1
|
Xu W, Cao Y, Shi H, Jia X, Zheng Y, Tan Z, Zhao R, Wu H. Skin-interfaced sweat monitoring patch constructed by flexible microfluidic capillary pump and Cu-MOF sensitized electrochemical sensor. Talanta 2025; 291:127895. [PMID: 40056654 DOI: 10.1016/j.talanta.2025.127895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The limitations of skin-interfaced sweat monitoring are mainly reflected in the effective collection of sweat and the high sensitivity of the detection. This work proposes a new type of sweat monitoring patch based on a flexible microfluidic chip fabricated by a capillary pump and a copper-based metal-based organic framework (Cu-MOF) sensitized electrochemical sensor. The sweat in the microchannel is driven by a capillary pump to ensure the smooth collection and transportation. The sweat collection channel adopts the ingenious design of wedge-shaped structure, which helps to spontaneously generate Laplacian forces to direct sweat to the detection area. The detection area combines upper and lower capillary pumps, which aim to improve the efficiency of sweat collection. The controllable preparation of Cu-MOF was realized by using a micro-mixer, and the glucose sensor was prepared with it as the probe. The Cu-MOF/PANI layered electrode was prepared, which effectively improved the sensitivity of glucose detection and achieved a significant detection limit of 2.84 μM in the concentration range of 0-1 mM. Sodium and potassium selective electrode were also integrated into a unified screen-printed electrode, and a portable electrochemical detection module, a Bluetooth transmission module, and a mobile phone receiving application were developed. The sweat monitoring patch shows potential in applications such as sports performance monitoring, healthcare, and personalized medicine, opening new avenues for non-invasive health monitoring and early disease detection.
Collapse
Affiliation(s)
- Weizheng Xu
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Yu Cao
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Huanhuan Shi
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China.
| | - Xuanhao Jia
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Yun Zheng
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Zhongjian Tan
- Department of Biomedical Engineering, School of Instrumentation and Optical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, People's Republic of China
| | - Rui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, People's Republic of China
| | - Hongwen Wu
- Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, People's Republic of China.
| |
Collapse
|
2
|
Wang CL, Cai X, Zhao YH, Liu ZH, Xia RZ, Tang LJ, Song ZY, Chen SH, Li Y, Yang M, Li PH, Huang XJ. Integrated Headband for Monitoring Chloride Anions in Sweat Using Developed Flexible Patches. ACS Sens 2025; 10:3441-3449. [PMID: 40014548 DOI: 10.1021/acssensors.4c03366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Flexible wearable potentiometric ion sensors for continuous monitoring of electrolyte cations have made significant advances in bioanalysis for personal healthcare and diagnostics. However, less attention is paid to the most abundant extracellular anion, chloride ion (Cl-) as a mark of electrolyte imbalance and an important diagnostic indicator of cystic fibrosis, which has important significance for accurate monitoring in complex biological fluids. An all-solid-state Cl--selective electrode is constructed utilizing oxygen vacancies reinforced vanadium oxide with a nitrogen-doped carbon shield as the solid contact (V2O3-x@NC/Cl--ISE). The prepared V2O3-x@NC/Cl--ISE exhibits a low detection limit of 10-5.45 M without an interfacial water layer and shows a highly stable potential with 7.24 μV/h during 24 h, which is attributed to the rapid interfacial electron transfer of the conductive carbon layers and the valence state transition of the polyvalent vanadium center in charge storage processes. Additionally, the custom flexible sensing patch presents an excellent sensitivity retention rate under bending (95%) and twisting (93%) strains and possesses good anti-interference performance (ΔE < 8 mV) against common interfering ions and organic substances in sweat. Real-time monitoring of the Cl- concentration in sweat aligns with ion chromatography analysis results. This study presents a compact wearable Cl- monitoring platform for the easy tracking of exercise-induced dehydration and cystic fibrosis screening with promising applications in smart healthcare.
Collapse
Affiliation(s)
- Chen-Lu Wang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Rui-Ze Xia
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Li-Jun Tang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zong-Yin Song
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| | - Shi-Hua Chen
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| | - Yixiang Li
- Institute of Brain-Inspired Intelligence, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
- Hefei Comprehensive National Science Center, Institute of Environment, Hefei 230088, P. R. China
| |
Collapse
|
3
|
Romanholo PVV, Andrade LM, Giglioti M, Luccas GZA, Machado SAS, Sgobbi LF. Parallel assembly of dual-electrochemical cell: a novel approach for simultaneous multiplexed sensing analysis. Mikrochim Acta 2025; 192:340. [PMID: 40328952 DOI: 10.1007/s00604-025-07194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
In the field of biosensing and chemical sensing, there is a growing demand for multiplexed detection and quantification of multiple targets within complex matrices. In electrochemical sensing, simultaneous multiplexed analysis is typically performed with multiple electrodes connected to a multichannel potentiostat. An alternative strategy involves using a single electrode capable of discriminating and detecting several analytes in a single measurement, which is, however, unfortunately limited to a selective group of molecules. Herein, we report a novel electrochemical method based on the parallel assembly of a dual-electrochemical cell (PADEC), which enables the simultaneous detection and quantification of solvent-incompatible analytes, prepared separately in two distinct electrochemical cells, using a single-channel potentiostat-thus achieving multichannel-like performance. This approach relies on connecting two electrochemical cells in parallel, allowing the concurrent measurement of distinct electrochemical responses from analytes that otherwise could not be simultaneously determined due to solvent incompatibility. As a proof of concept, the water-soluble vitamin C, and the lipid-soluble vitamin D3 were simultaneously determined, each in its respective optimized medium. The PADEC approach demonstrated performance comparable to individual detection methods, achieving limits of detection of 27 μM for vitamin C and 32 μM for vitamin D3 over a linear range of 20-400 μM. This strategy establishes a new approach for simultaneous, multiplexed electrochemical determination of analytes in different media. Moreover, this innovation may extend applications in electrochemistry beyond (bio)sensing to include areas such as electrocatalysis, energy and corrosion, potentially reducing dependence on multichannel potentiostats.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Larissa M Andrade
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil
| | - Marcelo Giglioti
- Metrohm Brasil Instrumentação Analítica Ltda, São Paulo, 05007-030, SP, Brazil
| | | | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, 13566-590, SP, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO, Brazil.
| |
Collapse
|
4
|
Ma CB, Shang X, Sun M, Bo X, Bai J, Du Y, Zhou M. Emerging Multifunctional Wearable Sensors: Integrating Multimodal Sweat Analysis and Advanced Material Technologies for Next-Generation Health Monitoring. ACS Sens 2025; 10:2388-2408. [PMID: 40162570 DOI: 10.1021/acssensors.4c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sweat, a noninvasive and readily accessible biofluid, offers significant potential in health monitoring through its diverse biomarker profile, including electrolytes, metabolites, and hormones, which reflect physiological states in real time. Multimodal wearable sensors, integrating chemical, physical, and thermal sensing capabilities, have emerged as transformative tools for capturing these biomarkers alongside additional physiological signals. By combining advanced materials such as hydrogels, MXenes, and graphene with innovative structural designs, these sensors enable simultaneous monitoring of biomarkers (e.g., glucose, sodium, and cortisol) alongside parameters like movement and temperature. This Review systematically explores the classification and design of multimodal sensors, emphasizing their ability to address health monitoring challenges across applications including metabolic health management, stress detection, and hydration assessment. Key innovations in functional materials, such as conductive hydrogels and biomimetic structures, are discussed alongside challenges in signal integration, data processing, and power management. Additionally, advancements in self-powered systems and energy harvesting technologies have been highlighted as critical enablers for continuous, real-time monitoring. The Review concludes with a perspective on future directions, emphasizing the need for scalable manufacturing techniques, artificial intelligence integration, and standardized frameworks to enhance sensor functionality and adoption. Multimodal wearable sensors, by seamlessly integrating health data into daily life, hold the promise of transforming personalized healthcare, enabling proactive management of health and wellness through noninvasive, comprehensive, and real-time monitoring.
Collapse
Affiliation(s)
- Chong-Bo Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xudong Shang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Mimi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiangjie Bo
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jing Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
5
|
Lee YS, Shin S, Kang GR, Lee S, Kim DW, Park S, Cho Y, Lim D, Jeon SH, Cho SY, Pang C. Spatiotemporal molecular tracing of ultralow-volume biofluids via a soft skin-adaptive optical monolithic patch sensor. Nat Commun 2025; 16:3272. [PMID: 40188097 PMCID: PMC11972314 DOI: 10.1038/s41467-025-58425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Molecular tracing of extremely low amounts of biofluids is vital for precise diagnostic analysis. Although optical nanosensors for real-time spatiotemporal molecular tracing exist, integrating them into simple devices that capture low-volume fluids on rough, dynamic surfaces remains challenging. We present a bioinspired 3D microstructured patch monolithically integrated with optical nanosensors (3D MIN) for real-time, multivariate molecular tracing of ultralow-volume fluids. Inspired by tree frog toe pads, the 3D MIN features soft, hexagonally aligned pillars and microchannels for conformal adhesion and targeted fluid management. Embedding near-infrared fluorescent single-walled carbon nanotube nanosensors in a hydrogel enables simultaneous fluid capture and detection. Softening the elastomer microarchitecture and optimizing water management promote stable adhesion on wet biosurfaces, allowing rapid collection of ultralow-volume fluids (~0.1 µL/min·cm²). We demonstrate real-time, remote sweat analysis with ≥75 nL volumes collected in 45 s, without exercise or iontophoresis, showcasing high biocompatibility and efficient spatiotemporal molecular tracing.
Collapse
Affiliation(s)
- Yeon Soo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seyoung Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Gyun Ro Kang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Siyeon Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Da Wan Kim
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Chungbuk, Republic of Korea
| | - Seongcheol Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Youngwook Cho
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seung Hwan Jeon
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
- Convergence Research Center for Meta-Touch, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Soo-Yeon Cho
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
6
|
Lin R, Guo W, Chen Y, Li H, Luo Z, Fan Z, Tu J, Ling P, Liu R. Liquid Bridge Cutting Valves for Microfluidic Passive Distribution and Sequential Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411708. [PMID: 40059515 DOI: 10.1002/smll.202411708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Indexed: 04/25/2025]
Abstract
In bioanalysis, precisely isolating liquid reactions in distinct systems or at different temporal sequences is vital for ensuring accurate results devoid of crosstalk. However, passive liquid isolation is unattainable through existing microfluidic valves. Here, liquid bridge cutting valves (LBCVs) are introduced to automatically segregate liquids by establishing airlocks, offering an innovative microfluidic structure for liquid distribution. The principle of liquid bridge breakup is studied and applied to the design of LBCVs. Additionally, monolithic chips connecting units with LBCVs in different topologies facilitate sequential sampling and reactions, achieving the detection of sweat glucose and lactate in wearable applications, as well as cortisol ELISA on the chips. As a missing puzzle piece of microfluidic elements in liquid separation, LBCVs can be seamlessly integrated with maturing microfluidic structures, creating a lab-on-a-chip device to enable complex fluid manipulation for individual healthcare monitoring and clinical scenarios.
Collapse
Affiliation(s)
- Rongzan Lin
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Wen Guo
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuqiu Chen
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haojie Li
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ziyang Luo
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zixiao Fan
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinying Tu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Peng Ling
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ran Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Sung D, Han S, Kim S, Kang H, Jekal B, Kim G, Kim J, Hong M, Moon G, Kim S, Lee Y, Hwang SW, Jeong H, Ryu YS, Kim S, Koo J. Electrophoretic digital colorimetry integrated with electrochemical sweat sensor. SCIENCE ADVANCES 2025; 11:eadu2142. [PMID: 40153516 PMCID: PMC11952109 DOI: 10.1126/sciadv.adu2142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Recent advancements in wearable sweat sensors, which use standardized electrochemical and colorimetric mechanisms, offer holistic representation of health status for users. However, the constraints of standardized sweat sensors present ongoing challenges to realization of personalized health management. This study presents an electrocolorimetric (EC) platform that enables the reversible and multiple-time use of colorimetric data visualization using electrophoretic display (EPD). This platform represents the application of low-power EPD in epidermal sweat sensor, evaluated through CIELAB-based methodology which is the first systematic evaluation tool of wearable display performance. Moreover, our platform has been demonstrated in human exercise trials for its ability to detect the lactate threshold (LT). This digital colorimetric system has the potential to play a pivotal role by integrating various health monitoring biomarkers. While providing real-time, continuous, and adjustable range information with high sensitivity, this platform validates its extensive probability as a next-generation wearable epidermal sensor.
Collapse
Affiliation(s)
- Daeun Sung
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seunghun Han
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Sumin Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bon Jekal
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Giheon Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Jaewon Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Minki Hong
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Gyounghwan Moon
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sungeun Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Yerim Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA
| | - Yong-Sang Ryu
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Micro/Nano Systems, Korea University, Seoul 02841, Republic of Korea
- BK21 Four Institute of Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Sungbong Kim
- Department of Chemistry, Korea Military Academy, Seoul 01805, Republic of Korea
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
8
|
Ali SM, Noghanian S, Khan ZU, Alzahrani S, Alharbi S, Alhartomi M, Alsulami R. Wearable and Flexible Sensor Devices: Recent Advances in Designs, Fabrication Methods, and Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:1377. [PMID: 40096147 PMCID: PMC11902442 DOI: 10.3390/s25051377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 03/19/2025]
Abstract
The development of wearable sensor devices brings significant benefits to patients by offering real-time healthcare via wireless body area networks (WBANs). These wearable devices have gained significant traction due to advantageous features, including their lightweight nature, comfortable feel, stretchability, flexibility, low power consumption, and cost-effectiveness. Wearable devices play a pivotal role in healthcare, defence, sports, health monitoring, disease detection, and subject tracking. However, the irregular nature of the human body poses a significant challenge in the design of such wearable systems. This manuscript provides a comprehensive review of recent advancements in wearable and flexible smart sensor devices that can support the next generation of such sensor devices. Further, the development of direct ink writing (DIW) and direct writing (DW) methods has revolutionised new high-resolution integrated smart structures, enabling the design of next-generation soft, flexible, and stretchable wearable sensor devices. Recognising the importance of keeping academia and industry informed about cutting-edge technology and time-efficient fabrication tools, this manuscript also provides a thorough overview of the latest progress in various fabrication methods for wearable sensor devices utilised in WBAN and their evaluation using body phantoms. An overview of emerging challenges and future research directions is also discussed in the conclusion.
Collapse
Affiliation(s)
- Shahid Muhammad Ali
- Department of Engineering and Technology, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
- Engineering Department, The City of Liverpool College, Liverpool L3 6BN, UK
| | - Sima Noghanian
- CommScope Ruckus Wireless, 350 W Java Dr, Sunnyvale, CA 94089, USA;
| | - Zia Ullah Khan
- National Physical Laboratory, Electromagnetic & Electrochemical Technologies Department, Teddington TW11 0LW, UK;
| | - Saeed Alzahrani
- Department of Electrical Engineering, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.A.); (M.A.)
| | - Saad Alharbi
- King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Mohammad Alhartomi
- Department of Electrical Engineering, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.A.); (M.A.)
| | - Ruwaybih Alsulami
- Department of Electrical Engineering, Umm Al-Qura University Makkah, Mecca 24382, Saudi Arabia;
| |
Collapse
|
9
|
Zhang Y, Yang Y, Yin Z, Huang L, Wang J. Nanozyme-based wearable biosensors for application in healthcare. iScience 2025; 28:111763. [PMID: 39906563 PMCID: PMC11791255 DOI: 10.1016/j.isci.2025.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Recent years have witnessed tremendous advances in wearable sensors, which play an essential role in personalized healthcare for their ability for real-time sensing and detection of human health information. Nanozymes, capable of mimicking the functions of natural enzymes and addressing their limitations, possess unique advantages such as structural stability, low cost, and ease of mass production, making them particularly beneficial for constructing recognition units in wearable biosensors. In this review, we aim to delineate the latest advancements in nanozymes for the development of wearable biosensors, focusing on key developments in nanozyme immobilization strategies, detection technologies, and biomedical applications. The review also highlights the current challenges and future perspectives. Ultimately, it aims to provide insights for future research endeavors in this rapidly evolving area.
Collapse
Affiliation(s)
- Yingcong Zhang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yiran Yang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhixin Yin
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lin Huang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
10
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411339. [PMID: 39688117 PMCID: PMC11791988 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
- The Center for Advanced Sensing TechnologyUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
- Chemical, Biochemicaland Environmental Engineering DepartmentUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
| | - Priyanka Paul
- Department of PediatricsUniversity of Maryland Baltimore School of MedicineBaltimoreMD21201USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
| | - Dipanjan Pan
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
| |
Collapse
|
11
|
Song R, Cho S, Khan S, Park I, Gao W. Lighting the Path to Precision Healthcare: Advances and Applications of Wearable Photonic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419161. [PMID: 39865847 DOI: 10.1002/adma.202419161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Recent advancements in wearable photonic sensors have marked a transformative era in healthcare, enabling non-invasive, real-time, portable, and personalized medical monitoring. These sensors leverage the unique properties of light toward high-performance sensing in form factors optimized for real-world use. Their ability to offer solutions to a broad spectrum of medical challenges - from routine health monitoring to managing chronic conditions, inspires a rapidly growing translational market. This review explores the design and development of wearable photonic sensors toward various healthcare applications. The photonic sensing strategies that power these technologies are first presented, alongside a discussion of the factors that define optimal use-cases for each approach. The means by which these mechanisms are integrated into wearable formats are then discussed, with considerations toward material selection for comfort and functionality, component fabrication, and power management. Recent developments in the space are detailed, accounting for both physical and chemical stimuli detection through various non-invasive biofluids. Finally, a comprehensive situational overview identifies critical challenges toward translation, alongside promising solutions. Associated future outlooks detail emerging trends and mechanisms that stand to enable the integration of these technologies into mainstream healthcare practice, toward advancing personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Ruihao Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Seokjoo Cho
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shadman Khan
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
12
|
Amjad A, Xian X. Optical sensors for transdermal biomarker detection: A review. Biosens Bioelectron 2025; 267:116844. [PMID: 39406072 DOI: 10.1016/j.bios.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
This review has explored optical sensors and their important role in non-invasive transdermal biomarker detection. While electrochemical sensors have been thoroughly studied for biomarker tracking, optical sensors present a compelling alternative due to their high sensitivity and selectivity, multiplex capabilities, cost-efficiency, and small form factor. This review examines the latest advancements in optical sensing technologies for transdermal biomarker detection, such as colorimetry, fluorescence, surface plasmon resonance (SPR), fiber optics, photonic crystals, and Raman spectroscopy. These technologies have been applied in the analysis of biomarkers present in sweat and skin gases, which are essential for non-invasive health monitoring. Furthermore, the review has discussed the challenges and future perspectives of optical sensors in in transdermal biomarker detection. The analysis of various sensor types and their applications highlights the transformative potential of optical sensors in enhancing disease diagnostics and promoting proactive health management.
Collapse
Affiliation(s)
- Amirhossein Amjad
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - Xiaojun Xian
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
13
|
Cheng C, Ganguly S, Li P, Tang X. Detecting Hypoxia Through the Non-Invasive and Simultaneous Monitoring of Sweat Lactate and Tissue Oxygenation. BIOSENSORS 2024; 14:584. [PMID: 39727849 DOI: 10.3390/bios14120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Hypoxia, characterized by inadequate tissue oxygenation, may result in tissue damage and organ failure if not addressed. Current detection approaches frequently prove insufficient, depending on symptoms and rudimentary metrics such as tissue oxygenation, which fail to comprehensively identify the onset of hypoxia. The European Pressure Ulcer Advisory Panel (EPUAP) has recognized sweat lactate as a possible marker for the early identification of decubitus ulcers, nevertheless, neither sweat lactate nor oxygenation independently provides an appropriate diagnosis of hypoxia. We have fabricated a wearable device that non-invasively and concurrently monitors sweat lactate and tissue oxygenation to fill this gap. The apparatus comprises three essential components: (i) a hydrogel-based colorimetric lactate biosensor, (ii) a near-infrared (NIR) sensor for assessing tissue oxygenation, and (iii) an integrated form factor for enhanced wearability. The lactate sensor alters its hue upon interaction with lactate in sweat, whereas the NIR sensor monitors tissue oxygenation levels in real-time. The device underwent testing on phantom exhibiting tissue-mimicking characteristics and on human sweat post aerobic and anaerobic activities. Moreover, the device was demonstrated to be capable of real-time "on-body" simultaneous monitoring of sweat lactate spikes and tissue oxygenation (StO2) drops, which showed strong correlation during a hypoxia protocol. This innovative technology has a wide range of potential applications, such as post-operative care, sepsis detection, and athletic performance monitoring, and may provide economical healthcare solutions in resource-limited regions.
Collapse
Affiliation(s)
- Cindy Cheng
- Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - Sayan Ganguly
- Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - Pei Li
- Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| | - Xiaowu Tang
- Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
14
|
Moulahoum H, Ghorbanizamani F. The LOD paradox: When lower isn't always better in biosensor research and development. Biosens Bioelectron 2024; 264:116670. [PMID: 39151260 DOI: 10.1016/j.bios.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Biosensor research has long focused on achieving the lowest possible Limits of Detection (LOD), driving significant advances in sensitivity and opening up new possibilities in analysis. However, this intense focus on low LODs may not always meet the practical needs or suit the actual uses of these devices. While technological improvements are impressive, they can sometimes overlook important factors such as detection range, ease of use, and market readiness, which are vital for biosensors to be effective in real-world applications. This review advocates for a balanced approach to biosensor development, emphasizing the need to align technological advancements with practical utility. We delve into various applications, including the detection of cancer biomarkers, pathology-related biomarkers, and illicit drugs, illustrating the critical role of LOD within these contexts. By considering clinical needs and broader design aspects like cost-effectiveness, sustainability, and regulatory compliance, we argue that integrating technical progress with practicality will enhance the impact of biosensors. Such an approach ensures that biosensors are not only technically sound but also widely useable and beneficial in real-world applications. Addressing the diverse analytical parameters alongside user expectations and market demands will likely maximize the real-world impact of biosensors.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Izmir, Turkiye.
| | | |
Collapse
|
15
|
Cinca-Morros S, Garcia-Rey S, Álvarez-Herms J, Basabe-Desmonts L, Benito-Lopez F. A physiological perspective of the relevance of sweat biomarkers and their detection by wearable microfluidic technology: A review. Anal Chim Acta 2024; 1327:342988. [PMID: 39266058 DOI: 10.1016/j.aca.2024.342988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/14/2024]
Abstract
The great majority of published microfluidic wearable platforms for sweat sensing focus on the development of the technology to fabricate the device, the integration of sensing materials and actuators and the fluidics of sweat within the device. However, very few papers have discussed the physiological relevance of the metabolites measured using these novel approaches. In fact, some of the analytes present in sweat, which serve as biomarkers in blood, do not show a correlation with blood levels. This discrepancy can be attributed to factors such as contamination during measurements, the metabolism of sweat glands, or challenges in obtaining significant samples. The objective of this review is to present a critical and meaningful insight into the real applicability and potential use of wearable technology for improving health and sport performance. It also discusses the current limitations and future challenges of microfluidics, aiming to provide accurate information about the actual needs in this field. This work is expected to contribute to the future development of more suitable wearable microfluidic technology for health and sports science monitoring, using sweat as the biofluid for analysis.
Collapse
Affiliation(s)
- Sergi Cinca-Morros
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| | - Sandra Garcia-Rey
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jesús Álvarez-Herms
- Research Group in Sports Genomics, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain; PHYMOlab Research & Exercise Performance, Segovia, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013 Bilbao, Spain.
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain.
| |
Collapse
|
16
|
Wu T, Yang P, Xie X, Cao X, Deng Y, Ding X, Zhang Z. Bio-inspired hierarchical wearable patch for fast sweat collection. Biosens Bioelectron 2024; 260:116430. [PMID: 38815465 DOI: 10.1016/j.bios.2024.116430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Sweat contains abundant physiological and metabolic data to evaluate an individual's physical health. Since the non-exercise sweat secretion rate is low, with an average value of 1-10 μl h-1 cm-2, sweat is generally collected during exercise for existing wearable sweat sensors. To expand their applications to include daily scenarios, these sensors developed for sports and fitness are challenged by the difficulty of collecting trace amounts of sweat. This study proposes a wearable patch inspired by the hierarchical structure of Sarracenia trichomes, allowing for the spontaneous and fast collection of a small amount of secreted sweat. The patch contains microfluidic channels featuring a 20 μm-wide rib structure, fully utilizing the capillary force, thereby eliminating the issue of sweat hysteresis. Furthermore, with only 0.5 μl of the sweat secreted at the collection site, it can converge on the detection medium located within the center reservoir. Volunteer verification demonstrated a twofold increase in sweat collection efficiency compared to traditional wearable patches. This patch serves as an efficient sweat-collection configuration, promising potential for diverse in situ sweat colorimetric analyses.
Collapse
Affiliation(s)
- Tianjie Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pufan Yang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xintong Xie
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xi Cao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yujun Deng
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zhinan Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Zhang H, Zhang H, Sikdar D, Liu X, Yang Z, Cheng W, Chen Y. Jellyfish-like Gold Nanowires as FlexoSERS Sensors for Sweat Analysis. NANO LETTERS 2024; 24:11269-11278. [PMID: 39208279 DOI: 10.1021/acs.nanolett.4c02907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We introduce the FlexoSERS sensor, which is notable for its high stretchability, sensitivity, and patternability. Featuring a hierarchically oriented jellyfish-like architecture constructed from stretchable gold nanowires, this sensor provides an ultrasensitive SERS signal even under 50% strain, with an enhancement factor (EF) of 3.3 × 1010. Impressively, this heightened performance remains consistently robust across 2,500 stretch-release cycles. The integration of nanowires with 3D-printed hydrogel enables a customizable FlexoSERS sensor, facilitating localized sweat collection and detection. The FlexoSERS sensor successfully detects and quantifies uric acid (UA) in both artificial and human sweat and functions as a pH sensor with repeatability and sensitivity across a pH range of 4.2-7.8, enabling real-time sweat monitoring during exercise. In summary, the rational architectural design, scalable fabrication process, and hydrogel integration collectively position this nanowire-based FlexoSERS sensor as a highly promising platform for customizable wearable sweat diagnostics.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Southeast University-Monash University Joint Graduate School, Suzhou 215123, China
| | - Hanqiang Zhang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Debabrata Sikdar
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam India, 781039
| | - Xuanchi Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zongru Yang
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Wenlong Cheng
- Faculty of Engineering, The University of Sydney, Darlington, NSW 2008, Australia
| | - Yi Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Southeast University-Monash University Joint Graduate School, Suzhou 215123, China
| |
Collapse
|
18
|
Wu Y, Li X, Madsen KE, Zhang H, Cho S, Song R, Nuxoll RF, Xiong Y, Liu J, Feng J, Yang T, Zhang K, Aranyosi AJ, Wright DE, Ghaffari R, Huang Y, Nuzzo RG, Rogers JA. Skin-interfaced microfluidic biosensors for colorimetric measurements of the concentrations of ketones in sweat. LAB ON A CHIP 2024; 24:4288-4295. [PMID: 39193649 DOI: 10.1039/d4lc00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Ketones, such as beta-hydroxybutyrate (BHB), are important metabolites that can be used to monitor for conditions such as diabetic ketoacidosis (DKA) and ketosis. Compared to conventional approaches that rely on samples of urine or blood evaluated using laboratory techniques, processes for monitoring of ketones in sweat using on-body sensors offer significant advantages. Here, we report a class of soft, skin-interfaced microfluidic devices that can quantify the concentrations of BHB in sweat based on simple and low-cost colorimetric schemes. These devices combine microfluidic structures and enzymatic colorimetric BHB assays for selective and accurate analysis. Human trials demonstrate the broad applicability of this technology in practical scenarios, and they also establish quantitative correlations between the concentration of BHB in sweat and in blood. The results represent a convenient means for managing DKA and aspects of personal nutrition/wellness.
Collapse
Affiliation(s)
- Yunyun Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Xinming Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kenneth E Madsen
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Haohui Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Soongwon Cho
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Ruihao Song
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Ravi F Nuxoll
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Yirui Xiong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jiaqi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jingyuan Feng
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Tianyu Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Kaiqing Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Alexander J Aranyosi
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems, Inc., Cambridge, MA 02139, USA
| | | | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems, Inc., Cambridge, MA 02139, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ralph G Nuzzo
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
19
|
Ye H, Chen X, Huang X, Li C, Yin X, Zhao W, Wang T. Patterned Gold Nanoparticle Superlattice Film for Wearable Sweat Sensors. NANO LETTERS 2024; 24:11082-11089. [PMID: 39171663 DOI: 10.1021/acs.nanolett.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nanoparticle superlattices are beneficial in terms of providing strong and uniform signals in analysis owing to their closely packed uniform structures. However, nanoparticle superlattices are prone to cracking during physical activities because of stress concentrations, which hinders their detection performance and limits their analytical applications. In this work, template printing methods were used in this study to prepare a patterned gold nanoparticle (AuNP) superlattice film. By adjustment of the size of the AuNP superlattice domain below the critical size of fracture, the mechanical stability of the AuNP superlattice domain is improved. Thus, long-term sustainable high-performance signal output is achieved. The patterned AuNP superlattice film was used to construct a wearable sweat sensor based on surface-enhanced Raman scattering (SERS). The designed sensor showed promise for long-term reliable use in actual scenarios in terms of recommending water replenishment, monitoring hydration states, and tracking the intensity of activity.
Collapse
Affiliation(s)
- Haochen Ye
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangyu Chen
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Xiaobin Huang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cancan Li
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaomeng Yin
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Tie Wang
- Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
20
|
Cho S, Shaban SM, Song R, Zhang H, Yang D, Kim MJ, Xiong Y, Li X, Madsen K, Wapnick S, Zhang S, Chen Z, Kim J, Guinto G, Li M, Lee M, Nuxoll RF, Shajari S, Wang J, Son S, Shin J, Aranyosi AJ, Wright DE, Kim TI, Ghaffari R, Huang Y, Kim DH, Rogers JA. A skin-interfaced microfluidic platform supports dynamic sweat biochemical analysis during human exercise. Sci Transl Med 2024; 16:eado5366. [PMID: 39231240 DOI: 10.1126/scitranslmed.ado5366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/14/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Blood lactate concentration is an established circulating biomarker for measuring muscle acidity and can be evaluated for monitoring endurance, training routines, or athletic performance. Sweat is an alternative biofluid that may serve similar purposes and offers the advantage of noninvasive collection and continuous monitoring. The relationship between blood lactate and dynamic sweat biochemistry for wearable engineering applications in physiological fitness remains poorly defined. Here, we developed a microfluidic wearable band with an integrated colorimetric timer and biochemical assays that temporally captures sweat and measures pH and lactate concentration. A colorimetric silver nanoplasmonic assay was used to measure the concentration of lactate, and dye-conjugated SiO2 nanoparticle-agarose composite materials supported dynamic pH analysis. We evaluated these sweat biomarkers in relation to blood lactate in human participant studies during cycling exercise of varying intensity. Iontophoresis-generated sweat pH from regions of actively working muscles decreased with increasing heart rate during exercise and was negatively correlated with blood lactate concentration. In contrast, sweat pH from nonworking muscles did not correlate with blood lactate concentration. Changes in sweat pH and blood lactate were observed in participants who did not regularly exercise but not in individuals who regularly exercised, suggesting a relationship to physical fitness and supporting further development for noninvasive, biochemical fitness evaluations.
Collapse
Affiliation(s)
- Soongwon Cho
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Samy M Shaban
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Petrochemical Department, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt
| | - Ruihao Song
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Haohui Zhang
- Departments of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Dasom Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Precision Biology Research Center (PBRC), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min-Jae Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yirui Xiong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Xiuyuan Li
- Departments of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kenneth Madsen
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sarena Wapnick
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shifan Zhang
- Department of Statistics, School of Computer, Data and Information Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziyu Chen
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jiwon Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gianna Guinto
- College of Science and Health, DePaul University, Chicago, IL 60614, USA
| | - Michelle Li
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Minkyu Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| | - Ravi F Nuxoll
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Shaghayegh Shajari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jin Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Seongeun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jihoon Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Alexander J Aranyosi
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems, Cambridge, MA 02139, USA
| | | | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems, Cambridge, MA 02139, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Material Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
21
|
Ma J, Li H, Anwer S, Umer W, Antwi-Afari MF, Xiao EB. Evaluation of sweat-based biomarkers using wearable biosensors for monitoring stress and fatigue: a systematic review. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2024; 30:677-703. [PMID: 38581242 DOI: 10.1080/10803548.2024.2330242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Objectives. This systematic review aims to report the evaluation of wearable biosensors for the real-time measurement of stress and fatigue using sweat biomarkers. Methods. A thorough search of the literature was carried out in databases such as PubMed, Web of Science and IEEE. A three-step approach for selecting research articles was developed and implemented. Results. Based on a systematic search, a total of 17 articles were included in this review. Lactate, cortisol, glucose and electrolytes were identified as sweat biomarkers. Sweat-based biomarkers are frequently monitored in real time using potentiometric and amperometric biosensors. Wearable biosensors such as an epidermal patch or a sweatband have been widely validated in scientific literature. Conclusions. Sweat is an important biofluid for monitoring general health, including stress and fatigue. It is becoming increasingly common to use biosensors that can measure a wide range of sweat biomarkers to detect fatigue during high-intensity work. Even though wearable biosensors have been validated for monitoring various sweat biomarkers, such biomarkers can only be used to assess stress and fatigue indirectly. In general, this study may serve as a driving force for academics and practitioners to broaden the use of wearable biosensors for the real-time assessment of stress and fatigue.
Collapse
Affiliation(s)
- Jie Ma
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| | - Heng Li
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| | - Shahnawaz Anwer
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| | - Waleed Umer
- Department of Mechanical and Construction Engineering, Northumbria University, UK
| | | | - Eric Bo Xiao
- Department of Building and Real Estate, Hong Kong Polytechnic University, People's Republic of China
| |
Collapse
|
22
|
Goncharov A, Gorocs Z, Pradhan R, Ko B, Ajmal A, Rodriguez A, Baum D, Veszpremi M, Yang X, Pindrys M, Zheng T, Wang O, Ramella-Roman JC, McShane MJ, Ozcan A. Insertable Glucose Sensor Using a Compact and Cost-Effective Phosphorescence Lifetime Imager and Machine Learning. ACS NANO 2024; 18:23365-23379. [PMID: 39137319 PMCID: PMC11363142 DOI: 10.1021/acsnano.4c06527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Optical continuous glucose monitoring (CGM) systems are emerging for personalized glucose management owing to their lower cost and prolonged durability compared to conventional electrochemical CGMs. Here, we report a computational CGM system, which integrates a biocompatible phosphorescence-based insertable biosensor and a custom-designed phosphorescence lifetime imager (PLI). This compact and cost-effective PLI is designed to capture phosphorescence lifetime images of an insertable sensor through the skin, where the lifetime of the emitted phosphorescence signal is modulated by the local concentration of glucose. Because this phosphorescence signal has a very long lifetime compared to tissue autofluorescence or excitation leakage processes, it completely bypasses these noise sources by measuring the sensor emission over several tens of microseconds after the excitation light is turned off. The lifetime images acquired through the skin are processed by neural network-based models for misalignment-tolerant inference of glucose levels, accurately revealing normal, low (hypoglycemia) and high (hyperglycemia) concentration ranges. Using a 1 mm thick skin phantom mimicking the optical properties of human skin, we performed in vitro testing of the PLI using glucose-spiked samples, yielding 88.8% inference accuracy, also showing resilience to random and unknown misalignments within a lateral distance of ∼4.7 mm with respect to the position of the insertable sensor underneath the skin phantom. Furthermore, the PLI accurately identified larger lateral misalignments beyond 5 mm, prompting user intervention for realignment. The misalignment-resilient glucose concentration inference capability of this compact and cost-effective PLI makes it an appealing wearable diagnostics tool for real-time tracking of glucose and other biomarkers.
Collapse
Affiliation(s)
- Artem Goncharov
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California 90095, United States
| | - Zoltan Gorocs
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California 90095, United States
| | - Ridhi Pradhan
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Brian Ko
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Ajmal Ajmal
- Department
of Biomedical Engineering, Florida International
University, Miami, Florida 33199, United States
| | - Andres Rodriguez
- Department
of Biomedical Engineering, Florida International
University, Miami, Florida 33199, United States
| | - David Baum
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
| | - Marcell Veszpremi
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
| | - Xilin Yang
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California 90095, United States
| | - Maxime Pindrys
- Department
of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianle Zheng
- Department
of Computer Science, University of California, Los Angeles, California 90095, United States
| | - Oliver Wang
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
| | - Jessica C. Ramella-Roman
- Department
of Biomedical Engineering, Florida International
University, Miami, Florida 33199, United States
| | - Michael J. McShane
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843, United States
| | - Aydogan Ozcan
- Electrical
& Computer Engineering Department, University
of California, Los Angeles, California 90095, United States
- Bioengineering
Department, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California, Los Angeles, California 90095, United States
- Department
of Surgery, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Wang Y, Li K, Shen W, Huang X, Wu L. Point-of-care testing of methamphetamine and cocaine utilizing wearable sensors. Anal Biochem 2024; 691:115526. [PMID: 38621604 DOI: 10.1016/j.ab.2024.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
The imperative for the point-of-care testing of methamphetamine and cocaine in drug abuse prevention necessitates innovative solutions. To address this need, we have introduced a multi-channel wearable sensor harnessing CRISPR/Cas12a system. A CRISPR/Cas12a based system, integrated with aptamers specific to methamphetamine and cocaine, has been engineered. These aptamers function as signal-mediated intermediaries, converting methamphetamine and cocaine into nucleic acid signals, subsequently generating single-stranded DNA to activate the Cas12 protein. Additionally, we have integrated a microfluidic system and magnetic separation technology into the CRISPR system, enabling rapid and precise detection of cocaine and methamphetamine. The proposed sensing platform demonstrated exceptional sensitivity, achieving a detection limit as low as 0.1 ng/mL. This sensor is expected to be used for on-site drug detection in the future.
Collapse
Affiliation(s)
- Ying Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China
| | - Ke Li
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Weijian Shen
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing, 210000, PR China
| | - Xingxu Huang
- International Research Center of Synthetic Biology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; Food Laboratory of Zhongyuan, Luohe, 462300, Henan, PR China.
| |
Collapse
|
24
|
Ding H, Yang H, Tsujimura S. Nature-Inspired Superhydrophilic Biosponge as Structural Beneficial Platform for Sweating Analysis Patch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401947. [PMID: 38868908 PMCID: PMC11321618 DOI: 10.1002/advs.202401947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Perspiration plays a pivotal role not only in thermoregulation but also in reflecting the body's internal state and its response to external stimuli. The up-to-date skin-based wearable platforms have facilitated the monitoring and simultaneous analysis of sweat, offering valuable physiological insights. Unlike conventional passive sweating, dynamic normal perspiration, which occurs during various activities and rest periods, necessitates a more reliable method of collection to accurately capture its real-time fluctuations. An innovative microfluidic patch incorporating a hierarchical superhydrophilic biosponge, poise to significantly improve the efficiency capture of dynamic sweat is introduced. The seamlessly integrated biosponge microchannel showcases exceptional absorption capabilities, efficiently capturing non-sensitive sweat exuding from the skin surface, mitigating sample loss and minimizing sweat volatilization. Furthermore, the incorporation of sweat-rate sensors alongside a suite of functional electrochemical sensors endows the patch of uninterrupted monitoring and analysis of dynamic sweat during various activities, stress events, high-energy intake, and other scenarios.
Collapse
Affiliation(s)
- Hanlin Ding
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1, TennodaiTsukubaIbaraki305‐8573Japan
| | - Hao Yang
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1, TennodaiTsukubaIbaraki305‐8573Japan
| | - Seiya Tsujimura
- Department of Materials ScienceInstitute of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1, TennodaiTsukubaIbaraki305‐8573Japan
| |
Collapse
|
25
|
Jin Z, Yim W, Retout M, Housel E, Zhong W, Zhou J, Strano MS, Jokerst JV. Colorimetric sensing for translational applications: from colorants to mechanisms. Chem Soc Rev 2024; 53:7681-7741. [PMID: 38835195 PMCID: PMC11585252 DOI: 10.1039/d4cs00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Colorimetric sensing offers instant reporting via visible signals. Versus labor-intensive and instrument-dependent detection methods, colorimetric sensors present advantages including short acquisition time, high throughput screening, low cost, portability, and a user-friendly approach. These advantages have driven substantial growth in colorimetric sensors, particularly in point-of-care (POC) diagnostics. Rapid progress in nanotechnology, materials science, microfluidics technology, biomarker discovery, digital technology, and signal pattern analysis has led to a variety of colorimetric reagents and detection mechanisms, which are fundamental to advance colorimetric sensing applications. This review first summarizes the basic components (e.g., color reagents, recognition interactions, and sampling procedures) in the design of a colorimetric sensing system. It then presents the rationale design and typical examples of POC devices, e.g., lateral flow devices, microfluidic paper-based analytical devices, and wearable sensing devices. Two highlighted colorimetric formats are discussed: combinational and activatable systems based on the sensor-array and lock-and-key mechanisms, respectively. Case discussions in colorimetric assays are organized by the analyte identities. Finally, the review presents challenges and perspectives for the design and development of colorimetric detection schemes as well as applications. The goal of this review is to provide a foundational resource for developing colorimetric systems and underscoring the colorants and mechanisms that facilitate the continuing evolution of POC sensors.
Collapse
Affiliation(s)
- Zhicheng Jin
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maurice Retout
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Emily Housel
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiajing Zhou
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesse V Jokerst
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
27
|
Yazlik EN, Saracoglu OG. A deep learning-based real-time hypothermia and hyperthermia monitoring system with a simple body sensor. Proc Inst Mech Eng H 2024; 238:827-836. [PMID: 39104260 DOI: 10.1177/09544119241266375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A real-time hypothermia and hyperthermia monitoring system with a simple body sensor based on a Convolutional Neural Network (CNN) is presented. The sensor is produced with 3D-printed thermochromic material. Due to the color change feature of thermochromic materials with temperature, 3D-printed thermochromic Polylactic Acid (PLA) material was used to monitor temperature changes visually. In this paper, we have used the transfer learning technique and fine-tuned the AlexNet CNN. Thirty images for each temperature class between 28-44°C and 510 image data were used in the algorithm. We used 80% and 20% of the data for training and validation. We achieved 96.1% accuracy of validation with a fine-tuned AlexNet CNN. The material's characteristics suggest that it could be employed in delicate temperature sensing and monitoring applications, particularly for hypothermia and hyperthermia.
Collapse
Affiliation(s)
- Egemen Nazife Yazlik
- Department of Electrical and Energy, Nevsehir Haci Bektas Veli University, Nevsehir, Merkez, Turkiye
- Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Turkiye
| | - Omer Galip Saracoglu
- Department of Electrical and Electronic Engineering, Erciyes University, Kayseri, Turkiye
| |
Collapse
|
28
|
Srikrishnarka P, Haapasalo J, Hinestroza JP, Sun Z, Nonappa. Wearable Sensors for Physiological Condition and Activity Monitoring. SMALL SCIENCE 2024; 4:2300358. [PMID: 40212111 PMCID: PMC11935081 DOI: 10.1002/smsc.202300358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/10/2024] [Indexed: 04/13/2025] Open
Abstract
Rapid technological advancements have transformed the healthcare sector from traditional diagnosis and treatment to personalized health management. Biofluids such as teardrops, sweat, interstitial fluids, and exhaled breath condensate offer a rich source of metabolites that can be linked to the physiological status of an individual. More importantly, these biofluids contain biomarkers similar to those in the blood. Therefore, developing sensors for the noninvasive determination of biofluid-based metabolites can overcome traditionally invasive and laborious blood-test-based diagnostics. In this context, wearable devices offer real-time and continuous physiological conditions and activity monitoring. The first-generation wearables included wristwatches capable of tracking heart rate variations, breathing rate, body temperature, stress responses, and sleeping patterns. However, wearable sensors that can accurately measure the metabolites are needed to achieve real-time analysis of biomarkers. In this review, recent progresses in wearable sensors utilized to monitor metabolites in teardrops, breath condensate, sweat, and interstitial fluids are thoroughly analyzed. More importantly, how metabolites can be selectively detected, quantified, and monitored in real-time is discussed. Furthermore, the review includes a discussion on the utility of, multifunctional sensors that combine metabolite sensing, human activity monitoring, and on-demand drug delivery system for theranostic applications.
Collapse
Affiliation(s)
| | - Joonas Haapasalo
- Department of NeurosurgeryTampere University Hospital and Tampere UniversityKuntokatu 233520TampereFinland
| | - Juan P. Hinestroza
- Department of Fiber Science and Apparel DesignCornell UniversityIthacaNY14853USA
| | - Zhipei Sun
- Department of Electronics and NanoengineeringAalto UniversityP.O. Box 13500FI‐00076AaltoFinland
- QTF Center of ExcellenceDepartment of Applied PhysicsAalto University00076AaltoFinland
| | - Nonappa
- Faculty of Engineering and Natural SciencesKorkeakoulunkatu 6FI‐33720TampereFinland
| |
Collapse
|
29
|
Chen C, Fu Y, Sparks SS, Lyu Z, Pradhan A, Ding S, Boddeti N, Liu Y, Lin Y, Du D, Qiu K. 3D-Printed Flexible Microfluidic Health Monitor for In Situ Sweat Analysis and Biomarker Detection. ACS Sens 2024; 9:3212-3223. [PMID: 38820602 PMCID: PMC12009136 DOI: 10.1021/acssensors.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Wearable sweat biosensors have shown great progress in noninvasive, in situ, and continuous health monitoring to demonstrate individuals' physiological states. Advances in novel nanomaterials and fabrication methods promise to usher in a new era of wearable biosensors. Here, we introduce a three-dimensional (3D)-printed flexible wearable health monitor fabricated through a unique one-step continuous manufacturing process with self-supporting microfluidic channels and novel single-atom catalyst-based bioassays for measuring the sweat rate and concentration of three biomarkers. Direct ink writing is adapted to print the microfluidic device with self-supporting structures to harvest human sweat, which eliminates the need for removing sacrificial supporting materials and addresses the contamination and sweat evaporation issues associated with traditional sampling methods. Additionally, the pick-and-place strategy is employed during the printing process to accurately integrate the bioassays, improving manufacturing efficiency. A single-atom catalyst is developed and utilized in colorimetric bioassays to improve sensitivity and accuracy. A feasibility study on human skin successfully demonstrates the functionality and reliability of our health monitor, generating reliable and quantitative in situ results of sweat rate, glucose, lactate, and uric acid concentrations during physical exercise.
Collapse
Affiliation(s)
- Chuchu Chen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yonghao Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Sonja S Sparks
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Arijit Pradhan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Narasimha Boddeti
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yun Liu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Kaiyan Qiu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
30
|
Choo YJ, Lee GW, Moon JS, Chang MC. Application of non-contact sensors for health monitoring in hospitals: a narrative review. Front Med (Lausanne) 2024; 11:1421901. [PMID: 38933102 PMCID: PMC11199382 DOI: 10.3389/fmed.2024.1421901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The continuous monitoring of the health status of patients is essential for the effective monitoring of disease progression and the management of symptoms. Recently, health monitoring using non-contact sensors has gained interest. Therefore, this study aimed to investigate the use of non-contact sensors for health monitoring in hospital settings and evaluate their potential clinical applications. A comprehensive literature search was conducted using PubMed to identify relevant studies published up to February 26, 2024. The search terms included "hospital," "monitoring," "sensor," and "non-contact." Studies that used non-contact sensors to monitor health status in hospital settings were included in this review. Of the 38 search results, five studies met the inclusion criteria. The non-contact sensors described in the studies were radar, infrared, and microwave sensors. These non-contact sensors were used to obtain vital signs, such as respiratory rate, heart rate, and body temperature, and were then compared with the results from conventional measurement methods (polysomnography, nursing records, and electrocardiography). In all the included studies, non-contact sensors demonstrated a performance similar to that of conventional health-related parameter measurement methods. Non-contact sensors are expected to be a promising solution for health monitoring in hospital settings.
Collapse
Affiliation(s)
- Yoo Jin Choo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Gun Woo Lee
- Department of Orthopaedic Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jun Sung Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
31
|
Wei L, Zhou J, Li Z, Zhu H, Wu H, Zhu Y, Liu A. Quantitative analysis of sweat evaporation loss in epidermal microfluidic patches. RSC Adv 2024; 14:18406-18416. [PMID: 38860253 PMCID: PMC11163416 DOI: 10.1039/d4ra03483j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Sweat analysis is identified as a promising biochemical technique for the non-invasive assessment of human health status. Epidermal microfluidic patches are the predominant sweat sampling and sensing devices. However, the sweat stored inside the patches may suffer from evaporation loss of moisture, which can increase the concentration of biomarkers and cause the biochemical analysis results of sweat to deviate from the actual results. This study focuses on quantitatively analysing the sweat evaporation loss within epidermal microfluidic patches. Analytical models based on the dissolution diffusion mechanism and corresponding partial differential equations for the diffusion process were initially developed. The analytical solution of the equation was derived using the method of separation of variables, and the steady-state concentration distribution of water in the materials of microfluidic patches was calculated when considering the application of epidermal microfluidics. Evaporation losses of sweat through different paths were quantitatively calculated and analysed, including permeation through covers, diffusion along microchannels, and absorption by sidewalls. Then, experiments on the evaporation loss of sweat within microfluidic patches were conducted to validate the theoretical calculations and analytical results. At last, the design of the anti-evaporation structure for microfluidic patches was discussed. This study can provide theoretical and experimental references for the design of water-retention structures in epidermal microfluidic patches, which significantly enhances the overall reliability of sweat biochemical analysis results.
Collapse
Affiliation(s)
- Lei Wei
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institute, Fuyang Normal University Fuyang 236037 P.R. China
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, College of Science, Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
| | - Jingjing Zhou
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institute, Fuyang Normal University Fuyang 236037 P.R. China
| | - Zhen Li
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institute, Fuyang Normal University Fuyang 236037 P.R. China
| | - Hui Zhu
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institute, Fuyang Normal University Fuyang 236037 P.R. China
| | - Huaping Wu
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310023 P.R. China
| | - Yong Zhu
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institute, Fuyang Normal University Fuyang 236037 P.R. China
| | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, College of Science, Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
| |
Collapse
|
32
|
Xu W, Lu L, He Y, Cheng L, Liu A. Long-Term Detection of Glycemic Glucose/Hypoglycemia by Microfluidic Sweat Monitoring Patch. BIOSENSORS 2024; 14:294. [PMID: 38920598 PMCID: PMC11202208 DOI: 10.3390/bios14060294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
A microfluidic sweat monitoring patch that collects human sweat for a long time is designed to achieve the effect of detecting the rise and fall of human sweat glucose over a long period of time by increasing the use time of a single patch. Five collection pools, four serpentine channels, and two different valves are provided. Among them, the three-dimensional valve has a large burst pressure as a balance between the internal and external air pressures of the patch. The bursting pressure of the two-dimensional diverter valve is smaller than that of the three-dimensional gas valve, and its role is to control the flow direction of the liquid. Through plasma hydrophilic treatment of different durations, the optimal hydrophilic duration is obtained. The embedded chromogenic disc detects the sweat glucose value at two adjacent time intervals and compares the information of the human body to increase or reduce glucose. The patch has good flexibility and can fit well with human skin, and because polydimethylsiloxane (PDMS) has good light transmission, it reduces the measurement error caused by the color-taking process and makes the detection results more accurate.
Collapse
Affiliation(s)
| | | | | | - Lin Cheng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (L.L.); (Y.H.)
| | - Aiping Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (W.X.); (L.L.); (Y.H.)
| |
Collapse
|
33
|
Li G, Xue P, Fan H, Ma Y, Wang H, Lu D, Gao J, Wen D. AuNi bimetallic aerogel with ultra-high stability applied in smart and portable biosensing. Anal Chim Acta 2024; 1306:342613. [PMID: 38692794 DOI: 10.1016/j.aca.2024.342613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Glucose detection is of significant importance in providing information to the human health management. However, conventional enzymatic glucose sensors suffer from a limited long-term stability due to the losing activity of the enzymes. In this work, the AuNi bimetallic aerogel with a well-defined nanowire network is synthesized and applied as the sensing nanomaterial in the non-enzymatic glucose detection. The three-dimensional (3D) hierarchical porous structure of the AuNi bimetallic aerogel ensures the high sensitivity of the sensor (40.34 μA mM-1 cm-2). Theoretical investigation unveiled the mechanism of the boosting electrocatalytic activity of the AuNi bimetallic aerogel toward glucose. A better adhesion between the sensing nanomaterial and the screen-printing electrodes (SPEs) is obtained after the introduction of Ni. On the basis of a wide linearity in the range of 0.1-5 mM, an excellent selectivity, an outstanding long-term stability (90 days) as well as the help of the signal processing circuit and an M5stack development board, the as-prepared glucose sensor successfully realizes remote monitoring of the glucose concentration. We speculate that this work is favorable to motivating the technological innovations of the non-enzymatic glucose sensors and intelligent sensing devices.
Collapse
Affiliation(s)
- Guanglei Li
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China; State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, NPU and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, PR China
| | - Pengxin Xue
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Haoxin Fan
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, NPU and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, PR China
| | - Yuan Ma
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Haoyu Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China
| | - Danfeng Lu
- Faculty of Printing, Packaging Engineering, and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jie Gao
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, PR China; Research Institute of Industrial Technology, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Dan Wen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, NPU and Shaanxi Joint Laboratory of Graphene, Xi'an, 710072, PR China.
| |
Collapse
|
34
|
You Z, Zhao M, Lu H, Chen H, Wang Y. Eye-Readable and Wearable Colorimetric Sensor Arrays for In Situ Monitoring of Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19359-19368. [PMID: 38568140 DOI: 10.1021/acsami.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Wearable sensors utilize changes in color as a response to physiological stimuli, making them easily recognizable by the naked eye. These colorimetric wearable sensors offer benefits such as easy readability, rapid responsiveness, cost-effectiveness, and straightforward manufacturing techniques. However, their applications in detecting volatile organic compounds (VOCs) in situ have been limited due to the low concentration of complex VOCs and complicated external interferences. Aiming to address these challenges, we introduced readable and wearable colorimetric sensing arrays with a microchannel structure and highly gas-sensitive materials for in situ detection of complex VOCs. The highly gas-sensitive materials were designed by loading gas-sensitive dyes into the porous metal-organic frameworks and further depositing the composites on the electrospun nanofiber membrane. The colorimetric sensor arrays were fabricated using various gas-sensitive composites, including eight dye/MOF composites that respond to various VOCs and two Pd2+/dye/MOF composites that respond to ethylene. This enables the specific recognition of multiple characteristic VOCs. A microfluidic channel made of polydimethylsiloxane (PDMS) was integrated with different colorimetric elements to create a wearable sensor array. It was attached to the surface of fruits to collect and monitor VOCs using the DenseNet classification method. As a proof of concept, we demonstrated the feasibility of the wearable sensing system in monitoring the ripening process of fruits by continuously measuring the VOC emissions from the skin of the fruit.
Collapse
Affiliation(s)
- Zhiheng You
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Mingming Zhao
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Huizi Lu
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Huayun Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| | - Yixian Wang
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, PR China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, PR China
| |
Collapse
|
35
|
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. LAB ON A CHIP 2024; 24:1833-1866. [PMID: 38476112 DOI: 10.1039/d4lc00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery. Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat, interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper provides an overview of current trends and developments in microfluidics and smart technologies in wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes the importance of combining smart technologies with microfluidics in wearable devices, and how they can aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in the context of intelligent microfluidic wearable devices.
Collapse
Affiliation(s)
- Sasikala Apoorva
- UKF Centre for Advanced Research and Skill Development(UCARS), UKF College of Engineering and Technology, Kollam, Kerala, India, 691 302
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| | - Kamalalayam Rajan Sreejith
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| |
Collapse
|
36
|
Sun Y, Wang J, Lu Q, Zhang J, Li Y, Pang Y, Yang C, Wang Q, Kong D. Stretchable and Sweat-Wicking Patch for Skin-Attached Colorimetric Analysis of Sweat Biomarkers. ACS Sens 2024; 9:1515-1524. [PMID: 38447091 DOI: 10.1021/acssensors.3c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Stretchable sweat sensors are promising technology that can acquire biomolecular insights for health and fitness monitoring by intimate integration with the body. However, current sensors often require microfabricated microfluidic channels to control sweat flow during lab-on-body analysis, which makes effective and affordable sweat sampling a significant practical challenge. Here, we present stretchable and sweat-wicking patches that utilize bioinspired smart wettable membranes for the on-demand manipulation of sweat flow. In a scalable process, the membrane is created by stacking hydrophobic elastomer nanofibers onto soft microfoams with predefined two-dimensional superhydrophobic and superhydrophilic patterns. The engineered heterogeneous wettability distribution allows these porous membranes to achieve enhanced extraction and selective collection of sweat in embedded assays. Despite the simplified architecture, the color reactions between sweat and chemical indicators are inhibited from directly contacting the skin to achieve a largely improved operation safety. The sensing patches can simultaneously quantify pH, urea, and calcium in sweat through digital colorimetric analysis with smartphone images. The construction with all compliant materials renders these patches soft and stretchy to achieve conformal attachment to the skin. Successfully analyzing sweat compositions after physical exercises illustrates the practical suitability of these skin-attachable sensors for health tracking and point-of-care diagnosis.
Collapse
Affiliation(s)
- Yuping Sun
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jianhui Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianying Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yanyan Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yushuang Pang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Cheng Yang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Niu J, Lin S, Chen D, Wang Z, Cao C, Gao A, Cui S, Liu Y, Hong Y, Zhi X, Cui D. A Fully Elastic Wearable Electrochemical Sweat Detection System of Tree-Bionic Microfluidic Structure for Real-Time Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306769. [PMID: 37932007 DOI: 10.1002/smll.202306769] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body. However, existing wearable sweat detection systems face challenges in efficiently collecting and detecting fresh sweat in real-time. Additionally, they often lack the necessary deformation capabilities, resulting in discomfort for the wearer. Here, a fully elastic wearable electrochemical sweat detection system is developed that integrates a sweat-collecting microfluidic chip, a multi-parameter electrochemical sensor, a micro-heater, and a sweat detection elastic circuit board system. The unique tree-bionic structure of the microfluidic chip significantly enhances the efficiency of fresh sweat collection and discharge, enabling real-time detection by the electrochemical sensors. The sweat multi-parameter electrochemical sensor offers high-precision and high-sensitivity measurements of sodium ions, potassium ions, lactate, and glucose. The electronic system is built on an elastic circuit board that matches perfectly to wrinkled skin, ensuring improved wearing comfort and enabling multi-channel data sampling, processing, and wireless transmission. This state-of-the-art system represents a significant advancement in the field of elastic wearable sweat detection and holds promising potential for extending its capabilities to the detection of other sweat markers or various wearable applications.
Collapse
Affiliation(s)
- Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuping Hong
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao Zhi
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
38
|
Deng M, Li X, Song K, Yang H, Wei W, Duan X, Ouyang X, Cheng H, Wang X. Skin-Interfaced Bifluidic Paper-Based Device for Quantitative Sweat Analysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306023. [PMID: 38133495 PMCID: PMC10933605 DOI: 10.1002/advs.202306023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Indexed: 12/23/2023]
Abstract
The erratic, intermittent, and unpredictable nature of sweat production, resulting from physiological or psychological fluctuations, poses intricacies to consistently and accurately sample and evaluate sweat biomarkers. Skin-interfaced microfluidic devices that rely on colorimetric mechanisms for semi-quantitative detection are particularly susceptible to these inaccuracies due to variations in sweat secretion rate or instantaneous volume. This work introduces a skin-interfaced colorimetric bifluidic sweat device with two synchronous channels to quantify sweat rate and biomarkers in real-time, even during uncertain sweat activities. In the proposed bifluidic-distance metric approach, with one channel to measure sweat rate and quantify collected sweat volume, the other channel can provide an accurate analysis of the biomarkers based on the collected sweat volume. The closed channel design also reduces evaporation and resists contamination from the external environment. The feasibility of the device is highlighted in a proof-of-the-concept demonstration to analyze sweat chloride for evaluating hydration status and sweat glucose for assessing glucose levels. The low-cost yet highly accurate device provides opportunities for clinical sweat analysis and disease screening in remote and low-resource settings. The developed device platform can be facilely adapted for the other biomarkers when corresponding colorimetric reagents are exploited.
Collapse
Affiliation(s)
- Muhan Deng
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Xiaofeng Li
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Kui Song
- Department of Engineering Science and MechanicsXiangtan UniversityXiangtanHunan411105China
| | - Hanlin Yang
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Wenkui Wei
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Xiaojun Duan
- Hunan Provincial Children's HospitalChangshaHunan410000China
| | - Xiaoping Ouyang
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Huanyu Cheng
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Xiufeng Wang
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| |
Collapse
|
39
|
Tzianni EI, Sakkas VA, Prodromidis MI. Wax screen-printable ink for massive fabrication of negligible-to-nil cost fabric-based microfluidic (bio)sensing devices for colorimetric analysis of sweat. Talanta 2024; 269:125475. [PMID: 38039670 DOI: 10.1016/j.talanta.2023.125475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Fabric-based microfluidic analytical devices (μADs) have emerged as a promising material for replacing paper μADs thanks to their superior properties in terms of stretchability, mechanical strength, and their wide scope of applicability in wearable devices or embedded in garments. The major obstacle in their widespread use is the lack of a technique enabling their massive fabrication at a negligible-to-nil cost. In response, we report the development of a wax ink with proper thixotropic and hydrophobic properties, fully compatible with automatic screen-printing that allows the one step massive fabrication of microfluidics on a cotton/elastane fabric, with a printing resolution 400 μm (hydrophilic channel) and 1000 μm (hydrophobic barrier), without being necessary any post curing. The cost of the ink (50 g) and of each microfluidic device is ca. 2.3 and 0.007 €, respectively. The active component of the ink was a refined beeswax in a matrix based on ethyl cellulose in 2-butoxy ethyl acetate. Screen-printed fabric μADs were used for the simultaneous colorimetric determination of pH and urea in untreated human sweat by using multivariate regression analysis. This method enabled the direct measurement of urea using urease, regardless of the sweat's pH, and shows strong agreement with a reference method.
Collapse
Affiliation(s)
- Eleni I Tzianni
- Laboratory of Analytical Chemistry, University of Ioannina, 45 110, Ioannina, Greece
| | - Vasilios A Sakkas
- Laboratory of Analytical Chemistry, University of Ioannina, 45 110, Ioannina, Greece
| | - Mamas I Prodromidis
- Laboratory of Analytical Chemistry, University of Ioannina, 45 110, Ioannina, Greece.
| |
Collapse
|
40
|
Saha T, Mukherjee S, Dickey MD, Velev OD. Harvesting and manipulating sweat and interstitial fluid in microfluidic devices. LAB ON A CHIP 2024; 24:1244-1265. [PMID: 38197332 DOI: 10.1039/d3lc00874f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Microfluidic devices began to be used to facilitate sweat and interstitial fluid (ISF) sensing in the mid-2010s. Since then, numerous prototypes involving microfluidics have been developed in different form factors for sensing biomarkers found in these fluids under in vitro, ex vivo, and in vivo (on-body) settings. These devices transport and manipulate biofluids using microfluidic channels composed of silicone, polymer, paper, or fiber. Fluid flow transport and sample management can be achieved by controlling the flow rate, surface morphology of the channel, and rate of fluid evaporation. Although many devices have been developed for estimating sweat rate, electrolyte, and metabolite levels, only a handful have been able to proceed beyond laboratory testing and reach the stage of clinical trials and commercialization. To further this technology, this review reports on the utilization of microfluidics towards sweat and ISF management and transport. The review is distinguished from other recent reviews by focusing on microfluidic principles of sweat and ISF generation, transport, extraction, and management. Challenges and prospects are highlighted, with a discussion on how to transition such prototypes towards personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Sneha Mukherjee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
41
|
Wang M, Lin B, Chen Y, Liu H, Ju Z, Lv R. Fluorescence-Recovered Wearable Hydrogel Patch for In Vitro Detection of Glucose Based on Rare-Earth Nanoparticles. ACS Biomater Sci Eng 2024; 10:1128-1138. [PMID: 38221709 DOI: 10.1021/acsbiomaterials.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The physiological state of the human body can be indicated by analyzing the composition of sweat. In this research, a fluorescence-recovered wearable hydrogel patch has been designed and realized which can noninvasively monitor the glucose concentration in human sweat. Rare-earth nanoparticles (RENPs) of NaGdF4 doped with different elements (Yb, Er, and Ce) are synthesized and optimized for better luminescence in the near-infrared second (NIR-II) and visible region. In addition, RENPs are coated with CoOOH of which the absorbance has an extensive peak in the visible and NIR regions. The concentration of H2O2 in the environment can be detected by the fluorescence recovery degree of CoOOH-modified RENPs based on the fluorescence resonance energy transfer effect. For in vivo detection, the physiological state of oxidative stress at tumor sites can be visualized through its fluorescence in NIR-II with low background noise and high penetration depth. For the in vitro detection, CoOOH-modified RENP and glucose oxidase (GOx) were doped into a polyacrylamide hydrogel, and a patch that can emit green upconversion fluorescence under a 980 nm laser was prepared. Compared with the conventional electrochemical detection method, the fluorescence we presented has higher sensitivity and linear detection region to detect the glucose. This improved anti-interference sweat patch that can work in the dark environment was obtained, and the physiological state of the human body is conveniently monitored, which provides a new facile and convenient method to monitor the sweat status.
Collapse
Affiliation(s)
- Min Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Yitong Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Hanyu Liu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Ziyue Ju
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P. R. China
| |
Collapse
|
42
|
Dai HH, Cai X, Liu ZH, Xia RZ, Zhao YH, Liu YZ, Yang M, Li PH, Huang XJ. Ion-Electron Transduction Layer of the SnS 2-MoS 2 Heterojunction to Elevate Superior Interface Stability for All-Solid Sodium-Ion Selective Electrode. ACS Sens 2024; 9:415-423. [PMID: 38154098 DOI: 10.1021/acssensors.3c02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The high selectivity and fast ion response of all-solid sodium ion selective electrodes were widely applied in human sweat analysis. However, the potential drift due to insufficient interfacial capacitance leads to the deterioration of its stability and ultimately affects the potential accuracy of ion analysis. Designing a novel ion-electron transduction layer between the electrode and the ion selective membrane is an effective method to stabilize the interfacial potential. Herein, the SnS2-MoS2 heterojunction material was constructed by doping Sn in MoS2 nanosheets and used as the ion electron transduction layers of an all-solid sodium ion selective electrode for the first time, achieving the stable and efficient detection of Na+ ions. The proposed electrode exhibited a Nernst slope of 57.86 mV/dec for the detection of Na+ ions with a detection limit of 10-5.7 M in the activity range of 10-6-10-1 M. Via the electronic interaction at the heterojunction interfaces between SnS2 and MoS2 materials, the micro-nanostructure of the SnS2-MoS2 heterojunction was changed and SnS2-MoS2 as the ion-electron transduction layer acquired excellent capacitance (699 μF) and hydrophobicity (132°), resulting in a long-term potential stability of 1.37 μV/h. It was further proved that the large capacitance and high hydrophobicity of the ion-electron transduction layer are primary reasons for the excellent stability of the all-solid sodium ion selective electrode toward Na+ ions.
Collapse
Affiliation(s)
- Hai-Hua Dai
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui-Ze Xia
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Zhi Liu
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
43
|
Ehtesabi H, Kalji SO. Carbon nanomaterials for sweat-based sensors: a review. Mikrochim Acta 2024; 191:77. [PMID: 38177621 DOI: 10.1007/s00604-023-06162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Sweat is easily accessible from the human skin's surface. It is secreted by the eccrine glands and contains a wealth of physiological information, including metabolites and electrolytes like glucose and Na ions. Sweat is a particularly useful biofluid because of its easy and non-invasive access, unlike other biofluids, like blood. On the other hand, nanomaterials have started to show promise operation as a competitive substitute for biosensors and molecular sensors throughout the last 10 years. Among the most synthetic nanomaterials that are studied, applied, and discussed, carbon nanomaterials are special. They are desirable candidates for sensor applications because of their many intrinsic electrical, magnetic, and optical characteristics; their chemical diversity and simplicity of manipulation; their biocompatibility; and their effectiveness as a chemically resistant platform. Carbon nanofibers (CNFs), carbon dots (CDs), carbon nanotubes (CNTs), and graphene have been intensively investigated as molecular sensors or as components that can be integrated into devices. In this review, we summarize recent advances in the use of carbon nanomaterials as sweat sensors and consider how they can be utilized to detect a diverse range of analytes in sweat, such as glucose, ions, lactate, cortisol, uric acid, and pH.
Collapse
Affiliation(s)
- Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Seyed-Omid Kalji
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
44
|
Venkatesalu S, Dilliyappan S, Satish Kumar A, Palaniyandi T, Baskar G, Ravi M, Sivaji A. Prospectives and retrospectives of microfluidics devices and lab-on-A-chip emphasis on cancer. Clin Chim Acta 2024; 552:117646. [PMID: 38000458 DOI: 10.1016/j.cca.2023.117646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Microfluidics is a science and technology that deals with the concept of "less sample-to-more precision" enabling portable device development via fabrication for in vitro analysis. On evolution, microfluidic system lead to the development of Organ-on-chip where recapitulation of organ's functionality and pathophysiological response can be performed under controlled environment. Further microfluidic-based "Lab-on-chip" device, a versatile innovation credited for its number of parameters that has capability to leverage next-generation companion of medicines. This emulsion science has enormous practise in the field of regenerative medicine, drug screening, medical diagnosis and therapy for accuracy in results. In this era of personalized medicine, getting precise tools for applying these theranostics is crucial. Oncological theranostics create a new gateway to develop precision in personalized medicine for cancer, where microfluidic chips are involved in diagnosis and therapy of various cancers using biomarkers for thyroid, lung cancers, and assay based for breast, circulating tumor cells and colorectal cancers and nanoparticles for ovarian cancer. This review shows more comprehensive approach to the state of art with respect to microfluidic devices in cancer theranostics.
Collapse
Affiliation(s)
- Sneha Venkatesalu
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Avanthika Satish Kumar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
45
|
Zheng XT, Goh WP, Yu Y, Sutarlie L, Chen DY, Tan SCL, Jiang C, Zhao M, Ba T, Li H, Su X, Yang L. Skin-Attachable Ink-Dispenser-Printed Paper Fluidic Sensor Patch for Colorimetric Sweat Analysis. Adv Healthc Mater 2024; 13:e2302173. [PMID: 37897264 DOI: 10.1002/adhm.202302173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Indexed: 10/30/2023]
Abstract
In situ analysis of sweat biomarkers potentially provides noninvasive lifestyle monitoring and early diagnosis. Quantitative detection of sweat rate is crucial for thermoregulation and preventing heat injuries. Here, a skin-attachable paper fluidic patch is reported for in situ colorimetric sensing of multiple sweat markers (pH, glucose, lactate, and uric acid) with concurrent sweat rate tracking. Two sets of fluidic patterns-multiplexed detection zones and a longitudinal sweat rate channel-are directly printed by an automated ink dispenser from a specially developed ceramic-based ink. The ceramic ink thermal-cures into an impervious barrier, confining sweat within the channels. The ceramic-ink-printed boundary achieves higher pattern resolution, prevents fluid leakage, attains pattern thermal stability, and resistant to organic solvents. The cellulose matrix of the detection zones is modified with nanoparticles to improve the color homogeneity and sweat sensor sensitivity. The sweat rate channel is made moisture sensitive by incorporating a metal-salt-based dye. The change in saturation/color of the detection zones and/or channels upon sweat addition can be visually detected or quantified by a smartphone camera. A cost-effective way is provided to fabricate paper fluidic sensor patches, successfully demonstrating on-body multiplexed evaluation of sweat analytes. Such skin wearables offer on-site analysis, meaningful to an increasingly health-conscious population.
Collapse
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wei Peng Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Laura Sutarlie
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Der Ying Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore
| | - Sherwin Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Changyun Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Meng Zhao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Te Ba
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis #16-16, Singapore, 138632, Republic of Singapore
| | - Hongying Li
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis #16-16, Singapore, 138632, Republic of Singapore
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| |
Collapse
|
46
|
Yang M, Sun N, Lai X, Zhao X, Zhou W. Advances in Non-Electrochemical Sensing of Human Sweat Biomarkers: From Sweat Sampling to Signal Reading. BIOSENSORS 2023; 14:17. [PMID: 38248394 PMCID: PMC10813192 DOI: 10.3390/bios14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Sweat, commonly referred to as the ultrafiltrate of blood plasma, is an essential physiological fluid in the human body. It contains a wide range of metabolites, electrolytes, and other biologically significant markers that are closely linked to human health. Compared to other bodily fluids, such as blood, sweat offers distinct advantages in terms of ease of collection and non-invasive detection. In recent years, considerable attention has been focused on wearable sweat sensors due to their potential for continuous monitoring of biomarkers. Electrochemical methods have been extensively used for in situ sweat biomarker analysis, as thoroughly reviewed by various researchers. This comprehensive review aims to provide an overview of recent advances in non-electrochemical methods for analyzing sweat, including colorimetric methods, fluorescence techniques, surface-enhanced Raman spectroscopy, and more. The review covers multiple aspects of non-electrochemical sweat analysis, encompassing sweat sampling methodologies, detection techniques, signal processing, and diverse applications. Furthermore, it highlights the current bottlenecks and challenges faced by non-electrochemical sensors, such as limitations and interference issues. Finally, the review concludes by offering insights into the prospects for non-electrochemical sensing technologies. By providing a valuable reference and inspiring researchers engaged in the field of sweat sensor development, this paper aspires to foster the creation of innovative and practical advancements in this domain.
Collapse
Affiliation(s)
- Mingpeng Yang
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Nan Sun
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
| | - Xiaochen Lai
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xingqiang Zhao
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Wangping Zhou
- School of Automation, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China (X.Z.)
- Jiangsu Collaborative Innovation Centre on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| |
Collapse
|
47
|
Golparvar A, Thenot L, Boukhayma A, Carrara S. Soft Epidermal Paperfluidics for Sweat Analysis by Ratiometric Raman Spectroscopy. BIOSENSORS 2023; 14:12. [PMID: 38248389 PMCID: PMC10812966 DOI: 10.3390/bios14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
The expanding interest in digital biomarker analysis focused on non-invasive human bodily fluids, such as sweat, highlights the pressing need for easily manufactured and highly efficient soft lab-on-skin solutions. Here, we report, for the first time, the integration of microfluidic paper-based devices (μPAD) and non-enhanced Raman-scattering-enabled optical biochemical sensing (Raman biosensing). Their integration merges the enormous benefits of μPAD, with high potential for commercialization and use in resource-limited settings, with biorecognition-element-free (but highly selective) optical Raman biosensing. The introduced thin (0.36 mm), ultra-lightweight (0.19 g), and compact footprint (3 cm2) opto-paperfluidic sweat patch is flexible, stretchable, and conforms, irritation-free, to hairless or minimally haired body regions to enable swift sweat collection. As a great advantage, this new bio-chemical sensory system excels through its absence of onboard biorecognition elements (bioreceptor-free) and omission of plasmonic nanomaterials. The proposed easy fabrication process is adaptable to mass production by following a fully sustainable and cost-effective process utilizing only basic tools by avoiding typically employed printing or laser patterning. Furthermore, efficient collection and transportation of precise sweat volumes, driven exclusively by the wicking properties of porous materials, shows high efficiency in liquid transportation and reduces biosensing latency by a factor of 5 compared to state-of-the-art epidermal microfluidics. The proposed unit enables electronic chip-free and imaging-less visual sweat loss quantification as well as optical biochemical analysis when coupled with Raman spectroscopy. We investigated the multimodal quantification of sweat urea and lactate levels ex vivo (with syntactic sweat including +30 sweat analytes on porcine skin) and achieved a linear dynamic range from 0 to 100 mmol/L during fully dynamic continuous flow characterization.
Collapse
Affiliation(s)
- Ata Golparvar
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| | - Lucie Thenot
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| | | | - Sandro Carrara
- Bio/CMOS Interfaces (BCI) Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 2000 Neuchatel, Switzerland
| |
Collapse
|
48
|
Saha T, Del Caño R, De la Paz E, Sandhu SS, Wang J. Access and Management of Sweat for Non-Invasive Biomarker Monitoring: A Comprehensive Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206064. [PMID: 36433842 DOI: 10.1002/smll.202206064] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Sweat is an important biofluid presents in the body since it regulates the internal body temperature, and it is relatively easy to access on the skin unlike other biofluids and contains several biomarkers that are also present in the blood. Although sweat sensing devices have recently displayed tremendous progress, most of the emerging devices primarily focus on the sensor development, integration with electronics, wearability, and data from in vitro studies and short-term on-body trials during exercise. To further the advances in sweat sensing technology, this review aims to present a comprehensive report on the approaches to access and manage sweat from the skin toward improved sweat collection and sensing. It is begun by delineating the sweat secretion mechanism through the skin, and the historical perspective of sweat, followed by a detailed discussion on the mechanisms governing sweat generation and management on the skin. It is concluded by presenting the advanced applications of sweat sensing, supported by a discussion of robust, extended-operation epidermal wearable devices aiming to strengthen personalized healthcare monitoring systems.
Collapse
Affiliation(s)
- Tamoghna Saha
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Rafael Del Caño
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
- Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, Cordoba, E-14014, Spain
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Samar S Sandhu
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego La Jolla, California, CA, 92093, USA
| |
Collapse
|
49
|
Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9498. [PMID: 38067871 PMCID: PMC10708748 DOI: 10.3390/s23239498] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Disease diagnosis and monitoring using conventional healthcare services is typically expensive and has limited accuracy. Wearable health technology based on flexible electronics has gained tremendous attention in recent years for monitoring patient health owing to attractive features, such as lower medical costs, quick access to patient health data, ability to operate and transmit data in harsh environments, storage at room temperature, non-invasive implementation, mass scaling, etc. This technology provides an opportunity for disease pre-diagnosis and immediate therapy. Wearable sensors have opened a new area of personalized health monitoring by accurately measuring physical states and biochemical signals. Despite the progress to date in the development of wearable sensors, there are still several limitations in the accuracy of the data collected, precise disease diagnosis, and early treatment. This necessitates advances in applied materials and structures and using artificial intelligence (AI)-enabled wearable sensors to extract target signals for accurate clinical decision-making and efficient medical care. In this paper, we review two significant aspects of smart wearable sensors. First, we offer an overview of the most recent progress in improving wearable sensor performance for physical, chemical, and biosensors, focusing on materials, structural configurations, and transduction mechanisms. Next, we review the use of AI technology in combination with wearable technology for big data processing, self-learning, power-efficiency, real-time data acquisition and processing, and personalized health for an intelligent sensing platform. Finally, we present the challenges and future opportunities associated with smart wearable sensors.
Collapse
Affiliation(s)
- Shaghayegh Shajari
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
- Center for Bio-Integrated Electronics (CBIE), Querrey Simpson Institute for Bioelectronics (QSIB), Northwestern University, Evanston, IL 60208, USA
| | - Kirankumar Kuruvinashetti
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Amin Komeili
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
| |
Collapse
|
50
|
Sivakumar A, Sharma R, Thota C, Ding D, Fan X. WASP: Wearable Analytical Skin Probe for Dynamic Monitoring of Transepidermal Water Loss. ACS Sens 2023; 8:4407-4416. [PMID: 37953512 PMCID: PMC10683758 DOI: 10.1021/acssensors.3c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Early diagnosis of skin barrier dysfunction helps provide timely preventive care against diseases such as atopic dermatitis, psoriasis, food allergies, and other atopic skin disorders. Skin barrier function is commonly evaluated by measuring the transepidermal water loss (TEWL) through stratum corneum due to its noninvasive characteristics. However, existing commercial TEWL devices are significantly affected by many factors, such as ambient temperature, humidity, air flow, water accumulation, initial water contents on the skin surface, bulky sizes, high costs, and requirements for well-controlled environments. Here, we developed a wearable closed-chamber hygrometer-based TEWL device (Wearable Analytical Skin Probe, WASP) and the related algorithm for accurate and continuous monitoring of skin water vapor flux. The WASP uses short dry air purges to dry the skin surface and chamber before each water vapor flux measurement. Its design ensures a highly controlled local environment, such as consistent initial dry conditions for the skin surface and the chamber. We further applied WASP to measure the water vapor flux from six different locations of a small group of human participants. It is found that the WASP can not only measure and distinguish between insensible sweating (i.e., TEWL) and sensible sweating (i.e., thermal sweating) but also track skin dehydration-rehydration cycles. Comparisons with a commercial TEWL device, AquaFlux, show that the results obtained by both devices agree well. The WASP will be broadly applicable to clinical, cosmetic, and biomedical research.
Collapse
Affiliation(s)
- Anjali
Devi Sivakumar
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Center
for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
- Max
Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ruchi Sharma
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Center
for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
- Max
Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chandrakalavathi Thota
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Center
for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
- Max
Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Ding
- Department
of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xudong Fan
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Center
for Wireless Integrated MicroSensing and Systems (WIMS2), University of Michigan, Ann Arbor, Michigan 48109, United States
- Max
Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|