1
|
Cook BE, Pickel TC, Nag S, Bolduc PN, Beshr R, Forsberg Morén A, Muste C, Boscutti G, Jiang D, Yuan L, Datta P, Ochniewicz P, Khani Meynaq Y, Tang SP, Plisson C, Amatruda M, Zhang Q, DuBois JM, Delavari A, Klein SK, Polyak I, Shoroye A, Girmay S, Halldin C, Martarello L, Peterson EA, Kaliszczak M. PET imaging of antisense oligonucleotide distribution in rat and nonhuman primate brains using click chemistry. Sci Transl Med 2025; 17:eadl1732. [PMID: 40333995 DOI: 10.1126/scitranslmed.adl1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/13/2024] [Accepted: 04/16/2025] [Indexed: 05/09/2025]
Abstract
Determination of a drug's biodistribution is critical to ensure that it reaches the target tissue of interest. This is particularly challenging in the brain, where invasive sampling methods may not be possible. Here, we present a pretargeted positron emission tomography (PET) imaging methodology that uses bioorthogonal click chemistry to determine the distribution of an antisense oligonucleotide (ASO) in the brains of rats and nonhuman primates after intrathecal dosing of ASO. A PET tracer, [18F]BIO-687, bearing a click-reactive trans-cyclooctene was developed and tested in conjunction with a test Malat1 ASO conjugated with a methyltetrazine group. PET imaging in rats demonstrated that the tracer had good kinetic properties for PET imaging in the rodent central nervous system and could react to form a covalent linkage with high specificity to the methyltetrazine-conjugated ASO in vivo. Furthermore, the amount of PET tracer reacted by cycloaddition with the methyltetrazine was determined to be dependent on the concentration of ASO-methyltetrazine in rat brain tissue, as determined by comparing the PET imaging signal with the liquid chromatography-mass spectrometry signal in the tissue homogenates. The approach was evaluated in cynomolgus macaques using both the Malat1 test ASO and a candidate therapeutic ASO, BIIB080, targeting the microtubule-associated protein tau (MAPT) gene. PET imaging showed favorable tracer kinetics and specific binding to both ASOs in nonhuman primate (NHP) brain in vivo. These results suggest that the PET imaging tracer [18F]BIO-687 could show the distribution of intrathecally delivered ASOs in the rat and NHP brains.
Collapse
Affiliation(s)
| | | | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | | | - Rouaa Beshr
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Anton Forsberg Morén
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | | | | | - Di Jiang
- Biogen, Cambridge, MA 02142, USA
| | | | - Prodip Datta
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Piotr Ochniewicz
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Yasir Khani Meynaq
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
2
|
Hvass L, Müller M, Staudt M, García-Vázquez R, Gustavsson TK, Shalgunov V, Jørgensen JT, Battisti UM, Herth MM, Kjaer A. Head-to-Head Comparison of the in Vivo Performance of Highly Reactive and Polar 18F-Labeled Tetrazines. Mol Pharm 2025; 22:1911-1919. [PMID: 40081392 PMCID: PMC11979891 DOI: 10.1021/acs.molpharmaceut.4c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/16/2025]
Abstract
Pretargeted imaging harnessing tetrazine ligation has gained increased interest over recent years. Targeting vectors with slow pharmacokinetics may be visualized using short-lived radionuclides, such as fluorine-18 (18F) for positron emission tomography (PET), and result in improved target-to-background ratios compared to conventionally radiolabeled slowly accumulating vectors. We recently developed different radiochemical protocols enabling the direct radiofluorination of various tetrazine scaffolds, resulting in the development of various highly reactive and polar 18F-labeled tetrazines as lead candidates for pretargeted imaging. Here, we performed a direct head-to-head-comparison of our lead candidates to evaluate the most promising for future clinical translation. For that, all 18F-labeled tetrazine-scaffolds were synthesized in similar molar activity for improved comparability of their in vivo pretargeting performance. Intriguingly, previously reported dicarboxylic acid lead candidates with a net charge of -1 were outperformed by respective monocarboxylic acid derivatives bearing a net charge of 0, warranting further evaluation of such scaffolds prior to their clinical translation.
Collapse
Affiliation(s)
- Lars Hvass
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Markus Staudt
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocio García-Vázquez
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tobias K. Gustavsson
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper T. Jørgensen
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto M. Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen N, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Lacerda S, de Kruijff RM, Djanashvili K. The Advancement of Targeted Alpha Therapy and the Role of Click Chemistry Therein. Molecules 2025; 30:1296. [PMID: 40142070 PMCID: PMC11944744 DOI: 10.3390/molecules30061296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Recent years have seen a swift rise in the use of α-emitting radionuclides such as 225Ac and 223Ra as various radiopharmaceuticals to treat (micro)metastasized tumors. They have shown remarkable effectiveness in clinical practice owing to the highly cytotoxic α-particles that are emitted, which have a very short range in tissue, causing mainly double-stranded DNA breaks. However, it is essential that both chelation and targeting strategies are optimized for their successful translation to clinical application, as α-emitting radionuclides have distinctly different features compared to β--emitters, including their much larger atomic radius. Furthermore, upon α-decay, any daughter nuclide irrevocably breaks free from the targeting molecule, known as the recoil effect, dictating the need for faster targeting to prevent healthy tissue toxicity. In this review we provide a brief overview of the current status of targeted α-therapy and highlight innovations in α-emitter-based chelator design, focusing on the role of click chemistry to allow for fast complexation to biomolecules at mild labeling conditions. Finally, an outlook is provided on different targeting strategies and the role that pre-targeting can play in targeted alpha therapy.
Collapse
Affiliation(s)
- Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, France;
| | - Robin M. de Kruijff
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
| | - Kristina Djanashvili
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
de Roode KE, Rossin R, Robillard MS. Toward Realization of Bioorthogonal Chemistry in the Clinic. Top Curr Chem (Cham) 2025; 383:12. [PMID: 40042792 PMCID: PMC11882664 DOI: 10.1007/s41061-025-00495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
In the last decade, the use of bioorthogonal chemistry toward medical applications has increased tremendously. Besides being useful for the production of pharmaceuticals, the efficient, nontoxic reactions open possibilities for the development of therapies that rely on in vivo chemistry between two bioorthogonal components. Here we discuss the latest developments in bioorthogonal chemistry, with a focus on their use in living organisms, the translation from model systems to humans, and the challenges encountered during preclinical development. We aim to provide the reader a broad presentation of the current state of the art and demonstrate the numerous possibilities that bioorthogonal reactions have for clinical use, now and in the near future.
Collapse
Affiliation(s)
- Kim E de Roode
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Marc S Robillard
- Tagworks Pharmaceuticals, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Herth MM, Hvass L, Poulie CBM, Müller M, García-Vázquez R, Gustavsson T, Shalgunov V, Clausen AS, Jørgensen JT, Hansson E, Jensen H, Aneheim E, Lindegren S, Kjaer A, Battisti UM. An 211At-labeled Tetrazine for Pretargeted Therapy. J Med Chem 2025; 68:4410-4425. [PMID: 39963966 DOI: 10.1021/acs.jmedchem.4c02281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Pretargeted radioimmunoimaging has been shown to enhance tumor-to-background ratios by up to 125-fold at early time points, leading to more efficient and less toxic radionuclide therapies, particularly with shorter half-lives such as astatine-211 (211At). The tetrazine ligation is the most utilized bioorthogonal reaction in these strategies, making tetrazines ideal for 211At labeling and controlling the biodistribution. We developed a 211At-labeled pretargeting agent for alpha-radionuclide therapy, achieving a radiochemical yield of approximately 65% and purity over 99%. Our results showed higher tumor-to-blood ratios within the first 24 h compared to directly labeled monoclonal antibodies. This suggests that pretargeted therapy may deliver better tumor doses than conventional methods, although the deastatination observed will need to be addressed in future tetrazine developments.
Collapse
Affiliation(s)
- Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Lars Hvass
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocio García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Tobias Gustavsson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Anne S Clausen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ellinor Hansson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gula Stråket 2b, 41345 Gothenburg, Sweden
| | - Holger Jensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen Ø, Denmark
| | - Emma Aneheim
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gula Stråket 2b, 41345 Gothenburg, Sweden
| | - Sture Lindegren
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gula Stråket 2b, 41345 Gothenburg, Sweden
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine, Cyclotron and Radiochemistry Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Auchynnikava T, Äärelä A, Moisio O, Liljenbäck H, Andriana P, Iqbal I, Laine T, Palani S, Lehtimäki J, Rajander J, Salo H, Airaksinen AJ, Virta P, Roivainen A. Biological Evaluation of Molecular Spherical Nucleic Acids: Targeting Tumors via a Hybridization-Based Folate Decoration. ACS OMEGA 2025; 10:6003-6014. [PMID: 39989783 PMCID: PMC11840764 DOI: 10.1021/acsomega.4c10047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/05/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
Folate receptors (FRs), membrane-bound proteins that bind specifically to folate with high affinity, are overexpressed by various cancer types and are therefore used as targets for delivery of therapeutic agents. Molecular spherical nucleic acids (MSNAs) are dendritic formulations of oligonucleotides (ONs) that may have advantages over linear parent ONs with respect to delivery properties. Here, we assembled folate-decorated MSNAs, site-specifically radiolabeled them, and then biologically evaluated their effects in mice bearing HCC1954 breast cancer xenograft tumors. The biodistribution of intravenously administered 18F-radiolabeled MSNAs was monitored using positron emission tomography/computed tomography imaging. The results revealed higher accumulation of folate-decorated MSNAs in FR-expressing organs such as the liver, kidney, and spleen, as well as a higher tumor-to-muscle ratio than that observed for MSNAs without the folate decoration. However, the observed increase was statistically significant only for MSNA structures with a PO backbone. The observed selective uptake of folate-decorated MSNAs highlights their potential as targeted delivery vehicles for therapeutic and diagnostic agents in FR-overexpressing cancers.
Collapse
Affiliation(s)
- Tatsiana Auchynnikava
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Antti Äärelä
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Olli Moisio
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Heidi Liljenbäck
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Turku
Center for Disease Modeling, University
of Turku, Turku FI-20520, Finland
| | - Putri Andriana
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Imran Iqbal
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Toni Laine
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Senthil Palani
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
| | - Jyrki Lehtimäki
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Johan Rajander
- Turku
PET Centre, Accelerator Laboratory, Åbo
Akademi University, Turku FI-20520, Finland
| | - Harri Salo
- Research
and Development, Orion Pharma, Turku FI-20380, Finland
| | - Anu J. Airaksinen
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Pasi Virta
- Department
of Chemistry, University of Turku, Turku FI-20500, Finland
| | - Anne Roivainen
- Turku
PET Centre, University of Turku and Turku
University Hospital, Turku FI-20520, Finland
- Turku
Center for Disease Modeling, University
of Turku, Turku FI-20520, Finland
- InFLAMES
Research Flagship, University of Turku, Turku FI-20520, Finland
| |
Collapse
|
7
|
Yang C, Lu K, Li J, Wu H, Chen W. Rapid Construction of 18F-Triazolyl-tetrazines through the Click Reaction. J Org Chem 2024; 89:14673-14678. [PMID: 38875503 DOI: 10.1021/acs.joc.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Due to the fast reaction rate, 18F-labeled tetrazines have been widely applied in positron emission tomography (PET) imaging in cancer research and drug discovery. In this work, several functional 18F-triazolyl-tetrazines were rapidly obtained through an optimized copper-catalyzed alkyene-azide cycloaddition reaction system in >99% radiochemical conversions. Notably, the commonly used 18F-labeled azides were isolated through cartridges and directly used for cycloadditions, which greatly simplified the labeling procedure. The assembled triazolyl-tetrazines demonstrated high in vitro stability and reaction kinetics, exhibiting considerable potential for the development of PET agents.
Collapse
Affiliation(s)
- Cheng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Kai Lu
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Haoxing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Huaxi Research Building, 001 4th Keyuan Road, Chengdu 610041, China
| | - Wei Chen
- Department of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Staudt M, Hvass L, Müller M, García-Vázquez R, Jo̷rgensen JT, Shalgunov V, Battisti UM, Kjær A, Herth MM. Development of Polar BODIPY-Tetrazines for Rapid Pretargeted Fluorescence Imaging. ACS OMEGA 2024; 9:42498-42505. [PMID: 39431101 PMCID: PMC11483389 DOI: 10.1021/acsomega.4c06570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Polar BODIPY-tetrazine dyes were developed and clicked in vivo to a preaccumulated trans-cyclooctene-modified anti-TAG72 monoclonal antibody CC49 (CC49-TCO). The in vivo click performance was evaluated using an in-house developed ex vivo blocking assay. All tested polar BODIPY structures exhibited excellent in vivo binding, confirming that the turn-on tetrazine dyes successfully clicked in vivo to pretargeted CC49-TCO. Fluorescence imaging showed high tumor-to-muscle ratios of 4:1. This proof-of-concept study indicates that the pretargeting concept based on turn-on probes could be used for cancer treatments, such as photodynamic or -thermal therapy.
Collapse
Affiliation(s)
- Markus Staudt
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Lars Hvass
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark
| | - Marius Müller
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Tranekjær Jo̷rgensen
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Kjær
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
- Cluster
for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine
& PET, Rigshospitalet,
Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Quintana J, Carlson JCT, Scott E, Ng TSC, Miller MA, Weissleder R. Scission-Enhanced Molecular Imaging (SEMI). Bioconjug Chem 2024; 35. [PMID: 39255972 PMCID: PMC11488501 DOI: 10.1021/acs.bioconjchem.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024]
Abstract
Positron emission tomography (PET) imaging methods have advanced our understanding of human biology, while targeted radiotherapeutic drug treatments are now routinely used clinically. The field is expected to grow considerably based on an expanding repertoire of available affinity ligands, radionuclides, conjugation chemistries, and their FDA approvals. With this increasing use, strategies for dose reduction have become of high interest to protect patients from unnecessary and off-target toxicity. Here, we describe a simple and powerful method, scission-enhanced molecular imaging (SEMI). The technique allows for rapid corporeal elimination of radionuclides once imaging or theranostic treatment is completed and relies on "click-to-release" bioorthogonal linkers.
Collapse
Affiliation(s)
- Jeremy
M. Quintana
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jonathan C. T. Carlson
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Cancer
Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Ella Scott
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Thomas S. C. Ng
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Miles A. Miller
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center
for Systems Biology, Massachusetts General
Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Cancer
Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department
of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Yang H, Sun H, Chen Y, Wang Y, Yang C, Yuan F, Wu X, Chen W, Yin P, Liang Y, Wu H. Enabling Universal Access to Rapid and Stable Tetrazine Bioorthogonal Probes through Triazolyl-Tetrazine Formation. JACS AU 2024; 4:2853-2861. [PMID: 39211625 PMCID: PMC11350731 DOI: 10.1021/jacsau.3c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 09/04/2024]
Abstract
Despite the immense potential of tetrazine bioorthogonal chemistry in biomedical research, the in vivo performance of tetrazine probes is challenged by the inverse correlation between the physiological stability and reactivity of tetrazines. Additionally, the synthesis of functionalized tetrazines is often complex and requires specialized reagents. To overcome these issues, we present a novel tetrazine scaffold-triazolyl-tetrazine-that can be readily synthesized from shelf-stable ethynyl-tetrazines and azides. Triazolyl-tetrazines exhibit improved physiological stability along with high reactivity. We showcase the effectiveness of this approach by creating cell-permeable probes for protein labeling and live cell imaging, as well as efficiently producing 18F-labeled molecular probes for positron emission tomography imaging. By utilizing the readily available pool of functionalized azides, we envisage that this modular approach will provide universal accessibility to tetrazine bioorthogonal tools, facilitating applications in biomedicine and materials science.
Collapse
Affiliation(s)
- Haojie Yang
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbao Sun
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinghan Chen
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering,
Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yayue Wang
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Yang
- Key
Laboratory of Drug-Targeting and Drug Delivery System of the Education
Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Fang Yuan
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department
of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West
China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Chen
- Department
of Nuclear Medicine and Clinical Nuclear Medicine Research Lab, West
China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Yin
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Liang
- State
Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of
Advanced Organic Materials, School of Chemistry and Chemical Engineering,
Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Haoxing Wu
- Department
of Radiology and Huaxi MR Research Center, Functional and Molecular
Imaging Key Laboratory of Sichuan Province and Frontiers Science Center
for Disease Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Key
Laboratory of Drug-Targeting and Drug Delivery System of the Education
Ministry and Sichuan Province, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Lauwerys L, Beroske L, Solania A, Vangestel C, Miranda A, Van Giel N, Adhikari K, Lambeir AM, Wyffels L, Wolan D, Van der Veken P, Elvas F. Development of caspase-3-selective activity-based probes for PET imaging of apoptosis. EJNMMI Radiopharm Chem 2024; 9:58. [PMID: 39117920 PMCID: PMC11310375 DOI: 10.1186/s41181-024-00291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The cysteine-aspartic acid protease caspase-3 is recognized as the main executioner of apoptosis in cells responding to specific extrinsic and intrinsic stimuli. Caspase-3 represents an interesting biomarker to evaluate treatment response, as many cancer therapies exert their effect by inducing tumour cell death. Previously developed caspase-3 PET tracers were unable to reach routine clinical use due to low tumour uptake or lack of target selectivity, which are two important requirements for effective treatment response evaluation in cancer patients. Therefore, the goal of this study was to develop and preclinically evaluate novel caspase-3-selective activity-based probes (ABPs) for apoptosis imaging. RESULTS A library of caspase-3-selective ABPs was developed for tumour apoptosis detection. In a first attempt, the inhibitor Ac-DW3-KE (Ac-3Pal-Asp-βhLeu-Phe-Asp-KE) was 18F-labelled on the N-terminus to generate a radiotracer that was incapable of adequately detecting an increase in apoptosis in vivo. The inability to effectively detect active caspase-3 in vivo was likely attributable to slow binding, as demonstrated with in vitro inhibition kinetics. Hence, a second generation of caspase-3 selective ABPs was developed based on the Ac-ATS010-KE (Ac-3Pal-Asp-Phe(F5)-Phe-Asp-KE) with greatly improved binding kinetics over Ac-DW3-KE. Our probes based on Ac-ATS010-KE were made by modifying the N-terminus with 6 different linkers. All the linker modifications had limited effect on the binding kinetics, target selectivity, and pharmacokinetic profile in healthy mice. In an in vitro apoptosis model, the least hydrophilic tracer [18F]MICA-316 showed an increased uptake in apoptotic cells in comparison to the control group. Finally, [18F]MICA-316 was tested in an in vivo colorectal cancer model, where it showed a limited tumour uptake and was unable to discriminate treated tumours from the untreated group, despite demonstrating that the radiotracer was able to bind caspase-3 in complex mixtures in vitro. In contrast, the phosphatidylethanolamine (PE)-binding radiotracer [99mTc]Tc-duramycin was able to recognize the increased cell death in the disease model, making it the best performing treatment response assessment tracer developed thus far. CONCLUSIONS In conclusion, a novel library of caspase-3-binding PET tracers retaining similar binding kinetics as the original inhibitor was developed. The most promising tracer, [18F]MICA-316, showed an increase uptake in an in vitro apoptosis model and was able to selectively bind caspase-3 in apoptotic tumour cells. In order to distinguish therapy-responsive from non-responsive tumours, the next generation of caspase-3-selective ABPs will be developed with higher tumour accumulation and in vivo stability.
Collapse
Affiliation(s)
- Louis Lauwerys
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Lucas Beroske
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Angelo Solania
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christel Vangestel
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Alan Miranda
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Nele Van Giel
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Karuna Adhikari
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium
| | - Leonie Wyffels
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Dennis Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| |
Collapse
|
12
|
Adhikari P, Li G, Go M, Mandikian D, Rafidi H, Ng C, Anifa S, Johnson K, Bao L, Hernandez Barry H, Rowntree R, Agard N, Wu C, Chou KJ, Zhang D, Kozak KR, Pillow TH, Lewis GD, Yu SF, Boswell CA, Sadowsky JD. On Demand Bioorthogonal Switching of an Antibody-Conjugated SPECT Probe to a Cytotoxic Payload: from Imaging to Therapy. J Am Chem Soc 2024; 146:19088-19100. [PMID: 38946086 DOI: 10.1021/jacs.4c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Antibody-drug conjugates (ADCs) for the treatment of cancer aim to achieve selective delivery of a cytotoxic payload to tumor cells while sparing normal tissue. In vivo, multiple tumor-dependent and -independent processes act on ADCs and their released payloads to impact tumor-versus-normal delivery, often resulting in a poor therapeutic window. An ADC with a labeled payload would make synchronous correlations between distribution and tissue-specific pharmacological effects possible, empowering preclinical and clinical efforts to improve tumor-selective delivery; however, few methods to label small molecules without destroying their pharmacological activity exist. Herein, we present a bioorthogonal switch approach that allows a radiolabel attached to an ADC payload to be removed tracelessly at will. We exemplify this approach with a potent DNA-damaging agent, the pyrrolobenzodiazepine (PBD) dimer, delivered as an antibody conjugate targeted to lung tumor cells. The radiometal chelating group, DOTA, was attached via a novel trans-cyclooctene (TCO)-caged self-immolative para-aminobenzyl (PAB) linker to the PBD, stably attenuating payload activity and allowing tracking of biodistribution in tumor-bearing mice via SPECT-CT imaging (live) or gamma counting (post-mortem). Following TCO-PAB-DOTA reaction with tetrazines optimized for extra- and intracellular reactivity, the label was removed to reveal the unmodified PBD dimer capable of inducing potent tumor cell killing in vitro and in mouse xenografts. The switchable antibody radio-drug conjugate (ArDC) we describe integrates, but decouples, the two functions of a theranostic given that it can serve as a diagnostic for payload delivery in the labeled state, but can be switched on demand to a therapeutic agent (an ADC).
Collapse
Affiliation(s)
- Pragya Adhikari
- Genentech Inc., South San Francisco, California 94080, United States
| | - Guangmin Li
- Genentech Inc., South San Francisco, California 94080, United States
| | - MaryAnn Go
- Genentech Inc., South San Francisco, California 94080, United States
| | | | - Hanine Rafidi
- Genentech Inc., South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech Inc., South San Francisco, California 94080, United States
| | - Sagana Anifa
- Genentech Inc., South San Francisco, California 94080, United States
| | - Kevin Johnson
- Genentech Inc., South San Francisco, California 94080, United States
| | - Linda Bao
- Genentech Inc., South San Francisco, California 94080, United States
| | | | - Rebecca Rowntree
- Genentech Inc., South San Francisco, California 94080, United States
| | - Nicholas Agard
- Genentech Inc., South San Francisco, California 94080, United States
| | - Cong Wu
- Genentech Inc., South San Francisco, California 94080, United States
| | - Kang-Jye Chou
- Genentech Inc., South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech Inc., South San Francisco, California 94080, United States
| | - Katherine R Kozak
- Genentech Inc., South San Francisco, California 94080, United States
| | - Thomas H Pillow
- Genentech Inc., South San Francisco, California 94080, United States
| | - Gail D Lewis
- Genentech Inc., South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech Inc., South San Francisco, California 94080, United States
| | - C Andrew Boswell
- Genentech Inc., South San Francisco, California 94080, United States
| | - Jack D Sadowsky
- Genentech Inc., South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Mishra A, Carrascal-Miniño A, Kim J, T M de Rosales R. [ 68Ga]Ga-THP-tetrazine for bioorthogonal click radiolabelling: pretargeted PET imaging of liposomal nanomedicines. RSC Chem Biol 2024; 5:622-639. [PMID: 38966673 PMCID: PMC11221536 DOI: 10.1039/d4cb00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
Pretargeted PET imaging using bioorthogonal chemistry is a leading strategy for the tracking of long-circulating agents such as antibodies and nanoparticle-drug delivery systems with short-lived isotopes. Here, we report the synthesis, characterisation and in vitro/vivo evaluation of a new 68Ga-based radiotracer [68Ga]Ga-THP-Tetrazine ([68Ga]Ga-THP-Tz) for bioorthogonal click radiochemistry and in vivo labelling of agents with slow pharmacokinetics. THP-tetrazine (THP-Tz) can be radiolabelled to give [68/67Ga]Ga-THP-Tz at room temperature in less than 15 minutes with excellent radiochemical stability in vitro and in vivo. [68Ga]Ga-THP-Tz was tested in vitro and in vivo for pretargeted imaging of stealth PEGylated liposomes, chosen as a leading clinically-approved platform of nanoparticle-based drug delivery, and for their known long-circulating properties. To achieve this, PEGylated liposomes were functionalised with a synthesised transcyclooctene (TCO) modified phospholipid. Radiolabelling of TCO-PEG-liposomes with [68/67Ga]Ga-THP-Tz was demonstrated in vitro in human serum, and in vivo using both healthy mice and in a syngeneic cancer murine model (WEHI-164 fibrosarcoma). Interestingly in vivo data revealed that [68Ga]Ga-THP-Tz was able to in vivo radiolabel liposomes present in the liver and spleen, and not those in the blood pool or in the tumour. Overall, these results demonstrate the potential of [68Ga]Ga-THP-Tz for pretargeted imaging/therapy but also some unexpected limitations of this system.
Collapse
Affiliation(s)
- Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London St Thomas' Hospital London SE1 7EH UK
| | - Amaia Carrascal-Miniño
- School of Biomedical Engineering & Imaging Sciences, King's College London St Thomas' Hospital London SE1 7EH UK
| | - Jana Kim
- School of Biomedical Engineering & Imaging Sciences, King's College London St Thomas' Hospital London SE1 7EH UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London St Thomas' Hospital London SE1 7EH UK
| |
Collapse
|
14
|
Adhikari K, Vanermen M, Da Silva G, Van den Wyngaert T, Augustyns K, Elvas F. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. EJNMMI Radiopharm Chem 2024; 9:47. [PMID: 38844698 PMCID: PMC11156836 DOI: 10.1186/s41181-024-00275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Trans-cyclooctenes (TCOs) are highly strained alkenes with remarkable reactivity towards tetrazines (Tzs) in inverse electron-demand Diels-Alder reactions. Since their discovery as bioorthogonal reaction partners, novel TCO derivatives have been developed to improve their reactivity, stability, and hydrophilicity, thus expanding their utility in diverse applications. MAIN BODY TCOs have garnered significant interest for their applications in biomedical settings. In chemical biology, TCOs serve as tools for bioconjugation, enabling the precise labeling and manipulation of biomolecules. Moreover, their role in nuclear medicine is substantial, with TCOs employed in the radiolabeling of peptides and other biomolecules. This has led to their utilization in pretargeted nuclear imaging and therapy, where they function as both bioorthogonal tags and radiotracers, facilitating targeted disease diagnosis and treatment. Beyond these applications, TCOs have been used in targeted cancer therapy through a "click-to-release" approach, in which they act as key components to selectively deliver therapeutic agents to cancer cells, thereby enhancing treatment efficacy while minimizing off-target effects. However, the search for a suitable TCO scaffold with an appropriate balance between stability and reactivity remains a challenge. CONCLUSIONS This review paper provides a comprehensive overview of the current state of knowledge regarding the synthesis of TCOs, and its challenges, and their development throughout the years. We describe their wide ranging applications as radiolabeled prosthetic groups for radiolabeling, as bioorthogonal tags for pretargeted imaging and therapy, and targeted drug delivery, with the aim of showcasing the versatility and potential of TCOs as valuable tools in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Maarten Vanermen
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Gustavo Da Silva
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
15
|
Tsuchihashi S, Nakashima K, Watanabe H, Ono M. Synthesis and evaluation of novel trifunctional chelating agents for pretargeting approach using albumin binder to improve tumor accumulation. Nucl Med Biol 2024; 132-133:108911. [PMID: 38614036 DOI: 10.1016/j.nucmedbio.2024.108911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION The pretargeting approach consists of in vivo ligation between pre-injected antibodies and low-molecular-weight radiolabeled effectors. The advantage of the pretargeting approach is to improve a tumor-to-background ratio, but the disadvantage is to compromise tumor accumulation. In this study, we applied albumin binder (ALB) to the pretargeting approach to overcome low tumor accumulation. METHODS We synthesized two novel trifunctional effectors containing an ALB moiety, a chelator, and a different tetrazine and two corresponding effectors without an ALB moiety. Albumin-binding assays and stability assays were performed using 111In-labeled effectors. Measurements of reaction rate constant were conducted using 111In-labeled effectors and anti-HER2 antibody trastuzumab modified by trans-cyclooctene, which drives the click reaction with tetrazine. Biodistribution studies using HER2-expressing tumor-bearing mice were performed with or without the pretargeting approach. RESULTS In albumin-binding assays, ALB-containing effectors exhibited a marked binding to albumin. Two ALB-containing effectors showed the difference in the reactivity and the slight difference in the stability. In biodistribution studies without the pretargeting approach, two ALB-containing effectors showed different pharmacokinetics in blood retention. With the pretargeting approach, the tumor accumulation was improved by the introduction of ALB and the highest tumor accumulation was observed in using the ALB-containing effector with higher blood retention. CONCLUSION These results suggest that the application of ALB to the pretargeting approach is effective to improve tumor accumulation, and the structure of tetrazine influences the utility of ALB-containing effectors.
Collapse
Affiliation(s)
- Shohei Tsuchihashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuma Nakashima
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Bohrmann L, Poulie CBM, Rodríguez-Rodríguez C, Karagiozov S, Saatchi K, Herth MM, Häfeli UO. Development of a 99mTc-labeled tetrazine for pretargeted SPECT imaging using an alendronic acid-based bone targeting model. PLoS One 2024; 19:e0300466. [PMID: 38626058 PMCID: PMC11020896 DOI: 10.1371/journal.pone.0300466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/27/2024] [Indexed: 04/18/2024] Open
Abstract
Pretargeting, which is the separation of target accumulation and the administration of a secondary imaging agent into two sequential steps, offers the potential to improve image contrast and reduce radiation burden for nuclear imaging. In recent years, the tetrazine ligation has emerged as a promising approach to facilitate covalent pretargeted imaging due to its unprecedented kinetics and bioorthogonality. Pretargeted bone imaging with TCO-modified alendronic acid (Aln-TCO) is an attractive model that allows the evaluation of tetrazines in healthy animals without the need for complex disease models or targeting regimens. Recent structure-activity relationship studies of tetrazines evaluated important parameters for the design of potent tetrazine-radiotracers for pretargeted imaging. However, limited information is available for 99mTc-labeled tetrazines. In this study, four tetrazines intended for labeling with fac-[99mTc(OH2)3 (CO)3]+ were synthesized and evaluated using an Aln-TCO mouse model. 3,6-bis(2-pyridyl)-1,2,4,5-Tz without additional linker showed higher pretargeted bone uptake and less background activity compared to the same scaffold with a PEG8 linker or 3-phenyl-1,2,4,5-Tz-based compounds. Additionally, improved bone/blood ratios were observed in pretargeted animals compared to animals receiving directly labeled Aln-TCO. The results of this study implicate 3,6-bis(2-pyridyl)-1,2,4,5-Tz as a promising scaffold for potential 99mTc-labeled tetrazines.
Collapse
Affiliation(s)
- Lennart Bohrmann
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | - Christian B. M. Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medicinal Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | | | - Stoyan Karagiozov
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medicinal Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
| | - Urs O. Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| |
Collapse
|
17
|
Schlein E, Rokka J, Odell LR, van den Broek SL, Herth MM, Battisti UM, Syvänen S, Sehlin D, Eriksson J. Synthesis and evaluation of fluorine-18 labelled tetrazines as pre-targeting imaging agents for PET. EJNMMI Radiopharm Chem 2024; 9:21. [PMID: 38446356 PMCID: PMC10917718 DOI: 10.1186/s41181-024-00250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND The brain is a challenging target for antibody-based positron emission tomography (immunoPET) imaging due to the restricted access of antibody-based ligands through the blood-brain barrier (BBB). To overcome this physiological obstacle, we have previously developed bispecific antibody ligands that pass through the BBB via receptor-mediated transcytosis. While these radiolabelled ligands have high affinity and specificity, their long residence time in the blood and brain, typical for large molecules, poses another challenge for PET imaging. A viable solution could be a two-step pre-targeting approach which involves the administration of a tagged antibody that accumulates at the target site in the brain and then clears from the blood, followed by administration of a small radiolabelled molecule with fast kinetics. This radiolabelled molecule can couple to the tagged antibody and thereby make the antibody localisation visible by PET imaging. The in vivo linkage can be achieved by using the inverse electron demand Diels-Alder reaction (IEDDA), with trans-cyclooctene (TCO) and tetrazine groups participating as reactants. In this study, two novel 18F-labelled tetrazines were synthesized and evaluated for their potential use as pre-targeting imaging agents, i.e., for their ability to rapidly enter the brain and, if unbound, to be efficiently cleared with minimal background retention. RESULTS The two compounds, a methyl tetrazine [18F]MeTz and an H-tetrazine [18F]HTz were radiolabelled using a two-step procedure via [18F]F-Py-TFP synthesized on solid support followed by amidation with amine-bearing tetrazines, resulting in radiochemical yields of 24% and 22%, respectively, and a radiochemical purity of > 96%. In vivo PET imaging was performed to assess their suitability for in vivo pre-targeting. Time-activity curves from PET-scans showed [18F]MeTz to be the more pharmacokinetically suitable agent, given its fast and homogenous distribution in the brain and rapid clearance. However, in terms of rection kinetics, H-tetrazines are advantageous, exhibiting faster reaction rates in IEDDA reactions with dienophiles like trans-cyclooctenes, making [18F]HTz potentially more beneficial for pre-targeting applications. CONCLUSION This study demonstrates a significant potential of [18F]MeTz and [18F]HTz as agents for pre-targeted PET brain imaging due to their efficient brain uptake, swift clearance and appropriate chemical stability.
Collapse
Affiliation(s)
- Eva Schlein
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Johanna Rokka
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Luke R Odell
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden
| | | | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Stina Syvänen
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Jonas Eriksson
- Department of Medicinal Chemistry, Uppsala University, 751 23, Uppsala, Sweden.
- PET Centre, Uppsala University Hospital, 751 85, Uppsala, Sweden.
| |
Collapse
|
18
|
Dai L, Zhang X, Zhou S, Li J, Pan L, Liao C, Wang Z, Chen Y, Shen G, Li L, Tian R, Sun H, Liu Z, Zhang S, Wu H. Pretargeted radiotherapy and synergistic treatment of metastatic, castration-resistant prostate cancer using cross-linked, PSMA-targeted lipoic acid nanoparticles. J Mater Chem B 2024; 12:2324-2333. [PMID: 38324337 DOI: 10.1039/d3tb02543h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is a currently incurable disease associated with high mortality. Novel therapeutic approaches for CRPC are urgently needed to improve prognosis. In this study, we developed cross-linked, PSMA-targeted lipoic acid nanoparticles (cPLANPs), which can interact with transmembrane glycoprotein to accumulate inside prostate cancer cells, where they upregulate caspase-3, downregulate anti-apoptotic B-cell lymphoma-2 (BCL-2), and thereby induce apoptosis. The trans-cyclooctene (TCO) decoration on cPLANPs acts as a bioorthogonal handle allowing pretargeted single-photon emission computed tomography and radiotherapy, which revealed significantly enhanced tumor accumulation and minimal off-target toxicity in our experiments. The developed strategy showed a strong synergistic anti-cancer effect in vivo, with a tumor inhibition rate of up to 95.6% after 14 days of treatment. Our results suggest the potential of combining bioorthogonal pretargeted radiotherapy with suitable PSMA-targeted nanoparticles for the treatment of metastatic CRPC.
Collapse
Affiliation(s)
- Liqun Dai
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Siming Zhou
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Jie Li
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Chunyan Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Zhipeng Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Ying Chen
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan, China
| | - Hongbao Sun
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| | - Zhenhua Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Haoxing Wu
- Department of Nuclear Medicine and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network, West China Hospital, Sichuan University, China.
| |
Collapse
|
19
|
Svatunek D, Murnauer A, Tan Z, Houk KN, Lang K. How cycloalkane fusion enhances the cycloaddition reactivity of dibenzocyclooctynes. Chem Sci 2024; 15:2229-2235. [PMID: 38332832 PMCID: PMC10848739 DOI: 10.1039/d3sc05789e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Dibenzoannulated cyclooctynes have emerged as valuable compounds for bioorthogonal reactions. They are commonly used in combination with azides in strain-promoted 1,3-dipolar cycloadditions. They are typically, however, unreactive towards 3,6-disubstituted tetrazines in inverse electron-demand Diels-Alder cycloadditions. Recently a dibenzoannulated bicyclo[6.1.0]nonyne derivative (DMBO) with a cyclopropane fused to the cyclooctyne core was described, which showed surprising reactivity towards tetrazines. To elucidate the unusual reactivity of DMBO, we performed density functional theory calculations and revealed that a tub-like structure in the transition state results in a much lower activation barrier than in the absence of cyclopropane fusion. The same transition state geometry is found for different cycloalkanes fused to the cyclooctyne core albeit higher activation barriers are observed for increased ring sizes. This conformation is energetically unfavored for previously known dibenzoannulated cyclooctynes and allows tetrazines and azides to approach DMBO from the face rather than the edge, a trajectory that was hitherto not observed for this class of activated dieno- and dipolarophiles.
Collapse
Affiliation(s)
- Dennis Svatunek
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9 1060 Vienna Austria
| | - Anton Murnauer
- Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| | - Zhuoting Tan
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - Kathrin Lang
- Department of Chemistry and Applied Biosciences, ETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
20
|
Shalgunov V, van den Broek SL, Andersen IV, Raval NR, Schäfer G, Barz M, Herth MM, Battisti UM. Evaluation of F-537-Tetrazine in a model for brain pretargeting imaging. Comparison to N-(3-[ 18F] fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine. Nucl Med Biol 2024; 128-129:108877. [PMID: 38232579 DOI: 10.1016/j.nucmedbio.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Brain pretargeted nuclear imaging for the diagnosis of various neurodegenerative diseases is a quickly developing field. The tetrazine ligation is currently the most explored approach to achieve this goal due to its remarkable properties. In this work, we evaluated the performance of F-537-Tetrazine, previously developed by Biogen, and N-(3-[18F]fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine, previously developed in our group, thereby allowing for the direct comparison of these two imaging probes. The evaluation included synthesis, radiolabeling and a comparison of the physicochemical properties of the compounds. Furthermore, their performance was evaluated by in vitro and in vivo pretargeting models. This study indicated that N-(3-[18F] fluoro-5-(1,2,4,5-tetrazin-3-yl)benzyl)propan-1-amine might be more suited for brain pretargeted imaging.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nakul R Raval
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Gabriela Schäfer
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Matthias Barz
- Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
21
|
Poulie CBM, Shalgunov V, Elvas F, Van Rymenant Y, Moon ES, Battisti UM, De Loose J, De Meester I, Rösch F, Van Der Veken P, Herth MM. Next generation fibroblast activation protein (FAP) targeting PET tracers - The tetrazine ligation allows an easy and convenient way to 18F-labeled (4-quinolinoyl)glycyl-2-cyanopyrrolidines. Eur J Med Chem 2023; 262:115862. [PMID: 37883899 DOI: 10.1016/j.ejmech.2023.115862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Small-molecular fibroblast activation protein inhibitor (FAPI)-based tracer have been shown to be promising Positron Emission Tomography (PET) 68Ga-labeled radiopharmaceuticals to image a variety of tumors including pancreatic, breast, and colorectal cancers, among others. In this study, we developed a novel 18F-labeled FAPI derivative. [18F]6 was labeled using a synthon approach based on the tetrazine ligation. It showed subnanomolar affinity for the FAP protein and a good selectivity profile against known off-target proteases. Small animal PET studies revealed high tumor uptake and good target-to-background ratios. [18F]6 was excreted via the liver. Overall, [18F]6 showed promising characteristics to be used as a PET tracer and could serve as a lead for further development of halogen-based theranostic FAPI radiopharmaceuticals.
Collapse
Affiliation(s)
- Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Yentl Van Rymenant
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Euy-Sung Moon
- Department of Chemistry, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark
| | - Joni De Loose
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Frank Rösch
- Department of Chemistry, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Pieter Van Der Veken
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark; TetraKit Technologies, Ole Maaløes Vej 3, 2200, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
22
|
Xu M, Ma X, Pigga JE, Zhang H, Wang S, Zhao W, Deng H, Wu AM, Liu R, Wu Z, Fox JM, Li Z. Development of 18F-Labeled hydrophilic trans-cyclooctene as a bioorthogonal tool for PET probe construction. Chem Commun (Camb) 2023; 59:14387-14390. [PMID: 37877355 PMCID: PMC10785124 DOI: 10.1039/d3cc04212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report the development of a hydrophilic 18F-labeled a-TCO derivative [18F]3 (log P = 0.28) through a readily available precursor and a single-step radiofluorination reaction (RCY up to 52%). We demonstrated that [18F]3 can be used to construct not only multiple small molecule/peptide-based PET agents, but protein/diabody-based imaging probes in parallel.
Collapse
Affiliation(s)
- Muyun Xu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Xinrui Ma
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Jessica E Pigga
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - He Zhang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Shuli Wang
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Weiling Zhao
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Huaifu Deng
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Anna M Wu
- Department of Molecular Imaging and Therapy, Beckman Research Institute, City of Hope, Duarte, California, 91010, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhanhong Wu
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| | - Joseph M Fox
- Department of Chemistry, the University of Delaware, Newark, Delaware, 19716, USA.
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
23
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
24
|
Adhikari K, Dewulf J, Vangestel C, Van der Veken P, Stroobants S, Elvas F, Augustyns K. Characterization of Structurally Diverse 18F-Labeled d-TCO Derivatives as a PET Probe for Bioorthogonal Pretargeted Imaging. ACS OMEGA 2023; 8:38252-38262. [PMID: 37867688 PMCID: PMC10586181 DOI: 10.1021/acsomega.3c04597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Background: The pretargeted imaging strategy using inverse electron demand Diels-Alder (IEDDA) cycloaddition between a trans-cyclooctene (TCO) and tetrazine (Tz) has emerged and rapidly grown as a promising concept to improve radionuclide imaging and therapy in oncology. This strategy has mostly relied on the use of radiolabeled Tz together with TCO-modified targeting vectors leading to a rapid growth of the number of available radiolabeled tetrazines, while only a few radiolabeled TCOs are currently reported. Here, we aim to develop novel and structurally diverse 18F-labeled cis-dioxolane-fused TCO (d-TCO) derivatives to further expand the bioorthogonal toolbox for in vivo ligation and evaluate their potential for positron emission tomography (PET) pretargeted imaging. Results: A small series of d-TCO derivatives were synthesized and tested for their reactivity against tetrazines, with all compounds showing fast reaction kinetics with tetrazines. A fluorescence-based pretargeted blocking study was developed to investigate the in vivo ligation of these compounds without labor-intensive prior radiochemical development. Two compounds showed excellent in vivo ligation results with blocking efficiencies of 95 and 97%. Two novel 18F-labeled d-TCO radiotracers were developed, from which [18F]MICA-214 showed good in vitro stability, favorable pharmacokinetics, and moderate in vivo stability. Micro-PET pretargeted imaging with [18F]MICA-214 in mice bearing LS174T tumors treated with tetrazine-modified CC49 monoclonal antibody (mAb) (CC49-Tz) showed significantly higher uptake in tumor tissue in the pretargeted group (CC49-Tz 2.16 ± 0.08% ID/mL) when compared to the control group with nonmodified mAb (CC49 1.34 ± 0.07% ID/mL). Conclusions: A diverse series of fast-reacting fluorinated d-TCOs were synthesized. A pretargeted blocking approach in tumor-bearing mice allowed the choice of a lead compound with fast reaction kinetics with Tz. A novel 18F-labeled d-TCO tracer was developed and used in a pretargeted PET imaging approach, allowing specific tumor visualization in a mouse model of colorectal cancer. Although further optimization of the radiotracer is needed to enhance the tumor-to-background ratios for pretargeted imaging, we anticipate that the 18F-labeled d-TCO will find use in studies where increased hydrophilicity and fast bioconjugation are required.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| | - Jonatan Dewulf
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Christel Vangestel
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | | | - Sigrid Stroobants
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Filipe Elvas
- Department
of Nuclear Medicine, Antwerp University
Hospital, Edegem 2650, Belgium
- Molecular
Imaging Center Antwerp, University of Antwerp, Antwerp 2610, Belgium
| | - Koen Augustyns
- Laboratory
of Medicinal Chemistry, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
25
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
26
|
Houszka N, Mikula H, Svatunek D. Substituent Effects in Bioorthogonal Diels-Alder Reactions of 1,2,4,5-Tetrazines. Chemistry 2023; 29:e202300345. [PMID: 36853623 PMCID: PMC10946812 DOI: 10.1002/chem.202300345] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/01/2023]
Abstract
1,2,4,5-Tetrazines are increasingly used as reactants in bioorthogonal chemistry due to their high reactivity in Diels-Alder reactions with various dienophiles. Substituents in the 3- and 6-positions of the tetrazine scaffold are known to have a significant impact on the rate of cycloadditions; this is commonly explained on the basis of frontier molecular orbital theory. In contrast, we show that reactivity differences between commonly used classes of tetrazines are not controlled by frontier molecular orbital interactions. In particular, we demonstrate that mono-substituted tetrazines show high reactivity due to decreased Pauli repulsion, which leads to a more asynchronous approach associated with reduced distortion energy. This follows the recent Vermeeren-Hamlin-Bickelhaupt model of reactivity increase in asymmetric Diels-Alder reactions. In addition, we reveal that ethylene is not a good model compound for other alkenes in Diels-Alder reactions.
Collapse
Affiliation(s)
- Nicole Houszka
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| | - Hannes Mikula
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| | - Dennis Svatunek
- Institute of Applied Synthetic ChemistryTU WienGetreidemarkt 91060ViennaAustria
| |
Collapse
|
27
|
Alghamdi Z, Klausen M, Gambardella A, Lilienkampf A, Bradley M. Solid-Phase Synthesis of s-Tetrazines. Org Lett 2023; 25:3104-3108. [PMID: 37083299 PMCID: PMC10167685 DOI: 10.1021/acs.orglett.3c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 04/22/2023]
Abstract
An efficient synthesis of s-tetrazines by solid-phase methods is described. This synthesis route was compatible with different solid-phase resins and linkers and did not require metal catalysts or high temperatures. Monosubstituted tetrazines were routinely synthesized using thiol-promoted chemistry, using dichloromethane as a carbon source, while disubstituted unsymmetrical aryl or alkyl tetrazines were synthesized using readily available nitriles. This efficient approach enabled the synthesis of s-tetrazines in high yields (70-94%), eliminating the classical solution-phase problems of mixtures of symmetrical and unsymmetrical tetrazines, with only a single final purification step required, and paves the way to the rapid synthesis of s-tetrazines with various applications in bioorthogonal chemistry and beyond.
Collapse
Affiliation(s)
- Zainab
S. Alghamdi
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, EH9 3FJ, U.K.
- Department
of Chemistry, College of Science, Imam Abdulrahman
Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Maxime Klausen
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, EH9 3FJ, U.K.
| | - Alessia Gambardella
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, EH9 3FJ, U.K.
| | - Annamaria Lilienkampf
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, EH9 3FJ, U.K.
| | - Mark Bradley
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, EH9 3FJ, U.K.
| |
Collapse
|
28
|
Funeh CN, Bridoux J, Ertveldt T, De Groof TWM, Chigoho DM, Asiabi P, Covens P, D'Huyvetter M, Devoogdt N. Optimizing the Safety and Efficacy of Bio-Radiopharmaceuticals for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051378. [PMID: 37242621 DOI: 10.3390/pharmaceutics15051378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application. As further studies are completed and the need for novel radiopharmaceuticals nurtures, rigorous considerations in the design, laboratory analysis, pre-clinical evaluation, and clinical translation must be considered to ensure improved safety and effectiveness. Here, we assess the status and recent development of biological-based radiopharmaceuticals, with a focus on peptides and antibody fragments. Challenges in radiopharmaceutical design range from target selection, vector design, choice of radionuclides and associated radiochemistry. Dosimetry estimation, and the assessment of mechanisms to increase tumor uptake while reducing off-target exposure are discussed.
Collapse
Affiliation(s)
- Cyprine Neba Funeh
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Jessica Bridoux
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Timo W M De Groof
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Dora Mugoli Chigoho
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Parinaz Asiabi
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Peter Covens
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Matthias D'Huyvetter
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| |
Collapse
|
29
|
Beaufrez J, Guillouet S, Seimbille Y, Perrio C. Synthesis, Fluorine-18 Radiolabeling, and In Vivo PET Imaging of a Hydrophilic Fluorosulfotetrazine. Pharmaceuticals (Basel) 2023; 16:ph16050636. [PMID: 37242419 DOI: 10.3390/ph16050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The development of 18F-fluorotetrazines, suitable for the radiolabeling of biologics such as proteins and antibodies by IEDDA ligation, represents a major challenge, especially for pre-targeting applications. The hydrophilicity of the tetrazine has clearly become a crucial parameter for the performance of in vivo chemistry. In this study, we present the design, the synthesis, the radiosynthesis, the physicochemical characterization, the in vitro and in vivo stability, as well as the pharmacokinetics and the biodistribution determined by PET imaging in healthy animals of an original hydrophilic 18F-fluorosulfotetrazine. This tetrazine was prepared and radiolabelled with fluorine-18 according to a three-step procedure, starting from propargylic butanesultone as the precursor. The propargylic sultone was converted into the corresponding propargylic fluorosulfonate by a ring-opening reaction with 18/19F-fluoride. Propargylic 18/19F-fluorosulfonate was then subject to a CuACC reaction with an azidotetrazine, followed by oxidation. The overall automated radiosynthesis afforded the 18F-fluorosulfotetrazine in 29-35% DCY, within 90-95 min. The experimental LogP and LogD7.4 values of -1.27 ± 0.02 and -1.70 ± 0.02, respectively, confirmed the hydrophilicity of the 18F-fluorosulfotetrazine. In vitro and in vivo studies displayed a total stability of the 18F-fluorosulfotetrazine without any traces of metabolization, the absence of non-specific retention in all organs, and the appropriate pharmacokinetics for pre-targeting applications.
Collapse
Affiliation(s)
- Jason Beaufrez
- UAR 3408, CNRS, CEA, Unicaen, Cyceron, Bd Henri Becquerel, 14074 Caen, France
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Stéphane Guillouet
- UAR 3408, CNRS, CEA, Unicaen, Cyceron, Bd Henri Becquerel, 14074 Caen, France
| | - Yann Seimbille
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Cécile Perrio
- UAR 3408, CNRS, CEA, Unicaen, Cyceron, Bd Henri Becquerel, 14074 Caen, France
| |
Collapse
|
30
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
31
|
ImmunoPET Directed to the Brain: A New Tool for Preclinical and Clinical Neuroscience. Biomolecules 2023; 13:biom13010164. [PMID: 36671549 PMCID: PMC9855881 DOI: 10.3390/biom13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a non-invasive in vivo imaging method based on tracking and quantifying radiolabeled monoclonal antibodies (mAbs) and other related molecules, such as antibody fragments, nanobodies, or affibodies. However, the success of immunoPET in neuroimaging is limited because intact antibodies cannot penetrate the blood-brain barrier (BBB). In neuro-oncology, immunoPET has been successfully applied to brain tumors because of the compromised BBB. Different strategies, such as changes in antibody properties, use of physiological mechanisms in the BBB, or induced changes to BBB permeability, have been developed to deliver antibodies to the brain. These approaches have recently started to be applied in preclinical central nervous system PET studies. Therefore, immunoPET could be a new approach for developing more specific PET probes directed to different brain targets.
Collapse
|
32
|
Bidesi N, Shalgunov V, Battisti UM, Hvass L, Jørgensen JT, Poulie CBM, Jensen AI, Kjaer A, Herth MM. Synthesis and radiolabeling of a polar [ 125 I]I-1,2,4,5-tetrazine. J Labelled Comp Radiopharm 2023; 66:22-30. [PMID: 36539610 PMCID: PMC10107300 DOI: 10.1002/jlcr.4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Pretargeting imaging has gained a lot of prominence, due to its excellent bioorthogonality and improved imaging contrast compared to conventional imaging. A new iodo tetrazine (Tz) derivative has been synthesized and further developed into the corresponding iodine-125 (125 I) analog (12), via the trimethylstannane precursor. Radiolabeling with either N-chlorosuccinimide or chloramine-T, in either MeCN or MeOH proceeded with a radiochemical conversion (RCC) of >80%. Subsequent deprotection only proved successful, among the tested conditions, when the radiolabeled Tz was stirred in 6-M HCl(aq.) at 60°C for 2.5 h. To the best of our knowledge, this is the first H-tetrazine labeled with iodine. In vivo investigations on the pretargeting ability of 12 are currently under way.
Collapse
Affiliation(s)
- Natasha Bidesi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hvass
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Tranekjaer Jørgensen
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian B M Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas I Jensen
- Center for Nuclear Technologies (DTU Nutech), Technical University of Denmark (DTU), Roskilde, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
33
|
Utilization of sym-tetrazines as guanidine delivery cycloaddition reagents. An experimental and computational study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Bhise A, Park H, Rajkumar S, Lee K, Cho SH, Lim JE, Kim JY, Lee KC, Yoon YR, Yoo J. Optimizing and determining the click chemistry mediated Cu-64 radiolabeling and physiochemical characteristics of trastuzumab conjugates. Biochem Biophys Res Commun 2023; 638:28-35. [PMID: 36436339 DOI: 10.1016/j.bbrc.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Over the last decade, 64Cu-labeling of monoclonal antibody (mAb) via inverse electron demand Diels-Alder click chemistry (IEDDA) have received much attention. Despite the tetrazine-transcyclooctene (Tz-TCO) click chemistry's convenience and efficiency in mAb labeling, there is limited information about the ideal parameters in the development of click chemistry mediated (radio)immunoconjugates. This encourages us to conduct a systematic optimization while concurrently determining the physiochemical characteristics of the model mAb, trastuzumab, and TCO conjugates. To accomplish this, we investigated a few critical parameters, first, we determined the degree of conjugations with varying molar equivalents (eq.) of TCO (3, 5, 10, and 15 eq.). Through analytical techniques like size exclusion chromatography, dynamic light scattering, and zeta potential, qualitative analysis were performed to determine the purity, degree of aggregation and net charge of the conjugates. We found that as the degree of conjugation increased the purity of intact mAb fraction is compromised and net charge of conjugates became less positive. Next, all trastuzumab-PEG4-TCO conjugates with varying molar ratio and quantity (30, 50, 100, 200, 250 μg) were radiolabeled with 64Cu-NOTA-PEG4-Tz via IEDDA click chemistry and radiochemical yields were determined by radio-thin layer chromatography. The radiochemical yields of trastuzumab conjugates improved with increased amount and molar ratio. Next, we investigated the effect of the radioprotectant ascorbic acid (AA) of varied concentrations (0.25, 0.5, 0.75, 1 mM) on radiochemical yields and subsequent pharmacokinetics. A concentration of 0.25 mM of AA was found to be optimal for click reaction and in vivo biodistribution. Finally, we investigated the indirect influence of bioconjugation buffers on radiochemical yields and biodistribution in NIH3T6.7 tumor models that resulted approximately ∼11 %ID/g tumor uptake.
Collapse
Affiliation(s)
- Abhinav Bhise
- Department of Molecular Medicine, Brain Korea 21, Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hyun Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Subramani Rajkumar
- Department of Molecular Medicine, Brain Korea 21, Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Kiwoong Lee
- Department of Molecular Medicine, Brain Korea 21, Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Seong Hwan Cho
- Department of Molecular Medicine, Brain Korea 21, Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jeong Eun Lim
- Department of Molecular Medicine, Brain Korea 21, Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Young-Ran Yoon
- Department of Molecular Medicine, Brain Korea 21, Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, Brain Korea 21, Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
35
|
Radjani Bidesi NS, Battisti UM, Lopes van de Broek S, Shalgunov V, Dall AM, Bøggild Kristensen J, Sehlin D, Syvänen S, Moos Knudsen G, Herth MM. Development of the First Tritiated Tetrazine: Facilitating Tritiation of Proteins. Chembiochem 2022; 23:e202200539. [PMID: 36333105 PMCID: PMC10100488 DOI: 10.1002/cbic.202200539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Tetrazine (Tz)-trans-cyclooctene (TCO) ligation is an ultra-fast and highly selective reaction and it is particularly suited to label biomolecules under physiological conditions. As such, a 3 H-Tz based synthon would have wide applications for in vitro/ex vivo assays. In this study, we developed a 3 H-labeled Tz and characterized its potential for application to pretargeted autoradiography. Several strategies were explored to synthesize such a Tz. However, classical approaches such as reductive halogenation failed. For this reason, we designed a Tz containing an aldehyde and explored the possibility of reducing this group with NaBT4 . This approach was successful and resulted in [3 H]-(4-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)methan-t-ol with a radiochemical yield of 22 %, a radiochemical purity of 96 % and a molar activity of 0.437 GBq/μmol (11.8 Ci/mmol). The compound was successfully applied to pretargeted autoradiography. Thus, we report the synthesis of the first 3 H-labeled Tz and its successful application as a labeling building block.
Collapse
Affiliation(s)
- Natasha Shalina Radjani Bidesi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Sara Lopes van de Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Anne-Mette Dall
- Novo Nordisk A/S, Smørmosevej 17-19, Bagsvaerd, 2880, Copenhagen, Denmark
| | | | - Dag Sehlin
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Stina Syvänen
- Rudbeck Laboratory, Department of Public Health and Caring Sciences, Uppsala University, Dag Hammarskjölds väg 20, 75185, Uppsala, Sweden
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
36
|
Cook BE, Archbold J, Nasr K, Girmay S, Goldstein SI, Li P, Dandapani S, Genung NE, Tang SP, McClusky S, Plisson C, Afetian ME, Dwyer CA, Fazio M, Drury WJ, Rigo F, Martarello L, Kaliszczak M. Non-invasive Imaging of Antisense Oligonucleotides in the Brain via In Vivo Click Chemistry. Mol Imaging Biol 2022; 24:940-949. [PMID: 35655109 DOI: 10.1007/s11307-022-01744-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE The treatment of complex neurological diseases often requires the administration of large therapeutic drugs, such as antisense oligonucleotide (ASO), by lumbar puncture into the intrathecal space in order to bypass the blood-brain barrier. Despite the growing number of ASOs in clinical development, there are still uncertainties regarding their dosing, primarily around their distribution and kinetics in the brain following intrathecal injection. The challenge of taking measurements within the delicate structures of the central nervous system (CNS) necessitates the use of non-invasive nuclear imaging, such as positron emission tomography (PET). Herein, an emergent strategy known as "pretargeted imaging" is applied to image the distribution of an ASO in the brain by developing a novel PET tracer, [18F]F-537-Tz. This tracer is able to undergo an in vivo "click" reaction, covalently binding to a trans-cyclooctene conjugated ASO. PROCEDURES A novel small molecule tracer for pretargeted PET imaging of ASOs in the CNS is developed and tested in a series of in vitro and in vivo experiments, including biodistribution in rats and non-human primates. RESULTS In vitro data and extensive in vivo rat data demonstrated delivery of the tracer to the CNS, and its successful ligation to its ASO target in the brain. In an NHP study, the slow tracer kinetics did not allow for specific binding to be determined by PET. CONCLUSION A CNS-penetrant radioligand for pretargeted imaging was successfully demonstrated in a proof-of-concept study in rats, laying the groundwork for further optimization.
Collapse
Affiliation(s)
| | | | - Khaled Nasr
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | | | | | - Pei Li
- , Biogen, Cambridge, MA, 02142, USA
| | | | | | - Sac-Pham Tang
- Invicro, A Konica Minolta Company, Boston, MA, 02210, USA
| | | | | | | | | | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | | | | |
Collapse
|
37
|
Antibody-Based In Vivo Imaging of Central Nervous System Targets-Evaluation of a Pretargeting Approach Utilizing a TCO-Conjugated Brain Shuttle Antibody and Radiolabeled Tetrazines. Pharmaceuticals (Basel) 2022; 15:ph15121445. [PMID: 36558900 PMCID: PMC9787164 DOI: 10.3390/ph15121445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Bioorthogonal pretargeted imaging using the inverse-electron-demand Diels-Alder (IEDDA) reaction between a tetrazine (Tz) and a trans-cyclooctene (TCO) represents an attractive strategy for molecular imaging via antibodies. The advantages of using a pretargeted imaging approach are on the one hand the possibility to achieve a high signal-to-noise ratio and imaging contrast; on the other hand, the method allows the uncoupling of the biological half-life of antibodies from the physical half-life of short-lived radionuclides. A brain-penetrating antibody (mAb) specific for β-amyloid (Aβ) plaques was functionalized with TCO moieties for pretargeted labeling of Aβ plaques in vitro, ex vivo, and in vivo by a tritium-labeled Tz. The overall aim was to explore the applicability of mAbs for brain imaging, using a preclinical model system. In vitro clicked mAb-TCO-Tz was able to pass the blood-brain barrier of transgenic PS2APP mice and specifically visualize Aβ plaques ex vivo. Further experiments showed that click reactivity of the mAb-TCO construct in vivo persisted up to 3 days after injection by labeling Aβ plaques ex vivo after incubation of brain sections with the Tz in vitro. An attempted in vivo click reaction between injected mAb-TCO and Tz did not lead to significant labeling of Aβ plaques, most probably due to unfavorable in vivo properties of the used Tz and a long half-life of the mAb-TCO in the blood stream. This study clearly demonstrates that pretargeted imaging of CNS targets via antibody-based click chemistry is a viable approach. Further experiments are warranted to optimize the balance between stability and reactivity of all reactants, particularly the Tz.
Collapse
|
38
|
Poulie CBM, Sporer E, Hvass L, Jørgensen JT, Kempen PJ, Lopes van den Broek SI, Shalgunov V, Kjaer A, Jensen AI, Herth MM. Bioorthogonal Click of Colloidal Gold Nanoparticles to Antibodies In vivo. Chemistry 2022; 28:e202201847. [PMID: 35851967 DOI: 10.1002/chem.202201847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 01/07/2023]
Abstract
Combining nanotechnology and bioorthogonal chemistry for theranostic strategies offers the possibility to develop next generation nanomedicines. These materials are thought to increase therapeutic outcome and improve current cancer management. Due to their size, nanomedicines target tumors passively. Thus, they can be used for drug delivery purposes. Bioorthogonal chemistry allows for a pretargeting approach. Higher target-to-background drug accumulation ratios can be achieved. Pretargeting can also be used to induce internalization processes or trigger controlled drug release. Colloidal gold nanoparticles (AuNPs) have attracted widespread interest as drug delivery vectors within the last decades. Here, we demonstrate for the first time the possibility to successfully ligate AuNPs in vivo to pretargeted monoclonal antibodies. We believe that this possibility will facilitate the development of AuNPs for clinical use and ultimately, improve state-of-the-art patient care.
Collapse
Affiliation(s)
- Christian B M Poulie
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Emanuel Sporer
- Center for Nanomedicine and Theranostics, DTU Health Technology, Technical University of Denmark (DTU), Ørsteds Plads 345C, 2800, Lyngby, Denmark
| | - Lars Hvass
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Paul J Kempen
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), Ørsteds Plads 347, 2800, Lyngby, Denmark
| | - Sara I Lopes van den Broek
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Andreas I Jensen
- Center for Nanomedicine and Theranostics, DTU Health Technology, Technical University of Denmark (DTU), Ørsteds Plads 345C, 2800, Lyngby, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
39
|
Lambidis E, Lumén D, Koskipahta E, Imlimthan S, Lopez BB, Sánchez AIF, Sarparanta M, Cheng RH, Airaksinen AJ. Synthesis and ex vivo biodistribution of two 68Ga-labeled tetrazine tracers: Comparison of pharmacokinetics. Nucl Med Biol 2022; 114-115:151-161. [PMID: 35680503 DOI: 10.1016/j.nucmedbio.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022]
Abstract
Pretargeted PET imaging allows the use of radiotracers labeled with short-living PET radionuclides for tracing drugs with slow pharmacokinetics. Recently, especially methods based on bioorthogonal chemistry have been under intensive investigation for pretargeted PET imaging. The pharmacokinetics of the radiotracer is one of the factors that determine the success of the pretargeted strategy. Here, we report synthesis and biological evaluation of two 68Ga-labeled tetrazine (Tz)-based radiotracers, [68Ga]Ga-HBED-CC-PEG4-Tz ([68Ga]4) and [68Ga]Ga-DOTA-PEG4-Tz ([68Ga]6), aiming for development of new tracer candidates for pretargeted PET imaging based on the inverse electron demand Diels-Alder (IEDDA) ligation between a tetrazine and a strained alkene, such as trans-cyclooctene (TCO). Excellent radiochemical yield (RCY) was obtained for [68Ga]4 (RCY > 96%) and slightly lower for [68Ga]6 (RCY > 88%). Radiolabeling of HBED-CC-Tz proved to be faster and more efficient under milder conditions compared to the DOTA analogue. The two tracers exhibited excellent radiolabel stability both in vitro and in vivo. Moreover, [68Ga]4 was successfully used for radiolabeling two different TCO-functionalized nanoparticles in vitro: Hepatitis E virus nanoparticles (HEVNPs) and porous silicon nanoparticles (PSiNPs).
Collapse
Affiliation(s)
- Elisavet Lambidis
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Dave Lumén
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Elina Koskipahta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Surachet Imlimthan
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Brianda B Lopez
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | | | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki FI-00014, Finland; Turku PET Centre, Department of Chemistry, University of Turku, Turku FI-20520, Finland.
| |
Collapse
|
40
|
van den Broek SL, Shalgunov V, Herth MM. Transport of nanomedicines across the blood-brain barrier: Challenges and opportunities for imaging and therapy. BIOMATERIALS ADVANCES 2022; 141:213125. [PMID: 36182833 DOI: 10.1016/j.bioadv.2022.213125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The blood-brain barrier (BBB) is a protective and semipermeable border of endothelial cells that prevents toxins and foreign bodies to enter and damage the brain. Unfortunately, the BBB also hampers the development of pharmaceuticals targeting receptors, enzymes, or other proteins that lie beyond this barrier. Especially large molecules, such as monoclonal antibodies (mAbs) or nanoparticles, are prevented to enter the brain. The limited passage of these molecules partly explains why nanomedicines - targeting brain diseases - have not made it into the clinic to a great extent. As nanomedicines can target a wide range of targets including protein isoforms and oligomers or potentially deliver cytotoxic drugs safely to their targets, a pathway to smuggle nanomedicines into the brain would allow to treat brain diseases that are currently considered 'undruggable'. In this review, strategies to transport nanomedicines over the BBB will be discussed. Their challenges and opportunities will be highlighted with respect to their use for molecular imaging or therapies. Several strategies have been explored for this thus far. For example, carrier-mediated and receptor-mediated transcytosis (RMT), techniques to disrupt the BBB, nasal drug delivery or administering nanomedicines directly into the brain have been explored. RMT has been the most widely and successfully explored strategy. Recent work on the use of focused ultrasound based BBB opening has shown great promise. For example, successful delivery of mAbs into the brain has been achieved, even in a clinical setting. As nanomedicines bear the potential to treat incurable brain diseases, drug delivery technologies that can deliver nanomedicines into the brain will play an essential role for future treatment options.
Collapse
Affiliation(s)
- Sara Lopes van den Broek
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
41
|
Cheal SM, Chung SK, Vaughn BA, Cheung NKV, Larson SM. Pretargeting: A Path Forward for Radioimmunotherapy. J Nucl Med 2022; 63:1302-1315. [PMID: 36215514 PMCID: PMC12079710 DOI: 10.2967/jnumed.121.262186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
Pretargeted radioimmunodiagnosis and radioimmunotherapy aim to efficiently combine antitumor antibodies and medicinal radioisotopes for high-contrast imaging and high-therapeutic-index (TI) tumor targeting, respectively. As opposed to conventional radioimmunoconjugates, pretargeted approaches separate the tumor-targeting step from the payload step, thereby amplifying tumor uptake while reducing normal-tissue exposure. Alongside contrast and TI, critical parameters include antibody immunogenicity and specificity, availability of radioisotopes, and ease of use in the clinic. Each of the steps can be optimized separately; as modular systems, they can find broad applications irrespective of tumor target, tumor type, or radioisotopes. Although this versatility presents enormous opportunity, pretargeting is complex and presents unique challenges for clinical translation and optimal use in patients. The purpose of this article is to provide a brief historical perspective on the origins and development of pretargeting strategies in nuclear medicine, emphasizing 2 protein delivery systems that have been extensively evaluated (i.e., biotin-streptavidin and hapten-bispecific monoclonal antibodies), as well as radiohaptens and radioisotopes. We also highlight recent innovations, including pretargeting with bioorthogonal chemistry and novel protein vectors (such as self-assembling and disassembling proteins and Affibody molecules). We caution the reader that this is by no means a comprehensive review of the past 3 decades of pretargeted radioimmunodiagnosis and pretargeted radioimmunotherapy. But we do aim to highlight major developmental milestones and to identify benchmarks for success with regard to TI and toxicity in preclinical models and clinically. We believe this approach will lead to the identification of key obstacles to clinical success, revive interest in the utility of radiotheranostics applications, and guide development of the next generation of pretargeted theranostics.
Collapse
Affiliation(s)
- Sarah M Cheal
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Sebastian K Chung
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brett A Vaughn
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Steven M Larson
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
42
|
Watson EE, Russo F, Moreau D, Winssinger N. Optochemical Control of Therapeutic Agents through Photocatalyzed Isomerization. Angew Chem Int Ed Engl 2022; 61:e202203390. [PMID: 35510306 PMCID: PMC9400970 DOI: 10.1002/anie.202203390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 12/04/2022]
Abstract
A Ru(bpy)3Cl2 photocatalyst is applied to the rapid trans to cis isomerization of a range of alkene‐containing pharmacological agents, including combretastatin A‐4 (CA‐4), a clinical candidate in oncology, and resveratrol derivatives, switching their configuration from inactive substances to potent cytotoxic agents. Selective in cellulo activation of the CA‐4 analog Res‐3M is demonstrated, along with its potent cytotoxicity and inhibition of microtubule dynamics.
Collapse
Affiliation(s)
- Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Francesco Russo
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Dimitri Moreau
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| |
Collapse
|
43
|
Andersen IV, García-Vázquez R, Battisti UM, Herth MM. Optimization of Direct Aromatic 18F-Labeling of Tetrazines. Molecules 2022; 27:molecules27134022. [PMID: 35807267 PMCID: PMC9268649 DOI: 10.3390/molecules27134022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022] Open
Abstract
Radiolabeling of tetrazines has gained increasing attention due to their important role in pretargeted imaging or therapy. The most commonly used radionuclide in PET imaging is fluorine-18. For this reason, we have recently developed a method which enables the direct aromatic 18F-fluorination of tetrazines using stannane precursors through copper-mediated fluorinations. Herein, we further optimized this labeling procedure. 3-(3-fluorophenyl)-1,2,4,5-tetrazine was chosen for this purpose because of its high reactivity and respective limited stability during the labeling process. By optimizing parameters such as elution conditions, precursor amount, catalyst, time or temperature, the radiochemical yield (RCY) could be increased by approximately 30%. These conditions were then applied to optimize the RCY of a recently successfully developed and promising pretargeting imaging agent. This agent could be isolated in a decay corrected RCY of 14 ± 3% and Am of 201 ± 30 GBq/µmol in a synthesis time of 70 min. Consequently, the RCY increased by 27%.
Collapse
Affiliation(s)
- Ida Vang Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark; (I.V.A.); (R.G.-V.); (U.M.B.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
44
|
Recent Advances in the Development of Tetrazine Ligation Tools for Pretargeted Nuclear Imaging. Pharmaceuticals (Basel) 2022; 15:ph15060685. [PMID: 35745604 PMCID: PMC9227058 DOI: 10.3390/ph15060685] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Tetrazine ligation has gained interest as a bio-orthogonal chemistry tool within the last decade. In nuclear medicine, tetrazine ligation is currently being explored for pretargeted approaches, which have the potential to revolutionize state-of-the-art theranostic strategies. Pretargeting has been shown to increase target-to-background ratios for radiopharmaceuticals based on nanomedicines, especially within early timeframes. This allows the use of radionuclides with short half-lives which are more suited for clinical applications. Pretargeting bears the potential to increase the therapeutic dose delivered to the target as well as reduce the respective dose to healthy tissue. Combined with the possibility to be applied for diagnostic imaging, pretargeting could be optimal for theranostic approaches. In this review, we highlight efforts that have been made to radiolabel tetrazines with an emphasis on imaging.
Collapse
|
45
|
Matiz CA, Delaney S, Cook BE, Genady AR, Hoerres R, Kuchuk M, Makris G, Valliant JF, Sadeghi S, Lewis JS, Hennkens HM, Bryan JN, Zeglis BM. Pretargeted PET of Osteodestructive Lesions in Dogs. Mol Pharm 2022; 19:3153-3162. [DOI: 10.1021/acs.molpharmaceut.2c00220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Charles A. Matiz
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, United States
| | - Samantha Delaney
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brendon E. Cook
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Afaf R. Genady
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rebecca Hoerres
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Marina Kuchuk
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Georgios Makris
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Saman Sadeghi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jason S. Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Heather M. Hennkens
- Department of Chemistry and Research Reactor, University of Missouri, Columbia, Missouri 65211, United States
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, United States
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| |
Collapse
|
46
|
Watson EE, Russo F, Moreau D, Winssinger N. Optochemical Control of Therapeutic Agents through Photocatalyzed Isomerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Francesco Russo
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Dimitri Moreau
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| |
Collapse
|
47
|
Spear LA, Huang Y, Chen J, Nödling AR, Virdee S, Tsai YH. Selective Inhibition of Cysteine-Dependent Enzymes by Bioorthogonal Tethering. J Mol Biol 2022; 434:167524. [PMID: 35248542 DOI: 10.1016/j.jmb.2022.167524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
Abstract
A general approach for the rapid and selective inhibition of enzymes in cells using a common tool compound would be of great value for research and therapeutic development. We previously reported a chemogenetic strategy that addresses this challenge for kinases, relying on bioorthogonal tethering of a pan inhibitor to a target kinase through a genetically encoded non-canonical amino acid. However, pan inhibitors are not available for many enzyme classes. Here, we expand the scope of the chemogenetic strategy to cysteine-dependent enzymes by bioorthogonal tethering of electrophilic warheads. For proof of concept, selective inhibition of two E2 ubiquitin-conjugating enzymes, UBE2L3 and UBE2D1, was demonstrated in biochemical assays. Further development and optimization of this approach should enable its use in cells as well as with other cysteine-dependent enzymes, facilitating the investigation of their cellular function and validation as therapeutic targets.
Collapse
Affiliation(s)
- Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Yang Huang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinghao Chen
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, United Kingdom.
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, United Kingdom; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
48
|
Melis DR, Burgoyne AR, Ooms M, Gasser G. Bifunctional chelators for radiorhenium: past, present and future outlook. RSC Med Chem 2022; 13:217-245. [PMID: 35434629 PMCID: PMC8942221 DOI: 10.1039/d1md00364j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/14/2022] [Indexed: 01/16/2023] Open
Abstract
Targeted radionuclide therapy (TRNT) is an ever-expanding field of nuclear medicine that provides a personalised approach to cancer treatment while limiting toxicity to normal tissues. It involves the radiolabelling of a biological targeting vector with an appropriate therapeutic radionuclide, often facilitated by the use of a bifunctional chelator (BFC) to stably link the two entities. The radioisotopes of rhenium, 186Re (t 1/2 = 90 h, 1.07 MeV β-, 137 keV γ (9%)) and 188Re (t 1/2 = 16.9 h, 2.12 MeV β-, 155 keV γ (15%)), are particularly attractive for radiotherapy because of their convenient and high-abundance β--particle emissions as well as their imageable γ-emissions and chemical similarity to technetium. As a transition metal element with multiple oxidation states and coordination numbers accessible for complexation, there is great opportunity available when it comes to developing novel BFCs for rhenium. The purpose of this review is to provide a recap on some of the past successes and failings, as well as show some more current efforts in the design of BFCs for 186/188Re. Future use of these radionuclides for radiotherapy depends on their cost-effective availability and this will also be discussed. Finally, bioconjugation strategies for radiolabelling biomolecules with 186/188Re will be touched upon.
Collapse
Affiliation(s)
- Diana R Melis
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| | - Andrew R Burgoyne
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Maarten Ooms
- SCK CEN, Belgian Nuclear Research Centre Boeretang 200 BE-2400 Mol Belgium +1 865 341 1413 +32 14 33 32 83
| | - Gilles Gasser
- Chimie ParisTech, Laboratory for Inorganic Chemical Biology, PSL University F-75005 Paris France www.gassergroup.com +33 1 44 27 56 02
| |
Collapse
|
49
|
Battisti UM, García-Vázquez R, Svatunek D, Herrmann B, Löffler A, Mikula H, Herth MM. Synergistic Experimental and Computational Investigation of the Bioorthogonal Reactivity of Substituted Aryltetrazines. Bioconjug Chem 2022; 33:608-624. [PMID: 35290735 PMCID: PMC9026259 DOI: 10.1021/acs.bioconjchem.2c00042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Tetrazines (Tz) have
been applied as bioorthogonal agents for various
biomedical applications, including pretargeted imaging approaches.
In radioimmunoimaging, pretargeting increases the target-to-background
ratio while simultaneously reducing the radiation burden. We have
recently reported a strategy to directly 18F-label highly
reactive tetrazines based on a 3-(3-fluorophenyl)-Tz core structure.
Herein, we report a kinetic study on this versatile scaffold. A library
of 40 different tetrazines was prepared, fully characterized, and
investigated with an emphasis on second-order rate constants for the
reaction with trans-cyclooctene (TCO). Our results
reveal the effects of various substitution patterns and moreover demonstrate
the importance of measuring reactivities in the solvent of interest,
as click rates in different solvents do not necessarily correlate
well. In particular, we report that tetrazines modified in the 2-position
of the phenyl substituent show high intrinsic reactivity toward TCO,
which is diminished in aqueous systems by unfavorable solvent effects.
The obtained results enable the prediction of the bioorthogonal reactivity
and thereby facilitate the development of the next generation of substituted
aryltetrazines for in vivo applications.
Collapse
Affiliation(s)
- Umberto M Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark
| | - Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Barbara Herrmann
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas Löffler
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060 Vienna, Austria
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100 Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
50
|
García-Vázquez R, Jørgensen JT, Bratteby KE, Shalgunov V, Hvass L, Herth MM, Kjær A, Battisti UM. Development of 18F-Labeled Bispyridyl Tetrazines for In Vivo Pretargeted PET Imaging. Pharmaceuticals (Basel) 2022; 15:ph15020245. [PMID: 35215356 PMCID: PMC8879724 DOI: 10.3390/ph15020245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Pretargeted PET imaging is an emerging and fast-developing method to monitor immuno-oncology strategies. Currently, tetrazine ligation is considered the most promising bioorthogonal reaction for pretargeting in vivo. Recently, we have developed a method to 18F-label ultrareactive tetrazines by copper-mediated fluorinations. However, bispyridyl tetrazines—one of the most promising structures for in vivo pretargeted applications—were inaccessible using this strategy. We believed that our successful efforts to 18F-label H-tetrazines using low basic labeling conditions could also be used to label bispyridyl tetrazines via aliphatic nucleophilic substitution. Here, we report the first direct 18F-labeling of bispyridyl tetrazines, their optimization for in vivo use, as well as their successful application in pretargeted PET imaging. This strategy resulted in the design of [18F]45, which could be labeled in a satisfactorily radiochemical yield (RCY = 16%), molar activity (Am = 57 GBq/µmol), and high radiochemical purity (RCP > 98%). The [18F]45 displayed a target-to-background ratio comparable to previously successfully applied tracers for pretargeted imaging. This study showed that bispyridyl tetrazines can be developed into pretargeted imaging agents. These structures allow an easy chemical modification of 18F-labeled tetrazines, paving the road toward highly functionalized pretargeting tools. Moreover, bispyridyl tetrazines led to near-instant drug release of iTCO-tetrazine-based ‘click-to-release’ reactions. Consequently, 18F-labeled bispyridyl tetrazines bear the possibility to quantify such release in vivo in the future.
Collapse
Affiliation(s)
- Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper Tranekjær Jørgensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
| | - Klas Erik Bratteby
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Lars Hvass
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| | - Andreas Kjær
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| |
Collapse
|