison with doxorubicin against both normal WI-38 cells and various cancer cell lines. Derivatives 6, 8a, and 8b demonstrated the most potent activity, alongside their safety profiles against WI-38. The in vitro enzyme assay showed that the new analogues had a better ability to inhibit p38α MAPK kinase than SB 202190 (IC50s = 0.18 ± 0.02, 0.23 ± 0.05, 0.31 ± 0.04, and 0.27 ± 0.06 μM, respectively). Additionally, apoptosis tests conducted on MCF-7 cells revealed that 6, 8a, and 8b significantly increased the levels of Bax (by approximately 7.31, 13.8, and 8.86 fold) and caspase 3 (by approximately 3.55, 4.22, and 3.87 fold), respectively, in comparison to the untreated cells. They decreased the amount of Bcl-2 by ∼1.99, 3.69, and 2.66 fold, respectively. The most powerful counterpart, 8a, underwent additional investigation of the cell cycle and apoptosis. It caused necrotic and apoptotic effects in the late stages and stopped the MCF-7 cell cycle at the G2/M phase. Based on the molecular docking study, candidates 6, 8a, and 8b all fit well within p38α MAPK kinase, with energy scores of -10.88, -11.28, and -10.96 kcal mol-1, respectively. Based on the in silico computer examination of physico-chemical and ADMET properties, the latter analogues seem to be promising candidates for further development and optimization in research.
Collapse
Affiliation(s)
- Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre El-Bohouth Street, Dokki, P. O. Box 12622 Cairo Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology Cairo 11516 Egypt
| |
Collapse
|
8
|
Husseiny EM, Abulkhair HS, El-Sebaey SA, Sayed MM, Anwer KE. In vivo evaluation of novel synthetic pyrazolones as CDK9 inhibitors with enhanced pharmacokinetic properties. Future Med Chem 2024; 16:2487-2505. [PMID: 39530543 PMCID: PMC11622796 DOI: 10.1080/17568919.2024.2419363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: The structural optimization of our recently reported CDK9 inhibitor to furnish novel aminopyrazolones and methylpyrazolones with improved pharmacokinetics.Materials & methods: The synthesis of the targeted compounds was accomplished via conventional, grinding and microwave-assisted processes. The cytotoxicity of them was assayed against three carcinomas.Results: Analogs 2, 4 and 6 showed significant cytotoxicity and selectivity toward all tested cells. They also displayed potent CDK9 inhibition. Compound 6 arrested MCF-7 cycle at G2/M phase by stimulating the apoptotic pathway. The in vivo biodistribution of radiolabeled compound 6 displayed a potent targeting capability of 131I in solid tumors.Conclusion: Entity 6 is a potent CDK9 inhibitor where 131I-compound 6 can be used as a significant radiopharmaceutical imaging tool for tumors.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Samiha A El-Sebaey
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11754, Cairo, Egypt
| | - Manal M Sayed
- Labeled Compound Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), P. O. Box 13759, Cairo, Egypt
| | - Kurls E Anwer
- Heterocyclic Synthesis Laboratory, Department of Chemistry, Faculty of Science, Ain Shams University 11566, Abbassia, Cairo, Egypt
| |
Collapse
|
9
|
Moussa Z, Ramanathan M, Alharmoozi SM, Alkaabi SAS, Al Aryani SHM, Ahmed SA, Al-Masri HT. Recent highlights in the synthesis and biological significance of pyrazole derivatives. Heliyon 2024; 10:e38894. [PMID: 39492900 PMCID: PMC11531639 DOI: 10.1016/j.heliyon.2024.e38894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Aza-heterocyclic scaffolds are privileged cores in the composition of their potential therapeutic profiles and versatile synthetic intermediates. Pyrazole is one of the frequently studied compounds of "azole" family and consists of nitrogen in a 1,2 linking sequence. These motifs possess a wide-spectrum of applications in the field of pharmaceuticals, agrochemicals, polymer chemistry, cosmetics, food industries and more. In addition, functionalized pyrazole derivatives are frequently used as ligands in coordination chemistry and metal-catalysed reactions. As exemplified by numerous recent reports, pyrazoles are highly promising pharmacophores with excellent therapeutic applications. Owing to their aromaticity, the ring structures have many reactive positions, where electrophilic, nucleophilic, alkylation and oxidative reactions might occur. The structural adroitness and diversity of pyrazole cores further emanated numerous fused bicyclic skeletons with various biological applications. In this review, we highlight the recent synthetic methods developed for the preparation of functionalized pyrazole derivatives (From 2017 to present). In addition, we have also covered the notable biological activities (anti-cancer, anti-inflammatory, anti-bacterial and anti-viral) of this ubiquitous core. Herein, we emphasised the synthesis of pyrazoles from variety of precursors such as, alkynes, α,β-unsaturated carbonyl compounds, diazo reagents, nitrile imines, diazonium salts, 1,3-dicarbonyl compounds and etc. Moreover, the recent synthetic methodologies focusing on the preparation of pyrazolines and pyrazolones and variously fused-pyrazoles are also included. Authors expect this review could significantly help the researchers in finding elegant novel tools to synthesize pyrazole skeletons and expand their biological evaluation.
Collapse
Affiliation(s)
- Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Mani Ramanathan
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shaikha Mohammad Alharmoozi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Shahad Ali Saeed Alkaabi
- Department of Chemistry, College of Science, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | | | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Harbi Tomah Al-Masri
- Department of Chemistry, Faculty of Sciences, Al al-Bayt University, P. O. Box 130040, Mafraq, 25113, Jordan
| |
Collapse
|
10
|
Salem MG, Nafie MS, Elzamek AA, Elshihawy HA, Sofan MA, Negm E. Design, synthesis, and biological investigations of new pyrazole derivatives as VEGFR2/CDK-2 inhibitors targeting liver cancer. BMC Chem 2024; 18:208. [PMID: 39449145 PMCID: PMC11520136 DOI: 10.1186/s13065-024-01314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
New Series of N-Manniche bases 3,4 (a-c) and 5,6 (a-b) were synthesized through the reaction of benzaldehyde and amine with 3-methyl-4-(aryldiazenyl)-1H-pyrazol-5-ol derivatives 2(a-c), they were fully characterized by FT-IR, (1H, 13C) NMR data in addition to their mass spectra. The Structural Activity Relationship of the target compounds were examined for their cytotoxicity. Some newly synthesized compounds showed promising antiproliferation properties when tested against HepG2 cancer cells. Compounds 4a, 5a, and 6b showed potent cytotoxicity against HepG2 with IC50 values of 4.4, 3.46 and 2.52 µM compared to Sorafenib (IC50 = 2.051 µM) and Roscovitine (IC50 = 4.18 µM). Furthermore, they were safe against the THLE2 cells with higher IC50 values. Compound 6b exhibited promising dual VEGFR2/CDK-2 inhibition activities; it had an IC50 value of 0.2 μM with VEGFR2 inhibition of 93.2%, and it had an IC50 value of 0.458 μM with CDK-2 inhibition of 88.7%. In comparison to the untreated control group (0.95%), compounds 5a (38.32%) and 6b (42.9%) considerably increased the cell population in total apoptosis. In addition, compounds 5a and 6b arrested the cell population at G0-G1 and S phases, respectively. Molecular docking experiments confirmed the virtual binding mechanism of the most active drugs, which were found to have good binding affinities with both receptor active sites.
Collapse
Affiliation(s)
- Manar G Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, P.O. 27272, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, P.O 41522, Egypt
| | - Aya A Elzamek
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Hosam A Elshihawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Mamdouh A Sofan
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Elham Negm
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
11
|
Abdel-Rahman AAH, El-Bayaa MN, Sobhy A, El-Ganzoury EM, Nossier ES, Awad HM, El-Sayed WA. Novel quinazolin-4-one based derivatives bearing 1,2,3-triazole and glycoside moieties as potential cytotoxic agents through dual EGFR and VEGFR-2 inhibitory activity. Sci Rep 2024; 14:24980. [PMID: 39443462 PMCID: PMC11500008 DOI: 10.1038/s41598-024-73171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
The toxicity that was caused by the developed medications for anticancer treatment is, unfortunately, an earnest problem stemming from the various involved targets, and accordingly, intense research for overcoming such a phenomenon remains indispensable. In the current inquiry, an innovative category of substituted quinazoline-based glycosides incorporating a core of 1,2,3-triazole and attached to distinct acetylated likewise deprotected sugar segments are created and produced synthetically. The resulted 1,2,3-triazolyl-glycosides products were investigated for their ability to cause cytotoxicity to several human cancer cell lines. The quinazoline based glycosyl-1,2,3-triazoles 10-13 with free hydroxy sugar moiety revealed excellent potency against (IC50 range = 5.70-8.10 µM, IC50 Doxorubicin = 5.6 ± 0.30 µM, IC50 Erlotinib = 4.3 ± 0.1 µM). against MCF-7 cancer cell line. In addition, the derived glycosides incorporating quinazolinone and triazole core 6-13 with acetylated and deprotected sugar parts showed excellent and superior potency against HCT-116 (IC50 range = 2.90-6.40 µM). The potent products were revealed as safe cytotoxic agents as indicated by their studied safety profiles. Additional research of promising candidates inhibitory analysis performed against EGFR and VEGFR-2. The hydroxylated glycosides incorporating triazole and quinazoline system 11 and 13 with N-methyl substitution of quinazolinone, gave excellent potency against EGFR (IC50 = 0.35 ± 0.11 and 0.31 ± 0.06 µM, correspondingly) since glycoside 13 revealed comparable IC50 (3.20 ± 0.15 µM) to sorafenib against VEGFR-2. For more understanding of its action mode, it was analyzed how the 1,2,3-triazolyl glycoside 13 made an effect on the apoptosis induction and the arrest of the cell cycle. It was revealed that it had the ability to stop HCT-116 cells in their cell cycle's G1 stage. Moreover, the influence of quinazolinone-1,2,3-triazole-glycoside 13 upon p53, Bax, and Bcl-2 levels in HCT-116 units was also studied for future approaches toward its behavior. Additionally, the latter derivative may trigger apoptosis, as indicated by a significant increase in apoptotic cells. Furthermore, molecular docking was simulated to make an obvious validation and comprehension acquirement of the binding's characteristics also attractions among the most forceful compounds side by side with their aimed enzymes.
Collapse
Affiliation(s)
- Adel A-H Abdel-Rahman
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Mohamed N El-Bayaa
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| | - Asmaa Sobhy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Eman M El-Ganzoury
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo, 11516, Egypt
| | - Hanem M Awad
- Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Wael A El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah, 51452, Saudi Arabia
| |
Collapse
|
12
|
Ma M. Current scenario of pyrazole hybrids with anti-breast cancer therapeutic applications. Arch Pharm (Weinheim) 2024; 357:e2400344. [PMID: 38943440 DOI: 10.1002/ardp.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Breast cancer stands as the leading cause of cancer-related deaths among women globally, but current therapy is restricted to the serious adverse effects and multidrug resistance, necessitating the exploration of novel, safe, and efficient anti-breast cancer chemotherapeutic agents. Pyrazoles exhibit excellent potential for utilization as effective anti-breast cancer agents due to their ability to act on various biological targets. Particularly, pyrazole hybrids demonstrated the advantage of targeting multiple pathways, and some of them, which are exemplified by larotrectinib (pyrazolo[1,5-a]pyrimidine hybrid), can be applied for breast cancer therapy. Thus, pyrazole hybrids hold great promise as useful therapeutic interventions for breast cancer. The aim of this review is to summarize the current scenario of pyrazole hybrids with in vitro and/or in vivo anti-breast cancer potential, along with the modes of action and structure-activity relationships, covering articles published from 2020 to the present, to streamline the development of rational, effective and safe anti-breast cancer candidates.
Collapse
Affiliation(s)
- Mengyu Ma
- Department of Pharmaceutical Engineering, School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
13
|
Abbas HAS, Nossier ES, El-Manawaty MA, El-Bayaa MN. New sulfonamide-based glycosides incorporated 1,2,3-triazole as cytotoxic agents through VEGFR-2 and carbonic anhydrase inhibitory activity. Sci Rep 2024; 14:13028. [PMID: 38844493 PMCID: PMC11156913 DOI: 10.1038/s41598-024-62864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
New sulfonamide-triazole-glycoside hybrids derivatives were designed, synthesised, and investigated for anticancer efficacy. The target glycosides' cytotoxic activity was studied with a panel of human cancer cell lines. Sulfonamide-based derivatives, 4, 7 and 9 exhibited promising activity against HepG-2 and MCF-7 (IC50 = 8.39-16.90 μM against HepG-2 and 19.57-21.15 μM against MCF-7) comparing with doxorubicin (IC50 = 13.76 ± 0.45, 17.44 ± 0.46 μM against HepG-2 and MCF-7, rescpectively). To detect the probable action mechanism, the inhibitory activity of these targets was studied against VEGFR-2, carbonic anhydrase isoforms hCA IX and hCA XII. Compoumds 7 and 9 gave favorable potency (IC50 = 1.33, 0.38 μM against VEGFR-2, 66, 40 nM against hCA IX and 7.6, 3.2 nM against hCA XII, respectively), comparing with sorafenib and SLC-0111 (IC50 = 0.43 μM, 53 and 4.8 nM, respectively). Moreover, the docking simulation was assessed to supply better rationalization and gain insight into the binding affinity between the promising derivatives and their targeted enzymes that was used for further modification in the anticancer field.
Collapse
Affiliation(s)
- Hebat-Allah S Abbas
- Department of Photochemistry, National Research Centre, Cairo, 12622, Egypt.
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo, 11516, Egypt
| | - May A El-Manawaty
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Mohamed N El-Bayaa
- Department of Photochemistry, National Research Centre, Cairo, 12622, Egypt
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
| |
Collapse
|
14
|
Kaur K, Verma H, Gangwar P, Jangid K, Dhiman M, Kumar V, Jaitak V. Design, synthesis, in silico and biological evaluation of new indole based oxadiazole derivatives targeting estrogen receptor alpha. Bioorg Chem 2024; 147:107341. [PMID: 38593531 DOI: 10.1016/j.bioorg.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
A series of new indole-oxadiazole derivatives was designed and synthesized to develop potential anti-breast cancer agents. The compounds exhibited significant inhibitory activity with IC50 values ranging from 1.78 to 19.74 μM against ER-positive human breast cancer (BC) cell lines T-47D and MCF-7. Among them, compounds (5a, 5c, 5e-5h, 5j-5o) displayed superior activity against ER-α dominant (ratio of ER-α/ER-β is 9/1) T-47D cells compared to the standard drug bazedoxifene (IC50 = 12.78 ± 0.92 μM). Compounds 5c and 5o exhibited remarkable anti-proliferative activity with IC50 values of 3.24 ± 0.46 and 1.72 ± 1.67 μM against T-47D cells, respectively. Further, compound 5o manifested 1589-fold higher ER-α binding affinity (213.4 pM) relative to bazedoxifene (339.2 nM) in a competitive ER-α binding assay, while compound 5c showed a binding affinity of 446.6 nM. The Western blot analysis proved that both compounds influenced the ER-α protein's expression, impeding its subsequent transactivation and signalling pathway within T-47D cells. Additionally, a molecular docking study suggests that compounds 5c and 5o bind in such a fashion that induces conformational changes in the protein, culminating in their antagonistic effect. Also, pharmacokinetic profiles showed that all compounds have drug-like properties. Further, molecular dynamic (MD) simulations and density functional theory (DFT) analysis confirmed the stability, conformational behaviour, reactivity, and biological feasibility of compounds 5c and 5o. In conclusion, based on our findings, compounds 5c and 5o, which exhibit significant ER-α antagonistic activity, can act as potential lead compounds for developing anti-breast cancer agents.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products. Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Prabhakar Gangwar
- Department of Zoology, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Kailash Jangid
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Vinod Kumar
- Department of Chemistry, Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products. Central University of Punjab, Ghudda, Bathinda (Pb) 151401, India.
| |
Collapse
|
15
|
Naglah AM, Almehizia AA, Al-Wasidi AS, Alharbi AS, Alqarni MH, Hassan AS, Aboulthana WM. Exploring the Potential Biological Activities of Pyrazole-Based Schiff Bases as Anti-Diabetic, Anti-Alzheimer's, Anti-Inflammatory, and Cytotoxic Agents: In Vitro Studies with Computational Predictions. Pharmaceuticals (Basel) 2024; 17:655. [PMID: 38794225 PMCID: PMC11125359 DOI: 10.3390/ph17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In this innovative research, we aim to reveal pyrazole-based Schiff bases as new multi-target agents. In this context, we re-synthesized three sets of pyrazole-based Schiff bases, 5a-f, 6a-f, and 7a-f, to evaluate their biological applications. The data from in vitro biological assays (including antioxidant and scavenging activities, anti-diabetes, anti-Alzheimer's, and anti-inflammatory properties) of the pyrazole-based Schiff bases 5a-f, 6a-f, and 7a-f showed that the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f possess the highest biological properties among the compounds evaluated. The cytotoxicity against lung (A549) and colon (Caco-2) human cancer types, as well as normal lung (WI-38) cell lines, was evaluated. The data from the cytotoxicity investigation demonstrated that the three Schiff bases 5d, 5e, and 7a are active against lung (A549) cells, while the two Schiff bases 5e and 7a exhibited the highest cytotoxicity towards colon (Caco-2) cells. Additionally, the enzymatic activities against caspase-3 and Bcl-2 of the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f were evaluated. Furthermore, we assessed the in silico absorption, distribution, metabolism, and toxicity (ADMT) properties of the more potent pyrazole-based Schiff bases. After modifying the structures of the six pyrazole-based Schiff bases, we plan to further extend the studies in the future.
Collapse
Affiliation(s)
- Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdulrahman A. Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Asma S. Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Amirah Senaitan Alharbi
- King Khalid Hospital, King Saud University Medical City, P.O. Box 7805, Riyadh 11472, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt;
| |
Collapse
|
16
|
Chudasama DD, Rajput CV, Patel MS, Parekh JN, Patel HC, Chikhaliya NP, Puerta A, Padrón JM, Ram KR. Microwave-induced one-pot synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole hybrids as antiproliferative agents and density functional theory study. Arch Pharm (Weinheim) 2024; 357:e2300632. [PMID: 38150663 DOI: 10.1002/ardp.202300632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Herein, we outline a highly efficient PEG-4000-mediated one-pot three-component reaction for the synthesis of 3-imidazolyl indole clubbed 1,2,3-triazole derivatives (5a-r) at up to 96% yield as antiproliferative agents. This three-component protocol offers the advantages of an environmentally benign reaction, excellent yield, quick response time, and operational simplicity triggered by the copper catalyst under microwave irradiation. All the synthesized compounds were tested for antiproliferative activity against six human solid tumor cell lines, that is, A549 and SW1573 (nonsmall cell lung), HBL100 and T-47D (breast), HeLa (cervix), and WiDr (colon). Among them, six compounds, 5g-j, 5m, and 5p, demonstrated effective antiproliferative action with GI50 values under 10 μM. Furthermore, density functional theory (DFT) calculations were performed for all the synthesized molecules through geometry optimizations, frontier molecular orbital approach, and molecular electrostatic potential (MESP). The theoretical DFT calculation was performed using the DFT/B3LYP/6-31+G (d,p) basis set. Moreover, the biological reactivity of all the representative synthesized molecules was compared with the theoretically calculated quantum chemical descriptors and MESP 3D plots. We also investigated the drug-likeness characteristic and absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction. In general, our approach enables environmentally friendly access to 3-imidazolyl indole clubbed 1,2,3-triazole derivatives as prospective antiproliferative agents.
Collapse
Affiliation(s)
| | - Chetan V Rajput
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Manan S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Jaydeepkumar N Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Harsh C Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Navin P Chikhaliya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain
| | - Kesur R Ram
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
17
|
Kandhasamy K, Surajambika RR, Velayudham PK. Pyrazolo - Pyrimidines as Targeted Anticancer Scaffolds - A Comprehensive Review. Med Chem 2024; 20:293-310. [PMID: 37885114 DOI: 10.2174/0115734064251256231018104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Globally, cancer is the leading cause of death, which causes 10 million deaths yearly. Clinically, several drugs are used in treatment but due to drug resistance and multidrug resistance, there occurs a failure in the cancer treatment. OBJECTIVES The present review article is a comprehensive review of pyrazole and pyrimidine hybrids as potential anticancer agents. METHODS The review comprises more than 60 research works done in this field. The efficiency of the reported pyrazolopyrimidine fused heterocyclic with their biological data and the influence of the structural aspects of the molecule have been discussed. RESULTS This review highlighted pyrazolo-pyrimidines as targeted anticancer agents with effect on multiple targets. CONCLUSION The review will be helpful for the researchers involved in targeted drugs for cancer therapy for designing new scaffolds with pyrazolo-pyrimidine moieties.
Collapse
Affiliation(s)
- Kesavamoorthy Kandhasamy
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| | | | - Pradeep Kumar Velayudham
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Chennai- 600 097, India
| |
Collapse
|
18
|
Gomha SM, Zaki ME, Maliwal D, Pissurlenkar RR, Ibrahim MS, Fathalla M, Hussein AM. Synthesis, in-silico studies, and biological evaluation of some novel 3-thiazolyl-indoles as CDK2–inhibitors. RESULTS IN CHEMISTRY 2023; 6:101209. [DOI: 10.1016/j.rechem.2023.101209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
|
19
|
Gaikwad SS, Nimal SK, Pol R, Markad D, Jadhao AR, Jadhav U, Kate AN, Gacche RN, Patil LR, Chikate RC. Targeting AKT2 in MDA-MB-231 Cells by Pyrazole Hybrids: Structural, Biological and Molecular Docking Studies. Chem Biodivers 2023; 20:e202300799. [PMID: 37702285 DOI: 10.1002/cbdv.202300799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Pyrazolic hybrids appended with naphthalene, p-chlorobenzene, o-phenol and toluene have been synthesized using Claisen Schmidt condensation reaction of 1-benzyl-3,5-dimethyl-1H-pyrazole-4-carbaldehyde. All compounds were characterized by various spectroscopic techniques. Compound (E)-3-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)-1-(4-chlorophenyl)prop-2-en-1-one crystallizes in monoclinic crystal system with C2/c space group. These synthesized compounds were tested for cytotoxic activity and among these compounds 4b and 5a shows prominent cytotoxic activity against triple-negative breast cancer (TNBC) cells MDA-MB-231 with IC50 values 47.72 μM and 24.25 μM, respectively. Distinguishing morphological changes were noticed in MDA-MB-231 cells treated with pyrazole hybrids contributing to apoptosis action. To get more insight into cytotoxic activity, in silico molecular docking of these compounds were performed and the results suggested that (E)-3-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)-1-(p-tolyl)prop-2-en-1-one and 1-(1'-benzyl-5-(4-chlorophenyl)-3',5'-dimethyl-3,4-dihydro-1'H,2H-[3,4'-bipyrazol]-2-yl)ethan-1-one binds to the prominent domain of Akt2 indicating their potential ability as Akt2 inhibitor. Moreover, from in silico ADME studies clearly demonstrated that these compounds may be regarded as a drug candidate for sub-lingual absorption based on log p values (2.157-4.924). These compounds also show promising antitubercular activity. The overall results suggest that pyrazolic hybrids with substitution at less sterically hindered positions have appealing potent cytotoxic activity and antituberculosis activity due to which they may act as multidrug candidate.
Collapse
Affiliation(s)
- Sanjay S Gaikwad
- Department of Chemistry, MES, Abasaheb Garware College, Pune, Maharashtra, India-, 411004
| | - Snehal K Nimal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India-, 411007
| | - Rushikesh Pol
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India-, 411007
| | - Datta Markad
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Amardeep R Jadhao
- Department of Chemistry, Late Pushpadevi Patil Arts and Science College, Risod, Dist., Washim, Maharashtra, India-, 444506
| | - Umesh Jadhav
- Department of Microbiology, Savitribai Phule Pune University, Pune, Maharashtra, India-, 411007
| | - Anup N Kate
- Department of Chemistry, MES, Abasaheb Garware College, Pune, Maharashtra, India-, 411004
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India-, 411007
| | - Limbraj R Patil
- Department of Chemistry, Maharaja Jivajirao Shinde Arts, Science, Commerce, College, Shrigonda, Maharashtra, India-, 413701
| | - Rajeev C Chikate
- Department of Chemistry, MES, Abasaheb Garware College, Pune, Maharashtra, India-, 411004
| |
Collapse
|
20
|
Wang R, Huang R, Yuan Y, Wang Z, Shen K. The anti-breast cancer potential of indole/isatin hybrids. Arch Pharm (Weinheim) 2023; 356:e2300402. [PMID: 37650315 DOI: 10.1002/ardp.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer (BC) is one of the most prevalent malignancies and the major contributor to cancer mortality in women globally, with a high degree of heterogeneity and a dismal prognosis. As drug resistance is responsible for most BC fatalities and advanced BC is currently considered incurable, finding innovative anti-BC chemotherapeutics is urgently required. Indole and its analog isatin (indole-1H-2,3-dione) are prominent pharmacophores in the development of novel medications, and their derivatives exhibit strong anticancer activities, also against BC. In particular, indole/isatin hybrids exhibit significant potency against BC including multidrug-resistant forms and excellent selectivity by influencing a variety of biological targets associated with the disease, supplying helpful building blocks for the identification of potential new BC treatment options. This review includes articles from 2020 to the present and provides insights into the in vitro and in vivo anti-BC potential, molecular mechanisms, and structure-activity relationships (SARs) of indole/isatin hybrids that may be helpful in the development of innovative anti-BC chemotherapeutics.
Collapse
Affiliation(s)
- Ruo Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaofeng Yuan
- Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Department of Chemistry, Fuzhou University, Fuzhou, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Hashem HE, Amr AEGE, Almehizia AA, Naglah AM, Kariuki BM, Eassa HA, Nossier ES. Nanoparticles of a Pyrazolo-Pyridazine Derivative as Potential EGFR and CDK-2 Inhibitors: Design, Structure Determination, Anticancer Evaluation and In Silico Studies. Molecules 2023; 28:7252. [PMID: 37959672 PMCID: PMC10648062 DOI: 10.3390/molecules28217252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
The strategic planning of this study is based upon using the nanoformulation method to prepare nanoparticles 4-SLNs and 4-LPHNPs of the previously prepared 4,5-diphenyl-1H-pyrazolo[3,4-c]pyridazin-3-amine (4) after confirming its structure with single crystal X-ray analysis. These nanoparticles exhibited promising cytotoxic activity against HepG-2, HCT-116 and MCF-7 cancer cell lines in comparison with the reference doxorubicin and the original derivative 4. Moreover, their inhibitory assessment against EGFR and CDK-2/cyclin A2 displayed improved and more favorable impact than the parent 4 and the references. Detection of their influence upon cancer biomarkers revealed upregulation of Bax, p53 and caspase-3 levels and downregulation of Bcl-2 levels. The docking simulation demonstrated that the presence of the pyrazolo[3,4-c]pyridazin-3-amine scaffold is amenable to enclosure and binding well within EGFR and CDK-2 receptors through different hydrophilic interactions. The pharmacokinetic and physicochemical properties of target 4 were also assessed with ADME investigation, and the outcome indicated good drug-like characteristics.
Collapse
Affiliation(s)
- Heba E. Hashem
- Department of Chemistry, Faculty of Women, Ain Shams University, Cairo 11757, Egypt
| | - Abd El-Galil E. Amr
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed M. Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Heba A. Eassa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
- Department of Pharmaceutical Sciences, School of Pharmacy and Physician Assistant Studies, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology, Cairo 11516, Egypt
| |
Collapse
|
22
|
Layaida H, Hellal A, Chafai N, Haddadi I, Imene K, Anis B, Mouna E, Bensouici C, Sobhi W, Attoui A, Lilia A. Synthesis, spectroscopic characterization, density functional theory study, antimicrobial and antioxidant activities of curcumin and alanine-curcumin Schiff base. J Biomol Struct Dyn 2023; 41:7551-7566. [PMID: 36120951 DOI: 10.1080/07391102.2022.2123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
In this work, a novel Schiff-base derived from curcumin and L-Alanine was synthesized under microwave conditions in excellent yield. The structural characterization has been carried out from their elemental analyses, FTIR, UV-Vis and 13C-NMR and 1H-NMR spectral techniques. The Schiff base (Cur-Ala) and curcumin (Cur) have been screened for their antimicrobial activity toward some pathogens clinically important microorganisms: Bacillus subtilis, Escherichia coli and Staphylococcus aureus, Aspergillus niger and Candida albicans. Result found that the Schiff base was more active than the curcumin. The antibacterial and antifungal activities of Cur-Ala can be attributed to its greatest dipole moment, as shown by theoretical calculations. Also, the antioxidant activity of Schiff base and curcumin were studied by DPPH, cupric ion reducing antioxidant capacity and o-phenanthroline techniques. Results indicate that Cur-Ala and Cur show more antioxidant activities than the standard antioxidants (BHT and BHA). Quantum chemical parameter calculations of Cur-Ala and Cur have been investigated by DFT using B3LYP/6-31G (d,p) basis set method to calculate the optimized structure, atomic charges, MESP, global reactivity descriptors and thermomolecular proprieties of both molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Houdheifa Layaida
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Abdelkader Hellal
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
- Département de Chimie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Nadjib Chafai
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Ines Haddadi
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
- Département de Chimie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Kirouani Imene
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
- Département de Chimie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Bouchama Anis
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
- Département de Chimie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - ElKolli Mouna
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| | - Chawki Bensouici
- Centre de Recherche en Biotechnologie (CRBt), Ali Mendjli, Constantine, Algeria
| | - Widad Sobhi
- Centre de Recherche en Biotechnologie (CRBt), Ali Mendjli, Constantine, Algeria
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, Université Ferhat Abbas Sétif-1, Sétif, Algeria
| | - Ayoub Attoui
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, Université Ferhat Abbas Sétif-1, Sétif, Algeria
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Adjissi Lilia
- Laboratoire d'Electrochimie des Matériaux Moléculaires et des Complexes (LEMMC), Département de Génie des procédés, Faculté de Technologie, Université Ferhat Abbas- Sétif 1, Sétif, Algeria
| |
Collapse
|
23
|
Zhang Y, Wu C, Zhang N, Fan R, Ye Y, Xu J. Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int J Mol Sci 2023; 24:12724. [PMID: 37628906 PMCID: PMC10454718 DOI: 10.3390/ijms241612724] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pyrazole derivatives, as a class of heterocyclic compounds, possess unique chemical structures that confer them with a broad spectrum of pharmacological activities. They have been extensively explored for designing potent and selective anticancer agents. In recent years, numerous pyrazole derivatives have been synthesized and evaluated for their anticancer potential against various cancer cell lines. Structure-activity relationship studies have shown that appropriate substitution on different positions of the pyrazole ring can significantly enhance anticancer efficacy and tumor selectivity. It is noteworthy that many pyrazole derivatives have demonstrated multiple mechanisms of anticancer action by interacting with various targets including tubulin, EGFR, CDK, BTK, and DNA. Therefore, this review summarizes the current understanding on the structural features of pyrazole derivatives and their structure-activity relationships with different targets, aiming to facilitate the development of potential pyrazole-based anticancer drugs. We focus on the latest research advances in anticancer activities of pyrazole compounds reported from 2018 to present.
Collapse
Affiliation(s)
- Yingqian Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenyuan Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Nana Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Fan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (C.W.); (N.Z.); (R.F.); (Y.Y.)
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
24
|
Jihad MI, Mahdi MF. Molecular Docking Study of New Sorafenib Analogues as Platelet-Derived Growth Factor Receptor Inhibitors for the Treatment of Cancer. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S1023-S1026. [PMID: 37694099 PMCID: PMC10485473 DOI: 10.4103/jpbs.jpbs_244_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer is a disease triggered by an uncontrolled growth of a group of cells usually from a single cell. Chemotherapy is a common and systematic therapy that involves the use of anticancer drugs also known as chemotherapeutical agents to treat cancer. Tyrosine kinases are a subset of protein kinases that are a family of over 90 enzymes that selectively phosphorylate tyrosine residues in various substrates. Receptors with internal tyrosine kinase activity mediate the actions of several growth factors, differentiation factors, and hormones, resulting in the reproduction and differentiation of the affected cells. In the fight against cancer, the platelet-derived growth factor receptor has emerged as a novel target via inhibition of this receptor resulting in the inhibition of tyrosine kinase cascade. Docking investigations were conducted using the Genetic Optimization for Ligand Docking (GOLD) Suite (v. 5.7.1) from the Cambridge Crystallographic Data Center. A high-definition X-ray crystallography of the platelet-derived growth factor protein [Protein Data Bank (PDB) ID 6JOL] was downloaded from the website PDB with a resolution of 2 A. Compounds II, III, VII, and VIII have greater binding energies than the GOLD standard medication sorafenib, which gives Piecewise Linear Potential (PLP) fitness value (85.3). Other ligands exhibit good inhibitory action and docking scores comparable to that of the reference ligand sorafenib.
Collapse
Affiliation(s)
- Marwan I. Jihad
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mustansiriyah, Baghdad, Iraq
| | - Monther F. Mahdi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mustansiriyah, Baghdad, Iraq
| |
Collapse
|
25
|
Alamshany ZM, Algamdi EM, Othman IMM, Anwar MM, Nossier ES. New pyrazolopyridine and pyrazolothiazole-based compounds as anti-proliferative agents targeting c-Met kinase inhibition: design, synthesis, biological evaluation, and computational studies. RSC Adv 2023; 13:12889-12905. [PMID: 37114032 PMCID: PMC10128108 DOI: 10.1039/d3ra01931d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
c-Met tyrosine kinase plays a key role in the oncogenic process. Inhibition of the c-Met has emerged as an attractive target for human cancer treatment. This work deals with the design and synthesis of a new set of derivatives bearing pyrazolo[3,4-b]pyridine, pyrazolo[3,4-b]thieno[3,2-e]pyridine, and pyrazolo[3,4-d]thiazole-5-thione scaffolds, 5a,b, 8a-f, and 10a,b, respectively, utilizing 3-methyl-1-tosyl-1H-pyrazol-5(4H)-one (1) as a key starting material. All the new compounds were evaluated as antiproliferative agents against HepG-2, MCF-7, and HCT-116 human cancer cell lines utilizing 5-fluorouracil and erlotinib as two standard drugs. Compounds 5a,b and 10a,b represented the most promising cytotoxic activity of IC50 values ranging from 3.42 ± 1.31 to 17.16 ± 0.37 μM. Both 5a and 5b showed the most cytotoxicity and selectivity toward HepG-2, with IC50 values of 3.42 ± 1.31 μM and 3.56 ± 1.5 μM, respectively. The enzyme assay demonstrated that 5a and 5b had inhibition potency on c-Met with IC50 values in nanomolar range of 4.27 ± 0.31 and 7.95 ± 0.17 nM, respectively in comparison with the reference drug cabozantinib (IC50; 5.38 ± 0.35 nM). The impact of 5a on the cell cycle and apoptosis induction potential in HepG-2 and on the apoptotic parameters; Bax, Bcl-2, p53, and caspase-3 was also investigated. Finally, the molecular docking simulation of the most promising derivatives 5a and 5b was screened against c-Met to investigate the binding patterns of both compounds in the active site of the c-Met enzyme. In silico ADME studies were also performed for 5a and 5b to predict their physicochemical and pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Eman M Algamdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 42805 Jeddah 21551 Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre Dokki Cairo 12622 Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University Cairo 11754 Egypt
- The National Committee of Drugs, Academy of Scientific Research and Technology Cairo 11516 Egypt
| |
Collapse
|
26
|
Al-Tuwaijri HM, Al-Abdullah ES, El-Rashedy AA, Ansari SA, Almomen A, Alshibl HM, Haiba ME, Alkahtani HM. New Indazol-Pyrimidine-Based Derivatives as Selective Anticancer Agents: Design, Synthesis, and In Silico Studies. Molecules 2023; 28:molecules28093664. [PMID: 37175074 PMCID: PMC10180490 DOI: 10.3390/molecules28093664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
In this research study, the authors successfully synthesized potent new anticancer agents derived from indazol-pyrimidine. All the prepared compounds were tested for in vitro cell line inhibitory activity against three different cancerous cell lines. Results demonstrated that five of the novel compounds-4f, 4i, 4a, 4g, and 4d-possessed significant cytotoxic inhibitory activity against the MCF-7 cell line, with IC50 values of 1.629, 1.841, 2.958, 4.680, and 4.798 μM, respectively, compared to the reference drug with an IC50 value of 8.029 μM, thus demonstrating promising suppression power. Compounds 4i, 4g, 4e, 4d, and 4a showed effective cytotoxic activity stronger than the standard against Caco2 cells. Moreover, compounds 4a and 4i exhibited potent antiproliferative activity against the A549 cell line that was stronger than the reference drug. The most active products, 4f and 4i, werr e further examined for their mechanism of action. It turns out that they were capable of activating caspase-3/7 and, therefore, inducing apoptosis. However, produced a higher safety profile than the reference drug, towards the normal cells (MCF10a). Furthermore, the dynamic nature, binding interaction, and protein-ligand stability were explored through a Molecular Dynamics (MD) simulation study. Various analysis parameters (RMSD, RMSF, RoG, and SASA) from the MD simulation trajectory have suggested the stability of the compounds during the 20 ns MD simulation study. In silico ADMET results revealed that the synthesized compounds had low toxicity, good solubility, and an absorption profile since they met Lipinski's rule of five and Veber's rule. The present research highlights the potential of derivatives with indazole scaffolds bearing pyrimidine as a lead compound for designing anticancer agents.
Collapse
Affiliation(s)
- Hanaa M Al-Tuwaijri
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ebtehal S Al-Abdullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed A El-Rashedy
- Department of Natural and Microbial Products National Research Center, El Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hanan M Alshibl
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mogedda E Haiba
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Center, El Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Husseiny EM, S Abulkhair H, El-Dydamony NM, Anwer KE. Exploring the cytotoxic effect and CDK-9 inhibition potential of novel sulfaguanidine-based azopyrazolidine-3,5-diones and 3,5-diaminoazopyrazoles. Bioorg Chem 2023; 133:106397. [PMID: 36753965 DOI: 10.1016/j.bioorg.2023.106397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/30/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Regarding the structural analysis of variable effective CDK-9 suppressors, we record the design and synthesis of two new sets of sulfaguanidine-based azopyrazolidine-3,5-diones and 3,5-diaminoazopyrazoles with expected anticancer and CDK-9 inhibiting activity. In the designed molecules, the pyrazole ring and sulphaguanidine fragment were linked together for the first time through diazo linkers as they are expected to enhance the anticancer activity and CDK degrading interaction. All derivatives have been estimated regarding their cytotoxic activity toward three tumor cells where CDK overexpression has been reported (HePG2, HCT-116, and MCF-7). Among these, four derivatives VII, VIII, X, and XIII exerted potent cytotoxicity against the chosen tumor cells presenting IC50 range equal to 2.86-25.89 µM. As well cytotoxicity on non-cancer cells and CDK-9 inhibition assay have been also assessed for these candidates to evaluate their selectivity indices and enzyme inhibition. The 3,5-diaminopyrazole-1-carboxamide derivative XIII showed a superior combined profile as cytotoxic with high selectivity toward cancer cells (HePG2: IC50 = 6.57 µM, SI = 13.31; HCT-116: IC50 = 9.54 µM, SI = 9.16; MCF-7: IC50 = 7.97 µM, SI = 10.97). Accordingly, it has been chosen to evaluate its probable mechanistic effect both in vitro (via enzyme assay, apoptosis induction, and cell cycle study) as well as in silico (through molecular docking). Overall, this work introduces the 3,5-diaminopyrazole-1-carboxamide derivative XIII as a potent CDK-9 inhibitor candidate (IC50 = 0.16 µM) that merits further investigations for the management of breast, colorectal, and hepatic malignancies.
Collapse
Affiliation(s)
- Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City 11754, Cairo, Egypt.
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta 34518, Egypt.
| | - Nehad M El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Kurls E Anwer
- Chemistry Department, Faculty of Science, Ain Shams University 11566, Abbassia, Cairo, Egypt.
| |
Collapse
|
28
|
Soni JP, Chilvery S, Sharma A, Reddy GN, Godugu C, Shankaraiah N. Design, synthesis and in vitro cytotoxicity evaluation of indolo-pyrazoles grafted with thiazolidinone as tubulin polymerization inhibitors. RSC Med Chem 2023; 14:549-562. [PMID: 36970141 PMCID: PMC10033828 DOI: 10.1039/d2md00442a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
In the pursuit of potential and effective chemotherapeutic agents, a series of 2-((3-(indol-3-yl)-pyrazol-5-yl)imino)thiazolidin-4-ones was designed and synthesized, conjoining salient pharmacophoric properties for directing prominent cytotoxicity. The in vitro cytotoxicity evaluation revealed potent compounds with IC50 values <10 μM on tested human cancer cell lines. Compound 6c exhibited the highest cytotoxicity with an IC50 value of 3.46 μM against melanoma cancer cells (SK-MEL-28) and was highly cytospecific and selective towards cancer cells. The traditional apoptosis assays revealed morphological and nuclear alterations such as apoptotic body formation, condensed/horseshoe-shaped/fragmented/blebbing nuclei, and the generation of ROS. Flow cytometric analysis revealed effective early-stage apoptosis induction and cell-cycle arrest in the G2/M phase. In addition, the enzyme-based effect of 6c on tubulin showed the inhibition of tubulin polymerization (about 60% inhibition, IC50 was <1.73 μM). Moreover, molecular modeling studies affirmed the constant accommodation of compound 6c at the active pocket of tubulin, establishing many electrostatic and hydrophobic interactions with the active pocket's residues. The tubulin-6c complex was stable during the MD simulation for 50 ns with the recommended range of RMSD value (2-4 Å) for each pose.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Anamika Sharma
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - G Nikitha Reddy
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500036 India
| |
Collapse
|
29
|
Hassan AS, Morsy NM, Aboulthana WM, Ragab A. Exploring novel derivatives of isatin-based Schiff bases as multi-target agents: design, synthesis, in vitro biological evaluation, and in silico ADMET analysis with molecular modeling simulations. RSC Adv 2023; 13:9281-9303. [PMID: 36950709 PMCID: PMC10026821 DOI: 10.1039/d3ra00297g] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
Recently, scientists developed a powerful strategy called "one drug-multiple targets" to discover vital and unique therapies to fight the most challenging diseases. Novel derivatives of isatin-based Schiff bases 2-7 have been synthesized by the reaction of 3-hydrazino-isatin (1) with aryl aldehydes, hetero-aryl aldehydes, and dialdehydes. The structure of the synthesized derivatives was proved by physical and spectral analysis. Additionally, in vitro biological studies were performed, including antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities. The four derivatives 3b, 5a, 5b, and 5c possess the highest activities. Among the four potent derivatives, compound 5a exhibited the highest antioxidant (TAC = 68.02 ± 0.15 mg gallic acid per g; IRP = 50.39 ± 0.11) and scavenging activities (ABTS = 53.98 ± 0.12% and DPPH = 8.65 ± 0.02 μg mL-1). Furthermore, compound 5a exhibited an α-amylase inhibitory percentage of 57.64 ± 0.13% near the acarbose (ACA = 69.11 ± 0.15%) and displayed inhibitor activity of the acetylcholinesterase (AChE) enzyme = 36.38 ± 0.08%. Moreover, our work extended to determining the anti-arthritic effect, and compound 5a revealed good inhibitor activities with very close values for proteinase denaturation (PDI) = 39.59 ± 0.09% and proteinase inhibition (PI) = 36.39 ± 0.08%, compared to diclofenac sodium PDI = 49.33 ± 0.11% and PI = 41.88 ± 0.09%. Additionally, the quantum chemical calculations, including HOMO, LUMO, and energy band gap were determined, and in silico ADMET properties were predicted, and their probability was recorded. Finally, molecular docking simulations were performed inside α-amylase and acetylcholinesterase enzymes.
Collapse
Affiliation(s)
- Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre Dokki 12622 Cairo Egypt
| | - Nesrin M Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre Dokki 12622 Cairo Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre Dokki 12622 Cairo Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
30
|
Hossan A, Aljohani M, Alrefaei AF, Althumayri K, Bayazeed A, Saad FA, Abumelha HM, El-Metwaly NM. Synthesis of functionalized aminopyrazole and pyrazolopyrimidine derivatives: Molecular modeling and docking as anticancer agents. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
31
|
Hassan AS, Morsy NM, Aboulthana WM, Ragab A. In vitro enzymatic evaluation of some pyrazolo[1,5-a]pyrimidine derivatives: Design, synthesis, antioxidant, anti-diabetic, anti-Alzheimer, and anti-arthritic activities with molecular modeling simulation. Drug Dev Res 2023; 84:3-24. [PMID: 36380556 DOI: 10.1002/ddr.22008] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The strategy of utilizing nitrogen compounds in various biological applications has recently emerged as a powerful approach to exploring novel classes of therapeutics to face the challenge of diseases. A series of pyrazolo[1,5-a]pyrimidine-based compounds 3a-l and 5a-f were prepared by the direct cyclo-condensation reaction of 5-amino-1H-pyrazoles 1a, b with 2-(arylidene)malononitriles and 3-(dimethylamino)-1-aryl-prop-2-en-1-ones, respectively. The structures of the new pyrazolo[1,5-a]pyrimidine compounds were confirmed via spectroscopic techniques. The in vitro biological activities of all pyrazolo[1,5-a]pyrimidines 3a-l and 5a-f were evaluated by assaying total antioxidant capacity, iron-reducing power, the scavenging activity against 1-diphenyl-2-picryl-hydrazyl (DPPH) and 2, 2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, anti-diabetic, anti-Alzheimer, and anti-arthritic biological activities. All compounds displayed good to potent bioactivity, and three compounds 3g, 3h, and 3l displayed the most active derivatives. Among these derivatives, compound 3l exhibited the highest antioxidant (total antioxidant capacity [TAC] = 83.09 mg gallic acid/g; iron-reducing power [IRP] = 47.93 µg/ml) and free radicals scavenging activities with (DPPH = 18.77 µg/ml; ABTS = 40.44%) compared with ascorbic acid (DPPH = 4.28 µg/ml; ABTS = 38.84%). Furthermore, compound 3l demonstrated the strongest inhibition of α-amylase with a percent inhibition of 72.91 ± 0.14 compared to acarbose = 67.92 ± 0.09%. Similarly, it displayed acetylcholinesterase inhibition of 62.80 ± 0.06%. However, compound 3i showed a significantly higher inhibition percentage for protein denaturation and proteinase at 20.66 ± 0.00 and 26.42 ± 0.06%, respectively. Additionally, some in silico ADMET properties were predicted and studied. Finally, molecular docking simulation was performed inside the active site of α-amylase and acetylcholinesterase to study their interactions.
Collapse
Affiliation(s)
- Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nesrin M Morsy
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
32
|
Biologically Oriented Hybrids of Indole and Hydantoin Derivatives. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020602. [PMID: 36677661 PMCID: PMC9866919 DOI: 10.3390/molecules28020602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Indoles and hydantoins are important heterocycles scaffolds which present in numerous bioactive compounds which possess various biological activities. Moreover, they are essential building blocks in organic synthesis, particularly for the preparation of important hybrid molecules. The series of hybrid compounds containing indoles and imidazolidin-2-one moiety with direct C-C bond were synthesized using an amidoalkylation one-pot reaction. All compounds were investigated as a growth regulator for germination, growth and development of wheat seeds (Triticum aestivum L). Their effect on drought resistance at very low concentrations (4 × 10-5 M) was evaluated. The study highlighted identified the leading compounds, 3a and 3e, with higher growth-regulating activity than the indole-auxin analogues.
Collapse
|
33
|
Srour AM, Dawood DH, Nossier ES, El-Shiekh RA, Mahmoud AE, Hussien AG, Omran MM, Ali MM. Design, synthesis and molecular docking simulation of oxindole-based derivatives with dual VEGFR-2 and cholinesterase inhibitory activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Chalkha M, Nour H, Chebbac K, Nakkabi A, Bahsis L, Bakhouch M, Akhazzane M, Bourass M, Chtita S, Bin Jardan YA, Augustyniak M, Bourhia M, Aboul-Soud MA, El Yazidi M. Synthesis, Characterization, DFT Mechanistic Study, Antimicrobial Activity, Molecular Modeling, and ADMET Properties of Novel Pyrazole-isoxazoline Hybrids. ACS OMEGA 2022; 7:46731-46744. [PMID: 36570248 PMCID: PMC9773794 DOI: 10.1021/acsomega.2c05788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
A series of new heterocycle hybrids incorporating pyrazole and isoxazoline rings was successfully synthesized, characterized, and evaluated for their antimicrobial responses. The synthesized compounds were obtained utilizing N-alkylation and 1,3-dipolar cycloaddition reactions, as well as their structures were established through spectroscopic methods and confirmed by mass spectrometry. To get more light on the regioselective synthesis of new hybrid compounds, mechanistic studies were performed using DFT calculations with B3LYP/6-31G(d,p) basis set. Additionally, the results of the preliminary screening indicate that some of the examined hybrids showed potent antimicrobial activity, compared to standard drugs. The results confirm that the antimicrobial activity is strongly dependent on the nature of the substituents linked pyrazole and isoxazoline rings. Furthermore, molecular docking studies were conducted to highlight the interaction modes between the investigated hybrid compounds and the Escherichia coli and Candida albicans receptors. Notably, the results demonstrate that the investigated compounds have strong protein binding affinities. The stability of the formed complexes by the binding between the hybrid compound 6c, and the target proteins was also confirmed using a 100 ns molecular dynamics simulation. Finally, the prediction of ADMET properties suggests that almost all hybrid compounds possess good pharmacokinetic profiles and no signs of observed toxicity, except for compounds 6e, 6f, and 6g.
Collapse
Affiliation(s)
- Mohammed Chalkha
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| | - Hassan Nour
- Laboratory
of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Khalid Chebbac
- Laboratory
of Biotechnology Conservation and Valorisation of Natural Resources,
Faculty of Sciences Dhar El Mahraz, Sidi
Mohammed Ben Abdallah University, P.O.
Box 1796, Fez 30000, Morocco
| | - Asmae Nakkabi
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| | - Lahoucine Bahsis
- Laboratory
of Analytical and Molecular Chemistry, Polydisciplinary Faculty, Cadi Ayyad University, P.O. Box 4162, Safi 46000, Morocco
- Department
of Chemistry, Faculty of Sciences of El Jadida, Chouaïb Doukkali University,
P.O. Box 20, El Jadida 24000, Morocco
| | - Mohamed Bakhouch
- Laboratory
of Bioorganic Chemistry, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida 24000, Morocco
| | - Mohamed Akhazzane
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
- Cité
de l’innovation, Université
Sidi Mohamed Ben Abdellah, Route Immouzer, P.O. Box 2626, 30000 Fez, Morocco
| | - Mohamed Bourass
- Université
de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, 351 Cours de la Libération, F-33405 Talence, Cédex France
| | - Samir Chtita
- Laboratory
of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| | - Yousef A. Bin Jardan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, 11451 Riyadh, Saudi Arabia
| | - Maria Augustyniak
- Institute
of Biology, Biotechnology and Environmental Protection, Faculty of
Natural Sciences, University of Silesia
in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohammed Bourhia
- Higher
Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Mourad A.M. Aboul-Soud
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University,
P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Mohamed El Yazidi
- Engineering
Laboratory of Organometallic, Molecular, Materials and Environment,
Faculty of Sciences Dhar EL Mahraz, Sidi
Mohamed Ben Abdellah University, P.O. Box 1796, 30000 Fez, Morocco
| |
Collapse
|
35
|
Othman IM, Alamshany ZM, Tashkandi NY, Nossier ES, Anwar MM, Radwan HA. Chemical synthesis and molecular docking study of new thiazole, thiophene, and thieno[2,3-d]pyrimidine derivatives as potential antiproliferative and antimicrobial agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Mohamed AM, Elnaggar DH, Elsayed MA, Abdel-Hafez NA, Mostafa EA, Elasasy MEA, Youssif BGM, Amr AE. Design, Docking Studies, and Anticancer Activity of Newly Synthesized Monastrol Analogues Bearing Ligustrazine Moiety. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Elganzory HH, Alminderej FM, El-Bayaa MN, Awad HM, Nossier ES, El-Sayed WA. Design, Synthesis, Anticancer Activity and Molecular Docking of New 1,2,3-Triazole-Based Glycosides Bearing 1,3,4-Thiadiazolyl, Indolyl and Arylacetamide Scaffolds. Molecules 2022; 27:molecules27206960. [PMID: 36296551 PMCID: PMC9611297 DOI: 10.3390/molecules27206960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/12/2022] Open
Abstract
New 1,3,4-thiadiazole thioglycosides linked to a substituted arylidine system were synthesized via heterocyclization via click 1,3-dipolar cycloaddition. The click strategy was used for the synthesis of new 1,3,4-thiadiazole and 1,2,3-triazole hybrid glycoside-based indolyl systems as novel hybrid molecules by reacting azide derivatives with the corresponding acetylated glycosyl terminal acetylenes. The cytotoxic activities of the compounds were studied against HCT-116 (human colorectal carcinoma) and MCF-7 (human breast adenocarcinoma) cell lines using the MTT assay. The results showed that the key thiadiazolethione compounds, the triazole glycosides linked to p-methoxyarylidine derivatives and the free hydroxyl glycoside had potent activity comparable to the reference drug, doxorubicin, against MCF-7 human cancer cells. Docking simulation studies were performed to check the binding patterns of the synthesized compounds. Enzyme inhibition assay studies were also conducted for the epidermal growth factor receptor (EGFR), and the results explained the activity of a number of derivatives.
Collapse
Affiliation(s)
- Hussein H. Elganzory
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (F.M.A.); (M.N.E.-B.)
| | - Mohamed N. El-Bayaa
- Photochemistry Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (F.M.A.); (M.N.E.-B.)
| | - Hanem M. Awad
- Tanning Materials and Leather Technology Department, National Research Centre, El-Behouth St, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Wael A. El-Sayed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Tanning Materials and Leather Technology Department, National Research Centre, El-Behouth St, Dokki, Cairo 12622, Egypt
| |
Collapse
|
38
|
Akki M, Reddy DS, Katagi KS, Kumar A, Babagond V, Munnolli RS, Joshi SD. Coumarin-Pyrazole Linked Carbodithioates as Potential Anti-Сancer Agents: Design, Synthesis, Biological, and Molecular Docking Investigation. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Lusardi M, Profumo A, Rotolo C, Iervasi E, Rosano C, Spallarossa A, Ponassi M. Regioselective Synthesis, Structural Characterization, and Antiproliferative Activity of Novel Tetra-Substituted Phenylaminopyrazole Derivatives. Molecules 2022; 27:molecules27185814. [PMID: 36144549 PMCID: PMC9502416 DOI: 10.3390/molecules27185814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
A small library of highly functionalized phenylaminopyrazoles, bearing different substituents at position 1, 3, and 4 of the pyrazole ring, was prepared by the one-pot condensation of active methylene reagents, phenylisothiocyanate, and substituted hydrazine (namely, methyl- and benzyl-hydrazine). The identified reaction conditions proved to be versatile and efficient. Furthermore, the evaluation of alternative stepwise protocols affected the chemo- and regio-selectivity outcome of the one-pot procedure. The chemical identities of two N-methyl pyrazole isomers, selected as prototypes of the whole series, were unambiguously identified by means of NMR and mass spectrometry studies. Additionally, semiempirical calculations provided a structural rationale for the different chromatographic behavior of the two isomers. The prepared tetra-substituted phenylaminopyrazoles were tested in cell-based assays on a panel of cancer and normal cell lines. The tested compounds did not show any cytotoxic effect on the selected cell lines, thus supporting their pharmaceutical potentials.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Aldo Profumo
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Chiara Rotolo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Erika Iervasi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Andrea Spallarossa
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
- Correspondence:
| | - Marco Ponassi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| |
Collapse
|
40
|
New 1,2,3-Triazole-Coumarin-Glycoside Hybrids and Their 1,2,4-Triazolyl Thioglycoside Analogs Targeting Mitochondria Apoptotic Pathway: Synthesis, Anticancer Activity and Docking Simulation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175688. [PMID: 36080455 PMCID: PMC9458111 DOI: 10.3390/molecules27175688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022]
Abstract
Toxicity and resistance to newly synthesized anticancer drugs represent a challenging phenomenon of intensified concern arising from variation in drug targets and consequently the prevalence of the latter concern requires further research. The current research reports the design, synthesis, and anticancer activity of new 1,2,3-triazole-coumarin-glycosyl hybrids and their 1,2,4-triazole thioglycosides as well as acyclic analogs. The cytotoxic activity of the synthesized products was studied against a panel of human cancer cell lines. Compounds 8, 10, 16 and 21 resulted in higher activities against different human cancer cells. The impact of the hybrid derivative 10 upon different apoptotic protein markers, including cytochrome c, Bcl-2, Bax, and caspase-7 along with its effect on the cell cycle was investigated. It revealed a mitochondria-apoptotic effect on MCF-7 cells and had the ability to upregulate pro-apoptotic Bax protein and downregulate anti-apoptotic Bcl-2 protein and thus implies the apoptotic fate of the cells. Furthermore, the inhibitory activities against EGFR, VEGFR-2 and CDK-2/cyclin A2 kinases for 8, 10 and 21 were studied to detect the mechanism of their high potency. The coumarin-triazole-glycosyl hybrids 8 and 10 illustrated excellent broad inhibitory activity (IC50= 0.22 ± 0.01, 0.93 ± 0.42 and 0.24 ± 0.20 μM, respectively, for compound 8), (IC50 = 0.12 ± 0.50, 0.79 ± 0.14 and 0.15± 0. 60 μM, respectively, for compound 10), in comparison with the reference drugs, erlotinib, sorafenib and roscovitine (IC50 = 0.18 ± 0.05, 1.58 ± 0.11 and 0.46 ± 0.30 μM, respectively). In addition, the docking study was simulated to afford better rationalization and put insight into the binding affinity between the promising derivatives and their targeted enzymes and that might be used as an optimum lead for further modification in the anticancer field.
Collapse
|
41
|
Singh R, Jha D, Dhawan U, Gautam HK, Kumar P. Therapeutic Applications of Self-assembled Indole-3-butanoyl-polyethylenimine Nanostructures. Indian J Microbiol 2022; 62:411-418. [PMID: 35974923 PMCID: PMC9375784 DOI: 10.1007/s12088-022-01015-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/06/2022] [Indexed: 12/24/2022] Open
Abstract
This study demonstrates the therapeutic potential of indole-3-butanoyl-polyethylenimine (IBP) nanostructures formed via self-assembly in aqueous system. Dynamic light scattering (DLS) analysis confirmed the formation of the nanostructures in the size range of ~ 194-331 nm. These nanostructures showed commendable antimicrobial activity against wide range of microbes including multi-drug resistant bacteria. Besides, appreciable antioxidant and anti-inflammatory activities were also observed. Results of cytotoxicity studies, performed on normal transformed human embryonic kidney (HEK 293) cells and human red blood cells (hRBCs), revealed almost non-toxic behavior of these nanostructures, however, remarkable toxicity on human breast cancer cells (MCF-7), human osteosarcoma cells (Mg63) and human liver cancer cells (HepG2) was observed. The pre-apoptotic and anti-proliferative activity of IBP nanostructures were confirmed by acridine orange/propidium iodide dual staining assay followed by confocal microscopy and scratch assay on Mg63 cells. Taken together, these results advocate the promising potential of the synthesized IBP nanostructures in the therapeutic applications. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-022-01015-y.
Collapse
Affiliation(s)
- Reena Singh
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Diksha Jha
- Immunology and Infectious Disease Biology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi, 110075 India
| | - Hemant K. Gautam
- Immunology and Infectious Disease Biology Laboratory, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007 India
| |
Collapse
|
42
|
Recent Advances in Synthesis and Properties of Pyrazoles. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyrazole-containing compounds represent one of the most influential families of N-heterocycles due to their proven applicability and versatility as synthetic intermediates in preparing relevant chemicals in biological, physical-chemical, material science, and industrial fields. Therefore, synthesizing structurally diverse pyrazole derivatives is highly desirable, and various researchers continue to focus on preparing this functional scaffold and finding new and improved applications; this review highlights some of the most recent and strategic examples regarding the synthesis and properties of different pyrazole derivatives, mainly reported from 2017–present. The discussion involves strategically functionalized rings (i.e., amines, carbaldehydes, halides, etc.) and their use in forming various fused systems, predominantly bicyclic cores with 5:6 fusion taking advantage of our experience in this field and the more recent investigations of our research group.
Collapse
|
43
|
Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids. Pharmaceuticals (Basel) 2022; 15:ph15091071. [PMID: 36145292 PMCID: PMC9500727 DOI: 10.3390/ph15091071] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex disease, and its treatment is a big challenge, with variable efficacy of conventional anticancer drugs. A two-drug cocktail hybrid approach is a potential strategy in recent drug discovery that involves the combination of two drug pharmacophores into a single molecule. The hybrid molecule acts through distinct modes of action on several targets at a given time with more efficacy and less susceptibility to resistance. Thus, there is a huge scope for using hybrid compounds to tackle the present difficulties in cancer medicine. Recent work has applied this technique to uncover some interesting molecules with substantial anticancer properties. In this study, we report data on numerous promising hybrid anti-proliferative/anti-tumor agents developed over the previous 10 years (2011–2021). It includes quinazoline, indole, carbazole, pyrimidine, quinoline, quinone, imidazole, selenium, platinum, hydroxamic acid, ferrocene, curcumin, triazole, benzimidazole, isatin, pyrrolo benzodiazepine (PBD), chalcone, coumarin, nitrogen mustard, pyrazole, and pyridine-based anticancer hybrids produced via molecular hybridization techniques. Overall, this review offers a clear indication of the potential benefits of merging pharmacophoric subunits from multiple different known chemical prototypes to produce more potent and precise hybrid compounds. This provides valuable knowledge for researchers working on complex diseases such as cancer.
Collapse
|
44
|
Salem ME, Fares IMZ, Ghozlan SAS, Abdel‐Aziz MM, Abdelhamid IA, Elwahy AHM. Facile synthesis and antimicrobial activity of
bis
(fused
4
H
‐pyrans) incorporating piperazine as novel hybrid molecules: Michael's addition approach. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mostafa E. Salem
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | | | | | | | | | | |
Collapse
|
45
|
Ragab A, Abusaif MS, Aboul-Magd DS, Wassel MMS, Elhagali GAM, Ammar YA. A new exploration toward adamantane derivatives as potential anti-MDR agents: Design, synthesis, antimicrobial, and radiosterilization activity as potential topoisomerase IV and DNA gyrase inhibitors. Drug Dev Res 2022; 83:1305-1330. [PMID: 35716118 DOI: 10.1002/ddr.21960] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 12/16/2022]
Abstract
Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Mohammed M S Wassel
- Department of Foot and Mouth Disease, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt
| | - Gameel A M Elhagali
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
46
|
Alamshany ZM, Tashkandi NY, Othman IMM, Anwar MM, Nossier ES. New thiophene, thienopyridine and thiazoline-based derivatives: Design, synthesis and biological evaluation as antiproliferative agents and multitargeting kinase inhibitors. Bioorg Chem 2022; 127:105964. [PMID: 35759881 DOI: 10.1016/j.bioorg.2022.105964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Multitargeting kinase inhibitors recently proved to be a profitable approach for conquering cancer proliferation. The current study represents the design and synthesis of new thiophene, thienopyridine, and thiazoline-based derivatives 4-14a,b. All the target compounds were examined in vitro against three cancer cell lines; the liver (HepG-2), breast (MCF-7), and colon (HCT-116) where the thiophene-based compounds 5a-c, demonstrated the most potent activity. Furthermore, the latter derivatives revealed a safety profile against WI-38 normal cell line of selectivity indices ranging from 4.43 to 17.44. In vitro enzyme assay of 5a-c revealed that the carbohydrazide analog 5c has the most promising multitargeting inhibiting activity against Pim-1, VEGFR-2, and EGFRWT enzymes of IC50 values; 0.037 ± 0.02, 0.95 ± 0.24, and 0.16 ± 0.05 µM, respectively. As it was the most potent analog, 5c was further subjected to cell cycle and apoptosis analysis. The results indicated that it induced preG1 arrest and an apoptotic effect in the early and late stages. Moreover, further apoptosis studies were carried out for 5c to evaluate its proapoptotic potential. Interestingly, 5c enhanced the levels of Bax/Bcl-2 ratio, p53, and active caspase 3 by 18, 6.4, and 24 folds, respectively compared to the untreated cells. The antimicrobial evaluation showed that only compounds 3 and 5a produced broad-spectrum potency, while 5b and 5c exhibited outstanding antifungal effects. Finally, a molecular docking study was carried out to discover the probable interactions of compound 5c with the active sites of Pim-1, VEGFR-2, and EGFRWT kinases.
Collapse
Affiliation(s)
- Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | - Nada Y Tashkandi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | - Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| |
Collapse
|
47
|
Fabitha K, Chandrakanth M, Pramod RN, Arya CG, Li Y, Banothu J. Recent Developments in the Synthesis of Indole‐Pyrazole Hybrids. ChemistrySelect 2022. [DOI: 10.1002/slct.202201064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- K. Fabitha
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - Munugala Chandrakanth
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - Rakendu N. Pramod
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - C. G. Arya
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| | - Yupeng Li
- Masonic Cancer Center and Department of Medicinal Chemistry University of Minnesota Minneapolis Minnesota 55455 United States
| | - Janardhan Banothu
- Department of Chemistry National Institute of Technology Calicut Kozhikode 673601 Kerala India
| |
Collapse
|
48
|
Mohammadi Ziarani G, Hasani S, Mohajer F, Varma RS, Rafiee F. The Molecular Diversity of 1H-Indole-3-Carbaldehyde Derivatives and Their Role in Multicomponent Reactions. Top Curr Chem (Cham) 2022; 380:24. [PMID: 35467226 DOI: 10.1007/s41061-022-00379-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
1H-Indole-3-carbaldehyde and related members of the indole family are ideal precursors for the synthesis of active molecules. 1H-Indole-3-carbaldehyde and its derivatives are essential and efficient chemical precursors for generating biologically active structures. Multicomponent reactions (MCRs) offer access to complex molecules. This review highlights the recent applications of 1H-indole-3-carbaldehyde in such inherently sustainable multicomponent reactions from the period, 2014 to 2021 and provides an overview of the field that awaits further exploitation in the assembly of pharmaceutically interesting scaffolds.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran.
| | - Samira Hasani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Fatemeh Rafiee
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, PO Box 1993893973, Tehran, Iran
| |
Collapse
|
49
|
Awad H. Meet the Editorial Board Member. Mini Rev Med Chem 2022. [DOI: 10.2174/138955752206220314100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Venkatanarayana M, Nuchu R, Babu HS. Ultrasound assisted effective synthesis of benzopril based indole derivatives, docking studies: And there in vitro anti-proliferative effects on various cancer cell lines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|