1
|
Chen J, Lyu X, Yuan Q, Qin C, Yu H, Xu D, Zheng J, Li H, Fang J, Hu N, Cai Y. Dynamic and quantitative assessment of quercetin for cardiac oxidative stress injury prevention using sensitive cardiomyocyte based biosensing. Biosens Bioelectron 2025; 271:117045. [PMID: 39657554 DOI: 10.1016/j.bios.2024.117045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Myocardial infarction is a leading cause of morbidity and mortality associated with cardiovascular diseases worldwide. Although novel medications and treatments greatly alleviate patient suffering, challenges related to prognostic limit the recovery of cardiac function. Currently, treatment with monomeric compounds displays promise in prognostic interventions for cardiac diseases. However, there is a lack of dynamic and quantitative assessment of cardiomyocyte response to these drugs. Herein, an integrated biosensing platform with a microelectrode array was constructed for label-free, non-invasive, long-term, and real-time recording of cardiomyocyte electrophysiological signals. By analyzing the signals of cardiomyocytes before and after treatment, we established the safe concentration of quercetin in cardiomyocytes and identified its long-term cardiotoxicity. Moreover, quercetin also demonstrated significant protective effects on cardiomyocytes in a H2O2-induced oxidative stress injury model. This study provides a trustworthy platform to evaluate the effects of monomeric compounds on cardiomyocytes, and offers a novel approach for drug screening and efficacy testing in cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Chen
- Diabetes and Obesity Department, Tongde Hospital of Zhejiang Province, Hangzhou, China; Integrated Chinese and Western Medicine Department, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xuelian Lyu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Qunchen Yuan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; Innovation Center for Smart Medical Technologies & Devices, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China
| | - Chunlian Qin
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Han Yu
- Hangzhou Qiuhe Health Management Co Ltd Minkang Street Clinic, Hangzhou, China
| | - Dongxin Xu
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Hongchun Li
- Diabetes and Obesity Department, Tongde Hospital of Zhejiang Province, Hangzhou, China.
| | - Jiaru Fang
- Department of Neurology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| | - Yuqun Cai
- Diabetes and Obesity Department, Tongde Hospital of Zhejiang Province, Hangzhou, China; Integrated Chinese and Western Medicine Department, Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
Rashed MS, Abdelkarim EA, Elsamahy T, Sobhy M, El-Mesery HS, Salem A. Advances in cell-based biosensors: Transforming food flavor evaluation with novel approaches. Food Chem X 2025; 26:102336. [PMID: 40115496 PMCID: PMC11923814 DOI: 10.1016/j.fochx.2025.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025] Open
Abstract
Food flavor, a blend of taste and smell, is key to consumer acceptance and food quality. Traditional sensory and instrumental methods often fail to replicate human sensory responses. This review discusses the role of cell-based biosensors in flavor evaluation, showcasing their sensitivity, specificity, and rapid response. Using living cells like taste and olfactory cells, these biosensors surpass traditional approaches. Advancements include microelectrode array systems with taste receptor cells for real-time detection of bitter, sweet, and umami substances and improved cell immobilization technologies for detecting complex odorant profiles. Challenges such as signal stability, selective detection, cell cultivation, and scalability persist. However, integrating artificial intelligence and portable technologies could broaden their applications. With the potential to revolutionize sensory analysis, cell-based biosensors offer a sustainable, precise, and scalable approach to food flavor evaluation, bridging sensory perception with advanced analytical methods and driving innovation in food science.
Collapse
Affiliation(s)
- Mahmoud Said Rashed
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Esraa A Abdelkarim
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Mabrouk Sobhy
- Food Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hany S El-Mesery
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
- Agricultural Engineering Research Institute, Agricultural Research Center, Dokki, 12611 Giza, Egypt
| | - Ali Salem
- Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pecs, Hungary
| |
Collapse
|
3
|
Kanade PP, Oyunbaatar NE, Kim J, Lee BK, Kim ES, Lee DW. Cardiotoxicity Assessment through a Polymer-Based Cantilever Platform: An Integrated Electro-Mechanical Screening Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311274. [PMID: 38511575 DOI: 10.1002/smll.202311274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Preclinical drug screening for cardiac toxicity has traditionally relied on observing changes in cardiomyocytes' electrical activity, primarily through invasive patch clamp techniques or non-invasive microelectrode arrays (MEA). However, relying solely on field potential duration (FPD) measurements for electrophysiological assessment can miss the full spectrum of drug-induced toxicity, as different drugs affect cardiomyocytes through various mechanisms. A more comprehensive approach, combining field potential and contractility measurements, is essential for accurate toxicity profiling, particularly for drugs targeting contractile proteins without affecting electrophysiology. However, previously proposed platform has significant limitations in terms of simultaneous measurement. The novel platform addresses these issues, offering enhanced, non-invasive evaluation of drug-induced cardiotoxicity. It features eight cantilevers with patterned strain sensors and MEA, enabling real-time monitoring of both cardiomyocyte contraction force and field potential. This system can detect minimum cardiac contraction force of ≈2 µN and field potential signals with 50 µm MEA diameter, using the same cardiomyocytes in measurements of two parameters. Testing with six drugs of varied mechanisms of action, the platform successfully identifies these mechanisms and accurately assesses toxicity profiles, including drugs not inhibiting potassium channels. This innovative approach presents a comprehensive, non-invasive method for cardiac function assessment, poised to revolutionize preclinical cardiotoxicity screening.
Collapse
Affiliation(s)
- Pooja P Kanade
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Nomin-Erdene Oyunbaatar
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jongyun Kim
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bong-Kee Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dong-Weon Lee
- School of Mechanical Engineering, Chonnam National University, Gwangju, 61186, South Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju, 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
4
|
Steiner D, Meyer A, Immohr LI, Pein-Hackelbusch M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024; 16:658. [PMID: 38794320 PMCID: PMC11125162 DOI: 10.3390/pharmaceutics16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
In this review, we aim to highlight the advantages, challenges, and limitations of electronic tongues (e-tongues) in pharmaceutical drug development. The authors, therefore, critically evaluated the performance of e-tongues regarding their qualification to assess peroral formulations containing bitter active pharmaceutical ingredients. A literature search using the keywords 'electronic', 'tongue', 'bitter', and 'drug' in a Web of Science search was therefore initially conducted. Reviewing the publications of the past decade, and further literature where necessary, allowed the authors to discuss whether and how e-tongues perform as expected and whether they have the potential to become a standard tool in drug development. Specifically highlighted are the expectations an e-tongue should meet. Further, a brief insight into the technologies of the utilized e-tongues is given. Reliable protocols were found that enable (i) the qualified performance of e-tongue instruments from an analytical perspective, (ii) proper taste-masking assessments, and (iii) under certain circumstances, the evaluation of bitterness.
Collapse
Affiliation(s)
- Denise Steiner
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany;
| | - Alexander Meyer
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| | | | - Miriam Pein-Hackelbusch
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| |
Collapse
|
5
|
Deng K, Tang Y, Xiao Y, Zhong D, Zhang H, Fang W, Shen L, Wang Z, Pan J, Lu Y, Chen C, Gao Y, Jin Q, Zhuang L, Wan H, Zhuang L, Wang P, Zhai J, Ren T, Hu Q, Lang M, Zhang Y, Wang H, Zhou M, Gao C, Zhang L, Zhu Y. A biodegradable, flexible photonic patch for in vivo phototherapy. Nat Commun 2023; 14:3069. [PMID: 37244895 PMCID: PMC10224912 DOI: 10.1038/s41467-023-38554-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Diagnostic and therapeutic illumination on internal organs and tissues with high controllability and adaptability in terms of spectrum, area, depth, and intensity remains a major challenge. Here, we present a flexible, biodegradable photonic device called iCarP with a micrometer scale air gap between a refractive polyester patch and the embedded removable tapered optical fiber. ICarP combines the advantages of light diffraction by the tapered optical fiber, dual refractions in the air gap, and reflection inside the patch to obtain a bulb-like illumination, guiding light towards target tissue. We show that iCarP achieves large area, high intensity, wide spectrum, continuous or pulsatile, deeply penetrating illumination without puncturing the target tissues and demonstrate that it supports phototherapies with different photosensitizers. We find that the photonic device is compatible with thoracoscopy-based minimally invasive implantation onto beating hearts. These initial results show that iCarP could be a safe, precise and widely applicable device suitable for internal organs and tissue illumination and associated diagnosis and therapy.
Collapse
Affiliation(s)
- Kaicheng Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yao Tang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Danni Zhong
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), School of Medicine, Zhejiang University, Haining, 314400, China
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaochuang Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiazhen Pan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changming Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lenan Zhuang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Junfeng Zhai
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Tanchen Ren
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Zhang
- San Francisco Veterans Affairs Medical Center, San Francisco, 94121, USA
| | - Huanan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Min Zhou
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), School of Medicine, Zhejiang University, Haining, 314400, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, 310009, China.
- Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education, Zhejiang University, Hangzhou, 310009, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Zhang
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311100, China.
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
6
|
Li Y, Langley N, Zhang J. Recent Advances in Bitterness-Sensing Systems. BIOSENSORS 2023; 13:bios13040414. [PMID: 37185489 PMCID: PMC10136117 DOI: 10.3390/bios13040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Bitterness is one of the basic tastes, and sensing bitterness plays a significant role in mammals recognizing toxic substances. The bitter taste of food and oral medicines may decrease consumer compliance. As a result, many efforts have been made to mask or decrease the bitterness in food and oral pharmaceutical products. The detection of bitterness is critical to evaluate how successful the taste-masking technology is, and many novel taste-sensing systems have been developed on the basis of various interaction mechanisms. In this review, we summarize the progress of bitterness response mechanisms and the development of novel sensors in detecting bitterness ranging from commercial electronic devices based on modified electrodes to micro-type sensors functionalized with taste cells, polymeric membranes, and other materials in the last two decades. The challenges and potential solutions to improve the taste sensor quality are also discussed.
Collapse
Affiliation(s)
- Yanqi Li
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Nigel Langley
- Gaylord Chemical Company LLC, 1404 Greengate Dr, Ste 100, Covington, LA 70433, USA
| | - Jiantao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
7
|
Kanade PP, Oyunbaatar NE, Shanmugasundaram A, Jeong YJ, Kim ES, Lee BK, Lee DW. MEA-integrated cantilever platform for comparison of real-time change in electrophysiology and contractility of cardiomyocytes to drugs. Biosens Bioelectron 2022; 216:114675. [DOI: 10.1016/j.bios.2022.114675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
|
8
|
Cox-Pridmore DM, Castro FA, Silva SRP, Camelliti P, Zhao Y. Emerging Bioelectronic Strategies for Cardiovascular Tissue Engineering and Implantation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105281. [PMID: 35119208 DOI: 10.1002/smll.202105281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Heart diseases are currently the leading cause of death worldwide. The ability to create cardiovascular tissue has numerous applications in understanding tissue development, disease progression, pharmacological testing, bio-actuators, and transplantation; yet current cardiovascular tissue engineering (CTE) methods are limited. However, there have been emerging developments in the bioelectronics field, with the creation of biomimetic devices that can intimately interact with cardiac cells, provide monitoring capabilities, and regulate tissue formation. Combining bioelectronics with cardiac tissue engineering can overcome current limitations and produce physiologically relevant tissue that can be used in various areas of cardiovascular research and medicine. This review highlights the recent advances in cardiovascular-based bioelectronics. First, cardiac tissue engineering and the potential of bioelectronic therapies for cardiovascular diseases are discussed. Second, advantageous bioelectronic materials for CTE and implantation and their properties are reviewed. Third, several representative cardiovascular tissue-bioelectronic interface models and the beneficial functions that bioelectronics can demonstrate in in vitro and in vivo applications are explored. Finally, the prospects and remaining challenges for clinical application are discussed.
Collapse
Affiliation(s)
- Dannielle M Cox-Pridmore
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Fernando A Castro
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - S Ravi P Silva
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Yunlong Zhao
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
- Advanced Technology Institute, Department of Electrical and Electronic Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|