1
|
Luan L, Zhang X, Li P, Xu W. SERS substrate based on large-scale self-assembled Au nanobipyramid@Ag nanorod multifunctional paper-based materials for practical and reliable quantitative SERS detection. Anal Bioanal Chem 2025; 417:2903-2913. [PMID: 40119926 DOI: 10.1007/s00216-025-05830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
Pesticides and fungicides in foods pose a significant threat to human health. The design and development of a new and efficient sensing platform for the quantitative detection of contaminants in the food industry have become an urgent problem for food security and environmental protection. Here, we report a simple and reliable large self-assembled Au nanobipyramid@Ag nanorod (Au NBPs@Ag NRs) SERS multifunctional paper-based substrate for rapid and sensitive quantitative detection of contaminants in real samples. Moreover, 4-mercaptobenzoic acid (4-MBA) was uniformly distributed on the surface of the Au NBPs@Ag NRs as an internal standard through liquid-liquid interface self-assembly. The effective correction of the fluctuations in the SERS signal and the large number of nanogaps contributed to the increase in the number of SERS "hot spots," enabling the sensor to have excellent SERS performance. The results showed that the Au NBPs@Ag NRs/4-MBA SERS multifunctional paper-based substrate had excellent sensitivity and reproducibility for the detection of crystal violet (CV) probe molecules. In particular, the SERS sensor is used for the quantitative detection of malachite green (MG) in pond water and thiram (THR) on apple surfaces, and the detection limit was as low as 0.012 ppm and 0.0044 ppm. Therefore, the Au NBPs@Ag NRs/4-MBA SERS-active paper-based substrate is highly efficient and versatile and can be used for reliable sensor analysis of actual sample pollutants.
Collapse
Affiliation(s)
- Longlong Luan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Xiang Zhang
- Division of Life Sciences and Medicine, Department of Bioengineering, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Pan Li
- Institute of Health and Medical Technology, Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Weiping Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, 230001, China.
| |
Collapse
|
2
|
Cao X, Jiang H, Huang X, Sun D, Qi G. Hydrogel patch doped with nanoenzyme for SERS detection of hydrogen peroxide in complex body fluids. Talanta 2025; 285:127328. [PMID: 39644675 DOI: 10.1016/j.talanta.2024.127328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Abnormally elevated levels of H2O2 in body fluids are strongly correlated with various diseases, particularly cancers. Consequently, there is a significant need to develop a simple and efficient method for direct detection of H2O2 in body fluids. This study presents an economical and feasible hydrogel patch doped with nanoenzyme, specifically gold nanoparticles assembled on the surface of magnetic nanoparticles (Au@Fe3O4 NPs), as a sensing platform for H2O2 in complex body fluids. The hydrogel surface-enhanced Raman spectroscopy (SERS) patch demonstrates ultra-high sensitivity for H2O2 in vitro with a detection limit of 10 nM, which is attributed to the excellent catalytic efficiency of Au@Fe3O4 NPs and the rich distribution of SERS "hot spots" on the nanoenzyme. Notably, the hydrogel SERS patch exhibits superior specificity, repeatability, and background-free detection of H2O2 in complex body fluids without pre-treatment. Importantly, the H2O2 levels within cancerous cells were observed to gradually increase during the cell death process, as measured using the hydrogel SERS patch developed for practical application. This SERS patch provides a promising, cost-effective strategy for H2O2 detection in complex samples such as body fluids, food, and environmental samples in future applications.
Collapse
Affiliation(s)
- Xinyu Cao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Hongyu Jiang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Xiaoyi Huang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Guohua Qi
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
| |
Collapse
|
3
|
Mahanty S, Majumder S, Paul R, Boroujerdi R, Valsami-Jones E, Laforsch C. A review on nanomaterial-based SERS substrates for sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174252. [PMID: 38942304 DOI: 10.1016/j.scitotenv.2024.174252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
The agricultural sector plays a pivotal role in driving the economy of many developing countries. Any dent in this economical structure may have a severe impact on a country's population. With rising climate change and increasing pollution, the agricultural sector is experiencing significant damage. Over time this cumulative damage will affect the integrity of food crops and create food security issues around the world. Therefore, an early warning system is needed to detect possible stress on food crops. Here we present a review of the recent developments in nanomaterial-based Surface Enhanced Raman Spectroscopy (SERS) substrates which could be utilized to monitor agricultural crop responses to natural and anthropogenic stress. Initially, our review delves into diverse and cost-effective strategies for fabricating SERS substrates, emphasizing their intelligent utilization across various agricultural scenarios. In the second phase of our review, we spotlight the specific application of SERS in addressing critical food security issues. By detecting nutrients, hormones, and effector molecules in plants, SERS provides valuable insights into plant health. Furthermore, our exploration extends to the detection of contaminants, chemicals, and foodborne pathogens within plants, showcasing the versatility of SERS in ensuring food safety. The cumulative knowledge derived from these discussions illustrates the transformative potential of SERS in bolstering the agricultural economy. By enhancing precision in nutrient management, monitoring plant health, and enabling rapid detection of harmful substances, SERS emerges as a pivotal tool in promoting sustainable and secure agricultural practices. Its integration into agricultural processes not only augments productivity but also establishes a robust defence against potential threats to crop yield and food quality. As SERS continues to evolve, its role in shaping the future of agriculture becomes increasingly pronounced, promising a paradigm shift in how we approach and address challenges in food production and safety.
Collapse
Affiliation(s)
- Shouvik Mahanty
- Department of Atomic Energy, Saha Institute of Nuclear Physics, Sector 1, AF Block, Bidhannagar, Kolkata 700064, West Bengal, India
| | - Santanu Majumder
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK.
| | - Richard Paul
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Ramin Boroujerdi
- Department of Life and Environmental Sciences, Bournemouth University (Talbot Campus), Fern Barrow, Poole BH12 5BB, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
4
|
Xie H, Zhu S, Wen P, Zhou D, Yin Y, Lan Y, Lee TC, Zhang Y, Pu Q. Raspberry-Like Plasmonic Nanoaggregates with Programmable Hierarchical Structures for Reproducible SERS Detection of Wastewater Pollutants and Biomarkers. Anal Chem 2024; 96:17620-17630. [PMID: 39445382 PMCID: PMC11541892 DOI: 10.1021/acs.analchem.4c03533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Conventional solid-based SERS substrates often face challenges with inconsistent sample distribution, while liquid-based SERS substrates are prone to aggregation and precipitation, resulting in irreproducible signals in both cases. In this study, we tackled this dilemma by designing and synthesizing raspberry-like plasmonic nanoaggregates that exhibit a high density of hotspots and are colloidally stable at the same time. In particular, the nanoaggregates consist of a core made of functionalized polystyrene (PS) microspheres, which act as a template for rapid self-assembly of Au@Ag core-shell nanoparticles to form raspberry-like hierarchical nanoaggregates within 5 min of mixing. The optimized nanoaggregates can be used as reproducible and stable SERS substrates for a range of wastewater pollutants (e.g., rhodamine 6G (R6G) and malachite green (MG)) and nucleobases (e.g., adenine and uracil), with the detection limits as low as 1 × 10-10, 1 × 10-16, 3 × 10-8, and 3 × 10-7 M, respectively. Additionally, the trace detection of adenine in clinical urine samples has been successfully demonstrated. Our modular assembly approach opens up new possibilities in SERS substrate design and advanced trace-chemical detection technologies.
Collapse
Affiliation(s)
- Huimin Xie
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| | - Shuyu Zhu
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| | - Ping Wen
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| | - Deyue Zhou
- Institute
for Materials Discovery, University College
London, London WC1H 0AJ, U.K.
| | - Yidan Yin
- Institute
for Materials Discovery, University College
London, London WC1H 0AJ, U.K.
| | - Yang Lan
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
| | - Tung-Chun Lee
- Institute
for Materials Discovery, University College
London, London WC1H 0AJ, U.K.
| | - Yuewen Zhang
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| | - Qiaosheng Pu
- College
of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou 730000, China
| |
Collapse
|
5
|
Li YL, Zhu J, Weng GJ, Li JJ, Zhao JW. Controlled Spread of a Ag Layer from the Core to the Tip along the Branches of AuAg Nanostars for Improved SERS Detection of Okadaic Acid in Shellfish. ACS Sens 2024; 9:4295-4304. [PMID: 39143674 DOI: 10.1021/acssensors.4c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Plasmonic Au-Ag nanostars are excellent surface-enhanced Raman scattering (SERS) probes due to bimetallic coupling and the tip effect. However, the existing preparation methods of AuAg nanostars cannot achieve controlled growth of the Ag layer on the branches of nanostars and so cannot display their SERS to the maximum extent, thus limiting its sensitivity in biosensing. Herein, a novel strategy "PEI (polyethylenimine)-guided Ag deposition method" is proposed for synthesizing AuAg core-shell nanostars (AuAg@Ag NS) with a tunable distribution of the Ag layer from the core to the tip, which offers an avenue for investigating the correlation between SERS efficiency and the extent of spread of the Ag layer. It is found that AuAg@Ag NS with a Ag layer coated the whole branch has the strongest SERS performance because the coupling between the tips and Ag layer is maximized. Meanwhile, as a completely closed core-shell structure, AuAg@Ag NS can confine and anchor 4-ATP inside the Ag layer to avoid an unstable SERS signal. By connecting the aptamer, a reliable internal standard nanoprobe with a SERS enhancement factor (EF) up to 1.86 × 108 is prepared. Okada acid is detected through competitive adsorption of this SERS probes, and the detection limit is 36.6 pM. The results gain fundamental insights into tailoring the nanoparticle morphologies and preparation of internal standard nanoprobes and also provide a promising avenue for marine toxin detection in food safety.
Collapse
Affiliation(s)
- Yun-Le Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
6
|
Qian S, Zhao W, Guo R, Wang X, Dai H, Lang J, Kadasala NR, Jiang Y, Liu Y. Apt-Conjugated PDMS-ZnO/Ag-Based Multifunctional Integrated Superhydrophobic Biosensor with High SERS Activity and Photocatalytic Sterilization Performance. Int J Mol Sci 2024; 25:7675. [PMID: 39062920 PMCID: PMC11276906 DOI: 10.3390/ijms25147675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Sensitive detection and efficient inactivation of pathogenic bacteria are crucial for halting the spread and reproduction of foodborne pathogenic bacteria. Herein, a novel Apt-modified PDMS-ZnO/Ag multifunctional biosensor has been developed for high-sensitivity surface-enhanced Raman scattering (SERS) detection along with photocatalytic sterilization towards Salmonella typhimurium (S. typhimurium). The distribution of the electric field in PDMS-ZnO/Ag with different Ag sputtering times was analyzed using a finite-difference time-domain (FDTD) algorithm. Due to the combined effect of electromagnetic enhancement and chemical enhancement, PDMS-ZnO/Ag exhibited outstanding SERS sensitivity. The limit of detection (LOD) for 4-MBA on the optimal SERS substrate (PZA-40) could be as little as 10-9 M. After PZA-40 was modified with the aptamer, the LOD of the PZA-40-Apt biosensor for detecting S. typhimurium was only 10 cfu/mL. Additionally, the PZA-40-Apt biosensor could effectively inactivate S. typhimurium under visible light irradiation within 10 min, with a bacterial lethality rate (Lb) of up to 97%. In particular, the PZA-40-Apt biosensor could identify S. typhimurium in food samples in addition to having minimal cytotoxicity and powerful biocompatibility. This work provides a multifunctional nanoplatform with broad prospects for selective SERS detection and photocatalytic sterilization of pathogenic bacteria.
Collapse
Affiliation(s)
- Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Huasong Dai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | | | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| |
Collapse
|
7
|
Heo EH, Chang H. Simple and sensitive galactose monitoring based on capillary SERS sensor. Anal Bioanal Chem 2024; 416:3811-3819. [PMID: 38702448 DOI: 10.1007/s00216-024-05322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Galactosemia, a severe genetic metabolic disorder, results from the absence of galactose-degrading enzymes, leading to harmful galactose accumulation. In this study, we introduce a novel capillary-based surface-enhanced Raman spectroscopy (SERS) sensor for convenient and sensitive galactose detection. The developed sensor enhances SERS signals by introducing gold nanoparticles (Au NPs) onto the surface of silver nanoshells (Ag NSs) within a capillary, creating Ag NSs with Au NPs as satellites. Utilizing 4-mercaptophenylboronic acid (4-MPBA) as a Raman reporter molecule, the detection method relies on the conversion of 4-MPBA to 4-mercaptophenol (4-MPhOH) driven by hydrogen peroxide (H2O2) generated during galactose oxidation by galactose oxidase (GOx). A new SERS signal was observed, which was generated by H2O2 produced when galactose and GOx reacted. Our strategy yielded a quantitative change in the SERS signal, specifically in the band intensity ratio of 998 to 1076 cm-1 (I998/I1076) as the galactose concentration increased. Our capillary-based SERS biosensor provides a promising platform for early galactosemia diagnosis.
Collapse
Affiliation(s)
- Eun Hae Heo
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
8
|
Zhang T, Wu H, Qiu C, Wang M, Wang H, Zhu S, Xu Y, Huang Q, Li S. Ultrasensitive Hierarchical AuNRs@SiO 2@Ag SERS Probes for Enrichment and Detection of Insulin and C-Peptide in Serum. Int J Nanomedicine 2024; 19:6281-6293. [PMID: 38919772 PMCID: PMC11198011 DOI: 10.2147/ijn.s462601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Insulin and C-peptide played crucial roles as clinical indicators for diabetes and certain liver diseases. However, there has been limited research on the simultaneous detection of insulin and C-peptide in trace serum. It is necessary to develop a novel method with high sensitivity and specificity for detecting insulin and C-peptide simultaneously. Methods A core-shell-satellites hierarchical structured nanocomposite was fabricated as SERS biosensor using a simple wet-chemical method, employing 4-MBA and DTNB for recognition and antibodies for specific capture. Gold nanorods (Au NRs) were modified with Raman reporter molecules and silver nanoparticles (Ag NPs), creating SERS tags with high sensitivity for detecting insulin and C-peptide. Antibody-modified commercial carboxylated magnetic bead@antibody served as the capture probes. Target materials were captured by probes and combined with SERS tags, forming a "sandwich" composite structure for subsequent detection. Results Under optimized conditions, the nanocomposite fabricated could be used to detect simultaneously for insulin and C-peptide with the detection limit of 4.29 × 10-5 pM and 1.76 × 10-10 nM in serum. The insulin concentration (4.29 × 10-5-4.29 pM) showed a strong linear correlation with the SERS intensity at 1075 cm-1, with high recoveries (96.4-105.3%) and low RSD (0.8%-10.0%) in detecting human serum samples. Meanwhile, the C-peptide concentration (1.76 × 10-10-1.76 × 10-3 nM) also showed a specific linear correlation with the SERS intensity at 1333 cm-1, with recoveries 85.4%-105.0% and RSD 1.7%-10.8%. Conclusion This breakthrough provided a novel, sensitive, convenient and stable approach for clinical diagnosis of diabetes and certain liver diseases. Overall, our findings presented a significant contribution to the field of biomedical research, opening up new possibilities for improved diagnosis and monitoring of diabetes and liver diseases.
Collapse
Affiliation(s)
- Tong Zhang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Chuzhou Center for Disease Control and Prevention, Chuzhou City, Anhui, 239000, People’s Republic of China
| | - Han Wu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Chenling Qiu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Mingxin Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Haiting Wang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Shunhua Zhu
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu, 221004, People’s Republic of China
| | - Yinhai Xu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| | - Qingli Huang
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou City, Jiangsu, 221004, People’s Republic of China
| | - Shibao Li
- Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, People’s Republic of China
| |
Collapse
|
9
|
Pei J, Jin Y, Ren C, Chen Y, Zou M, Qi X. Detection of carbofuran in fruits and vegetables by Raman spectroscopy combined with immunochromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3938-3948. [PMID: 38842108 DOI: 10.1039/d4ay00490f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
It has long been desired to develop rapid methods for the rapid identification and quantification of pesticides and their metabolites. Carbofuran, a representative pesticide of the carbamate group, is highly systemic and is used on vegetables, fruits and grains, which has led many countries to test for residues in food and the environment. In this study, gold and silver composite core-shell (Au@Ag) nanoparticles were used to label the carbofuran antibody and Raman molecule 5,5-dithiobis-2-nitrobenzoic acid (DTNB) to synthesize Raman immune probes. The signal value of DTNB was read using a Raman spectrometer, and the quantitative detection technology of carbofuran was established based on lateral flow immunochromatographic assay (ICA) combined with surface-enhanced Raman spectroscopy (SERS). SERS-ICA is a rapid, quantitative and ultrasensitive test for the determination of carbofuran in fruits and vegetables with a sensitivity of 0.1 pg mL-1. Consequently, the results demonstrate that the SERS-based lateral flow immunosensor developed in this study has the advantages of excellent assay sensitivity and remarkable multiplexing capability, and thus it will have great application potential in food safety monitoring.
Collapse
Affiliation(s)
- Jiahuan Pei
- Chinese Academy of Inspection and Quarantine (CAIQ), No. A3, Gaobeidian Road, Chaoyang District, Beijing 100123, China.
- School of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yong Jin
- Chinese Academy of Inspection and Quarantine (CAIQ), No. A3, Gaobeidian Road, Chaoyang District, Beijing 100123, China.
| | - Chunsheng Ren
- Chinese Academy of Inspection and Quarantine (CAIQ), No. A3, Gaobeidian Road, Chaoyang District, Beijing 100123, China.
| | - Yan Chen
- Chinese Academy of Inspection and Quarantine (CAIQ), No. A3, Gaobeidian Road, Chaoyang District, Beijing 100123, China.
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), No. A3, Gaobeidian Road, Chaoyang District, Beijing 100123, China.
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine (CAIQ), No. A3, Gaobeidian Road, Chaoyang District, Beijing 100123, China.
| |
Collapse
|
10
|
Sun Y, Zhang Y, Ren H, Qiu H, Zhang S, Lu Q, Hu Y. Highly sensitive SERS sensors for glucose detection based on enzyme@MOFs and ratiometric Raman. Talanta 2024; 271:125647. [PMID: 38224660 DOI: 10.1016/j.talanta.2024.125647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Diabetes is a common chronic metabolic disease. The frequent fluctuation of glucose is the main cause of most diabetes complications, which in turn causes harm to the health of patients. Surface-enhanced Raman scattering (SERS) spectroscopy has attracted much attention in the rapid detection of glucose due to its unique molecular fingerprinting ability, ultra-high sensitivity and fast response. However, due to the low affinity between glucose and SERS substrate, poor signal, susceptibility to complex environmental interference, and poor stability of SERS detection, it is still a challenge for SERS to accurately and sensitively determine glucose in complex environments. In this work, we encapsulated 4-mercaptobutyronitrile (4-MBN) as an internal standard (IS) in Au@Ag NRs inside and then Au@4-MBN@Ag NRs, Leucomalachite Green (LMG), glucose oxidase (GOx) and horseradish peroxidase (HPR) were encapsulated in ZIF-8 to prepare a tandem enzyme catalytic ratiometric SERS sensor Au@4-MBN@Ag@LMG@ZIF-8(GOx, HPR) for the detection of glucose in saliva. Because ZIF-8 enhanced the catalytic activity of the enzyme, the ability of glucose enrichment, and weakens the aggregation of Ag NRs. The internal standard signal molecule improves the accuracy and sensitivity of detection. The ratiometric Raman signal I412/I2233 of glucose has a good linear relationship with the concentration in the range of 0.1-100 μM, and the limit of detection (LOD) could be down to 0.03 μM. At the same time, it has excellent selectivity, repeatability and accuracy. The recovery rate of glucose in saliva is 96.50%-105.56 %, which proves the feasibility of the method. The Au@4-MBN@Ag@LMG@ZIF-8(GOx, HPR) sensor prepared in this study showed excellent SERS performance, which was able to detect glucose quickly, sensitively and accurately. This work provides a new strategy for the design of enzyme-catalyzed SERS sensors.
Collapse
Affiliation(s)
- Yan Sun
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, South China Normal University, Guangzhou, 510631, China; Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Medicine and Nursing, Dezhou University, China.
| | - Yueshou Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, South China Normal University, Guangzhou, 510631, China
| | - Haiting Ren
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, South China Normal University, Guangzhou, 510631, China
| | - Hongxing Qiu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, South China Normal University, Guangzhou, 510631, China
| | - Shenghao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, South China Normal University, Guangzhou, 510631, China
| | - Qiao Lu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
11
|
Dong S, Zhu Z, Shi Q, He K, Wu J, Feng J. Development of aptamer surface-enhanced Raman spectroscopy sensor based on Fe 3O 4@Pt and Au@Ag nanoparticles for the determination of acetamiprid. Mikrochim Acta 2024; 191:289. [PMID: 38683210 DOI: 10.1007/s00604-024-06351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
As a common chlorinated nicotinic pesticide with high insecticidal activity, acetamiprid has been widely used for pest control. However, the irrational use of acetamiprid will pollute the environment and thus affect human health. Therefore, it is crucial to develop a simple, highly sensitive, and rapid method for acetamiprid residue detection. In this study, the capture probe (Fe3O4@Pt-Aptamer) was connected with the signal probe (Au@DTNB@Ag CS-cDNA) to form an assembly with multiple SERS-enhanced effects. Combined with magnetic separation technology, a SERS sensor with high sensitivity and stability was constructed to detect acetamiprid residue. Based on the optimal conditions, the SERS intensity measured at 1333 cm-1 is in relation to the concentration of acetamiprid in the range 2.25 × 10-9-2.25 × 10-5 M, and the calculated limit of detection (LOD) was 2.87 × 10-10 M. There was no cross-reactivity with thiacloprid, clothianidin, nitenpyram, imidacloprid, and chlorpyrifos, indicating that this method has good sensitivity and specificity. Finally, the method was applied to the detection of acetamiprid in cucumber samples, and the average recoveries were 94.19-103.58%, with RSD < 2.32%. The sensor can be used to analyse real samples with fast detection speed, high sensitivity, and high selectivity.
Collapse
Affiliation(s)
- Sa Dong
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Zixin Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiuyun Shi
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Kangli He
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianwei Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Lu Y, Mo X, Zhu G, Huang Y, Wang Y, Yang Z, Gao L, Shen G, Wang Y, Zhao X. Ratiometric SERS quantification of SO 2 vapor based on Au@Ag-Au with Raman reporter as internal standard. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133763. [PMID: 38359757 DOI: 10.1016/j.jhazmat.2024.133763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Practical gas sensing application requires sensors to quantify target analytes with high sensitivity and reproducibility. However, conventional surface enhanced Raman scattering (SERS) sensor lacks reproducibility and quantification arising from variations of "hot spot" distribution and measurement conditions. Here, a ratio-dependent SERS sensor was developed for quantitative label-free gas sensing. Au@Ag-Au nanoparticles (NPs) were filtered onto anodic aluminum oxide (AAO) forming Au@Ag-Au@AAO SERS substrate. 4-MBA was encapsulated in the gap of Au@Ag-Au and served as the internal standard (IS) to calibrate SERS signal fluctuation for improved quantification ability. Combined with headspace sampling method, SO2 residue in traditional Chinese medicine (TCM) can be extracted and captured on the immediate vicinity of Au@Ag-Au surface. The intensity ratio I613 cm-1/I1078 cm-1 showed excellent linearity within the range of 0.5 mg/kg-500 mg/kg, demonstrating superior quantification performance for SO2 detection. Signals for concentration as low as 0.05 mg/kg of SO2 could be effectively collected, much lower than the strictest limit 10 mg/kg in Chinese Pharmacopoeia. Combined with a handheld Raman spectrometer, handy and quantitative TCM quality evaluation in aspect of SO2 residue was realized. This ratiometric SERS sensor functioned well in rapid on-site SO2 quantification, exhibiting excellent sensitivity and simple operability.
Collapse
Affiliation(s)
- Yu Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Xiufang Mo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Geng Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Zhenzhong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liqiong Gao
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China
| | - Guofang Shen
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou 215163, China; Southeast University Shenzhen Research Institute, Shenzhen 518000, China.
| |
Collapse
|
13
|
Liu L, Ma H, Xing B. Aging and characterization of disposable polypropylene plastic cups based microplastics and its adsorption for methylene blue. CHEMOSPHERE 2024; 349:140976. [PMID: 38114021 DOI: 10.1016/j.chemosphere.2023.140976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Microplastics (MPs) as emerging pollutants are of increasing concern, due to their ubiquitous, uncertain, and complex environmental impacts. Different from the standard spherical MPs without additives, here polypropylene microplastics (PP-MPs) in flake derived from the disposable plastic cup in food-grade in daily life were studied. The characterization of PP-MPs demonstrated that the carbonyl index represented the aging degree was enhanced from 0.26 significantly to 0.82 after 10 days, and the aging process fitted well with pseudo-first-order kinetic. Moreover, the crystallinity degree, polarity and surface negative charges were enhanced, while the hydrophobicity was decreased. The adsorption behavior of PP-MPs toward methylene blue (MB), and the impacts of various pHs, salinities, and humic acid in aquatic environments were also explored. The pseudo-second-order kinetic, Henry and Sips isotherm models provided a good correlation with the experimental data, indicating that the rate-limiting step was closely related with the complex surface adsorption, and the hydrophobic partitioning, polar interaction, electrostatic attraction, and hydrogen bonding were possibly involved in the adsorption. These exhaustive experiments aim to provide a theoretical basis for assessing and better understanding the environmental behavior of disposable PP plastic cups in nature.
Collapse
Affiliation(s)
- Lili Liu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi, 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
14
|
Jin H, Liu T, Sun D. Target-induced hot spot construction for sensitive and selective surface-enhanced Raman scattering detection of matrix metalloproteinase MMP-9. Mikrochim Acta 2024; 191:105. [PMID: 38240894 PMCID: PMC10798921 DOI: 10.1007/s00604-024-06183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/01/2024] [Indexed: 01/22/2024]
Abstract
Studies have found that matrix metalloproteinase-9 (MMP-9) plays a significant role in cancer cell invasion, metastasis, and tumor growth. But it is a challenge to go for highly sensitive and selective detection and targeting of MMP-9 due to the similar structure and function of the MMP proteins family. Herein, a novel surface-enhanced Raman scattering (SERS) sensing strategy was developed based on the aptamer-induced SERS "hot spot" formation for the extremely sensitive and selective determination of MMP-9. To develop the nanosensor, one group of gold nanospheres was modified with MMP-9 aptamer and its complementary strand DNA1, while DNA2 (complementary to DNA1) and the probe molecule 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) were grafted on the surface of the other group of gold nanospheres. In the absence of MMP-9, DTNB located on the 13-nm gold nanospheres has only generated a very weak SERS signal. However, when MMP-9 is present, the aptamer preferentially binds to the MMP-9 to construct MMP-9-aptamer complex. The bare DNA1 can recognize and bind to DNA2, which causes them to move in close proximity and create a SERS hot spot effect. Due to this action, the SERS signal of DTNB located at the nanoparticle gap is greatly enhanced, achieving highly sensitive detection of MMP-9. Since the hot spot effect is caused by the aptamer that specifically recognizes MMP-9, the approach exhibits excellent selectivity for MMP-9 detection. Based on the benefits of both high sensitivity and excellent selectivity, this method was used to distinguish the difference in MMP-9 levels between normal and cancer cells as well as the expression of MMP-9 from cancer cells with different degrees of metastasis. In addition, this strategy can accurately reflect the dynamic changes in intracellular MMP-9 levels, stimulated by the MMP-9 activator and inhibitor. This strategy is expected to be transformed into a new technique for diagnosis of specific cancers related to MMP-9 and assessing the extent of cancer occurrence, development and metastasis.
Collapse
Affiliation(s)
- Huihui Jin
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
15
|
Zhuang Y, Dong H, Liu T, Zhao Y, Xu Y, Zhao X, Sun D. Highly sensitive and selective SERS detection of caspase-3 during cell apoptosis based on the target-induced hotspot effect. Analyst 2024; 149:490-496. [PMID: 38062995 DOI: 10.1039/d3an01721d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Caspase-3 is an important biomarker for the process of apoptosis, which is a key target for cancer treatment. Due to its low concentration in single cells and the structural similarity of caspase family proteins, it is exceedingly challenging to accurately determine the intracellular caspase-3 during apoptosis in situ. Herein, a biosensing strategy based on the target-induced SERS "hot spot" formation has been developed for the simultaneous highly sensitive and selective detection of intracellular caspase-3 level. The nanosensor is composed of gold nanoparticles modified with the probe molecule 4-mercaptophenylboronic acid (4-MPBA) and a peptide chain. The well-designed peptide chain contains two distinct functional domains, one with a sulfhydryl group for bonding to the gold nanoparticles and the other a fragment specifically recognized by caspase-3. When caspase-3 is present, the negatively charged segment (NH2-Asp-Asp-Asp-Glu-Val-Asp-OH) of the peptide chain is specifically hydrolyzed, leaving a positively charged fragment coated on the surface of the gold nanoparticles. At this time, the golden nanoparticles undergo significant coupling aggregation due to the electrostatic interaction, resulting in a large number of SERS "hot spot" formation. The SERS signal of the 4-MPBA located at the nano-gap is significantly boosted because of the local plasma enhancement effect. The highly sensitive determination of caspase-3 can be achieved according to the altered SERS signal intensity of 4-MPBA. The turn-on of the SERS signal-induced target contributes to the excellent selectivity and the formation of the SERS "hot spot" effect that further improves the sensitivity of caspase-3 detection. The advantages of this biosensing technique allow for the precise in situ monitoring of the dynamic changes in caspase-3 levels during apoptosis. In addition, the differences in caspase-3 levels during the apoptosis of various cell types were compared. Monitoring the caspase-3 levels can be used to track the cellular apoptosis process, evaluate the effect of drugs on cancer cells in real time, and provide guidance for the selection of the appropriate drug dosage.
Collapse
Affiliation(s)
- Yueyuan Zhuang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Han Dong
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia
| | - Yongmei Zhao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaojuan Zhao
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
16
|
Cheng HW, Tsai HM, Wang YL. Exploiting Purine as an Internal Standard for SERS Quantification of Purine Derivative Molecules Released by Bacteria. Anal Chem 2023; 95:16967-16975. [PMID: 37931018 PMCID: PMC10666080 DOI: 10.1021/acs.analchem.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive technique used in diverse biomedical applications including rapid antibiotic susceptibility testing (AST). However, signal fluctuation in SERS, particularly the widespread of signals measured from different batches of SERS substrates, compromises its reliability and introduces potential errors in SERS-AST. In this study, we investigate the use of purine as an internal standard (IS) to recalibrate SERS signals and quantify the concentrations of two important purine derivatives, adenine and hypoxanthine, which are the most important biomarkers used in SERS-AST. Our findings demonstrate that purine IS effectively mitigates SERS signal fluctuations and enables accurate prediction of adenine and hypoxanthine concentrations across a wide range (5 orders of magnitude). Calibrations with purine as an IS outperform those without, exhibiting a 10-fold increase in predictive accuracy. Additionally, the calibration curve obtained from the first batch of SERS substrates remains effective for 64 additional substrates fabricated over a half-year period. Measurements of adenine and hypoxanthine concentrations in bacterial supernatants using SERS with purine IS closely align with the liquid chromatography-mass spectrometry results. The use of purine as an IS offers a simple and robust platform to enhance the speed and accuracy of SERS-AST, while also paving the way for in situ SERS quantification of purine derivatives released by bacteria under various stress conditions.
Collapse
Affiliation(s)
- Ho-Wen Cheng
- Molecular
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106319, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 106319, Taiwan
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Hsin-Mei Tsai
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Yuh-Lin Wang
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
17
|
Xu L, Du X, Liu T, Sun D. In situ and dynamic SERS monitoring of glutathione levels during cellular ferroptosis metabolism. Anal Bioanal Chem 2023; 415:6145-6153. [PMID: 37644323 DOI: 10.1007/s00216-023-04909-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Ferroptosis is a non-apoptotic cell death regulated by iron-dependent lipid peroxidation. Glutathione (GSH), a key antioxidant against oxidative damage, is involved in one of the most important metabolic pathways of ferroptosis. Herein, an excellent plasmonic nanoprobe was developed for highly sensitive, in situ, dynamic real-time monitoring of intracellular GSH levels during ferroptosis. A nanoprobe was prepared by functionalizing gold nanoparticles (AuNPs) with the probe molecule crystal violet (CV). The fluctuation in the SERS signal intensity of CV via the competitive displacement reaction can be used to detect GSH. The advantages of the plasmonic nanoprobe including low-cost production techniques, outstanding stability and biocompatibility, high specificity and sensitivity towards GSH with a detection limit of 0.05 μM. It enables real-time dynamic monitoring of GSH levels in living cells during erastin-induced ferroptosis. This approach is expected to provide important theoretical support for elucidating the GSH-related ferroptosis metabolic mechanism and advancing our understanding of ferroptosis-based cancer therapy. Overview of the workflow of sensing principle for highly sensitive, in situ and dynamic tracking of intracellular GSH levels during drug-triggered ferroptosis process.
Collapse
Affiliation(s)
- Lixing Xu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xing Du
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
18
|
Yang W, Li D, Li Y, Zheng Y, Shan J. Synthesis of a capillary surface-enhanced Raman scattering substrate integrating sampling and detection based on meniscus self-assembled technology. Mikrochim Acta 2023; 190:411. [PMID: 37737867 DOI: 10.1007/s00604-023-05981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023]
Abstract
A method is proposed to fabricate a novel capillary surface-enhanced Raman scattering (SERS) substrate integrating sampling and detection based on meniscus evaporation self-assembled technology, named Meniscus@AgNPs@Capillary substrate. Ag nanoparticles (AgNPs) were arranged in the inner wall of the capillary through meniscus evaporation. The parameters which might affect the deposition of AgNPs during evaporation were investigated, including the evaporation temperature, self-assembly time, the ratio of silver sol to ethanol, and capillary length. The enhancement effect of SERS under different fabrication conditions was investigated using rhodamine 6G (R6G) as a Raman probe. Moreover, the optimal fabricated Meniscus@AgNPs@Capillary substrate was applied to the detection of several environmental pollutants such as polystyrene nanoplastics (PSNPs) and various antibiotics, with limits of detection (LOD) of 10 µg/L and 1 µg/L, respectively. The Meniscus@AgNPs@Capillary substrate presented the advantages of time and effort saving, high sensitivity, and on-site sampling and testing.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Dandan Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yunlong Li
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Yuan Zheng
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China
| | - Jiajia Shan
- School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
19
|
Tian Y, Zhao L, Pan Y, Li Z, Shen X, Zhang X, Tang X, Feng X, Huang X. The volatile release evaluation of nicotine from snus products under different storage conditions based on surface-enhanced Raman spectroscopy technology. RSC Adv 2023; 13:23130-23137. [PMID: 37533785 PMCID: PMC10391323 DOI: 10.1039/d3ra03977c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Surface enhanced Raman spectroscopy (SERS) is a highly sensitive analytical detection technique that provides unique chemical and structural information on target molecules. Snus is a type of tobacco product that can release nicotine and other components under certain humidity and temperature without burning, and the evaluation of its nicotine release under different storage conditions is very important for understanding its characteristics, regulating its components, and setting reasonable storage conditions. Herein, by means of an artificial climate box and suction extraction device, the volatile release evaluations of nicotine from snus products under different storage conditions were performed based on Fe3O4 microparticles coated with Au nanorods and Au nanoparticles (Fe3O4@AuNRsNPs) as SERS substrates combined with a capillary. The Fe3O4@AuNRsNPs assemblies can be fixed in the inner wall of the capillary with the aid of an external magnetic field, which improved the maneuverability of the SERS substrates. By comparing the intensities of the spectral peaks of the symmetrical breathing of the pyridine moiety of nicotine molecules with increasing temperature and humidity, which could significantly accelerate the volatile release of a small amount of nicotine, the nicotine release under different conditions could be evaluated. Based on this strategy, it was possible to obtain the storage or placement conditions of the product. The results of this study provide a reference to clarify the volatile release of nicotine under various storage conditions, which is helpful for better regulation of the levels of nicotine in snus. Moreover, such destruction-free evaluation of the volatile release of nicotine from snus products under different storage conditions opens up new perspectives for further research about the impact of nicotinoids on smokers' health and cessation programs.
Collapse
Affiliation(s)
- Yongfeng Tian
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences Kunming 650000 China
| | - Yonghua Pan
- Hongta Tobacco (Group) Co., Ltd. Yuxi 653100 China
| | - Zhengfeng Li
- The Raw Material Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Xiaofeng Shen
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Xia Zhang
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Xianghu Tang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| | - Xin Feng
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd. Kunming 650231 China
| | - Xingjiu Huang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China
| |
Collapse
|
20
|
Yan X, Zhao H, Shi X, Yang Z, Ma J. Dual Function of 4-Aminothiophene in Surface-Enhanced Raman Scattering Application as an Internal Standard and Adsorbent for Controlling Au Nanocrystal Morphology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13427-13438. [PMID: 36857292 DOI: 10.1021/acsami.2c19390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The sensitivity and quantitative accuracy of surface-enhanced Raman scattering (SERS) are the main factors that restrict its application. Here, novel Au nanoscale convex polyhedrons (Au NCPs) were designed and fabricated to solve these problems via an embedded standard, including eight pods and six small protrusions. Spherical Au seeds regrew into different sizes of Au NCPs with a face-centered cubic structure. This morphology is due to the dual mechanism of the 4-aminothiophene (4-ATP) molecule that serves as an internal standard and a surface ligand regulator combined with the regulatory role of hexadecyl trimethyl ammonium chloride. The results show that Au NCPs were enclosed by high-index {12 9 1} facets, which greatly improved the local plasma resonance and reduced the lowest SERS detectable concentration of pyrene in standard seawater to 0.5 nM. An effective reference was produced by embedding 4-ATP with a relative standard deviation value less than 2.97% (in the same batch) and 3.92% (between different batches). Our research offers a new strategy for morphological regulation of metal nanocrystals, which is useful for the preparation of highly sensitive SERS substrates and trace analysis.
Collapse
Affiliation(s)
- Xia Yan
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
- Department of Physics, Lyuliang University, Lyuliang 033000, P. R. China
| | - Hang Zhao
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
| | - Xiaofeng Shi
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
| | - Zhiyuan Yang
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
| | - Jun Ma
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, P. R. China
| |
Collapse
|
21
|
He LB, Shangguan L, Ran YT, Zhu C, Lu ZY, Zhu JH, Yu DJ, Kan CX, Sun LT. Revealing the alloying and dealloying behaviours in AuAg nanorods by thermal stimulus. NANOSCALE ADVANCES 2023; 5:685-692. [PMID: 36756526 PMCID: PMC9890656 DOI: 10.1039/d2na00746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Binary metallic nanocrystals are attractive as they offer an extra degree of freedom for structure and phase modulation to generate synergistic effects and extraordinary properties. However, whether the binary structures and phases at the nanoscale still follow the rules established on the bulk counterparts remains unclear. In this work, AuAg nanorods were used as a sample to probe into this issue. An in situ heating method by combining aberration-corrected transmission electron microscopes with a chip-based heating holder was employed to perform the heating experiments. It was found that the AuAg nanorods, which initially possessed heterostructures, can be designed and engineered to be gradient phase alloys with thermal pulses over 350 °C. Atomic diffusion inside the rod structures did not alter the shape of the rods but provided a route to fine-tune their properties. At higher temperatures, the discrepant sublimation behaviours between Au and Ag lead to dealloying of the nanorods. Durative sublimation of the Ag element can continuously tailor the lengths of the nanorods while concentrating the Au composition simultaneously. Especially, nearly pure Au nanocrystals can be obtained with the depletion of Ag by sublimation. These findings give insights into the nanoscale structure and phase behaviours in binary alloys and provide an alternative way to fine-tune their structure, phase, and properties.
Collapse
Affiliation(s)
- Long-Bing He
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
- Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University Suzhou 215123 P. R. China
| | - Lei Shangguan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Ya-Ting Ran
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Zi-Yu Lu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Jiong-Hao Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Dao-Jiang Yu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
| | - Cai-Xia Kan
- College of Physics, Nanjing University of Aeronautics and Astronautics No. 29 Jiangjun Road Nanjing 211106 P. R. China
| | - Li-Tao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University Nanjing 210096 P. R. China
- Centre for Advanced Materials and Manufacture, Joint Research Institute of Southeast University and Monash University Suzhou 215123 P. R. China
| |
Collapse
|
22
|
Dong J, Wu H, Cao Y, Yuan J, Han Q, Gao W, Zhang C, Qi J, Sun M. Capillary-force-assisted self-assembly of gold nanoparticles into highly ordered plasmonic thin films for ultrasensitive SERS. Phys Chem Chem Phys 2023; 25:1649-1658. [PMID: 36541051 DOI: 10.1039/d2cp05158c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, a capillary device based on the surface plasmon-enhanced Raman scattering effect was prepared by a simple and easy method. First, the capillary was treated with APTES solution. Due to the electrostatic effect, gold nanoparticles could be easily and tightly assembled in the capillary inner wall. On this basis, the effects of changing the concentration of APTES, the concentration of colloids and the soaking time of the capillary in the colloids on the assembly of gold nanoparticles on the inner wall of the capillary were studied, and the SERS enhancement effect under different conditions was analyzed, and the optimal solution was successfully found. At the same time, the reason why the capillary substrate shows better SERS performance than the traditional planar substrate is deeply discussed. Since the nanoparticles can be attached to the upper and lower surfaces of the inner wall of the capillary, the utilization rate of nanoparticles and laser is improved, thereby achieving higher enhancement. For the detection of the probe molecule rhodamine 6G, it was proved that the substrate has good uniformity and the lowest detection limit can reach 10-10 M. Finally, the real-life pesticide thiram and the food additive aspartame were tested, and the detection limits could reach 10-6 M and 0.25 g L-1. It is confirmed that the prepared capillary shows excellent SERS performance and can be used for rapid detection in various fields.
Collapse
Affiliation(s)
- Jun Dong
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Haoran Wu
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Yi Cao
- School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jiaxin Yuan
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Qingyan Han
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Wei Gao
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Chengyun Zhang
- School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Jianxia Qi
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
23
|
Cao J, Zhu W, Zhou J, Zhao BC, Pan YY, Ye Y, Shen AG. Engineering a SERS Sensing Nanoplatform with Self-Sterilization for Undifferentiated and Rapid Detection of Bacteria. BIOSENSORS 2023; 13:75. [PMID: 36671910 PMCID: PMC9855742 DOI: 10.3390/bios13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The development of a convenient, sensitive, rapid and self-sterilizing biosensor for microbial detection is important for the prevention and control of foodborne diseases. Herein, we designed a surface-enhanced Raman scattering (SERS) sensing nanoplatform based on a capture-enrichment-enhancement strategy to detect bacteria. The gold-Azo@silver-cetyltrimethylammonium bromide (Au-Azo@Ag-CTAB) SERS nanotags were obtained by optimizing the synthesis process conditions. The results showed that the modification of CTAB enabled the nanotags to bind to different bacteria electrostatically. This SERS sensing nanoplatform was demonstrated to be fast (15 min), accurate and sensitive (limit of detection (LOD): 300 and 400 CFU/mL for E. coli and S. aureus, respectively). Of note, the excellent endogenous antibacterial activity of CTAB allowed the complete inactivation of bacteria after the assay process, thus effectively avoiding secondary contamination.
Collapse
Affiliation(s)
- Jun Cao
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Wei Zhu
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ji Zhou
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Bai-Chuan Zhao
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yao-Yu Pan
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| | - Yong Ye
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Ai-Guo Shen
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- Research Center of Graphic Communication, Printing and Packaging, Wuhan University, Wuhan 430079, China
| |
Collapse
|
24
|
Liu J, Fan W, Lv X, Wang C. Rapid Quantitative Detection of Voriconazole in Human Plasma Using Surface-Enhanced Raman Scattering. ACS OMEGA 2022; 7:47634-47641. [PMID: 36591153 PMCID: PMC9798397 DOI: 10.1021/acsomega.2c04521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
There is an increasing demand for rapid detection techniques for monitoring the therapeutic concentration of voriconazole (VRC) in human biological fluids. Herein, a rapid and selective surface-enhanced Raman scatting method for point-of-care determination of VRC in human plasma was developed via a portable Raman spectrometer. This approach has enabled the quantification of the VRC spiked into human plasma at clinical relevant concentrations. A gold nanoparticle solution (Au sol) was used as the SERS substrate, and the agglomerating conditions on its sensitivity were optimized. The method involves the formation of hot spots, and the signal of VRC molecules adsorbed on the surface of the SERS hot spot was amplified by 105. The calibration curve was linear in the range of 0.02-10 ppm, with satisfactory repeatability. The limit of detection was as low as 12.3 ppb. The variation in VRC spectra over time on different substrates demonstrated good reproducibility. Notably, the salting-out extraction method developed in this study was rapid and suitable for the quantitation of drugs in biological samples. Compared with traditional methods, this approach allows for the point-of-care quantification of VRC directly in a complex matrix, which may open up new exciting opportunities for future use of the SERS technique in clinical applications.
Collapse
Affiliation(s)
- Jing Liu
- Department
of Clinical Laboratory, The Second Affiliated Hospital of Shandong
First Medical University, Shandong First
Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271000, P. R. China
| | - Wufeng Fan
- Outpatient
Department, Affiliated Hospital of Shandong
University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Xiaoxia Lv
- Central
Sterile Supply Department, Affiliated Hospital
of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P. R. China
| | - Cuijuan Wang
- Physical
and Chemical Laboratory, Shandong Academy of Occupational Health and
Occupational Medicine, Shandong First Medical
University & Shandong Academy of Medical Sciences, Jinan 250000, P. R. China
| |
Collapse
|
25
|
Yan X, Zhao H, Song H, Ma J, Shi X. Ultra-trace and quantitative SERS detection of polycyclic aromatic hydrocarbons based on Au nanoscale convex polyhedrons with embedded probe molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121566. [PMID: 35841855 DOI: 10.1016/j.saa.2022.121566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has great potential for the detection of marine pollutants, but it is still restricted in ultra-trace and quantitative analysis. Here, a strategy for the detection of polycyclic aromatic hydrocarbons (PAHs) was proposed based on Au nanoscale convex polyhedrons (Au NCPs) coated with high-energy facets and embedded with 4-ATP as a probe molecule. Au NCPs acted as SERS substrates and led to limits of detection (LODs) for six common PAHs that reached 0.01 nM. Using internal calibration, the relative standard deviations (RSD) of the spectral stability and reproducibility were as low as 3.36% and 5.11%, respectively. The maximum mean relative errors (AREs) of the predicted and true values were 6.28%. The results indicate that the resulting Au NCPs improved the ultra-trace and quantitative detection of SERS, thus suggesting that the Au NCPs have practical application value in SERS.
Collapse
Affiliation(s)
- Xia Yan
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
| | - Hang Zhao
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China.
| | - Hongyan Song
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
| | - Jun Ma
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China.
| | - Xiaofeng Shi
- Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
26
|
Surface-enhanced Raman spectroscopy tandem with derivatized thin-layer chromatography for ultra-sensitive on-site detection of histamine from fish. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Recyclable surface enhanced Raman scattering monitoring of nucleotides and their metabolites based on Au nanoflowers modified g-C3N4 nanosheets. Colloids Surf B Biointerfaces 2022; 218:112735. [DOI: 10.1016/j.colsurfb.2022.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
|
28
|
Three-Dimensional Dendritic Au-Ag Substrate for On-Site SERS Detection of Trace Molecules in Liquid Phase. NANOMATERIALS 2022; 12:nano12122002. [PMID: 35745341 PMCID: PMC9229001 DOI: 10.3390/nano12122002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The development of a facile surface-enhanced Raman scattering (SERS) sensor for the on-site detection of trace molecules in liquid phase is a compelling need. In this paper, a three-dimensional (3D) dendritic Au–Ag nanostructure was constructed by a two-step electro displacement reaction in a capillary tube for the on-site liquid phase detection of trace molecules. The multiplasmon resonance mechanism of the dendritic Au–Ag structure was simulated using the finite-difference time domain (FDTD) method. It was confirmed that the highly branched 3D structure promoted the formation of high-density “hot spots” and interacted with the gold nanoparticles at the dendrite tip, gap, and surface to maximize the spatial electric field, which allowed for high signal intensification to be observed. More importantly, the unique structure of the capillary made it possible to achieve the on-site detection of trace molecules in liquids. Using Rhodamine 6G (R6G) solution as a model molecule, the 3D dendritic Au–Ag substrate exhibited a high detection sensitivity (10−13 mol/L). Furthermore, the developed sensor was applied to the detection of antibacterial agents, ciprofloxacin (CIP), with clear Raman characteristic peaks observed even at concentrations as low as 10−9 mol/L. The results demonstrated that the 3D dendritic Au–Ag sensor could successfully realize the rapid on-site SERS detection of trace molecules in liquids, providing a promising platform for ultrasensitive and on-site liquid sample analysis.
Collapse
|
29
|
Wang Y, Du X, Wang X, Yan T, Yuan M, Yang Y, Jurado-Sánchez B, Escarpa A, Xu LP. Patterned Liquid-Infused Nanocoating Integrating a Sensitive Bacterial Sensing Ability to an Antibacterial Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23129-23138. [PMID: 35537039 DOI: 10.1021/acsami.1c24821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The slippery liquid-infused surfaces show a great antibacterial property. However, most liquid-infused surfaces cannot detect whether or not the unknown aqueous samples contain microorganisms. Therefore, it is highly necessary but a challenge to integrate bacterial sensing capability into antibacterial surface. In this work, we prepared a slippery patterned liquid-infused nanocoating on the glass substrate for integrating bacterial sensing capability into the bacterial repellence surface. Dendritic mesoporous silica nanoparticles (DMSNs) with a suitable particle size of ca. 128 nm were employed as a building block to fabricate the multifunctional nanocoating with a superhydrophilic microwell and hydrophobic periphery by a dip-coating strategy, hydrophobic treatment, photomask-mediated plasma etching, and liquid infusion. Dendritic porous silica nanoparticles (DPSNs) with a larger particle size of ca. 260 nm were uniformly loaded with Au nanoparticles (NPs), providing large surface area for the modification of Raman reporter (4-mercaptobenzoic acid (4-MBA)) and aptamer. Thus, as a Raman tag, the formed DPSNs-Au-MBA-aptamer could achieve sensitive surface-enhanced Raman spectroscopy (SERS) detection of target bacteria. Combined with the Raman tag, the patterned liquid-infused nanocoating not only completely repelled bacteria on the hydrophobic area but also enabled sensitive SERS detection of Staphylococcus aureus in a very low sample volume (1 μL) with a low detection limit of 2.6 colony formation units (CFU)/mL on the antibody-modified superhydrophilic microwell. This research provided a novel and reliable strategy to construct a multifunctional nanocoating with microbial repellence and sensing capabilities.
Collapse
Affiliation(s)
- Yulu Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Madrid 28805, Spain
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xuan Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Tingxiu Yan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Mengqi Yuan
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Madrid 28805, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Madrid 28805, Spain
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
30
|
Xing L, Xiahou Y, Zhang X, Du W, Zhang P, Xia H. Large-Area Monolayer Films of Hexagonal Close-Packed Au@Ag Nanoparticles as Substrates for SERS-Based Quantitative Determination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13480-13489. [PMID: 35258923 DOI: 10.1021/acsami.1c23638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, quasi-spherical, small-sized, citrate-stabilized, core-shell (CS)-structured Au5.5@Agm nanoparticles (NPs) with Ag shells of controlled thicknesses (m = 0, 1.25, 3.25, and 5.25) were successfully synthesized by using Au NPs with sizes of 5.5 nm as seeds. The as-prepared Au@Ag NPs after the phase transfer process were further used for the fabrication of high-quality large-area monolayer films of hexagonal close-packed Au@Ag nanoparticles (LAMF-HCP-Au@Ag NPs) by our improved self-assembly at the interface of toluene-DEG containing a proper amount of water (10% v/v). Moreover, after transferring the as-prepared LAMF-HCP-Au@Ag NPs onto polydimethylsiloxane (PDMS) substrates (LAMF-HCP-Au@Ag NP@PDMS substrates), the resulting LAMF-HCP-Au@Ag NP@PDMS substrates can exhibit uniformity in the intensity of the surface-enhanced Raman scattering signals. Furthermore, taking LAMF-HCP-Au5.5@Ag5.25 NP@PDMS substrates as an example, they can achieve quantitative detection with high sensitivity for crystal violet (CV) and 4-aminothiophenol (4-ATP) in the range from 10-12 to 10-7 M and from 10-13 to 10-7 M, respectively. Also, their limit of detection (LOD) for CV and 4-ATP are 10-12 and 10-13 M, respectively. Especially, the LOD for CV can also be as low as 10-13 M by extending the immersing time.
Collapse
Affiliation(s)
- Lixiang Xing
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Yujiao Xiahou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xiang Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Wei Du
- School of Environment and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Panpan Zhang
- The Center of Esthetic Dentistry, Jinan Stomatological Hospital, Jinan 250001, China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
31
|
Yılmaz D, Günaydın BN, Yüce M. Nanotechnology in food and water security: on-site detection of agricultural pollutants through surface-enhanced Raman spectroscopy. EMERGENT MATERIALS 2022; 5:105-132. [PMID: 35284783 PMCID: PMC8905572 DOI: 10.1007/s42247-022-00376-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/24/2022] [Indexed: 05/08/2023]
Abstract
Agricultural pollutants are harmful components threatening human health, wildlife, the environment, and the ecosystem. To avoid their exposure, developing prevention and detection systems with high sensitivity and selectivity is required. Most conventional methods, including molecular and chromatographic techniques, cannot be adopted for outdoor on-site detection even though they can provide sensitive and selective detection. Thus, detection platforms that can provide on-site detection via miniaturized and high throughput systems should be developed. As an alternative method, surface-enhanced Raman scattering (SERS) provides unique information about the substances in the presence of plasmonic nanostructures, and it can be portable with the use of portable detection systems and spectrometers. In this study, on-site detection of agricultural pollutants through SERS is reviewed. Three different types of agricultural pollutants were pointed out. On-site detection of biological pollutants, including bacteria and viruses, is reviewed as the first type of pollutant. As a second type, the detection of pesticides, antibiotics, and additives are focused on as chemical pollutants. The third group includes the detection of microplastics and also nanoparticles from the environment.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
| | - Beyza Nur Günaydın
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Meral Yüce
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, 34956 Turkey
| |
Collapse
|
32
|
Kang C, Sun Z, Fang X, Zha L, Han Y, Liu H, Guo J, Zhang X. Molecular trace detection in liquids using refocusing optical feedback by a silver-coated capillary. NANOSCALE ADVANCES 2021; 3:6934-6939. [PMID: 36132359 PMCID: PMC9418034 DOI: 10.1039/d1na00593f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been widely used owing to its high sensitivity and rapid response. In particular, 3D SERS-active platforms greatly extend the interaction area and ensure the ability to directly detect trace amounts of molecules in liquids. A silver-coated capillary, with the ability of liquid sampling and light guiding, provides a new platform for high-performance SERS substrates. In this paper, the silver mirror reaction was used for coating silver on the outer wall of the capillary. PDMS was used as a coating material to protect the silver film. Because of the silver coating, Mie scattering and Raman scattering in the liquid channel can be refocused and reflected back which greatly reduces the propagation loss and extends the interaction length. An enhancement factor as high as 108 and a detection limit of 10-10 M of rhodamine 6G in aqueous solution have been achieved. Moreover, the SERS intensity is homogeneous across the end face of the liquid channel, with the relative standard deviation (RSD) value changing within 7%. The large area and high homogeneity greatly reduce the requirement of light coupling precision and liquid injection pressure. Using a common flange optical fiber connector, the capillary can be simply connected and aligned with a multimode fiber with a detection limit of 10-8 M. The experiment results show great potential for the development of an optofluidic integrated system in the future.
Collapse
Affiliation(s)
- Chen Kang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Zhoutao Sun
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Xiaohui Fang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Lei Zha
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Yu Han
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Hongmei Liu
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Jinxin Guo
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology Beijing 100124 China
| | - Xinping Zhang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
33
|
Tian Y, Tang X, Fu Y, Shang S, Dong G, Li T, Huang X, Zhu D. Simultaneous extraction and surface enhanced Raman spectroscopy detection for the rapid and reliable identification of nicotine released from snus products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5608-5616. [PMID: 34806734 DOI: 10.1039/d1ay01601f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) is a highly sensitive analytical detection technique that provides unique chemical and structural information on target molecules. Here, simultaneous extraction and SERS detection of nicotine for the rapid and reliable identification of nicotine released from snus products were performed based on a nano-Au assembly hierarchy structure in the capillary. Based on this strategy, the time evolution of the concentrations of nicotine released from the snus products was measured. Through comparison of the intensities of the spectral peaks of the symmetrical breathing of the pyridine moiety of nicotine molecules, with the prolongation of time, the concentration of nicotine released decreased significantly, which is helpful for establishing a method for the rapid evaluation of the processing and selection of excipients of snus products, and provides a new idea for further study of the production of snus pouches and related tobacco products. Moreover, based on data fitting, it can be calculated that the concentration of nicotine in the extraction presented an obvious quadratic relationship with time, and the release of most of the nicotine in the snus pouch, which is held through the gums and palate, was basically completed after ∼15 min. Such destruction-free simultaneous measurements of snus products are opening up new perspectives for further research about the impact of nicotinoids on smokers' health and cessation programs.
Collapse
Affiliation(s)
- Yongfeng Tian
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| | - Xianghu Tang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yaning Fu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China
| | - Shanzhai Shang
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| | - Gaofeng Dong
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| | - Tinghua Li
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| | - Xingjiu Huang
- Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Donglai Zhu
- Yunnan Key Laboratory of Tobacco Chemistry, Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming 650231, China.
| |
Collapse
|
34
|
Lin S, Guan H, Liu Y, Huang S, Li J, Hasi W, Xu Y, Zou J, Dong B. Binary Plasmonic Assembly Films with Hotspot-Type-Dependent Surface-Enhanced Raman Scattering Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53289-53299. [PMID: 34704435 DOI: 10.1021/acsami.1c18565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tuning and controlling the plasmon coupling of noble metal nanoparticles are significant for enhancing their near-field and far-field responses. In this work, a novel heterogeneous plasmonic assembly with a controllable hot spot model was proposed by the conjugation of Au nanospheres (NSs) and Au@Ag core-shell nanocube (NC) films. Three hotspot configurations including point-to-point type, point-to-facet type, and facet-to-facet type were fabricated and transformed simply by adjusting the doping ratio of nanoparticles in the co-assembly film. Expectedly, the localized surface plasmon resonance (LSPR) property and surface-enhanced Raman scattering (SERS) performance of the binary assembly film exhibit distinct diversity due to the change in the hotspot conformation. Interestingly, the point-to-facet hotspot in hybrid assembly films can provide the most extraordinary enhancement for SERS behavior compared with single-component Au NS and Au@Ag NC plasmonic assemblies, which is further confirmed by the finite-different time-domain simulation results of dimer nanostructures. In addition, the two-dimensional binary assemblies of Au NS doping in Au@Ag NCs with excellent sensitivity and high reproducibility were successfully applied in the identification of ketamine. This work opens a new avenue toward the fabrication of plasmonic metal materials with collective LSPR properties and sensitive SERS behavior.
Collapse
Affiliation(s)
- Shuang Lin
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Haoyu Guan
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Yuqi Liu
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Shinian Huang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Junming Li
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| | - Wuliji Hasi
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
| | - Yizhuo Xu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150080, China
| | - Jixin Zou
- The Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Bin Dong
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials&Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
35
|
Liao W, Chen Y, Huang L, Wang Y, Zhou Y, Tang Q, Chen Z, Liu K. A capillary-based SERS sensor for ultrasensitive and selective detection of Hg 2+ by amalgamation with Au@4-MBA@Ag core-shell nanoparticles. Mikrochim Acta 2021; 188:354. [PMID: 34570272 DOI: 10.1007/s00604-021-05016-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 02/02/2023]
Abstract
A capillary-based SERS sensor was fabricated for ultrasensitive and selective detection of Hg2+ in water. Au@Ag core-shell NPs embedded with 4-mercaptobenzoic acid (4-MBA) (Au@4-MBA@Ag) were prepared by a seed growth method and fixed on the inner wall of the glass capillary to obtain the sensor. Owing to the amalgamation between Ag and Hg, the capillary-based SERS sensor can specifically recognize the reduced Hg2+ without any recognition element, and the resulted Ag/Hg amalgam can weaken the SERS activity of Ag shell; thus, the SERS intensity of the embedded 4-MBA at 1075 cm-1 gradually decreased with the increase of Hg2+ concentration. Under the optimum condition, the fabricated sensor can sensitively determine Hg2+ in water with a limit of detection (LOD) as low as 0.03 nM. The capillary-based SERS sensor offers the advantages of simple preparation, superior stability, and high selectivity, which is promising for rapid and on-site detection of Hg2+ in water combined with a portable Raman device.
Collapse
Affiliation(s)
- Wenlong Liao
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Yangjie Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Lijuan Huang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yong Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Youting Zhou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Quan Tang
- College of Material and Chemical Engineer, Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, China
| | - Zhenming Chen
- College of Material and Chemical Engineer, Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, China
| | - Kunping Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
36
|
Jiang Y, Sun H, Gu C, Zhang Y, Jiang T. A hydrophilic-hydrophobic graphitic carbon nitride@silver hybrid substrate for recyclable surface-enhanced Raman scattering-based detection without the coffee-ring effect. Analyst 2021; 146:5923-5933. [PMID: 34570851 DOI: 10.1039/d1an01121a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is growing interest in developing a multifunctional surface-enhanced Raman scattering (SERS) substrate to deal with the challenge in the pretreatment-free detection and degradation of hazardous organic pollutants in water. Herein, a hydrophilic-hydrophobic graphitic carbon nitride@silver (g-C3N4@Ag) hybrid substrate was exploited as a potential candidate for the recyclable detection of dye molecules. Such a sophisticated substrate not only showed a significant SERS activity with a high enhancement factor of 3.21 × 106 triggered by the significantly aggregated Ag nanoparticles, but also possessed an outstanding self-cleaning property via visible-light irradiation. Furthermore, the effective weakening of the coffee-ring effect was also facilitated by the hydrophilic-hydrophobic structure, resulting in excellent uniformity and reproducibility. Ultimately, the applicability of the developed recyclable SERS substrate in the monitoring of trace malachite green was demonstrated. It is expected that the innovative SERS substrate has great potential for application in highly sensitive, stable, and recyclable on-site analysis, especially for organic pollutant treatment and environmental protection.
Collapse
Affiliation(s)
- Yanjia Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| | - Huimin Sun
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| | - Yongling Zhang
- College of Information &Technology, Jilin Normal University, Siping 136000, Jilin, P. R. China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, P. R. China.
| |
Collapse
|
37
|
Xing L, Wang C, Cao Y, Zhang J, Xia H. Macroscopical monolayer films of ordered arrays of gold nanoparticles as SERS substrates for in situ quantitative detection in aqueous solutions. NANOSCALE 2021; 13:14925-14934. [PMID: 34533157 DOI: 10.1039/d1nr03864h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, macroscopical monolayer films of ordered arrays of gold nanoparticles (MMF-OA-Au NPs) are successfully prepared at the interfaces of toluene-diethylene glycol (DEG) with a water volume fraction of 10% (no more than 25%), which can greatly reduce the electrostatic repulsion among NPs during the self-assembly due to the quick transfer of the remaining citrate ions into the DEG solutions containing water. Thanks to the uniformity in the intensity of SERS signals, the as-prepared MMF-OA-Au NPs transferred onto polydimethylsiloxane (PDMS) as SERS substrates (MMF-OA-Au NP@PDMS) can achieve in situ quantitative detection of the analytes (such as crystal violet and malachite green) in aqueous solutions. Moreover, MMF-OA-Au NP@PDMS as SERS-based pH sensors can directly determine the pH value of the aqueous solution in the range of 3 to 10 by means of the established well-defined linear relationship with the intensity of the peak of νCOO- without any calibration, instead of the intensity ratio of the Raman peaks of νCOO- to ν8a with further calculation. In addition, the as-prepared SERS-based pH sensors can still have excellent long-term durability.
Collapse
Affiliation(s)
- Lixiang Xing
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Cui Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Yi Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| | - Jihui Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Haibing Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China.
| |
Collapse
|
38
|
Fu H, Bao H, Zhang H, Zhao Q, Zhou L, Zhu S, Wei Y, Li Y, Cai W. Quantitative Surface-Enhanced Raman Spectroscopy for Field Detections Based on Structurally Homogeneous Silver-Coated Silicon Nanocone Arrays. ACS OMEGA 2021; 6:18928-18938. [PMID: 34337232 PMCID: PMC8320141 DOI: 10.1021/acsomega.1c02179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/21/2021] [Indexed: 05/28/2023]
Abstract
Practical application of surface-enhanced Raman spectroscopy (SERS) is greatly limited by the inaccurate quantitative analyses due to the measuring parameter's fluctuations induced by different operators, different Raman spectrometers, and different test sites and moments, especially during the field tests. Herein, we develop a strategy of quantitative SERS for field detection via designing structurally homogeneous and ordered Ag-coated Si nanocone arrays. Such an array is fabricated as SERS chips by depositing Ag on the template etching-induced Si nanocone array. Taking 4-aminothiophenol as the typical analyte, the influences of fluctuations in measuring parameters (such as defocusing depth and laser powers) on Raman signals are systematically studied, which significantly change SERS measurements. It has been shown that the silicon underneath the Ag coating in the chip can respond to the measuring parameters' fluctuations synchronously with and similar to the analyte adsorbed on the chip surface, and the normalization with Si Raman signals can well eliminate the big fluctuations (up to 1 or 2 orders of magnitude) in measurements, achieving highly reproducible measurements (mostly, <5% in signal fluctuations) and accurate quantitative SERS analyses. Finally, the simulated field tests demonstrate that the developed strategy enables quantitatively analyzing the highly scattered SERS measurements well with 1 order of magnitude in signal fluctuation, exhibiting good practicability. This study provides a new practical chip and reliable quantitative SERS for the field detection of real samples.
Collapse
Affiliation(s)
- Hao Fu
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Haoming Bao
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Hongwen Zhang
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Qian Zhao
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Le Zhou
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuyi Zhu
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi Wei
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue Li
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Weiping Cai
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
39
|
Rapid and ultrasensitive detection of mercury ion (II) by colorimetric and SERS method based on silver nanocrystals. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Zhao X, Luo X, Bazuin CG, Masson JF. In Situ Growth of AuNPs on Glass Nanofibers for SERS Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55349-55361. [PMID: 33237739 DOI: 10.1021/acsami.0c15311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is challenging to fabricate plasmonic nanosensors on high-curvature surfaces with high sensitivity and reproducibility at low cost. Here, we report a facile and straightforward strategy, based on an in situ growth technique, for fabricating glass nanofibers covered by asymmetric gold nanoparticles (AuNPs) with tunable morphologies and adjustable spacings, leading to much improved surface-enhanced Raman scattering (SERS) sensitivity because of hotspots generated by the AuNP surface irregularities and adjacent AuNP coupling. First, nanosensors covered with uniform and well-dispersed citrate-capped spherical AuNPs were constructed using a polystyrene-b-poly(4-vinylpyridine) (PS-P4VP, with 33 mol % P4VP content and 61 kg/mol total molecular weight) block copolymer brush-layer templating method, and then, the deposited AuNPs were grown to asymmetric AuNPs. AuNP morphologies and hence the optical characteristics of AuNP-covered glass nanofibers were easily controlled by the choice of experimental parameters, such as the growth time and growth solution composition. In particular, tunable AuNP average diameters between about 40 and 80 nm with AuNP spacings between about 50 and 1 nm were achieved within 15 min of growth. The SERS sensitivity of branched AuNP-covered nanofibers (3 min growth time) was demonstrated to be more than threefold more intense than that of the original spherical AuNP-covered nanofibers using a 633 nm laser. Finite-difference time-domain simulations were performed, showing that the electric field enhancement is highest for intermediate AuNP diameters. Furthermore, SERS applications of these nanosensors for H2O2 detection and pH sensing were demonstrated, offering appealing and promising candidates for real-time monitoring of extra/intracellular species in vitro and in vivo.
Collapse
Affiliation(s)
- Xingjuan Zhao
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Xiaojun Luo
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, P.R. China
| | - C Geraldine Bazuin
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Département de chimie, Centre québécois des matériaux fonctionnels (CQMF) and Regroupement québécois des matériaux de pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
41
|
Chen H, Das A, Bi L, Choi N, Moon JI, Wu Y, Park S, Choo J. Recent advances in surface-enhanced Raman scattering-based microdevices for point-of-care diagnosis of viruses and bacteria. NANOSCALE 2020; 12:21560-21570. [PMID: 33094771 DOI: 10.1039/d0nr06340a] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This minireview reports the recent advances in surface-enhanced Raman scattering (SERS)-based assay devices for the diagnosis of infectious diseases. SERS-based detection methods have shown promise in overcoming the low sensitivity and multiplex detection problems inherent to fluorescence detection. Therefore, it is interesting to investigate the current status, challenges, and applications associated with SERS-based microdevices for the point-of-care (POC) diagnosis of infectious diseases. The majority of this review highlights three different types of microdevices, namely microfluidic channels, lateral flow assay strips, and three-dimensional nanostructured substrates. Furthermore, the integration of portable Raman spectrophotometry with microdevices provides an ideal platform for the diagnosis of various infectious diseases in the field. Integrated SERS-based assay systems also enable measurements in minimal sample volumes and at low analyte concentrations of viral or bacterial samples. A significant number of studies using the SERS-based assay system have been performed recently to realize POC diagnostics, especially under resource-limited conditions. This portable SERS sensor is expected to be a next-generation POC assay system that could overcome the limitations of current fluorescence-based assay systems. This minireview summarizes recent advances in the development of SERS-based microdevices for the diagnosis of infectious diseases. Lastly, challenges to overcome and future perspectives are discussed.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|