1
|
Thakur P, Baraskar K, Shrivastava VK, Medhi B. Cross-talk between adipose tissue and microbiota-gut-brain-axis in brain development and neurological disorder. Brain Res 2024; 1844:149176. [PMID: 39182900 DOI: 10.1016/j.brainres.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/25/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The gut microbiota is an important factor responsible for the physiological processes as well as pathogenesis of host. The communication between central nervous system (CNS) and microbiota occurs by different pathways i.e., chemical, neural, immune, and endocrine. Alteration in gut microbiota i.e., gut dysbiosis causes alteration in the bidirectional communication between CNS and gut microbiota and linked to the pathogenesis of neurological and neurodevelopmental disorder. Therefore, now-a-days microbiota-gut-brain-axis (MGBA) has emerged as therapeutic target for the treatment of metabolic disorder. But, experimental data available on MGBA from basic research has limited application in clinical study. In present study we first summarized molecular mechanism of microbiota interaction with brain physiology and pathogenesis via collecting data from different sources i.e., PubMed, Scopus, Web of Science. Furthermore, evidence shows that adipose tissue (AT) is active during metabolic activities and may also interact with MGBA. Hence, in present study we have focused on the relationship among MGBA, brown adipose tissue, and white adipose tissue. Along with this, we have also studied functional specificity of AT, and understanding heterogeneity among MGBA and different types of AT. Therefore, molecular interaction among them may provide therapeutic target for the treatment of neurological disorder.
Collapse
Affiliation(s)
- Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India.
| | - Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India.
| |
Collapse
|
2
|
Li Y, Vaughan KL, Wang Y, Yu SJ, Bae EK, Tamargo IA, Kopp KO, Tweedie D, Chiang CC, Schmidt KT, Lahiri DK, Tones MA, Zaleska MM, Hoffer BJ, Mattison JA, Greig NH. Sitagliptin elevates plasma and CSF incretin levels following oral administration to nonhuman primates: relevance for neurodegenerative disorders. GeroScience 2024; 46:4397-4414. [PMID: 38532069 PMCID: PMC11335710 DOI: 10.1007/s11357-024-01120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
The endogenous incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) possess neurotrophic, neuroprotective, and anti-neuroinflammatory actions. The dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin reduces degradation of endogenous GLP-1 and GIP, and, thereby, extends the circulation of these protective peptides. The current nonhuman primate (NHP) study evaluates whether human translational sitagliptin doses can elevate systemic and central nervous system (CNS) levels of GLP-1/GIP in naive, non-lesioned NHPs, in line with our prior rodent studies that demonstrated sitagliptin efficacy in preclinical models of Parkinson's disease (PD). PD is an age-associated neurodegenerative disorder whose current treatment is inadequate. Repositioning of the well-tolerated and efficacious diabetes drug sitagliptin provides a rapid approach to add to the therapeutic armamentarium for PD. The pharmacokinetics and pharmacodynamics of 3 oral sitagliptin doses (5, 20, and 100 mg/kg), equivalent to the routine clinical dose, a tolerated higher clinical dose and a maximal dose in monkey, were evaluated. Peak plasma sitagliptin levels were aligned both with prior reports in humans administered equivalent doses and with those in rodents demonstrating reduction of PD associated neurodegeneration. Although CNS uptake of sitagliptin was low (cerebrospinal fluid (CSF)/plasma ratio 0.01), both plasma and CSF concentrations of GLP-1/GIP were elevated in line with efficacy in prior rodent PD studies. Additional cellular studies evaluating human SH-SY5Y and primary rat ventral mesencephalic cultures challenged with 6-hydroxydopamine, established cellular models of PD, demonstrated that joint treatment with GLP-1 + GIP mitigated cell death, particularly when combined with DPP-4 inhibition to maintain incretin levels. In conclusion, this study provides a supportive translational step towards the clinical evaluation of sitagliptin in PD and other neurodegenerative disorders for which aging, similarly, is the greatest risk factor.
Collapse
Affiliation(s)
- Yazhou Li
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Eun-Kyung Bae
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, 35053
| | - Ian A Tamargo
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Katherine O Kopp
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - David Tweedie
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Cheng-Chuan Chiang
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Keith T Schmidt
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | | | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Nigel H Greig
- Translational Gerontology Branch, National Institute On Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Ben Nasr M, Usuelli V, Dellepiane S, Seelam AJ, Fiorentino TV, D'Addio F, Fiorina E, Xu C, Xie Y, Balasubramanian HB, Castillo-Leon E, Loreggian L, Maestroni A, Assi E, Loretelli C, Abdelsalam A, El Essawy B, Uccella S, Pastore I, Lunati ME, Sabiu G, Petrazzuolo A, Ducci G, Sacco E, Centofanti L, Venturini M, Mazzucchelli S, Mattinzoli D, Ikehata M, Castellano G, Visner G, Kaifeng L, Lee KM, Wang Z, Corradi D, La Rosa S, Danese S, Yang J, Markmann JF, Zuccotti GV, Abdi R, Folli F, Fiorina P. Glucagon-like peptide 1 receptor is a T cell-negative costimulatory molecule. Cell Metab 2024; 36:1302-1319.e12. [PMID: 38838642 DOI: 10.1016/j.cmet.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a key regulator of glucose metabolism known to be expressed by pancreatic β cells. We herein investigated the role of GLP-1R on T lymphocytes during immune response. Our data showed that a subset of T lymphocytes expresses GLP-1R, which is upregulated during alloimmune response, similarly to PD-1. When mice received islet or cardiac allotransplantation, an expansion of GLP-1Rpos T cells occurred in the spleen and was found to infiltrate the graft. Additional single-cell RNA sequencing (scRNA-seq) analysis conducted on GLP-1Rpos and GLP-1Rneg CD3+ T cells unveiled the existence of molecular and functional dissimilarities between both subpopulations, as the GLP-1Rpos are mainly composed of exhausted CD8 T cells. GLP-1R acts as a T cell-negative costimulatory molecule, and GLP-1R signaling prolongs allograft survival, mitigates alloimmune response, and reduces T lymphocyte graft infiltration. Notably, GLP-1R antagonism triggered anti-tumor immunity when tested in a preclinical mouse model of colorectal cancer.
Collapse
Affiliation(s)
- Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vera Usuelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Sergio Dellepiane
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andy Joe Seelam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesca D'Addio
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Cong Xu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
| | - Yanan Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
| | - Hari Baskar Balasubramanian
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Eduardo Castillo-Leon
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lara Loreggian
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Anna Maestroni
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Emma Assi
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Ahmed Abdelsalam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Basset El Essawy
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Medicine, Al-Azhar University, Cairo, Egypt
| | - Silvia Uccella
- Humanitas University and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli Sacco, Milan, Italy
| | | | - Gianmarco Sabiu
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana Petrazzuolo
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy
| | - Giacomo Ducci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy; Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy
| | - Lucia Centofanti
- Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy
| | | | | | - Deborah Mattinzoli
- Nephrology, dialysis and renal transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Nephrology, dialysis and renal transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Castellano
- Nephrology, dialysis and renal transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gary Visner
- Pulmonary Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Liu Kaifeng
- Pulmonary Medicine, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA
| | - Kang Mi Lee
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhimin Wang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Domenico Corradi
- Department of Biomedical, Biotechnological and Translational Sciences, Unit of Pathology, University of Parma, Parma, Italy
| | - Stefano La Rosa
- Unit of Pathology, Department of Medicine and Technological innovation, University of Insubria, Varese, Italy; Unit of Pathology, Department of Oncology, ASST Sette Laghi, Varese, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele, Milan, Italy
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
| | - James F Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gian Vincenzo Zuccotti
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Department of Pediatrics, Children's Hospital Buzzi, University of Milan, Milan, Italy
| | - Reza Abdi
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Franco Folli
- Department of Health Sciences, Universita'degli Studi di Milano, Milan, Italy.
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy; Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, ASST Fatebenefratelli Sacco, Milan, Italy.
| |
Collapse
|
4
|
Wang V, Tseng KY, Kuo TT, Huang EYK, Lan KL, Chen ZR, Ma KH, Greig NH, Jung J, Choi HI, Olson L, Hoffer BJ, Chen YH. Attenuating mitochondrial dysfunction and morphological disruption with PT320 delays dopamine degeneration in MitoPark mice. J Biomed Sci 2024; 31:38. [PMID: 38627765 PMCID: PMC11022395 DOI: 10.1186/s12929-024-01025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mitochondria are essential organelles involved in cellular energy production. Changes in mitochondrial function can lead to dysfunction and cell death in aging and age-related disorders. Recent research suggests that mitochondrial dysfunction is closely linked to neurodegenerative diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonist has gained interest as a potential treatment for Parkinson's disease (PD). However, the exact mechanisms responsible for the therapeutic effects of GLP-1R-related agonists are not yet fully understood. METHODS In this study, we explores the effects of early treatment with PT320, a sustained release formulation of the GLP-1R agonist Exenatide, on mitochondrial functions and morphology in a progressive PD mouse model, the MitoPark (MP) mouse. RESULTS Our findings demonstrate that administration of a clinically translatable dose of PT320 ameliorates the reduction in tyrosine hydroxylase expression, lowers reactive oxygen species (ROS) levels, and inhibits mitochondrial cytochrome c release during nigrostriatal dopaminergic denervation in MP mice. PT320 treatment significantly preserved mitochondrial function and morphology but did not influence the reduction in mitochondria numbers during PD progression in MP mice. Genetic analysis indicated that the cytoprotective effect of PT320 is attributed to a reduction in the expression of mitochondrial fission protein 1 (Fis1) and an increase in the expression of optic atrophy type 1 (Opa1), which is known to play a role in maintaining mitochondrial homeostasis and decreasing cytochrome c release through remodeling of the cristae. CONCLUSION Our findings suggest that the early administration of PT320 shows potential as a neuroprotective treatment for PD, as it can preserve mitochondrial function. Through enhancing mitochondrial health by regulating Opa1 and Fis1, PT320 presents a new neuroprotective therapy in PD.
Collapse
Affiliation(s)
- Vicki Wang
- Doctoral Degree Program in Translational Medicine, National Defense Medical Center and Academia Sinica, Taipei, 11490, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, 11490, Taiwan
- National Defense Medical Center, Taipei, 11490, Taiwan
| | - Tung-Tai Kuo
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, 11490, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Kuo-Lun Lan
- Department of Pathology, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Zi-Rong Chen
- Department of Pathology, Tri-Service General Hospital, Taipei, 11490, Taiwan
| | - Kuo-Hsing Ma
- Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, 21224, USA
| | - Jin Jung
- Peptron, Inc., Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Ho-Ii Choi
- Peptron, Inc., Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, 11490, Taiwan.
- National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
5
|
Chen YH, Kuo TT, Wang V, Cheng PW, Huang EYK, Ma KH, Greig NH, Olson L, Hoffer BJ, Tseng KY. Serotonergic Regulation of Synaptic Dopamine Levels Mitigates L-DOPA-Induced Dyskinesia in a Mouse Model of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:941-964. [PMID: 38905058 PMCID: PMC11307072 DOI: 10.3233/jpd-240080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Background The serotonin (5-HT) system can manipulate the processing of exogenous L-DOPA in the DA-denervated striatum, resulting in the modulation of L-DOPA-induced dyskinesia (LID). Objective To characterize the effects of the serotonin precursor 5-hydroxy-tryptophan (5-HTP) or the serotonin transporter (SERT) inhibitor, Citalopram on L-DOPA-induced behavior, neurochemical signals, and underlying protein expressions in an animal model of Parkinson's disease. Methods MitoPark (MP) mice at 20 weeks of age, subjected to a 14-day administration of L-DOPA/Carbidopa, displayed dyskinesia, referred to as LID. Subsequent investigations explored the effects of 5-HT-modifying agents, such as 5-HTP and Citalopram, on abnormal involuntary movements (AIMs), locomotor activity, neurochemical signals, serotonin transporter activity, and protein expression in the DA-denervated striatum of LID MP mice. Results 5-HTP exhibited duration-dependent suppressive effects on developing and established LID, especially related to abnormal limb movements observed in L-DOPA-primed MP mice. However, Citalopram, predominantly suppressed abnormal axial movement induced by L-DOPA in LID MP mice. We demonstrated that 5-HTP could decrease L-DOPA-upregulation of DA turnover rates while concurrently upregulating 5-HT metabolism. Additionally, 5-HTP was shown to reduce the expressions of p-ERK and p-DARPP-32 in the striatum of LID MP mice. The effect of Citalopram in alleviating LID development may be attributed to downregulation of SERT activity in the dorsal striatum of LID MP mice. Conclusions While both single injection of 5-HTP and Citalopram effectively mitigated the development of LID, the difference in mitigation of AIM subtypes may be linked to the unique effects of these two serotonergic agents on L-DOPA-derived DA and 5-HT metabolism.
Collapse
Affiliation(s)
- Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Tung-Tai Kuo
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Vicki Wang
- Doctoral Degree Program in Translational Medicine, National Defense Medical Center and Academia Sinica, Taipei, Taiwan
| | - Pin-Wen Cheng
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | | | - Kuo-Hsing Ma
- Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, National Institutes of Health (NIH), Baltimore, MD, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Barry J. Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Dai C, Tan C, Zhao L, Liang Y, Liu G, Liu H, Zhong Y, Liu Z, Mo L, Liu X, Chen L. Glucose Metabolism Impairment in Parkinson's Disease. Brain Res Bull 2023; 199:110672. [PMID: 37210012 DOI: 10.1016/j.brainresbull.2023.110672] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Impairments in systematic and regional glucose metabolism exist in patients with Parkinson's disease (PD) at every stage of the disease course, and such impairments are associated with the incidence, progression, and special phenotypes of PD, which affect each physiological process of glucose metabolism including glucose uptake, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and pentose phosphate shunt pathway. These impairments may be attributed to various mechanisms, such as insulin resistance, oxidative stress, abnormal glycated modification, blood-brain-barrier dysfunction, and hyperglycemia-induced damages. These mechanisms could subsequently cause excessive methylglyoxal and reactive oxygen species production, neuroinflammation, abnormal aggregation of protein, mitochondrial dysfunction, and decreased dopamine, and finally result in energy supply insufficiency, neurotransmitter dysregulation, aggregation and phosphorylation of α-synuclein, and dopaminergic neuron loss. This review discusses the glucose metabolism impairment in PD and its pathophysiological mechanisms, and briefly summarized the currently-available therapies targeting glucose metabolism impairment in PD, including glucagon-likepeptide-1 (GLP-1) receptor agonists and dual GLP-1/gastric inhibitory peptide receptor agonists, metformin, and thiazoledinediones.
Collapse
Affiliation(s)
- Chengcheng Dai
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lili Zhao
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yi Liang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Guohui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Zhihui Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
7
|
PT320, a Sustained-Release GLP-1 Receptor Agonist, Ameliorates L-DOPA-Induced Dyskinesia in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24054687. [PMID: 36902115 PMCID: PMC10002999 DOI: 10.3390/ijms24054687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
To determine the efficacy of PT320 on L-DOPA-induced dyskinetic behaviors, and neurochemistry in a progressive Parkinson's disease (PD) MitoPark mouse model. To investigate the effects of PT320 on the manifestation of dyskinesia in L-DOPA-primed mice, a clinically translatable biweekly PT320 dose was administered starting at either 5 or 17-weeks-old mice. The early treatment group was given L-DOPA starting at 20 weeks of age and longitudinally evaluated up to 22 weeks. The late treatment group was given L-DOPA starting at 28 weeks of age and longitudinally observed up to 29 weeks. To explore dopaminergic transmission, fast scan cyclic voltammetry (FSCV) was utilized to measure presynaptic dopamine (DA) dynamics in striatal slices following drug treatments. Early administration of PT320 significantly mitigated the severity L-DOPA-induced abnormal involuntary movements; PT320 particularly improved excessive numbers of standing as well as abnormal paw movements, while it did not affect L-DOPA-induced locomotor hyperactivity. In contrast, late administration of PT320 did not attenuate any L-DOPA-induced dyskinesia measurements. Moreover, early treatment with PT320 was shown to not only increase tonic and phasic release of DA in striatal slices in L-DOPA-naïve MitoPark mice, but also in L-DOPA-primed animals. Early treatment with PT320 ameliorated L-DOPA-induced dyskinesia in MitoPark mice, which may be related to the progressive level of DA denervation in PD.
Collapse
|
8
|
Tavares G, Rosendo-Silva D, Simões F, Eickhoff H, Marques D, Sacramento JF, Capucho AM, Seiça R, Conde SV, Matafome P. Circulating Dopamine Is Regulated by Dietary Glucose and Controls Glucagon-like 1 Peptide Action in White Adipose Tissue. Int J Mol Sci 2023; 24:ijms24032464. [PMID: 36768789 PMCID: PMC9916853 DOI: 10.3390/ijms24032464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Dopamine directly acts in the liver and white adipose tissue (WAT) to regulate insulin signaling, glucose uptake, and catabolic activity. Given that dopamine is secreted by the gut and regulates insulin secretion in the pancreas, we aimed to determine its regulation by nutritional cues and its role in regulating glucagon-like peptide 1 (GLP-1) action in WAT. Solutions with different nutrients were administered to Wistar rats and postprandial dopamine levels showed elevations following a mixed meal and glucose intake. In high-fat diet-fed diabetic Goto-Kakizaki rats, sleeve gastrectomy upregulated dopaminergic machinery, showing the role of the gut in dopamine signaling in WAT. Bromocriptine treatment in the same model increased GLP-1R in WAT, showing the role of dopamine in regulating GLP-1R. By contrast, treatment with the GLP-1 receptor agonist Liraglutide had no impact on dopamine receptors. GLP-1 and dopamine crosstalk was shown in rat WAT explants, since dopamine upregulated GLP-1-induced AMPK activity in mesenteric WAT in the presence of the D2R and D3R inhibitor Domperidone. In human WAT, dopamine receptor 1 (D1DR) and GLP-1R expression were correlated. Our results point out a dietary and gut regulation of plasma dopamine, acting in the WAT to regulate GLP-1 action. Together with the known dopamine action in the pancreas, such results may identify new therapeutic opportunities to improve metabolic control in metabolic disorders.
Collapse
Affiliation(s)
- Gabriela Tavares
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical-Academic Center of Coimbra, 3004-531 Coimbra, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Daniela Rosendo-Silva
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical-Academic Center of Coimbra, 3004-531 Coimbra, Portugal
| | - Flávia Simões
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Hans Eickhoff
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Daniela Marques
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana F. Sacramento
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Adriana M. Capucho
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Raquel Seiça
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical-Academic Center of Coimbra, 3004-531 Coimbra, Portugal
| | - Sílvia V. Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matafome
- Institute of Physiology and Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical-Academic Center of Coimbra, 3004-531 Coimbra, Portugal
- Instituto Politécnico de Coimbra, Coimbra Health School, 3046-854 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
9
|
Maanvi, Kumari S, Deshmukh R. Dipeptidyl peptidase 4(DPP4) inhibitors stride up the management of Parkinson's disease. Eur J Pharmacol 2023; 939:175426. [PMID: 36544303 DOI: 10.1016/j.ejphar.2022.175426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is the 2nd most common age-related hypokinetic disorder, characterized by dopaminergic degeneration and movement abnormalities. Dopaminergic degeneration in the basal ganglia is primarily seen in PD patients. The therapeutic strategies currently under investigation are to rescue dopaminergic degeneration and promote neuronal regeneration, which could halt disease progression. On the other hand, the therapeutic efficacy of existing drugs used in other disorders has been repurposed in neurodegenerative pathologies. DPP4 inhibitors widely used in treating diabetes have been considered viable target sites and are being tested for efficacy in neurodegenerative pathologies. DPP4 inhibitors have been reported to rescue neuronal degeneration and improve motor functions in various preclinical and clinical PD studies. The current review is focused on the neuroprotective potential, molecular mechanisms and therapeutic potential of DPP4 inhibitors in PD pathology.
Collapse
Affiliation(s)
- Maanvi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Shilpa Kumari
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| |
Collapse
|
10
|
Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. J Mol Biol 2022:167927. [PMID: 36563742 DOI: 10.1016/j.jmb.2022.167927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized in part by the deterioration of dopaminergic neurons which leads to motor impairment. Although there is no cure for PD, the motor symptoms can be treated using dopamine replacement therapies including the dopamine precursor L-DOPA, which has been in use since the 1960s. However, neurodegeneration in PD is not limited to dopaminergic neurons, and many patients experience non-motor symptoms including cognitive impairment or neuropsychiatric disturbances, for which there are limited treatment options. Moreover, there are currently no treatments able to alter the progression of neurodegeneration. There are many therapeutic strategies being investigated for PD, including alternatives to L-DOPA for the treatment of motor impairment, symptomatic treatments for non-motor symptoms, and neuroprotective or disease-modifying agents. G protein-coupled receptors (GPCRs), which include the dopamine receptors, are highly druggable cell surface proteins which can regulate numerous intracellular signaling pathways and thereby modulate the function of neuronal circuits affected by PD. This review will describe the treatment strategies being investigated for PD that target GPCRs and their downstream signaling mechanisms. First, we discuss new developments in dopaminergic agents for alleviating PD motor impairment, the role of dopamine receptors in L-DOPA induced dyskinesia, as well as agents targeting non-dopamine GPCRs which could augment or replace traditional dopaminergic treatments. We then discuss GPCRs as prospective treatments for neuropsychiatric and cognitive symptoms in PD. Finally, we discuss the evidence pertaining to ghrelin receptors, β-adrenergic receptors, angiotensin receptors and glucagon-like peptide 1 receptors, which have been proposed as disease modifying targets with potential neuroprotective effects in PD.
Collapse
|
11
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
12
|
Wong CK, Yusta B, Koehler JA, Baggio LL, McLean BA, Matthews D, Seeley RJ, Drucker DJ. Divergent roles for the gut intraepithelial lymphocyte GLP-1R in control of metabolism, microbiota, and T cell-induced inflammation. Cell Metab 2022; 34:1514-1531.e7. [PMID: 36027914 DOI: 10.1016/j.cmet.2022.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/03/2022]
Abstract
Gut intraepithelial lymphocytes (IELs) are thought to calibrate glucagon-like peptide 1 (GLP-1) bioavailability, thereby regulating systemic glucose and lipid metabolism. Here, we show that the gut IEL GLP-1 receptor (GLP-1R) is not required for enteroendocrine L cell GLP-1 secretion and glucose homeostasis nor for the metabolic benefits of GLP-1R agonists (GLP-1RAs). Instead, the gut IEL GLP-1R is essential for the full effects of GLP-1RAs on gut microbiota. Moreover, independent of glucose control or weight loss, the anti-inflammatory actions of GLP-1RAs require the gut IEL GLP-1R to selectively restrain local and systemic T cell-induced, but not lipopolysaccharide-induced, inflammation. Such effects are mediated by the suppression of gut IEL effector functions linked to the dampening of proximal T cell receptor signaling in a protein-kinase-A-dependent manner. These data reposition key roles of the L cell-gut IEL GLP-1R axis, revealing mechanisms linking GLP-1R activation in gut IELs to modulation of microbiota composition and control of intestinal and systemic inflammation.
Collapse
Affiliation(s)
- Chi Kin Wong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Bernardo Yusta
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jacqueline A Koehler
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Brent A McLean
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Dianne Matthews
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Parkinson's Disease and Sugar Intake-Reasons for and Consequences of a Still Unclear Craving. Nutrients 2022; 14:nu14153240. [PMID: 35956417 PMCID: PMC9370710 DOI: 10.3390/nu14153240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Lately, studies have shown that patients with Parkinson’s disease (PD) report a strong craving for sweets and consume significantly more fast-acting carbohydrates than healthy controls. Consuming food with a high-sugar content is assumed to lead to an increase in insulin concentration, which could positively influence dopamine concentration in the brain and unconsciously be used by patients as kind of “self-medication” to compensate for a lack of dopamine in PD. On the other hand, high-sugar intake could also lead to insulin resistance and diabetes, which is discussed as a causative factor for progressive neurodegeneration in PD. In this critical appraisal, we discuss the role of sugar intake and insulin on dopamine metabolism in patients with PD and how this could influence the potential neurodegeneration mediated by insulin resistance.
Collapse
|
14
|
Hamamah S, Aghazarian A, Nazaryan A, Hajnal A, Covasa M. Role of Microbiota-Gut-Brain Axis in Regulating Dopaminergic Signaling. Biomedicines 2022; 10:biomedicines10020436. [PMID: 35203645 PMCID: PMC8962300 DOI: 10.3390/biomedicines10020436] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 01/09/2023] Open
Abstract
Dopamine is a neurotransmitter that plays a critical role both peripherally and centrally in vital functions such as cognition, reward, satiety, voluntary motor movements, pleasure, and motivation. Optimal dopamine bioavailability is essential for normal brain functioning and protection against the development of neurological diseases. Emerging evidence shows that gut microbiota have significant roles in maintaining adequate concentrations of dopamine via intricate, bidirectional communication known as the microbiota-gut-brain axis. The vagus nerve, immune system, hypothalamus–pituitary–adrenal axis, and microbial metabolites serve as important mediators of the reciprocal microbiota-gut-brain signaling. Furthermore, gut microbiota contain intrinsic enzymatic activity that is highly involved in dopamine metabolism, facilitating dopamine synthesis as well as its metabolite breakdown. This review examines the relationship between key genera of gut microbiota such as Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus and their effects on dopamine. The effects of gut dysbiosis on dopamine bioavailability and the subsequent impact on dopamine-related pathological conditions such as Parkinson’s disease are also discussed. Understanding the role of gut microbiota in modulating dopamine activity and bioavailability both in the periphery and in the central nervous system can help identify new therapeutic targets as well as optimize available methods to prevent, delay, or restore dopaminergic deficits in neurologic and metabolic disorders.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Armin Aghazarian
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Anthony Nazaryan
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; (S.H.); (A.A.); (A.N.)
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania
- Correspondence:
| |
Collapse
|
15
|
Lee JW, Chun W, Lee HJ, Kim SM, Min JH, Kim DY, Kim MO, Ryu HW, Lee SU. The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9101449. [PMID: 34680566 PMCID: PMC8533549 DOI: 10.3390/biomedicines9101449] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023] Open
Abstract
Microglia play an important role in the maintenance and neuroprotection of the central nervous system (CNS) by removing pathogens, damaged neurons, and plaques. Recent observations emphasize that the promotion and development of neurodegenerative diseases (NDs) are closely related to microglial activation. In this review, we summarize the contribution of microglial activation and its associated mechanisms in NDs, such as epilepsy, Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), based on recent observations. This review also briefly introduces experimental animal models of epilepsy, AD, PD, and HD. Thus, this review provides a better understanding of microglial functions in the development of NDs, suggesting that microglial targeting could be an effective therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (S.-M.K.); (J.-H.M.); (D.-Y.K.)
- Correspondence: (J.-W.L.); (M.-O.K.); (H.W.R.); (S.U.L.); Tel.: +82-43-240-6135 (J.-W.L.)
| |
Collapse
|
16
|
Manfready RA, Engen PA, Verhagen Metman L, Sanzo G, Goetz CG, Hall DA, Forsyth CB, Raeisi S, Voigt RM, Keshavarzian A. Attenuated Postprandial GLP-1 Response in Parkinson's Disease. Front Neurosci 2021; 15:660942. [PMID: 34276285 PMCID: PMC8283566 DOI: 10.3389/fnins.2021.660942] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
The incretin hormone glucagon-like peptide 1 (GLP-1) has neuroprotective effects in animal models of Parkinson’s disease (PD), and GLP-1 receptor agonists are associated with clinical improvements in human PD patients. GLP-1 is produced and secreted by intestinal L-cells in response to consumption of a meal. Specifically, intestinal microbiota produce short chain fatty acids (SCFA) which, in turn, promote secretion of GLP-1 into the systemic circulation, from which it can enter the brain. Our group and others have reported that PD patients have an altered intestinal microbial community that produces less SCFA compared to age-matched controls. In this report, we demonstrate that PD patients have diminished GLP-1 secretion in response to a meal compared to their household controls. Peak postprandial GLP-1 levels did not correlate with PD disease severity, motor function, or disease duration. These data provide the scientific rationale for future studies designed to elucidate the role of GLP-1 in the pathogenesis of PD and test the potential utility of GLP-1-directed therapies.
Collapse
Affiliation(s)
- Richard A Manfready
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Phillip A Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Leo Verhagen Metman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Gabriella Sanzo
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Deborah A Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B Forsyth
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Shohreh Raeisi
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Robin M Voigt
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|