1
|
Xu H, Han W, Yuce MR. A Wearable Device with Triboelectric Nanogenerator Sensing for Respiration and Spirometry Monitoring. ACS Sens 2025; 10:264-271. [PMID: 39711009 DOI: 10.1021/acssensors.4c02350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Wearable devices have been developed for the continuous and long-term monitoring of respiration. Although current wearable devices are able to measure the respiration rate, extracting breathing volume has been challenging. In this paper, we propose a wearable respiration monitoring sensor based on triboelectric nanogenerator (TENG) technology. The proposed device successfully measures both respiration rate and volume in real-time. The device is tested with seven participants for respiration and spirometry studies. The results show that the proposed TENG sensor is able to capture the respiration waveform with high accuracy. All breathing patterns mentioned in this study give a mean absolute error (MAE) within 0.2 breaths per minute and a mean percentage absolute (MPAE) error within 2%. The results of the spirometry study show that the TENG sensor can measure the airflow and volume during exhalation. The flow time graph gives an average correlation of 0.88 compared with that of the reference spirometer. The reconstructed volume time plot from the TENG sensor results in an MAE of 2.43% for the ratio of the forced expiratory volume in 1 s to the forced vital capacity (FEV1/FVC). The proposed device provides a low-cost solution for real-time and wearable monitoring for respiration parameter measurement.
Collapse
Affiliation(s)
- Hongqiang Xu
- Department of Electrical and Computer Systems Engineering, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Weiqiao Han
- Department of Electrical and Computer Systems Engineering, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Mehmet Rasit Yuce
- Department of Electrical and Computer Systems Engineering, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Yu R, Feng S, Sun Q, Xu H, Jiang Q, Guo J, Dai B, Cui D, Wang K. Ambient energy harvesters in wearable electronics: fundamentals, methodologies, and applications. J Nanobiotechnology 2024; 22:497. [PMID: 39164735 PMCID: PMC11334586 DOI: 10.1186/s12951-024-02774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, wearable sensor devices with exceptional portability and the ability to continuously monitor physiological signals in real time have played increasingly prominent roles in the fields of disease diagnosis and health management. This transformation has been largely facilitated by materials science and micro/nano-processing technologies. However, as this technology continues to evolve, the demand for multifunctionality and flexibility in wearable devices has become increasingly urgent, thereby highlighting the problem of stable and sustainable miniaturized power supplies. Here, we comprehensively review the current mainstream energy technologies for powering wearable sensors, including batteries, supercapacitors, solar cells, biofuel cells, thermoelectric generators, radio frequency energy harvesters, and kinetic energy harvesters, as well as hybrid power systems that integrate multiple energy conversion modes. In addition, we consider the energy conversion mechanisms, fundamental characteristics, and typical application cases of these energy sources across various fields. In particular, we focus on the crucial roles of different materials, such as nanomaterials and nano-processing techniques, for enhancing the performance of devices. Finally, the challenges that affect power supplies for wearable electronic products and their future developmental trends are discussed in order to provide valuable references and insights for researchers in related fields.
Collapse
Affiliation(s)
- Ruoyao Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Ritu, Badatya S, Patel MK, Gupta MK. Unveiling a robust and high-temperature-stable two-dimensional ZnAl layered double hydroxide nanosheet based flexible triboelectric nanogenerator. NANOSCALE 2024; 16:4176-4188. [PMID: 38323839 DOI: 10.1039/d3nr03894g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Triboelectric nanogenerators have the ability to harvest low- and mid-frequency vibrational energy from the environment; however, achieving stable performance of the nanogenerator device in high-temperature conditions remains challenging. In this work, a flexible and temperature-stable polyvinyl alcohol (PVA)/layered double hydroxides (LDH) nanocomposite-based triboelectric nanogenerator was developed to harvest unexploited vibrational energy for the first time. Crystalline ZnAl LDH nanosheets grown by a hydrothermal route are used to fabricate the high-performance flexible nanogenerator. The ZnAl LDH exhibits fire-retardancy and high-temperature stability (∼500 °C). A triboelectric nanogenerator based on the ZnAl LDH-PVA nanocomposite generated a very high output voltage of 60 V even under a low vertical pressure of 1 kgf. Surprisingly, the developed device shows ultra-stable output performance even up to a temperature of 200 °C. In addition, a ZnAl LDH-nanosheet-reinforced PVA nanocomposite film shows very high dielectric constant of about 5 × 105 at the low-frequency side. The tremendous increase in the output voltage and stable performance are discussed in terms of the high dielectric constant and synergistic effect of the LDH nanosheets and PVA. Furthermore, the device was also used to monitor human body movements such as finger and wrist bending to develop self-powered sensors.
Collapse
Affiliation(s)
- Ritu
- Manufacturing Science and Instrumentation Division (MSI), CSIR-Central Scientific Instruments Organisation, Chandigarh, 160030, Chandigarh, India.
- Department of Manufacturing, Materials and Mechatronics (MM&M), School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Simadri Badatya
- Green Engineered Materials and Additive Manufacturing Division (GEM&AM), CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, Madhya Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Manoj Kumar Patel
- Manufacturing Science and Instrumentation Division (MSI), CSIR-Central Scientific Instruments Organisation, Chandigarh, 160030, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Manoj Kumar Gupta
- Green Engineered Materials and Additive Manufacturing Division (GEM&AM), CSIR-Advanced Materials and Processes Research Institute, Bhopal, 462026, Madhya Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Tian Y, Hu C, Peng D, Zhu Z. Self-powered intelligent pulse sensor based on triboelectric nanogenerators with AI assistance. Front Bioeng Biotechnol 2023; 11:1236292. [PMID: 37790256 PMCID: PMC10543276 DOI: 10.3389/fbioe.2023.1236292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Affiliation(s)
- Yifei Tian
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Deguang Peng
- Chongqing Megalight Technology Co., Ltd., Chongqing, China
| | - Zhiyuan Zhu
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Nan X, Xu Z, Cao X, Hao J, Wang X, Duan Q, Wu G, Hu L, Zhao Y, Yang Z, Gao L. A Review of Epidermal Flexible Pressure Sensing Arrays. BIOSENSORS 2023; 13:656. [PMID: 37367021 DOI: 10.3390/bios13060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
In recent years, flexible pressure sensing arrays applied in medical monitoring, human-machine interaction, and the Internet of Things have received a lot of attention for their excellent performance. Epidermal sensing arrays can enable the sensing of physiological information, pressure, and other information such as haptics, providing new avenues for the development of wearable devices. This paper reviews the recent research progress on epidermal flexible pressure sensing arrays. Firstly, the fantastic performance materials currently used to prepare flexible pressure sensing arrays are outlined in terms of substrate layer, electrode layer, and sensitive layer. In addition, the general fabrication processes of the materials are summarized, including three-dimensional (3D) printing, screen printing, and laser engraving. Subsequently, the electrode layer structures and sensitive layer microstructures used to further improve the performance design of sensing arrays are discussed based on the limitations of the materials. Furthermore, we present recent advances in the application of fantastic-performance epidermal flexible pressure sensing arrays and their integration with back-end circuits. Finally, the potential challenges and development prospects of flexible pressure sensing arrays are discussed in a comprehensive manner.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhikuan Xu
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xinxin Cao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinjin Hao
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Liangwei Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
6
|
Zhao Z, Lu Y, Mi Y, Zhu Q, Meng J, Wang X, Cao X, Wang N. Modular Design in Triboelectric Sensors: A Review on the Clinical Applications for Real-Time Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:4194. [PMID: 37177395 PMCID: PMC10181202 DOI: 10.3390/s23094194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Triboelectric nanogenerators (TENGs) have garnered considerable interest as a promising technology for energy harvesting and stimulus sensing. While TENGs facilitate the generation of electricity from micro-motions, the modular design of TENG-based modular sensing systems (TMSs) also offers significant potential for powering biosensors and other medical devices, thus reducing dependence on external power sources and enabling biological processes to be monitored in real time. Moreover, TENGs can be customised and personalized to address individual patient needs while ensuring biocompatibility and safety, ultimately enhancing the efficiency and security of diagnosis and treatment. In this review, we concentrate on recent advancements in the modular design of TMSs for clinical applications with an emphasis on their potential for personalised real-time diagnosis. We also examine the design and fabrication of TMSs, their sensitivity and specificity, and their capabilities of detecting biomarkers for disease diagnosis and monitoring. Furthermore, we investigate the application of TENGs to energy harvesting and real-time monitoring in wearable and implantable medical devices, underscore the promising prospects of personalised and modular TMSs in advancing real-time diagnosis for clinical applications, and offer insights into the future direction of this burgeoning field.
Collapse
Affiliation(s)
- Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiajing Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xueqing Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
7
|
Wang X, Feng Z, Zhang G, Wang L, Chen L, Yang J, Wang Z. Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:3717. [PMID: 37050777 PMCID: PMC10099249 DOI: 10.3390/s23073717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Recent advances in flexible pressure sensors have fueled increasing attention as promising technologies with which to realize human epidermal pulse wave monitoring for the early diagnosis and prevention of cardiovascular diseases. However, strict requirements of a single sensor on the arterial position make it difficult to meet the practical application scenarios. Herein, based on three single-electrode sensors with small area, a 3 × 1 flexible pressure sensor array was developed to enable measurement of epidermal pulse waves at different local positions of radial artery. The designed single sensor holds an area of 6 × 6 mm2, which mainly consists of frosted microstructured Ecoflex film and thermoplastic polyurethane (TPU) nanofibers. The Ecoflex film was formed by spinning Ecoflex solution onto a sandpaper surface. Micropatterned TPU nanofibers were prepared on a fluorinated ethylene propylene (FEP) film surface using the electrospinning method. The combination of frosted microstructure and nanofibers provides an increase in the contact separation of the tribopair, which is of great benefit for improving sensor performance. Due to this structure design, the single small-area sensor was characterized by pressure sensitivity of 0.14 V/kPa, a response time of 22 ms, a wide frequency band ranging from 1 to 23 Hz, and stability up to 7000 cycles. Given this output performance, the fabricated sensor can detect subtle physiological signals (e.g., respiration, ballistocardiogram, and heartbeat) and body movement. More importantly, the sensor can be utilized in capturing human epidermal pulse waves with rich details, and the consistency of each cycle in the same measurement is as high as 0.9987. The 3 × 1 flexible sensor array is employed to acquire pulse waves at different local positions of the radial artery. In addition, the time domain parameters including pulse wave transmission time (PTT) and pulse wave velocity (PWV) can be obtained successfully, which holds promising potential in pulse-based cardiovascular system status monitoring.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
- Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhiping Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
- Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Gaoqiang Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
- Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Luna Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
- Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Liang Chen
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
- Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Jin Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
- Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhonglin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
8
|
Li Y, Yu J, Wei Y, Wang Y, Feng Z, Cheng L, Huo Z, Lei Y, Sun Q. Recent Progress in Self-Powered Wireless Sensors and Systems Based on TENG. SENSORS (BASEL, SWITZERLAND) 2023; 23:1329. [PMID: 36772369 PMCID: PMC9921943 DOI: 10.3390/s23031329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/12/2023]
Abstract
With the development of 5G, artificial intelligence, and the Internet of Things, diversified sensors (such as the signal acquisition module) have become more and more important in people's daily life. According to the extensive use of various distributed wireless sensors, powering them has become a big problem. Among all the powering methods, the self-powered sensor system based on triboelectric nanogenerators (TENGs) has shown its superiority. This review focuses on four major application areas of wireless sensors based on TENG, including environmental monitoring, human monitoring, industrial production, and daily life. The perspectives and outlook of the future development of self-powered wireless sensors are discussed.
Collapse
Affiliation(s)
- Yonghai Li
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yichen Wei
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Feng
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Liuqi Cheng
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Ziwei Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqiang Lei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qijun Sun
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Wang X, Feng Z, Li P, Wang L, Chen L, Wu Y, Yang J. A Flexible Pressure Sensor with a Mesh Structure Formed by Lost Hair for Human Epidermal Pulse Wave Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 23:45. [PMID: 36616646 PMCID: PMC9823516 DOI: 10.3390/s23010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Flexible pressure sensors with the capability of monitoring human vital signs show broad application prospects in personalized healthcare. In this work, a hair-based flexible pressure sensor (HBPS) consisting of lost hair and polymer films was proposed for the continuous monitoring of the human epidermal arterial pulse waveform. A macroscale mesh structure formed by lost hair provides a simplified spacer that endows the triboelectric-based flexible pressure sensor with sufficient contact-separation space. Based on this mesh structure design, the hair-based flexible pressure sensor can respond to the slight pressure change caused by an object with 5 mg weight and hold a stable output voltage under 1-30 Hz external pressure excitation. Additionally, the hair-based flexible pressure sensor showed great sensitivity (0.9 V/kPa) and decent stability after 4500 cycles of operation. Given these compelling features, the HBPS can successfully measure the human epidermal arterial pulses with obvious details at different arteries. The proposed HBPS can also be used to monitor the pulse signals of different subjects. Furthermore, the three different pulse wave transmission time (PTT) values (PTT-foot, PTT-middle, and PTT-peak) can be obtained by simultaneously monitoring human pulse and electrocardiogram signals, which has enormous application potential for assessing cardiovascular system health.
Collapse
Affiliation(s)
- Xue Wang
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Zhiping Feng
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Peng Li
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Luna Wang
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Liang Chen
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Yufen Wu
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Jin Yang
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Optimize an effective triboelectric nanogenerator surface morphology to harvest the human wrist pulse pressure: A numerical study on finite element method. Heliyon 2022; 8:e12109. [PMID: 36578394 PMCID: PMC9791340 DOI: 10.1016/j.heliyon.2022.e12109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
This paper presents the optimized surface morphology to enhance transferred charge between the mental and dielectric of the modelled triboelectric nanogenerator. The structured shape of the dielectric layer is a vital factor in enhancing the output performance of the triboelectric nanogenerator. In this study, flat, cone, circular and rectangular shapes are structured on the dielectric surface of TENG. Its output performance is examined by conducting a numerical study on the finite element method in COMSOL Multiphysics software. Among the above stated structured surface TENGs, the structured rectangular surface triboelectric nanogenerator produces an improved output open-circuit voltage of 26 V for an externally given 3K Pascal pulse pressure as input. Hence, the result indicates that the structured surface TENGs can make a portable self-powered healthcare device such as heart rate, respiratory rate, and blood pressure measurement.
Collapse
|
11
|
Geng Y, Xu J, Bin Che Mahzan MA, Lomax P, Saleem MM, Mastropaolo E, Cheung R. Mixed Dimensional ZnO/WSe 2 Piezo-gated Transistor with Active Millinewton Force Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49026-49034. [PMID: 36259783 PMCID: PMC9634694 DOI: 10.1021/acsami.2c15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
This work demonstrates a mixed-dimensional piezoelectric-gated transistor in the microscale that could be used as a millinewton force sensor. The force-sensing transistor consists of 1D piezoelectric zinc oxide (ZnO) nanorods (NRs) as the gate control and multilayer tungsten diselenide (WSe2) as the transistor channel. The applied mechanical force on piezoelectric NRs can induce a drain-source current change (ΔIds) on the WSe2 channel. The different doping types of the WSe2 channel have been found to lead to different directions of ΔIds. The pressure from the calibration weight of 5 g has been observed to result in an ∼30% Ids change for ZnO NRs on the p-type doped WSe2 device and an ∼-10% Ids change for the device with an n-type doped WSe2. The outcome of this work would be useful for applications in future human-machine interfaces and smart biomedical tools.
Collapse
Affiliation(s)
- Yulin Geng
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Jing Xu
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Muhammad Ammar Bin Che Mahzan
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Peter Lomax
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Muhammad Mubasher Saleem
- Department
of Mechatronics Engineering, National University
of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Enrico Mastropaolo
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| | - Rebecca Cheung
- Institute
for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics
Centre, Edinburgh EH9 3FF, United Kingdom
| |
Collapse
|
12
|
Zhu J, Zeng Y, Luo Y, Jie Y, Lan F, Yang J, Wang ZL, Cao X. Triboelectric Patch Based on Maxwell Displacement Current for Human Energy Harvesting and Eye Movement Monitoring. ACS NANO 2022; 16:11884-11891. [PMID: 35920687 DOI: 10.1021/acsnano.2c01199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The forthcoming wearable health care devices garner considerable attention because of their potential for monitoring, treatment, and protection applications. Herein, a self-powered triboelectric patch was developed using polytetrafluoroethylene rubbed with nylon fabric. The triboelectric patch can maintain a stable electrostatic field, due to the excess electrification on the surface of the triboelectric layer. The designed triboelectric nanogenerator (TENG) output watt density can reach about 485 mW/m2 with added resistance of 11 kΩ. Additionally, the performance of the triboelectric patch allowed eye movement monitoring. The maximum voltage could reach 80 V at the vertical distance of 20 mm between the frictional layer and collector. The triboelectric patch not only can power a digital watch for potential wearable applications but also can be integrated to monitor eye movements during sleep. This work proposed a mechanism for human movement energy harvesting, which may be used for self-powered smart wearable health equipment and Maxwell displacement current wireless sensors.
Collapse
Affiliation(s)
- Jiaqing Zhu
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yuanming Zeng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Yu Luo
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Jie
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Feifei Lan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jun Yang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China
- Research Centre of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Xia Cao
- Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518000, China
- Research Centre of Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Venugopal K, Shanmugasundaram V. Effective Modeling and Numerical Simulation of Triboelectric Nanogenerator for Blood Pressure Measurement Based on Wrist Pulse Signal Using Comsol Multiphysics Software. ACS OMEGA 2022; 7:26863-26870. [PMID: 35936394 PMCID: PMC9352328 DOI: 10.1021/acsomega.2c03281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 05/27/2023]
Abstract
Among the wearable sensor family, the triboelectric nanogenerator has excellent potential in human healthcare systems due to its small size, self-powered, and low cost. Here is the design and simulation of the triboelectric nanogenerator using the 3D model in COMSOL Multiphysics software for blood pressure measurement. As a reliable indicator of human physiological health, blood pressure (BP) has been utilized in more and more cases to predict and diagnose potential diseases and the dysfunction caused by hypertension. The main focus of this study is to prognosis and preserve human health against BP. It is one of the significant challenges in predicting and diagnosing BP in the human lifestyle. The self-powered triboelectric nanogenerator can diagnose BP using the wrist pulse pressure. To optimize the performance of the modeled triboelectric nanogenerator, the known wrist pulse pressure is applied explicitly, which converts the applied pressure into an equivalent electrical signal across the output terminals. An output open circuit voltage for the applied pulse pressure is 26 V. The generated output electrical signal is proportional to the applied pulse pressure, which is used to know the BP range. It ensures that the triboelectric nanogenerator is an opted sensor to sense the minute nadi pressure signal. This work validates that the simulated model has the potential to act as several health care monitors such as respiratory rate, heart rate, glucose range, joint motion sensing, gait, and CO2 detectors.
Collapse
Affiliation(s)
- Karthikeyan Venugopal
- Research
Scholar, School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu632 014, India
| | - Vivekanandan Shanmugasundaram
- Associate
Professor, School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu632 014, India
| |
Collapse
|
14
|
Shi Z, Meng L, Shi X, Li H, Zhang J, Sun Q, Liu X, Chen J, Liu S. Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. NANO-MICRO LETTERS 2022; 14:141. [PMID: 35789444 PMCID: PMC9256895 DOI: 10.1007/s40820-022-00874-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Various morphological structures in pressure sensors with the resulting advanced sensing properties are reviewed comprehensively. Relevant manufacturing techniques and intelligent applications of pressure sensors are summarized in a complete and interesting way. Future challenges and perspectives of flexible pressure sensors are critically discussed. As an indispensable branch of wearable electronics, flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring, human –machine interaction, artificial intelligence, the internet of things, and other fields. In recent years, highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms. Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance. This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors. We discuss different architectures and morphological designs of sensing materials to achieve high performance, including high sensitivity, broad working range, stable sensing, low hysteresis, high transparency, and directional or selective sensing. Additionally, the general fabrication techniques are summarized, including self-assembly, patterning, and auxiliary synthesis methods. Furthermore, we present the emerging applications of high-performing microengineered pressure sensors in healthcare, smart homes, digital sports, security monitoring, and machine learning-enabled computational sensing platform. Finally, the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.
Collapse
Affiliation(s)
- Zhengya Shi
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, People's Republic of China
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Juzhong Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qingqing Sun
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xuying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jinzhou Chen
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuiren Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
15
|
Hou Y, Wang L, Sun R, Zhang Y, Gu M, Zhu Y, Tong Y, Liu X, Wang Z, Xia J, Hu Y, Wei L, Yang C, Chen M. Crack-Across-Pore Enabled High-Performance Flexible Pressure Sensors for Deep Neural Network Enhanced Sensing and Human Action Recognition. ACS NANO 2022; 16:8358-8369. [PMID: 35485406 DOI: 10.1021/acsnano.2c02609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flexible pressure sensors with high sensitivity over a broad pressure range are highly desired, yet challenging to build to meet the requirements of practical applications in daily activities and more significant in some extreme environments. This work demonstrates a thin, lightweight, and high-performance pressure sensor based on flexible porous phenyl-silicone/functionalized carbon nanotube (PS/FCNT) film. The formed crack-across-pore endows the pressure sensor with high sensitivity of 19.77 kPa-1 and 1.6 kPa-1 in the linear range of 0-33 kPa and 0.2-2 MPa, respectively, as well as ultralow detection limit (∼1.3 Pa). Furthermore, the resulting pressure sensor possesses a low fatigue over 4000 loading/unloading cycles even under a high pressure of 2 MPa and excellent durability (>6000 cycles) after heating at high temperature (200 °C), attributed to the strong chemical bonding between PS and FCNT, excellent mechanical stability, and high temperature resistance of PS/FCNT film. These superior properties set a foundation for applying the single sensor device in detecting diverse stimuli from the very low to high pressure range, including weak airflow, sway, vibrations, biophysical signal monitoring, and even car pressure. Besides, a deep neural network based on transformer (TRM) has been engaged for human action recognition with an overall classification rate of 94.96% on six human actions, offering high accuracy in real-time practical scenarios.
Collapse
Affiliation(s)
- Yuxin Hou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lei Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ran Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Yuanao Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Mengxi Gu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuanhao Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Yubo Tong
- School of Mathematics, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | - Xunyu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Juan Xia
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611713, People's Republic of China
| | - Yougen Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Shenzhen Institutes of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
16
|
Liu B, Libanori A, Zhou Y, Xiao X, Xie G, Zhao X, Su Y, Wang S, Yuan Z, Duan Z, Liang J, Jiang Y, Tai H, Chen J. Simultaneous Biomechanical and Biochemical Monitoring for Self-Powered Breath Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7301-7310. [PMID: 35076218 DOI: 10.1021/acsami.1c22457] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The high moisture level of exhaled gases unavoidably limits the sensitivity of breath analysis via wearable bioelectronics. Inspired by pulmonary lobe expansion/contraction observed during respiration, a respiration-driven triboelectric sensor (RTS) was devised for simultaneous respiratory biomechanical monitoring and exhaled acetone concentration analysis. A tin oxide-doped polyethyleneimine membrane was devised to play a dual role as both a triboelectric layer and an acetone sensing material. The prepared RTS exhibited excellent ability in measuring respiratory flow rate (2-8 L/min) and breath frequency (0.33-0.8 Hz). Furthermore, the RTS presented good performance in biochemical acetone sensing (2-10 ppm range at high moisture levels), which was validated via finite element analysis. This work has led to the development of a novel real-time active respiratory monitoring system and strengthened triboelectric-chemisorption coupling sensing mechanism.
Collapse
Affiliation(s)
- Bohao Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Guangzhong Xie
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yuanjie Su
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Si Wang
- Institute of Optoelectronic Technology, Chinese Academy of Sciences, Chengdu 610209, P. R. China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Junge Liang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Rolling Spherical Triboelectric Nanogenerators (RS-TENG) under Low-Frequency Ocean Wave Action. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse10010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Triboelectric nanogenerators (TENG), which convert mechanical energy (such as ocean waves) from the surrounding environment into electrical energy, have been identified as a green energy alternative for addressing the environmental issues resulting from the use of traditional energy resources. In this experimental design, we propose rolling spherical triboelectric nanogenerators (RS-TENG) for collecting energy from low-frequency ocean wave action. Copper and aluminum were used to create a spherical frame which functions as the electrode. In addition, different sizes of spherical dielectric (SD1, SD2, SD3, and SD4) were developed in order to compare the dielectric effect on output performance. This design places several electrodes on each side of the spherical structure such that the dielectric layers are able to move with the slightest oscillation and generate electrical energy. The performance of the RS-TENG was experimentally investigated, with the results indicating that the spherical dielectrics significantly impact energy harvesting performance. On the other hand, the triboelectric materials (i.e., copper and aluminum) play a less important role. The copper RS-TENG with the largest spherical dielectrics is the most efficient structure, with a maximum output of 12.75 V in open-circuit and a peak power of approximately 455 nW.
Collapse
|
18
|
Shi X, Li S, Zhang B, Wang J, Xiang X, Zhu Y, Zhao K, Shang W, Gu G, Guo J, Cui P, Cheng G, Du Z. The Regulation of O 2 Spin State and Direct Oxidation of CO at Room Temperature Using Triboelectric Plasma by Harvesting Mechanical Energy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:nano11123408. [PMID: 34947755 DOI: 10.1016/j.nanoen.2021.106287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/27/2023]
Abstract
Oxidation reactions play a critical role in processes involving energy utilization, chemical conversion, and pollutant elimination. However, due to its spin-forbidden nature, the reaction of molecular dioxygen (O2) with a substrate is difficult under mild conditions. Herein, we describe a system that activates O2 via the direct modulation of its spin state by mechanical energy-induced triboelectric corona plasma, enabling the CO oxidation reaction under normal temperature and pressure. Under optimized reaction conditions, the activity was 7.2 μmol h-1, and the energy consumption per mole CO was 4.2 MJ. The results of kinetic isotope effect, colorimetry, and density functional theory calculation studies demonstrated that electrons generated in the triboelectric plasma were directly injected into the antibonding orbital of O2 to form highly reactive negative ions O2-, which effectively promoted the rate-limiting step of O2 dissociation. The barrier of the reaction of O2- ions and CO molecular was 3.4 eV lower than that of O2 and CO molecular. This work provides an effective strategy for using renewable and green mechanical energy to realize spin-forbidden reactions of small molecules.
Collapse
Affiliation(s)
- Xue Shi
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Sumin Li
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bao Zhang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Jiao Wang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiaochen Xiang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yifei Zhu
- Institute of Aero-Engine, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ke Zhao
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Wanyu Shang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Junmeng Guo
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Peng Cui
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Gang Cheng
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|
19
|
Shi X, Li S, Zhang B, Wang J, Xiang X, Zhu Y, Zhao K, Shang W, Gu G, Guo J, Cui P, Cheng G, Du Z. The Regulation of O 2 Spin State and Direct Oxidation of CO at Room Temperature Using Triboelectric Plasma by Harvesting Mechanical Energy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3408. [PMID: 34947755 PMCID: PMC8703925 DOI: 10.3390/nano11123408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/02/2023]
Abstract
Oxidation reactions play a critical role in processes involving energy utilization, chemical conversion, and pollutant elimination. However, due to its spin-forbidden nature, the reaction of molecular dioxygen (O2) with a substrate is difficult under mild conditions. Herein, we describe a system that activates O2 via the direct modulation of its spin state by mechanical energy-induced triboelectric corona plasma, enabling the CO oxidation reaction under normal temperature and pressure. Under optimized reaction conditions, the activity was 7.2 μmol h-1, and the energy consumption per mole CO was 4.2 MJ. The results of kinetic isotope effect, colorimetry, and density functional theory calculation studies demonstrated that electrons generated in the triboelectric plasma were directly injected into the antibonding orbital of O2 to form highly reactive negative ions O2-, which effectively promoted the rate-limiting step of O2 dissociation. The barrier of the reaction of O2- ions and CO molecular was 3.4 eV lower than that of O2 and CO molecular. This work provides an effective strategy for using renewable and green mechanical energy to realize spin-forbidden reactions of small molecules.
Collapse
Affiliation(s)
- Xue Shi
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Sumin Li
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Bao Zhang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Jiao Wang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Xiaochen Xiang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Yifei Zhu
- Institute of Aero-Engine, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Ke Zhao
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Wanyu Shang
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Guangqin Gu
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Junmeng Guo
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Peng Cui
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Gang Cheng
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China; (X.S.); (S.L.); (B.Z.); (J.W.); (X.X.); (K.Z.); (W.S.); (G.G.); (J.G.); (P.C.); (Z.D.)
| |
Collapse
|