1
|
Li H, Yang Q, Li X, Fu X, Li J, Zhang Y, Tan W, Wang P. Research advances in the diagnosis of infectious disease by aptasensor technology. NANOSCALE HORIZONS 2025. [PMID: 40331775 DOI: 10.1039/d5nh00098j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Infectious diseases remain a major challenge to public health. The accurate and timely detection of pathogens responsible for these diseases is essential for controlling their spread, supporting clinical diagnosis, and enabling the application of appropriate therapies. Traditionally, the antibody-based assay has been the primary method for pathogen detection. However, recent advancements in aptamer-based technologies have initiated a transformative shift in diagnostic approaches. Aptamer-based sensors (aptasensors) are characterized by lower production costs and greater flexibility, making them compatible with various detection techniques. This broad applicability facilitates multifaceted, high-throughput applications, significantly improving the capacity to monitor and detect infectious diseases. In this review, we introduce the pathogenic mechanisms and characteristics of pathogens, provide an overview of recent advancements in the development of aptasensors for pathogen detection and highlight their versatility in identifying various infectious disease pathogens, including viruses, bacteria, parasites and other microorganisms. We systematically categorize aptasensors according to their detection mechanisms, including colorimetry, fluorescence, chemiluminescence, surface-enhanced Raman spectroscopy (SERS), surface plasmon resonance (SPR), electrochemistry and incorporation of field-effect transistors (FETs). We further demonstrate how these platforms leverage pathogen-specific biological features to achieve ultrasensitive and rapid diagnostics. Further optimization and validation of aptasensor platforms are anticipated to accelerate their clinical translation and industrialization. Advancing these innovative technologies will be crucial to meeting the growing demand for rapid, accurate and reliable pathogen detection across diverse clinical and environmental conditions, ultimately strengthening the ability to respond effectively to infectious disease threats.
Collapse
Affiliation(s)
- Hengxuan Li
- Medical School, Faculty of Medicine, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, P. R. China.
| | - Qiuxia Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, P. R. China.
| | - Xiaodong Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, P. R. China.
| | - Xiaoyi Fu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, P. R. China.
- Hangzhou Aptechone Biotechnology Company Limited, Hangzhou 310022, P. R. China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310050, P. R. China.
| | - Yanjun Zhang
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310050, P. R. China.
| | - Weihong Tan
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, P. R. China.
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Peng Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, P. R. China.
| |
Collapse
|
2
|
Jing Z, Li R, Zhao J, Yuan R, Chen S. Aptamer-Triggered Nucleic Acid Amplification Strategy for the Electrochemiluminescence Detection of Perfluorooctanoic Acid. Anal Chem 2024; 96:18178-18186. [PMID: 39472107 DOI: 10.1021/acs.analchem.4c04323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of persistent micropollutants. Due to their chemical stability and bioaccumulation, concentrations of PFASs in environmental media, even at ultratrace levels, pose significant environmental and health risks. However, currently reported detection methods lack an effective signal amplification strategy, and the detection sensitivity is limited, which can not meet the requirements of ultratrace detection. Herein, a groundbreaking aptamer-recognition-driven nucleic acid strategy was developed to significantly amplify the detection signal of perfluorooctanoic acid (PFOA). Furthermore, step pulse (SP) was used instead of cyclic voltammetry (CV) as an electrochemical excitation method to modulate the low electrochemiluminescence (ECL) triggering potential of poly [9,9-bis (3'-(N, N-dimethylamino) propyl) -2,7-fluorene]-alt-2,7-(9,9-dioctylfluorene)] (PFN) nanoparticles (NPs) so that a strong signal of +0.80 V was emitted without any exogenous coreactants. PFN NPs coupled rolling circle amplification-assisted PAM-free CRISPR/Cas12a system to construct an ultrasensitive ECL aptasensor for PFOA detection and the limit of detection was as low as 1.97 × 10-15 M. This ECL system integrated the advantages of no exogenous coreactants, low trigger potential, and nucleic acid amplification strategy and provided an ultrasensitive method for monitoring trace PFOA in the real water sample.
Collapse
Affiliation(s)
- Zhiwei Jing
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
3
|
Wang G, Zhang Y, Tang S, Chen S, Zou F, Yuan H, Jiao J. Multivalent aptamer nanoscaffold cytosensor for glioma circulating tumor cells during Epithelial-Mesenchymal transition. Biosens Bioelectron 2023; 226:115140. [PMID: 36780719 DOI: 10.1016/j.bios.2023.115140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The key factor that causes glioma invasion and metastasis is circulating tumor cells (CTCs) undergoing epithelial-mesenchymal transition (EMT). Effective analysis of EMT-CTCs can provide an important foundation for early detection and prognosis monitoring of glioma, but the changes in the biomarkers of CTCs in different states of EMT make detection difficult. In this study, we developed a multivalent aptamer nanoscaffold-based electrochemical cytosensor (MAS-cytosensor) to efficiently detect EMT-CTCs. The two chains forming the MAS are composed of a specific aptamer detector, a binding region for DNA self-assembly, and a foothold for interface anchoring. When target CTCs exist, the bisaptamer detector on MAS can sensitively identify CTCs and pull them to the electrode surface, generating electrochemical signals. It has been demonstrated that the MAS-cytosensor can not only detect EMT-CTCs sensitively (detection limit of 6 cells/mL in buffer), but also allows for further downstream analysis after release with high viability. Overall, this cytosensor provides a reliable detection solution for CTCs regardless of their EMT status, and provides an efficient method for in-depth study role of the post-EMT CTCs in clinical application and metastasis mechanisms.
Collapse
Affiliation(s)
- Gang Wang
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Yachao Zhang
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Shi Tang
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Shuning Chen
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Fangbo Zou
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Hongxiu Yuan
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Jin Jiao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China.
| |
Collapse
|
4
|
Chen J, Zhou J, Peng Y, Xie Y, Xiao Y. Aptamers: A prospective tool for infectious diseases diagnosis. J Clin Lab Anal 2022; 36:e24725. [PMID: 36245423 PMCID: PMC9701868 DOI: 10.1002/jcla.24725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/05/2022] Open
Abstract
It is well known that people's health is seriously threatened by various pathogens (such as Mycobacterium tuberculosis, Treponema pallidum, Novel coronavirus, HIV, Mucor, etc.), which leads to heavy socioeconomic burdens. Therefore, early and accurate pathogen diagnosis is essential for timely and effective therapies. Up to now, diagnosing human contagious diseases at molecule and nano levels is remarkably difficult owing to insufficient valid probes when it comes to determining the biological markers of pathogens. Aptamers are a set of high‐specificity and high‐sensitivity plastic oligonucleotides screened in vitro via the selective expansion of ligands by exponential enrichment (SELEX). With the advent of aptamer‐based technologies, their merits have aroused mounting academic interest. In recent years, as new detection and treatment tools, nucleic acid aptamers have been extensively utilized in the field of biomedicine, such as pathogen detection, new drug development, clinical diagnosis, nanotechnology, etc. However, the traditional SELEX method is cumbersome and has a long screening cycle, and it takes several months to screen out aptamers with high specificity. With the persistent development of SELEX‐based aptamer screening technologies, the application scenarios of aptamers have become more and more extensive. The present research briefly reviews the research progress of nucleic acid aptamers in the field of biomedicine, especially in the diagnosis of contagious diseases.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiahuan Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Gao Y, Chen Y, Shang J, Yu S, He S, Cui R, Wang F. Enzyme-Free Autocatalysis-Driven Feedback DNA Circuits for Amplified Aptasensing of Living Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5080-5089. [PMID: 35044153 DOI: 10.1021/acsami.1c22767] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aptasensors with high specificity have emerged as powerful tools for understanding various biological processes, thus providing tremendous opportunities for clinical diagnosis and prognosis. However, their applications in intracellular molecular imaging are largely impeded due to the low anti-interference capacity in biological environments and the moderate sensitivity to targets. Herein, a robust enzyme-free autocatalysis-driven feedback DNA circuit is devised for amplified aptasensing, for example, adenosine triphosphate (ATP) and thrombin, with a significantly improved sensitivity in living cells. This initiator-replicated hybridization chain reaction (ID-HCR) circuit was acquired by integrating the HCR circuit with the DNAzyme biocatalysis. Also, the autocatalysis-driven aptasensor consists of a recognition element and an amplification element. The recognition unit can specifically identify ATP or thrombin via a versatile conformational transformation, resulting in the exposure of the initiator to the autocatalysis-driven circuit. The ID-HCR element integrates the charming self-assembly characteristics of the HCR and the remarkable catalytic cleavage capacity of DNAzyme for realizing the continuously self-sustained regeneration or replication of trigger strands and for achieving an exponential signal gain. The autocatalysis-driven aptasensor has been validated for quantitative analysis of ATP and thrombin in vitro and for monitoring the corresponding aptamer substrates with various expressions in live cells. More importantly, the autocatalysis-driven aptasensor, as a versatile amplification strategy, holds enormous potential for analysis of other less abundant biomarkers by changing only the recognition element of the system.
Collapse
Affiliation(s)
- Yuhui Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shizhen He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
6
|
Nucleic acid aptamer controls mycoplasma infection for inhibiting the malignancy of esophageal squamous cell carcinoma. Mol Ther 2022; 30:2224-2241. [DOI: 10.1016/j.ymthe.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
|
7
|
Chen Z, Zeng Z, Wan Q, Liu X, Qi J, Zu Y. Targeted immunotherapy of triple-negative breast cancer by aptamer-engineered NK cells. Biomaterials 2022; 280:121259. [PMID: 34801254 PMCID: PMC8724397 DOI: 10.1016/j.biomaterials.2021.121259] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 01/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer comprised of cells that lack expression of targetable biomarkers. Nucleic acid aptamers are a group of molecular ligands that can specifically bind to their targets with high affinity. The ssDNA aptamer PDGC21-T recognizes poorly differentiated cancer cells and tumor tissues through an unidentified cell surface target(s). Because TNBC tumor cells are poorly differentiated, the aptamer PDGC21-T is a promising therapeutic candidate to target TNBC tumor cells. In vitro study revealed that synthetic aptamer probes selectively targeted TNBC cell lines. To assess aptamer immunotherapeutic targeting capability, we generated aptamer-engineered NK cells (ApEn-NK) using aptamer probes as a targeting ligand and NK cells as a therapeutic agent. Cell clustering formation assays revealed that ApEn-NK bound both suspended and adherent TNBC cells with high affinity. In a functional study, ApEn-NK treatment triggered apoptosis and death of cultured TNBC cells. Finally, systemic administration of ApEn-NK in mice harboring TNBC xenografts resulted in significant inhibition of lung metastasis relative to parental NK cell treatments. Unlike chemotherapy, ApEn-NK treatment did not affect body weight in treated mice. We demonstrate a novel approach for targeted TNBC immunotherapy.
Collapse
Affiliation(s)
- Zhenghu Chen
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Zihua Zeng
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Quanyuan Wan
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Xiaohui Liu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Jianjun Qi
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Xu Y, Jiang X, Zhou Y, Ma M, Wang M, Ying B. Systematic Evolution of Ligands by Exponential Enrichment Technologies and Aptamer-Based Applications: Recent Progress and Challenges in Precision Medicine of Infectious Diseases. Front Bioeng Biotechnol 2021; 9:704077. [PMID: 34447741 PMCID: PMC8383106 DOI: 10.3389/fbioe.2021.704077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023] Open
Abstract
Infectious diseases are considered as a pressing challenge to global public health. Accurate and rapid diagnostics tools for early recognition of the pathogen, as well as individualized precision therapy are essential for controlling the spread of infectious diseases. Aptamers, which were screened by systematic evolution of ligands by exponential enrichment (SELEX), can bind to targets with high affinity and specificity so that have exciting potential in both diagnosis and treatment of infectious diseases. In this review, we provide a comprehensive overview of the latest development of SELEX technology and focus on the applications of aptamer-based technologies in infectious diseases, such as targeted drug-delivery, treatments and biosensors for diagnosing. The challenges and the future development in this field of clinical application will also be discussed.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,The First People's Hospital of Shuangliu District, Chengdu/West China (Airport)Hospital Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
10
|
Li Z, Fu X, Huang J, Zeng P, Huang Y, Chen X, Liang C. Advances in Screening and Development of Therapeutic Aptamers Against Cancer Cells. Front Cell Dev Biol 2021; 9:662791. [PMID: 34095130 PMCID: PMC8170048 DOI: 10.3389/fcell.2021.662791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer has become the leading cause of death in recent years. As great advances in medical treatment, emerging therapies of various cancers have been developed. Current treatments include surgery, radiotherapy, chemotherapy, immunotherapy, and targeted therapy. Aptamers are synthetic ssDNA or RNA. They can bind tightly to target molecules due to their unique tertiary structure. It is easy for aptamers to be screened, synthesized, programmed, and chemically modified. Aptamers are emerging targeted drugs that hold great potentials, called therapeutic aptamers. There are few types of therapeutic aptamers that have already been approved by the US Food and Drug Administration (FDA) for disease treatment. Now more and more therapeutic aptamers are in the stage of preclinical research or clinical trials. This review summarized the screening and development of therapeutic aptamers against different types of cancer cells.
Collapse
Affiliation(s)
- Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Peiyuan Zeng
- Department of Biochemistry, University of Victoria, Victoria, BC, Canada
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Pereira HS, Tagliaferri TL, Mendes TADO. Enlarging the Toolbox Against Antimicrobial Resistance: Aptamers and CRISPR-Cas. Front Microbiol 2021; 12:606360. [PMID: 33679633 PMCID: PMC7932999 DOI: 10.3389/fmicb.2021.606360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
In the post-genomic era, molecular treatments and diagnostics have been envisioned as powerful techniques to tackle the antimicrobial resistance (AMR) crisis. Among the molecular approaches, aptamers and CRISPR-Cas have gained support due to their practicality, sensibility, and flexibility to interact with a variety of extra- and intracellular targets. Those characteristics enabled the development of quick and onsite diagnostic tools as well as alternative treatments for pan-resistant bacterial infections. Even with such potential, more studies are necessary to pave the way for their successful use against AMR. In this review, we highlight those two robust techniques and encourage researchers to refine them toward AMR. Also, we describe how aptamers and CRISPR-Cas can work together with the current diagnostic and treatment toolbox.
Collapse
Affiliation(s)
| | | | - Tiago Antônio de Oliveira Mendes
- Laboratory of Synthetic Biology and Modelling of Biological Systems, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
12
|
Wu H, Gu L, Ma X, Tian X, Fan S, Qin M, Lu J, Lyu M, Wang S. Rapid Detection of Helicobacter pylori by the Naked Eye Using DNA Aptamers. ACS OMEGA 2021; 6:3771-3779. [PMID: 33585756 PMCID: PMC7876845 DOI: 10.1021/acsomega.0c05374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
Helicobacter pylori was first isolated from gastritis patients by Barry J. Marshall and J. Robin Warren in 1982, and more than 90% of duodenal ulcers and about 80% of gastric ulcers are caused by H. pylori infection. Most detection methods require sophisticated instruments and professional operators, making detection slow and expensive. Therefore, it is critical to develop a simple, fast, highly specific, and practical strategy for the detection of H. pylori. In this study, we used H. pylori as a target to select unique aptamers that can be used for the detection of H. pylori. In our study, we used random ssDNA as an initial library to screen nucleic acid aptamers for H. pylori. We used binding rate and the fluorescence intensity to identify candidate aptamers. One DNA aptamer, named HPA-2, was discovered through six rounds of positive selection and three rounds of negative selection, and it had the highest affinity constant of all aptamers tested (K d = 19.3 ± 3.2 nM). This aptamer could be used to detect H. pylori and showed no specificity for other bacteria. Moreover, we developed a new sensor to detect H. pylori with the naked eye for 5 min using illumination from a hand-held flashlight. Our study provides a framework for the development of other aptamer-based methods for the rapid detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Hangjie Wu
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Lide Gu
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xiaoyi Ma
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xueqing Tian
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Shihui Fan
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Mingcan Qin
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jing Lu
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Shujun Wang
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| |
Collapse
|
13
|
Jain S, Kaur J, Prasad S, Roy I. Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 2020; 16:255-274. [PMID: 32990095 DOI: 10.1080/17460441.2021.1829587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Aptamers provide exciting opportunities for the development of specific and targeted therapeutic approaches. AREAS COVERED In this review, the authors discuss different therapeutic options available with nucleic acids, including aptamers, focussing on similarities and differences between them. The authors concentrate on case studies with specific aptamers, which exemplify their distinct advantages. The reasons for failure, wherever available, are deliberated upon. Attempts to accelerate the in vitro selection process have been discussed. Challenges with aptamers in terms of their specificity and targeted delivery and strategies to overcome these are described. Examples of precise regulation of systemic half-life of aptamers using antidotes are discussed. EXPERT OPINION Despite their nontoxic nature, a variety of reasons limit the therapeutic potential of aptamers in the clinic. The analysis of adverse effects observed with the pegnivacogin/anivamersen pair has highlighted the need to screen for preexisting PEG antibodies in any clinical trial involving pegylated molecules. Surprisingly, and promisingly, the ability of nucleic acid therapeutics to breach the blood brain barrier seems achievable. The recognition of specific motifs, e.g. G-quadruplex in thrombin-binding aptamers, or a 'nucleation' zone while designing aptamer-antidote pairs, is likely to accelerate the discovery of therapeutically efficacious molecules.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Jaskirat Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
14
|
Wu S, Liu Y, Sun H, Zhong M, Dai B, Pan B, Shen Z. An ssDNA aptamer specific for detection and purification of hexahistidine-tagged proteins. Anal Biochem 2020; 607:113893. [PMID: 32739349 DOI: 10.1016/j.ab.2020.113893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022]
Abstract
Aptamers are small-sized RNA or ssDNA ligands with a unique structure, which have high specificity and affinity to their cognate targets. Thus, in addition to the extensive values in various bio-medical fields, aptamers can also be alternatively used as affinity ligands in the bioprocess, such as for protein purification. In the present study, a hexahistidine specific aptamer named AptHis-C, was developed through the SELEX methodology, which has high affinity to hexahistidine, and its dissociation constant was as low as 20.8 nM. The structural prediction revealed that AptHis-C contains two connected stem-loop conformations. AptHis-C can only specifically recognize recombinant proteins with the hexahistidine-tag in simple or complex situations, and not to those with other tags. When immobilized on magnetic beads, AptHis-C can be used as a tool for hexahistidine-tagged recombinant protein purification. Its effectiveness is as good as traditional Ni-based beads. Besides, due to the intrinsic characteristics of nucleic acids, such as high thermal/chemical stability, immobilized aptamer-magnetic beads can be reused many times without an obvious decrease of purification effectiveness. This aptamer may represent a novel method for the detection and purification of hexahistidine-tagged recombinant proteins.
Collapse
Affiliation(s)
- Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Hongguang Sun
- Aptamer-Theranostics R&D Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meizuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bichun Dai
- Aptamer-Theranostics R&D Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Biyao Pan
- Aptamer-Theranostics R&D Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijian Shen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
15
|
Wan Q, Liu X, Zeng Z, Chen Z, Liu Y, Zu Y. Aptamer Cocktail to Detect Multiple Species of Mycoplasma in Cell Culture. Int J Mol Sci 2020; 21:E3784. [PMID: 32471128 PMCID: PMC7312096 DOI: 10.3390/ijms21113784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Mycoplasma contamination of cell line cultures is a common, yet often undetected problem in research laboratories. Many of the existing techniques to detect mycoplasma contamination of cultured cells are time-consuming, expensive, and have significant drawbacks. Here, we describe a mycoplasma detection system that is useful for detecting multiple species of mycoplasma in infected cell lines. The system contains three dye-labeled detection aptamers that can specifically bind to mycoplasma-infected cells and a dye-labeled control aptamer that minimally binds to cells. With this system, mycoplasma-contaminated cells can be detected within 30 min by using a flow cytometer, fluorescence microscope, or microplate reader. Further, this system may be used to detect mycoplasma-contaminated culture medium. This study presents an novel mycoplasma detection model that is simple, rapid, inexpensive, and sensitive.
Collapse
Affiliation(s)
| | | | | | | | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA; (Q.W.); (X.L.); (Z.Z.); (Z.C.); (Y.L.)
| |
Collapse
|