1
|
Liu L, He P, Wang Y, Ma F, Li D, Bai Z, Qu Y, Zhu L, Yoon CW, Yu X, Huang Y, Liang Z, Zhang Y, Liu K, Guo T, Zeng Y, Zhou Q, Chung HK, Fan R, Wang Y. Engineering sonogenetic EchoBack-CAR T cells. Cell 2025; 188:2621-2636.e20. [PMID: 40179881 DOI: 10.1016/j.cell.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/13/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy for solid tumors encounters challenges such as on-target off-tumor toxicity, exhaustion, and limited T cell persistence. Here, we engineer sonogenetic EchoBack-CAR T cells using an ultrasensitive heat-shock promoter screened from a library and integrated with a positive feedback loop from CAR signaling, enabling long-lasting CAR expression upon focused-ultrasound (FUS) stimulation. EchoBack-hGD2CAR T cells, targeting disialoganglioside GD2, exhibited potent cytotoxicity and persistence in 3D glioblastoma (GBM) models. In mice, EchoBack-hGD2CAR T cells suppressed GBM without off-tumor toxicity and outperformed their constitutive counterparts. Single-cell RNA sequencing revealed enhanced cytotoxicity and reduced exhaustion in EchoBack-CAR T cells compared with the standard CAR T cells. This EchoBack design was further adapted to target prostate-specific membrane antigen (EchoBack-PSMACAR) for prostate cancer treatment, demonstrating long-lasting tumor suppression with minimal off-tumor toxicity. Thus, the sonogenetic EchoBack-CAR T cells can serve as a versatile, efficient, and safe strategy for solid tumor treatment.
Collapse
Affiliation(s)
- Longwei Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Peixiang He
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuxuan Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Fengyi Ma
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Dulei Li
- Acoustic Cell Therapy, Inc., San Diego, CA 92130, USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yunjia Qu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Linshan Zhu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Chi Woo Yoon
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xi Yu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yixuan Huang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhengyu Liang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yiming Zhang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Kunshu Liu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianze Guo
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - H Kay Chung
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yingxiao Wang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Stewart CM, Siegler EL, Kenderian SS. The road ahead for chimeric antigen receptor T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf047. [PMID: 40209174 DOI: 10.1093/jimmun/vkaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/25/2025] [Indexed: 04/12/2025]
Abstract
Chimeric antigen receptor T (CART) cell therapy is an innovative form of immunotherapy that has shown remarkable and long-term responses in patients with B-cell malignancies. Over the years, the field has made significant progress in our understanding of the successes and challenges associated with CART cell therapy. In this review, we provide an overview of the current state of CART cell therapy in the clinic. We detail current challenges including patient access, CART-associated toxicity, tumor heterogeneity, CART cell trafficking, the tumor microenvironment, and different CART cell fates. With each challenge, we review lessons learned, potential solutions and outline areas for future development. Finally, we discuss how the field of engineered cell therapy is moving into the treatment of solid tumors and other diseases beyond cancer.
Collapse
Affiliation(s)
- Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, United States
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Benman W, Iyengar P, Mumford TR, Huang Z, Kapoor M, Liu G, Bugaj LJ. Multiplexed dynamic control of temperature to probe and observe mammalian cells. Cell Syst 2025; 16:101234. [PMID: 40081372 DOI: 10.1016/j.cels.2025.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/03/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Temperature is an important biological stimulus, yet there is a lack of approaches to modulate the temperature of biological samples in a dynamic and high-throughput manner. The thermoPlate is a device for programmable control of temperature in a 96-well plate, compatible with cell culture and microscopy. The thermoPlate maintains feedback control of temperature independently in each well, with minutes-scale heating and cooling through ΔT = 15-20°C. We first used the thermoPlate to characterize the rapid temperature-dependent phase separation of a synthetic elastin-like polypeptide (ELP53). We then examined stress granule (SG) formation in response to dynamic heat stress, revealing adaptation of SGs to persistent heat and formation of a memory of stress that prevented SG formation in response to subsequent heat shocks. The capabilities and open-source nature of the thermoPlate will empower the study and engineering of a wide range of thermoresponsive phenomena. A record of this paper's transparent peer review process is included in the Supplemental information.
Collapse
Affiliation(s)
- William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pavan Iyengar
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manya Kapoor
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Benman W, Huang Z, Iyengar P, Wilde D, Mumford TR, Bugaj LJ. A temperature-inducible protein module for control of mammalian cell fate. Nat Methods 2025; 22:539-549. [PMID: 39849131 DOI: 10.1038/s41592-024-02572-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/19/2024] [Indexed: 01/25/2025]
Abstract
Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered. We generated a library of Melt variants with switching temperatures ranging from 30 °C to 40 °C, including two that operate at and above 37 °C. Melt was a highly modular actuator of cell function, permitting thermal control over diverse processes including signaling, proteolysis, nuclear shuttling, cytoskeletal rearrangements and cell death. Finally, Melt permitted thermal control of cell death in a mouse model of human cancer. Melt represents a versatile thermogenetic module for straightforward, non-invasive and spatiotemporally defined control of mammalian cells with broad potential for biotechnology and biomedicine.
Collapse
Affiliation(s)
- William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Pavan Iyengar
- Department of Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Delaney Wilde
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Saldanha DJ, Rowat SJA, Stephenson H, Dorval Courchesne NM. Living Dual Heat- and pH-Responsive Textiles. ACS Synth Biol 2025; 14:564-574. [PMID: 39818762 DOI: 10.1021/acssynbio.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Smart textiles that integrate multiple environmental sensing capabilities are an emerging frontier in wearable technology. In this study, we developed dual pH- and temperature-responsive textiles by combining engineered bacterial systems with bacterially derived proteins. For temperature sensing, we characterized the properties of a heat sensitive promoter, Phs, in Escherichia coli (E. coli) using enhanced green fluorescent protein as a reporter. Our findings demonstrate that the Phs promoter drives elevated gene expression at temperatures between 37 and 43 °C, maintaining sustained activity for several hours. Moreover, we found that short heat shocks can significantly boost expression levels of the Phs promoter. We successfully integrated E. coli expressing Phs-EGFP cells onto textiles and confirmed their ability to retain heat-responsive behavior after integration. To achieve pH responsiveness, we utilized curli fibers, genetically engineered to incorporate a pH-sensitive fluorescent protein, pHuji. pH-sensing curli fibers are bacterial proteins that have a proven track record of creating stable bioresponsive textile coatings. By embedding Phs-EGFP-expressing bacteria within curli fiber coatings, we created a dual-responsive textile capable of differentiating between acidic and alkaline environments while simultaneously responding to thermal stimuli. These multifunctional textiles exhibited dual environmental response and sensing capabilities. This work establishes a proof-of-concept for creating smart living textiles with modular functionalities, paving the way toward advanced bioresponsive materials.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | | | - Henry Stephenson
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada
| | | |
Collapse
|
6
|
Huang J, Fussenegger M. Programming mammalian cell behaviors by physical cues. Trends Biotechnol 2025; 43:16-42. [PMID: 39179464 DOI: 10.1016/j.tibtech.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
7
|
Sistemich L, Ebbinghaus S. Heat application in live cell imaging. FEBS Open Bio 2024; 14:1940-1954. [PMID: 39489617 PMCID: PMC11609584 DOI: 10.1002/2211-5463.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Thermal heating of biological samples allows to reversibly manipulate cellular processes with high temporal and spatial resolution. Manifold heating techniques in combination with live-cell imaging were developed, commonly tailored to customized applications. They include Peltier elements and microfluidics for homogenous sample heating as well as infrared lasers and radiation absorption by nanostructures for spot heating. A prerequisite of all techniques is that the induced temperature changes are measured precisely which can be the main challenge considering subcellular structures or multicellular organisms as target regions. This article discusses heating and temperature sensing techniques for live-cell imaging, leading to future applications in cell biology.
Collapse
Affiliation(s)
- Linda Sistemich
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| | - Simon Ebbinghaus
- Chair of Biophysical ChemistryRuhr‐University BochumGermany
- Research Center Chemical Sciences and Sustainability, Research Alliance RuhrBochumGermany
| |
Collapse
|
8
|
Głowacki P, Tręda C, Rieske P. Regulation of CAR transgene expression to design semiautonomous CAR-T. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200833. [PMID: 39184876 PMCID: PMC11344471 DOI: 10.1016/j.omton.2024.200833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Effective transgene expression is critical for genetically engineered cell therapy. Therefore, one of CAR-T cell therapy's critical areas of interest, both in registered products and next-generation approaches is the expression of transgenes. It turns out that various constitutive promoters used in clinical products may influence CAR-T cell antitumor effectiveness and impact the manufacturing process. Furthermore, next-generation CAR-T starts to install remotely controlled inducible promoters or even autonomous expression systems, opening new ways of priming, boosting, and increasing the safety of CAR-T. In this article, a wide range of constitutive and inducible promoters has been grouped and structured, making it possible to compare their pros and cons as well as clinical usage. Finally, logic gates based on Synthetic Notch have been elaborated, demonstrating the coupling of desired external signals with genetically engineered cellular responses.
Collapse
Affiliation(s)
- Paweł Głowacki
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
| | - Cezary Tręda
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| |
Collapse
|
9
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
10
|
Benman W, Iyengar P, Mumford T, Huang Z, Bugaj LJ. Multiplexed dynamic control of temperature to probe and observe mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.18.580877. [PMID: 38562729 PMCID: PMC10983861 DOI: 10.1101/2024.02.18.580877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Temperature is a critical parameter for biological function, yet there is a lack of approaches to modulate the temperature of biological specimens in a dynamic and high-throughput manner. We present the thermoPlate, a device for programmable control of temperature in each well of a 96-well plate, in a manner compatible with mammalian cell culture and live cell imaging. The thermoPlate maintains precise feedback control of temperature patterns independently in each well, with minutes-scale heating and cooling through ΔT ~15-20°C. A computational model that predicts thermal diffusion guides optimal design of heating protocols. The thermoPlate allowed systematic characterization of both synthetic and natural thermo-responsive systems. We first used the thermoPlate in conjunction with live-cell microscopy to characterize the rapid temperature-dependent phase separation of a synthetic elastin-like polypeptide (ELP53). We then measured stress granule (SG) formation in response to heat stress, observing differences in SG dynamics with each increasing degree of stress. We observed adaptive formation of SGs, whereby SGs formed but then dissolved in response to persistent heat stress (≥ 42°C). SG adaptation revealed a biochemical memory of stress that depended on both the time and temperature of heat shock. Stress memories continued to form even after the removal of heat and persisted for 6-9 hours before dissipating. The capabilities and open-source nature of the thermoPlate will empower the study and engineering of a wide range of thermoresponsive phenomena.
Collapse
Affiliation(s)
- William Benman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pavan Iyengar
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zikang Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lukasz J. Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
11
|
Vincent RL, Gurbatri CR, Li F, Vardoshvili A, Coker C, Im J, Ballister ER, Rouanne M, Savage T, de los Santos-Alexis K, Redenti A, Brockmann L, Komaranchath M, Arpaia N, Danino T. Probiotic-guided CAR-T cells for solid tumor targeting. Science 2023; 382:211-218. [PMID: 37824640 PMCID: PMC10915968 DOI: 10.1126/science.add7034] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/24/2023] [Indexed: 10/14/2023]
Abstract
A major challenge facing tumor-antigen targeting therapies such as chimeric antigen receptor (CAR)-T cells is the identification of suitable targets that are specifically and uniformly expressed on heterogeneous solid tumors. By contrast, certain species of bacteria selectively colonize immune-privileged tumor cores and can be engineered as antigen-independent platforms for therapeutic delivery. To bridge these approaches, we developed a platform of probiotic-guided CAR-T cells (ProCARs), in which tumor-colonizing probiotics release synthetic targets that label tumor tissue for CAR-mediated lysis in situ. This system demonstrated CAR-T cell activation and antigen-agnostic cell lysis that was safe and effective in multiple xenograft and syngeneic models of human and mouse cancers. We further engineered multifunctional probiotics that co-release chemokines to enhance CAR-T cell recruitment and therapeutic response.
Collapse
Affiliation(s)
- Rosa L. Vincent
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Candice R. Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Fangda Li
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Ana Vardoshvili
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Courtney Coker
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Edward R. Ballister
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Mathieu Rouanne
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Thomas Savage
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Kenia de los Santos-Alexis
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Andrew Redenti
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Leonie Brockmann
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
- Data Science Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
12
|
Zhu I, Piraner DI, Roybal KT. Synthesizing a Smarter CAR T Cell: Advanced Engineering of T-cell Immunotherapies. Cancer Immunol Res 2023; 11:1030-1043. [PMID: 37429007 PMCID: PMC10527511 DOI: 10.1158/2326-6066.cir-22-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/15/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
The immune system includes an array of specialized cells that keep us healthy by responding to pathogenic cues. Investigations into the mechanisms behind immune cell behavior have led to the development of powerful immunotherapies, including chimeric-antigen receptor (CAR) T cells. Although CAR T cells have demonstrated efficacy in treating blood cancers, issues regarding their safety and potency have hindered the use of immunotherapies in a wider spectrum of diseases. Efforts to integrate developments in synthetic biology into immunotherapy have led to several advancements with the potential to expand the range of treatable diseases, fine-tune the desired immune response, and improve therapeutic cell potency. Here, we examine current synthetic biology advances that aim to improve on existing technologies and discuss the promise of the next generation of engineered immune cell therapies.
Collapse
Affiliation(s)
- Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Dan I. Piraner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA 8Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Gladstone UCSF Institute for Genetic Immunology, San Francisco, CA 94107, USA
- UCSF Cell Design Institute, San Francisco, CA 94158, USA
| |
Collapse
|
13
|
Hyun J, Kim SJ, Cho SD, Kim HW. Mechano-modulation of T cells for cancer immunotherapy. Biomaterials 2023; 297:122101. [PMID: 37023528 DOI: 10.1016/j.biomaterials.2023.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Immunotherapy, despite its promise for future anti-cancer approach, faces significant challenges, such as off-tumor side effects, innate or acquired resistance, and limited infiltration of immune cells into stiffened extracellular matrix (ECM). Recent studies have highlighted the importance of mechano-modulation/-activation of immune cells (mainly T cells) for effective caner immunotherapy. Immune cells are highly sensitive to the applied physical forces and matrix mechanics, and reciprocally shape the tumor microenvironment. Engineering T cells with tuned properties of materials (e.g., chemistry, topography, and stiffness) can improve their expansion and activation ex vivo, and their ability to mechano-sensing the tumor specific ECM in vivo where they perform cytotoxic effects. T cells can also be exploited to secrete enzymes that soften ECM, thus increasing tumor infiltration and cellular therapies. Furthermore, T cells, such as chimeric antigen receptor (CAR)-T cells, genomic engineered to be spatiotemporally controllable by physical stimuli (e.g., ultrasound, heat, or light), can mitigate adverse off-tumor effects. In this review, we communicate these recent cutting-edge endeavors devoted to mechano-modulating/-activating T cells for effective cancer immunotherapy, and discuss future prospects and challenges in this field.
Collapse
|
14
|
Zheng X, Liu Y, Zhang T, Zhao Y, Liu Y, Zang J, Chong G, Li Y, Yang Y, Yang Y, Gu J, He R, Liu B, Yin W, Dong H, Li Y. Labeling Assembly of Hydrophilic Methionine into Nanoparticle for Mild-Heat Mediated Immunometabolic Therapy. Adv Healthc Mater 2023; 12:e2202695. [PMID: 36622285 DOI: 10.1002/adhm.202202695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Indexed: 01/10/2023]
Abstract
Methionine metabolism has a significant impact on T cells' survival and activation even in comparison to arginine, a well-documented amino acid in metabolic therapy. However, hydrophilic methionine is hardly delivered into TME due to difficult loading and rapid diffusion. Herein, the labeling assembly of methionine into nanoparticle is developed to overcome high hydrophilicity for mild-heat mediated immunometabolic therapy. The strategy is to first label methionine with protocatechualdehyde (as the tag) via reversible Schiff-base bond, and then drive nanoassembly of methionine (MPC@Fe) mediated by iron ions. In this fashion, a loading efficiency of 40% and assembly induced photothermal characteristics can be achieved. MPC@Fe can accumulate persistently in tumor up to 36 h due to tumor-selective aggregation in acidic TME. A mild heat of 43 °C on tumor by light irradiation stimulated the immunogenic cell death and effectively generated CD8+ T cells. Notably, MPC@Fe assisted by mild heat promoted 4.2-fold of tumor-infiltrating INF-γ+ CD8+ T cells, leading to an inhibition ratio of 27.3-fold versus the free methionine. Such labeling assembly provides a promising methionine delivery platform to realize mild heat mediated immunometabolic therapy, and is potentially extensible to other amino acids.
Collapse
Affiliation(s)
- Xiao Zheng
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Ying Liu
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Tingting Zhang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Yuge Zhao
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Yiqiong Liu
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Jie Zang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Gaowei Chong
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Yan Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Yushan Yang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Yan Yang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Jingjing Gu
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Ruiqing He
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Bingbing Liu
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Weimin Yin
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Haiqing Dong
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Yongyong Li
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
15
|
Gorick CM, Breza VR, Nowak KM, Cheng VWT, Fisher DG, Debski AC, Hoch MR, Demir ZEF, Tran NM, Schwartz MR, Sheybani ND, Price RJ. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Deliv Rev 2022; 191:114583. [PMID: 36272635 PMCID: PMC9712235 DOI: 10.1016/j.addr.2022.114583] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
The blood brain barrier (BBB) plays a critically important role in the regulation of central nervous system (CNS) homeostasis, but also represents a major limitation to treatments of brain pathologies. In recent years, focused ultrasound (FUS) in conjunction with gas-filled microbubble contrast agents has emerged as a powerful tool for transiently and non-invasively disrupting the BBB in a targeted and image-guided manner, allowing for localized delivery of drugs, genes, or other therapeutic agents. Beyond the delivery of known therapeutics, FUS-mediated BBB opening also demonstrates the potential for use in neuromodulation and the stimulation of a range of cell- and tissue-level physiological responses that may prove beneficial in disease contexts. Clinical trials investigating the safety and efficacy of FUS-mediated BBB opening are well underway, and offer promising non-surgical approaches to treatment of devastating pathologies. This article reviews a range of pre-clinical and clinical studies demonstrating the tremendous potential of FUS to fundamentally change the paradigm of treatment for CNS diseases.
Collapse
Affiliation(s)
- Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Victoria R Breza
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Katherine M Nowak
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Vinton W T Cheng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Delaney G Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Anna C Debski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Matthew R Hoch
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Nghi M Tran
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Schwartz
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
16
|
Yu M, Yang W, Yue W, Chen Y. Targeted Cancer Immunotherapy: Nanoformulation Engineering and Clinical Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204335. [PMID: 36257824 PMCID: PMC9762307 DOI: 10.1002/advs.202204335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Indexed: 05/09/2023]
Abstract
With the rapid growth of advanced nanoengineering strategies, there are great implications for therapeutic immunostimulators formulated in nanomaterials to combat cancer. It is crucial to direct immunostimulators to the right tissue and specific immune cells at the right time, thereby orchestrating the desired, potent, and durable immune response against cancer. The flexibility of nanoformulations in size, topology, softness, and multifunctionality allows precise regulation of nano-immunological activities for enhanced therapeutic effect. To grasp the modulation of immune response, research efforts are needed to understand the interactions of immune cells at lymph organs and tumor tissues, where the nanoformulations guide the immunostimulators to function on tissue specific subsets of immune cells. In this review, recent advanced nanoformulations targeting specific subset of immune cells, such as dendritic cells (DCs), T cells, monocytes, macrophages, and natural killer (NK) cells are summarized and discussed, and clinical development of nano-paradigms for targeted cancer immunotherapy is highlighted. Here the focus is on the targeting nanoformulations that can passively or actively target certain immune cells by overcoming the physiobiological barriers, instead of directly injecting into tissues. The opportunities and remaining obstacles for the clinical translation of immune cell targeting nanoformulations in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Meihua Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Wei Yang
- Department of UrologyXinhua HospitalSchool of MedicineShanghai Jiaotong University1665 Kongjiang RoadShanghai200092P. R. China
| | - Wenwen Yue
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentDepartment of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University Cancer CenterTongji University School of MedicineShanghai200072P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| |
Collapse
|
17
|
Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 2022; 21:655-675. [PMID: 35637318 PMCID: PMC9149674 DOI: 10.1038/s41573-022-00476-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/19/2022]
Abstract
Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.
Collapse
Affiliation(s)
- Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Hozefa Bandukwala
- Sigilon Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | - Devyn M Smith
- Sigilon Therapeutics, Cambridge, MA, USA
- Arbor Biotechnologies, Cambridge, MA, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
18
|
Chen Y, Du M, Yuan Z, Chen Z, Yan F. Spatiotemporal control of engineered bacteria to express interferon-γ by focused ultrasound for tumor immunotherapy. Nat Commun 2022; 13:4468. [PMID: 35918309 PMCID: PMC9345953 DOI: 10.1038/s41467-022-31932-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteria-based tumor therapy has recently attracted wide attentions due to its unique capability in targeting tumors and preferentially colonizing the core area of the tumor. Various therapeutic genes are also harbored into these engineering bacteria to enhance their anti-tumor efficacy. However, it is difficult to spatiotemporally control the expression of these inserted genes in the tumor site. Here, we engineer an ultrasound-responsive bacterium (URB) which can induce the expression of exogenous genes in an ultrasound-controllable manner. Owing to the advantage of ultrasound in tissue penetration, an acoustic remote control of bacterial gene expression can be realized by designing a temperature-actuated genetic switch. Cytokine interferon-γ (IFN-γ), an important immune regulatory molecule that plays a significant role in tumor immunotherapy, is used to test the system. Our results show that brief hyperthermia induced by focused ultrasound promotes the expression of IFN-γ gene, improving anti-tumor efficacy of URB in vitro and in vivo. Our study provides an alternative strategy for bacteria-mediated tumor immunotherapy.
Collapse
Affiliation(s)
- Yuhao Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhen Yuan
- Faculty of Health Sciences, Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Abedi MH, Yao MS, Mittelstein DR, Bar-Zion A, Swift MB, Lee-Gosselin A, Barturen-Larrea P, Buss MT, Shapiro MG. Ultrasound-controllable engineered bacteria for cancer immunotherapy. Nat Commun 2022; 13:1585. [PMID: 35332124 PMCID: PMC8948203 DOI: 10.1038/s41467-022-29065-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/16/2022] [Indexed: 12/25/2022] Open
Abstract
Rapid advances in synthetic biology are driving the development of genetically engineered microbes as therapeutic agents for a multitude of human diseases, including cancer. The immunosuppressive microenvironment of solid tumors, in particular, creates a favorable niche for systemically administered bacteria to engraft and release therapeutic payloads. However, such payloads can be harmful if released outside the tumor in healthy tissues where the bacteria also engraft in smaller numbers. To address this limitation, we engineer therapeutic bacteria to be controlled by focused ultrasound, a form of energy that can be applied noninvasively to specific anatomical sites such as solid tumors. This control is provided by a temperature-actuated genetic state switch that produces lasting therapeutic output in response to briefly applied focused ultrasound hyperthermia. Using a combination of rational design and high-throughput screening we optimize the switching circuits of engineered cells and connect their activity to the release of immune checkpoint inhibitors. In a clinically relevant cancer model, ultrasound-activated therapeutic microbes successfully turn on in situ and induce a marked suppression of tumor growth. This technology provides a critical tool for the spatiotemporal targeting of potent bacterial therapeutics in a variety of biological and clinical scenarios.
Collapse
Affiliation(s)
- Mohamad H Abedi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Biochemistry, Institute for Protein Design and Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Michael S Yao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David R Mittelstein
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Margaret B Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Pierina Barturen-Larrea
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Marjorie T Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
20
|
Li L, Pan H, Pang G, Lang H, Shen Y, Sun T, Zhang Y, Liu J, Chang J, Kang J, Zheng H, Wang H. Precise Thermal Regulation of Engineered Bacteria Secretion for Breast Cancer Treatment In Vivo. ACS Synth Biol 2022; 11:1167-1177. [PMID: 35175748 DOI: 10.1021/acssynbio.1c00452] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For the biomedical application of engineered bacteria, strictly regulating the function of engineered bacteria has always been the goal pursued. However, the existing regulation methods do not meet the needs of the in vivo application of engineered bacteria. Therefore, the exploration of the precise regulation of engineered bacteria is necessary. Herein, heat-sensitive engineered bacteria that can respond to thermal stimuli within 30 min were constructed, and the precise control of functions was verified in the intestines of various model organisms (including C. elegans, bees, and mice). Subsequently, heat-sensitive engineered bacteria were shown to colonize the mouse tumor microenvironment. Finally, thermal stimulation was proven to control engineered bacteria to produce the therapeutic protein tumor necrosis factor α (TNF-α) in the tumor. After three heat stimulation treatments, the growth of the tumor was significantly inhibited, suggesting that heat can be used as a strategy to precisely control engineered bacteria in vivo.
Collapse
Affiliation(s)
- Lianyue Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Huizhuo Pan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Gaoju Pang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yue Shen
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Tao Sun
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Yingying Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Jing Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| |
Collapse
|
21
|
Manhas J, Edelstein HI, Leonard JN, Morsut L. The evolution of synthetic receptor systems. Nat Chem Biol 2022; 18:244-255. [PMID: 35058646 PMCID: PMC9041813 DOI: 10.1038/s41589-021-00926-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
Receptors enable cells to detect, process and respond to information about their environments. Over the past two decades, synthetic biologists have repurposed physical parts and concepts from natural receptors to engineer synthetic receptors. These technologies implement customized sense-and-respond programs that link a cell's interaction with extracellular and intracellular cues to user-defined responses. When combined with tools for information processing, these advances enable programming of sophisticated customized functions. In recent years, the library of synthetic receptors and their capabilities has substantially evolved-a term we employ here to mean systematic improvement and expansion. Here, we survey the existing mammalian synthetic biology toolkit of protein-based receptors and signal-processing components, highlighting efforts to evolve and integrate some of the foundational synthetic receptor systems. We then propose a generalized strategy for engineering and improving receptor systems to meet defined functional objectives called a 'metric-enabled approach for synthetic receptor engineering' (MEASRE).
Collapse
Affiliation(s)
- Janvie Manhas
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hailey I Edelstein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA.
| | - Leonardo Morsut
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Highly Reversible Tunable Thermal-Repressible Split-T7 RNA Polymerases (Thermal-T7RNAPs) for Dynamic Gene Regulation. ACS Synth Biol 2022; 11:921-937. [PMID: 35089710 DOI: 10.1021/acssynbio.1c00545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Temperature is a physical cue that is easy to apply, allowing cellular behaviors to be controlled in a contactless and dynamic manner via heat-inducible/repressible systems. However, existing heat-repressible systems are limited in number, rely on thermal sensitive mRNA or transcription factors that function at low temperatures, lack tunability, suffer delays, and are overly complex. To provide an alternative mode of thermal regulation, we developed a library of compact, reversible, and tunable thermal-repressible split-T7 RNA polymerase systems (Thermal-T7RNAPs), which fused temperature-sensitive domains of Tlpa protein with split-T7RNAP to enable direct thermal control of the T7RNAP activity between 30 and 42 °C. We generated a large mutant library with varying thermal performances via an automated screening framework to extend temperature tunability. Lastly, using the mutants, novel thermal logic circuitry was implemented to regulate cell growth and achieve active thermal control of the cell proportions within co-cultures. Overall, this technology expanded avenues for thermal control in biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, 117456 Singapore
| |
Collapse
|
23
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
24
|
Stefanov B, Teixeira AP, Mansouri M, Bertschi A, Krawczyk K, Hamri GC, Xue S, Fussenegger M. Genetically Encoded Protein Thermometer Enables Precise Electrothermal Control of Transgene Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101813. [PMID: 34496151 PMCID: PMC8564464 DOI: 10.1002/advs.202101813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/05/2021] [Indexed: 05/25/2023]
Abstract
Body temperature is maintained at around 37 °C in humans, but may rise to 40 °C or more during high-grade fever, which occurs in most adults who are seriously ill. However, endogenous temperature sensors, such as ion channels and heat-shock promoters, are fully activated only at noxious temperatures above this range, making them unsuitable for medical applications. Here, a genetically encoded protein thermometer (human enhanced gene activation thermometer; HEAT) is designed that can trigger transgene expression in the range of 37-40 °C by linking a mutant coiled-coil temperature-responsive protein sensor to a synthetic transcription factor. To validate the construct, a HEAT-transgenic monoclonal human cell line, FeverSense, is generated and it is confirmed that it works as a fever sensor that can temperature- and exposure-time-dependently trigger reporter gene expression in vitro and in vivo. For translational proof of concept, microencapsulated designer cells stably expressing a HEAT-controlled insulin production cassette in a mouse model of type-1 diabetes are subcutaneously implanted and topical heating patches are used to apply heat corresponding to a warm sensation in humans. Insulin release is induced, restoring normoglycemia. Thus, HEAT appears to be suitable for practical electrothermal control of cell-based therapy, and may also have potential for next-generation treatment of fever-associated medical conditions.
Collapse
Affiliation(s)
| | - Ana P. Teixeira
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | - Maysam Mansouri
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | - Adrian Bertschi
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | - Krzysztof Krawczyk
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | | | - Shuai Xue
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | - Martin Fussenegger
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
- University of BaselFaculty of Life ScienceBasel4056Switzerland
| |
Collapse
|
25
|
Abstract
The steadfast advance of the synthetic biology field has enabled scientists to use genetically engineered cells, instead of small molecules or biologics, as the basis for the development of novel therapeutics. Cells endowed with synthetic gene circuits can control the localization, timing and dosage of therapeutic activities in response to specific disease biomarkers and thus represent a powerful new weapon in the fight against disease. Here, we conceptualize how synthetic biology approaches can be applied to programme living cells with therapeutic functions and discuss the advantages that they offer over conventional therapies in terms of flexibility, specificity and predictability, as well as challenges for their development. We present notable advances in the creation of engineered cells that harbour synthetic gene circuits capable of biological sensing and computation of signals derived from intracellular or extracellular biomarkers. We categorize and describe these developments based on the cell scaffold (human or microbial) and the site at which the engineered cell exerts its therapeutic function within its human host. The design of cell-based therapeutics with synthetic biology is a rapidly growing strategy in medicine that holds great promise for the development of effective treatments for a wide variety of human diseases.
Collapse
|
26
|
Miller IC, Zamat A, Sun LK, Phuengkham H, Harris AM, Gamboa L, Yang J, Murad JP, Priceman SJ, Kwong GA. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat Biomed Eng 2021; 5:1348-1359. [PMID: 34385695 DOI: 10.1038/s41551-021-00781-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
Treating solid malignancies with chimeric antigen receptor (CAR) T cells typically results in poor responses. Immunomodulatory biologics delivered systemically can augment the cells' activity, but off-target toxicity narrows the therapeutic window. Here we show that the activity of intratumoural CAR T cells can be controlled photothermally via synthetic gene switches that trigger the expression of transgenes in response to mild temperature elevations (to 40-42 °C). In vitro, heating engineered primary human T cells for 15-30 min led to over 60-fold-higher expression of a reporter transgene without affecting the cells' proliferation, migration and cytotoxicity. In mice, CAR T cells photothermally heated via gold nanorods produced a transgene only within the tumours. In mouse models of adoptive transfer, the systemic delivery of CAR T cells followed by intratumoural production, under photothermal control, of an interleukin-15 superagonist or a bispecific T cell engager bearing an NKG2D receptor redirecting T cells against NKG2D ligands enhanced antitumour activity and mitigated antigen escape. Localized photothermal control of the activity of engineered T cells may enhance their safety and efficacy.
Collapse
Affiliation(s)
- Ian C Miller
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Ali Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Lee-Kai Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Hathaichanok Phuengkham
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Adrian M Harris
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Jason Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.,Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Gabriel A Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA. .,Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA. .,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA. .,Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA, USA. .,Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
27
|
Beitz AM, Oakes CG, Galloway KE. Synthetic gene circuits as tools for drug discovery. Trends Biotechnol 2021; 40:210-225. [PMID: 34364685 DOI: 10.1016/j.tibtech.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Within mammalian systems, there exists enormous opportunity to use synthetic gene circuits to enhance phenotype-based drug discovery, to map the molecular origins of disease, and to validate therapeutics in complex cellular systems. While drug discovery has relied on marker staining and high-content imaging in cell-based assays, synthetic gene circuits expand the potential for precision and speed. Here we present a vision of how circuits can improve the speed and accuracy of drug discovery by enhancing the efficiency of hit triage, capturing disease-relevant dynamics in cell-based assays, and simplifying validation and readouts from organoids and microphysiological systems (MPS). By tracking events and cellular states across multiple length and time scales, circuits will transform how we decipher the causal link between molecular events and phenotypes to improve the selectivity and sensitivity of cell-based assays.
Collapse
Affiliation(s)
- Adam M Beitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Conrad G Oakes
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
28
|
Albakova Z, Mangasarova Y, Sapozhnikov A. Heat Shock Proteins in Lymphoma Immunotherapy. Front Immunol 2021; 12:660085. [PMID: 33815422 PMCID: PMC8012763 DOI: 10.3389/fimmu.2021.660085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy harnessing the host immune system for tumor destruction revolutionized oncology research and advanced treatment strategies for lymphoma patients. Lymphoma is a heterogeneous group of cancer, where the central roles in pathogenesis play immune evasion and dysregulation of multiple signaling pathways. Immunotherapy-based approaches such as engineered T cells (CAR T), immune checkpoint modulators and NK cell-based therapies are now in the frontline of lymphoma research. Even though emerging immunotherapies showed promising results in treating lymphoma patients, low efficacy and on-target/off-tumor toxicity are of a major concern. To address that issue it is suggested to look into the emerging role of heat shock proteins. Heat shock proteins (HSPs) showed to be highly expressed in lymphoma cells. HSPs are known for their abilities to modulate immune responses and inhibit apoptosis, which made their successful entry into cancer clinical trials. Here, we explore the role of HSPs in Hodgkin and Non-Hodgkin lymphoma and their involvement in CAR T therapy, checkpoint blockade and NK cell- based therapies. Understanding the role of HSPs in lymphoma pathogenesis and the ways how HSPs may enhance anti-tumor responses, may help in the development of more effective, specific and safe immunotherapy.
Collapse
Affiliation(s)
- Zarema Albakova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Alexander Sapozhnikov
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Immunology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
29
|
Wang X, Han JN, Zhang X, Ma YY, Lin Y, Wang H, Li DJ, Zheng TR, Wu FQ, Ye JW, Chen GQ. Reversible thermal regulation for bifunctional dynamic control of gene expression in Escherichia coli. Nat Commun 2021; 12:1411. [PMID: 33658500 PMCID: PMC7930084 DOI: 10.1038/s41467-021-21654-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/03/2021] [Indexed: 11/08/2022] Open
Abstract
Genetically programmed circuits allowing bifunctional dynamic regulation of enzyme expression have far-reaching significances for various bio-manufactural purposes. However, building a bio-switch with a post log-phase response and reversibility during scale-up bioprocesses is still a challenge in metabolic engineering due to the lack of robustness. Here, we report a robust thermosensitive bio-switch that enables stringent bidirectional control of gene expression over time and levels in living cells. Based on the bio-switch, we obtain tree ring-like colonies with spatially distributed patterns and transformer cells shifting among spherical-, rod- and fiber-shapes of the engineered Escherichia coli. Moreover, fed-batch fermentations of recombinant E. coli are conducted to obtain ordered assembly of tailor-made biopolymers polyhydroxyalkanoates including diblock- and random-copolymer, composed of 3-hydroxybutyrate and 4-hydroxybutyrate with controllable monomer molar fraction. This study demonstrates the possibility of well-organized, chemosynthesis-like block polymerization on a molecular scale by reprogrammed microbes, exemplifying the versatility of thermo-response control for various practical uses.
Collapse
Affiliation(s)
- Xuan Wang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jia-Ning Han
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Zhang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yue-Yuan Ma
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yina Lin
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huan Wang
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dian-Jie Li
- School of Physics, Peking University, Beijing, China
| | - Tao-Ran Zheng
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fu-Qing Wu
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jian-Wen Ye
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing, China.
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- MOE Key Lab of Industrial Biocatalysts, Department of Chemical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|