1
|
Xie Y, Liu X, Wu T, Luo Y. Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1174-1182. [PMID: 39821831 DOI: 10.1007/s11427-024-2677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/04/2024] [Indexed: 01/19/2025]
Abstract
Since their discovery, CRISPR/Cas systems have significantly expanded the genetic toolbox, aiding in the exploration and enhanced production of natural products across various microbes. Among these, class 2 CRISPR/Cas systems are simpler and more broadly used, but they frequently fail to function effectively in many Streptomyces strains. In this study, we present an engineered class 1 type I CRISPR/Cas system derived from Streptomyces avermitilis, which enables efficient gene editing in phylogenetically distant Streptomyces strains. Through a plasmid interference assay, we identified the effective protospacer adjacent motif as 5'-AAN-3'. Utilizing this system, we achieved targeted chromosomal deletions ranging from 8 bp to 100 kb, with efficiencies exceeding 92%. We further utilized this system to insert DNA fragments into different Streptomyces genomes, facilitating the heterologous expression of exogenous genes and the activation of endogenous natural product biosynthetic gene clusters. Overall, we established a type I CRISPR/Cas-based gene-editing methodology that significantly advances the exploration of Streptomyces, known for their rich natural product resources. This is the first report of a gene editing tool developed based on the endogenous class 1 type I CRISPR/Cas system in Streptomyces spp. Our work enriches the Streptomyces gene manipulation toolbox and advances the discovery of valuable natural products within these organisms.
Collapse
Affiliation(s)
- Yuhui Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tingting Wu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, 518071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Hu M, Ge J, Jiang Y, Sun X, Guo D, Gu Y. Advances and perspectives in genetic expression and operation for the oleaginous yeast Yarrowia lipolytica. Synth Syst Biotechnol 2024; 9:618-626. [PMID: 38784195 PMCID: PMC11109602 DOI: 10.1016/j.synbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
The utilization of industrial biomanufacturing has emerged as a viable and sustainable alternative to fossil-based resources for producing functional chemicals. Moreover, advancements in synthetic biology have created new opportunities for the development of innovative cell factories. Notably, Yarrowia lipolytica, an oleaginous yeast that is generally regarded as safe, possesses several advantageous characteristics, including the ability to utilize inexpensive renewable carbon sources, well-established genetic backgrounds, and mature genetic manipulation methods. Consequently, there is increasing interest in manipulating the metabolism of this yeast to enhance its potential as a biomanufacturing platform. Here, we reviewed the latest developments in genetic expression strategies and manipulation tools related to Y. lipolytica, particularly focusing on gene expression, chromosomal operation, CRISPR-based tool, and dynamic biosensors. The purpose of this review is to serve as a valuable reference for those interested in the development of a Y. lipolytica microbial factory.
Collapse
Affiliation(s)
- Mengchen Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jianyue Ge
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yaru Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Dongshen Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
3
|
Bernard A, Rossignol T, Park YK. Biotechnological approaches for producing natural pigments in yeasts. Trends Biotechnol 2024; 42:1644-1662. [PMID: 39019677 DOI: 10.1016/j.tibtech.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Pigments are widely used in the food, cosmetic, textile, pharmaceutical, and materials industries. Demand for natural pigments has been increasing due to concerns regarding potential health problems and environmental pollution from synthetic pigments. Microbial production of natural pigments is a promising alternative to chemical synthesis or extraction from natural sources. Here, we discuss yeasts as promising chassis for producing natural pigments with their advantageous traits such as genetic amenability, safety, rapid growth, metabolic diversity, and tolerance. Metabolic engineering strategies and optimizing strategies in downstream process to enhance production of natural pigments are thoroughly reviewed. We discuss the challenges, including expanding the range of natural pigments and improving their feasibility of industrial scale-up, as well as the potential strategies for future development.
Collapse
Affiliation(s)
- Armand Bernard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
4
|
Strzelecki P, Joly N, Hébraud P, Hoffmann E, Cech G, Kloska A, Busi F, Grange W. Enhanced Golden Gate Assembly: evaluating overhang strength for improved ligation efficiency. Nucleic Acids Res 2024; 52:e95. [PMID: 39340302 PMCID: PMC11514489 DOI: 10.1093/nar/gkae809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Molecular cloning, a routine yet essential technique, relies heavily on efficient ligation, which can be significantly improved using Golden Gate Assembly (GGA). A key component of GGA is the use of type IIS enzymes, which uniquely cleave downstream of their recognition sequences to generate various overhangs, including non-palindromic ones. Recent advancements in GGA include the development of newly engineered enzymes with enhanced activity. Additionally, high-throughput GGA assays, which allow for the simultaneous study of all possible overhangs, have identified optimal GGA substrates with high efficiencies and fidelities, greatly facilitating the design of complex assemblies. Interestingly, these assays reveal unexpected correlations between ligation efficiencies and overhang stabilities. One hypothesis for this observation is that newly hydrolyzed DNA fragments with strong overhangs can readily re-ligate, thereby slowing down the overall process. In this paper, we employ a combination of gel electrophoresis and numerical calculations to test this hypothesis, ultimately determining that it does not hold true under the conditions established by conventional GGA assays. Using an assembly of 10 fragments, we demonstrate that strong overhangs yield higher GGA efficiency, while weak overhangs result in lower efficiency. These findings enable us to propose optimal overhangs for efficient GGA assays, significantly increasing yield.
Collapse
Affiliation(s)
- Patryk Strzelecki
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS UMR 7504, Université de Strasbourg, 23, rue du Loess, 67000 Strasbourg, France
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Nicolas Joly
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Cité, 15 Rue Hélène Brion, 75013 Paris, France
| | - Pascal Hébraud
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS UMR 7504, Université de Strasbourg, 23, rue du Loess, 67000 Strasbourg, France
| | - Elise Hoffmann
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS UMR 7504, Université de Strasbourg, 23, rue du Loess, 67000 Strasbourg, France
| | - Grzegorz M Cech
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Florent Busi
- UFR Sciences du vivant, Université Paris Cité, 35 Rue Hélène Brion, 75013 Paris, France
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Cité, 4 rue Marie Andrée Lagroua Weill-Hallé, 75013 Paris, France
| | - Wilfried Grange
- Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS UMR 7504, Université de Strasbourg, 23, rue du Loess, 67000 Strasbourg, France
- UFR Sciences du vivant, Université Paris Cité, 35 Rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
5
|
Sun ML, Zou Z, Lin L, Ledesma-Amaro R, Wang K, Ji XJ. Systematic metabolic engineering of Yarrowia lipolytica for efficient production of phytohormone abscisic acid. Synth Syst Biotechnol 2024; 10:165-173. [PMID: 39552760 PMCID: PMC11564786 DOI: 10.1016/j.synbio.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Abscisic acid (ABA) is an important phytohormone with diverse applications. It currently relies on the fermentation of Botrytis cinerea, which suffers from limited availability of genetic engineering tools. Here, Yarrowia lipolytica was engineered to enable de novo biosynthesis of ABA. To overcome the rate-limiting P450 enzymes, systematic engineering strategies were implemented. Firstly, the dissolved oxygen was increased to boost the activity of P450 enzymes. Secondly, the expansion of endoplasmic reticulum was implemented to improve the functional expression of P450 enzymes. Lastly, rate-limiting enzymes were assembled to facilitate substrate trafficking. Moreover, ABA production was further improved by strengthening the mevalonate pathway. Finally, the engineered strain produced 1221.45 mg/L of ABA in a 5-L bioreactor. The study provides effective approaches for alleviating rate-limiting P450 enzymes to enhance ABA production and achieve competitive industrial-level ABA production in Y. lipolytica.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Ziyun Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| |
Collapse
|
6
|
Schick S, Müller T, Takors R, Sprenger GA. Stability of a Mutualistic Escherichia coli Co-Culture During Violacein Production Depends on the Kind of Carbon Source. Eng Life Sci 2024; 24:e202400025. [PMID: 39391271 PMCID: PMC11464148 DOI: 10.1002/elsc.202400025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
The L-tryptophan-derived purple pigment violacein (VIO) is produced in recombinant bacteria and studied for its versatile applications. Microbial synthetic co-cultures are gaining more importance as efficient factories for synthesizing high-value compounds. In this work, a mutualistic and cross-feeding Escherichia coli co-culture is metabolically engineered to produce VIO. The strains are genetically modified by auxotrophies in the tryptophan (TRP) pathway to enable a metabolic division of labor. Therein, one strain produces anthranilate (ANT) and the other transforms it into TRP and further to VIO. Population dynamics and stability depend on the choice of carbon source, impacting the presence and thus exchange of metabolites as well as overall VIO productivity. Four carbon sources (D-glucose, glycerol, D-galactose, and D-xylose) were compared. D-Xylose led to co-cultures which showed stable growth and VIO production, ANT-TRP exchange, and enhanced VIO production. Best titers were ∼126 mg L-1 in shake flasks. The study demonstrates the importance and advantages of a mutualistic approach in VIO synthesis and highlights the carbon source's role in co-culture stability and productivity. Transferring this knowledge into an up-scaled bioreactor system has great potential in improving the overall VIO production.
Collapse
Affiliation(s)
- Simon Schick
- Institute of MicrobiologyUniversity of StuttgartStuttgartGermany
| | - Tobias Müller
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | - Ralf Takors
- Institute of Biochemical EngineeringUniversity of StuttgartStuttgartGermany
| | | |
Collapse
|
7
|
Jiang W, Wang S, Avila P, Jørgensen TS, Yang Z, Borodina I. Combinatorial iterative method for metabolic engineering of Yarrowia lipolytica: Application for betanin biosynthesis. Metab Eng 2024; 86:78-88. [PMID: 39260817 DOI: 10.1016/j.ymben.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Combinatorial library-based metabolic engineering approaches allow lower cost and faster strain development. We developed a genetic toolbox EXPRESSYALI for combinatorial engineering of the oleaginous yeast Yarrowia lipolytica. The toolbox enables consecutive rounds of engineering, where up to three combinatorially assembled gene expression cassettes can be integrated into each yeast clone per round. The cassettes are integrated into distinct intergenic sites or an open reading frame of a target gene if a simultaneous gene knockout is desired. We demonstrate the application of the toolbox by optimizing the Y. lipolytica to produce the red beet color betanin via six consecutive rounds of genome editing and screening. The library size varied between 24 and 360. Library screening was facilitated by automated color-based colony picking. In the first round, betanin pathway genes were integrated, resulting in betanin titer of around 20 mg/L. Through the following five consecutive rounds, additional biosynthetic genes were integrated, and the precursor supply was optimized, resulting in a titer of 70 mg/L. Three beta-glucosidases were deleted to prevent betanin deglycosylation, which led to a betanin titer of 130 mg/L in a small scale and a titer of 1.4 g/L in fed-batch bioreactors. The EXPRESSYALI toolbox can facilitate metabolic engineering efforts in Y. lipolytica (available via AddGene Cat. Nr. 212682-212704, Addgene kit ID # 1000000245).
Collapse
Affiliation(s)
- Wei Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Shengbao Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Paulo Avila
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
8
|
Pyle JD, Lund SR, O'Toole KH, Saleh L. Virus-encoded glycosyltransferases hypermodify DNA with diverse glycans. Cell Rep 2024; 43:114631. [PMID: 39154342 DOI: 10.1016/j.celrep.2024.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Enzymatic modification of DNA nucleobases can coordinate gene expression, nuclease protection, or mutagenesis. We recently discovered a clade of phage-specific cytosine methyltransferase (MT) and 5-methylpyrimidine dioxygenase (5mYOX) enzymes that produce 5-hydroxymethylcytosine (5hmC) as a precursor for enzymatic hypermodifications on viral genomes. Here, we identify phage MT- and 5mYOX-associated glycosyltransferases (GTs) that catalyze linkage of diverse sugars to 5hmC nucleobase substrates. Metavirome mining revealed thousands of biosynthetic gene clusters containing enzymes with predicted roles in cytosine sugar hypermodification. We developed a platform for high-throughput screening of GT-containing pathways, relying on the Escherichia coli metabolome as a substrate pool. We successfully reconstituted several pathways and isolated diverse sugar modifications appended to cytosine, including mono-, di-, or tri-saccharides comprised of hexoses, N-acetylhexosamines, or heptose. These findings expand our knowledge of hypermodifications on nucleic acids and the origins of corresponding sugar-installing enzymes.
Collapse
Affiliation(s)
- Jesse D Pyle
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Sean R Lund
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Katherine H O'Toole
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Lana Saleh
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
9
|
Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A. Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 2024; 40:270. [PMID: 39030429 DOI: 10.1007/s11274-024-04076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Bacterial pigments stand out as exceptional natural bioactive compounds with versatile functionalities. The pigments represent molecules from distinct chemical categories including terpenes, terpenoids, carotenoids, pyridine, pyrrole, indole, and phenazines, which are synthesized by diverse groups of bacteria. Their spectrum of physiological activities encompasses bioactive potentials that often confer fitness advantages to facilitate the survival of bacteria amid challenging environmental conditions. A large proportion of such pigments are produced by bacterial pathogens mostly as secondary metabolites. Their multifaceted properties augment potential applications in biomedical, food, pharmaceutical, textile, paint industries, bioremediation, and in biosensor development. Apart from possessing a less detrimental impact on health with environmentally beneficial attributes, tractable and scalable production strategies render bacterial pigments a sustainable option for novel biotechnological exploration for untapped discoveries. The review offers a comprehensive account of physiological role of pigments from bacterial pathogens, production strategies, and potential applications in various biomedical and biotechnological fields. Alongside, the prospect of combining bacterial pigment research with cutting-edge approaches like nanotechnology has been discussed to highlight future endeavours.
Collapse
Affiliation(s)
- Kusumita Acharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Swarna Shaw
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | | | - Shatarupa Biswas
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India
| | - Suman Bhandary
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| | - Arijit Bhattacharya
- AMR-Research Laboratory, Department of Biological Sciences, Adamas University, Barasat-Barrackpore Rd, Kolkata, 700126, India.
| |
Collapse
|
10
|
Jiang D, Yang M, Chen K, Jiang W, Zhang L, Ji XJ, Jiang J, Lu L. Exploiting synthetic biology platforms for enhanced biosynthesis of natural products in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 399:130614. [PMID: 38513925 DOI: 10.1016/j.biortech.2024.130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
With the rapid development of synthetic biology, researchers can design, modify, or even synthesize microorganisms de novo, and microorganisms endowed with unnatural functions can be considered "artificial life" and facilitate the development of functional products. Based on this concept, researchers can solve critical problems related to the insufficient supply of natural products, such as low yields, long production cycles, and cumbersome procedures. Due to its superior performance and unique physiological and biochemical characteristics, Yarrowia lipolytica is a favorable chassis cell used for green biomanufacturing by numerous researchers. This paper mainly reviews the development of synthetic biology techniques for Y. lipolytica and summarizes the recent research progress on the synthesis of natural products in Y. lipolytica. This review will promote the continued innovative development of Y. lipolytica by providing theoretical guidance for research on the biosynthesis of natural products.
Collapse
Affiliation(s)
- Dahai Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Manqi Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Kai Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Wenxuan Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Liangliang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jianchun Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, People's Republic of China
| | - Liming Lu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China.
| |
Collapse
|
11
|
Boob AG, Chen J, Zhao H. Enabling pathway design by multiplex experimentation and machine learning. Metab Eng 2024; 81:70-87. [PMID: 38040110 DOI: 10.1016/j.ymben.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
The remarkable metabolic diversity observed in nature has provided a foundation for sustainable production of a wide array of valuable molecules. However, transferring the biosynthetic pathway to the desired host often runs into inherent failures that arise from intermediate accumulation and reduced flux resulting from competing pathways within the host cell. Moreover, the conventional trial and error methods utilized in pathway optimization struggle to fully grasp the intricacies of installed pathways, leading to time-consuming and labor-intensive experiments, ultimately resulting in suboptimal yields. Considering these obstacles, there is a pressing need to explore the enzyme expression landscape and identify the optimal pathway configuration for enhanced production of molecules. This review delves into recent advancements in pathway engineering, with a focus on multiplex experimentation and machine learning techniques. These approaches play a pivotal role in overcoming the limitations of traditional methods, enabling exploration of a broader design space and increasing the likelihood of discovering optimal pathway configurations for enhanced production of molecules. We discuss several tools and strategies for pathway design, construction, and optimization for sustainable and cost-effective microbial production of molecules ranging from bulk to fine chemicals. We also highlight major successes in academia and industry through compelling case studies.
Collapse
Affiliation(s)
- Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junyu Chen
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
| |
Collapse
|
12
|
Ganesan V, Monteiro L, Pedada D, Stohr A, Blenner M. High-Efficiency Multiplexed Cytosine Base Editors for Natural Product Synthesis in Yarrowia lipolytica. ACS Synth Biol 2023; 12:3082-3091. [PMID: 37768786 DOI: 10.1021/acssynbio.3c00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Yarrowia lipolytica is an industrial host with a high fatty acid flux. Even though CRISPR-based tools have accelerated its metabolic engineering, there remains a need to develop tools for rapid multiplexed strain engineering to accelerate the design-build-test-learn cycle. Base editors have the potential to perform high-efficiency multiplexed gene editing because they do not depend upon double-stranded DNA breaks. Here, we identified that base editors are less toxic than CRISPR-Cas9 for multiplexed gene editing. We increased the editing efficiency by removing the extra nucleotides between tRNA and gRNA and increasing the base editor and gRNA copy number in a Ku70 deficient strain. We achieved five multiplexed gene editing in the ΔKu70 strain at 42% efficiency. Initially, we were unsuccessful at performing multiplexed base editing in NHEJ competent strain; however, we increased the editing efficiency by using a co-selection approach to enrich base editing events. Base editor-mediated canavanine gene (CAN1) knockout provided resistance to the import of canavanine, which enriched the base editing in other unrelated genetic loci. We performed multiplexed editing of up to three genes at 40% efficiency in the Po1f strain through the CAN1 co-selection approach. Finally, we demonstrated the application of multiplexed cytosine base editor for rapid multigene knockout to increase naringenin production by 2-fold from glucose or glycerol as a carbon source.
Collapse
Affiliation(s)
- Vijaydev Ganesan
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lummy Monteiro
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dheeraj Pedada
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Anthony Stohr
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mark Blenner
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
13
|
Huang C, Chu X, Hui W, Xie C, Xu X. Study on extraction and characterization of new antibiotics violacein from engineered Escherichia coli VioABCDE-SD. Biotechnol Appl Biochem 2023; 70:1582-1596. [PMID: 36898961 DOI: 10.1002/bab.2454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
To better understand the characteristic properties of violacein biosynthesized by engineered Escherichia coli VioABCDE-SD, a convenient and simplified method was designed to extract violacein and its stability, antimicrobial activity, and antioxidant capacity were analyzed. Different from the traditional extraction methods, our new method is easier and less time consuming and can directly obtain violacein dry powder product with a higher extraction rate. Low temperature, dark condition, neutral pH, reducing agents, Ba2+ , Mn2+ , Ni2+ , Co2+ , and some food additives of sucrose, xylose, and glucose were conducive to maintaining its stability. The violacein also exhibited surprisingly high bacteriostatic action against Gram-positive Bacillus subtilis, Deinococcus radiodurans R1, and Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, but no effect on E. coli. The violacein of VioABCDE-SD exhibited strong antioxidant activity, with the scavenging rate of 1,1-diphenyl-2-picrylhydrazyl free radicals reaching 60.33%, the scavenging efficiency of hydroxyl radical scavenging reaching 56.34%, and the total antioxidant capacity reaching 0.63 U/mL. Violacein from VioABCDE-SD can be synthesized directionally with better stability, antibacterial, and antioxidant properties compared with that from the original strain Janthinobacterium sp. B9-8. Therefore, our study indicated that violacein from engineered E. coli VioABCDE-SD was a kind of new antibiotic with potential biological activities, which may have potential utility in multiple areas such as pharmacological, cosmetics, and healthy food industries.
Collapse
Affiliation(s)
- Chunyan Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Xiaoting Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| |
Collapse
|
14
|
Amorós Morales LC, Marchesini A, Gómez Bergna SM, García Fallit M, Tongiani SE, Vásquez L, Ferrelli ML, Videla-Richardson GA, Candolfi M, Romanowski V, Pidre ML. PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms. Viruses 2023; 15:1984. [PMID: 37896762 PMCID: PMC10610652 DOI: 10.3390/v15101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Baculoviruses are insect-specific pathogens widely used in biotechnology. In particular, the Autographa californica nucleopolyhedrovirus (AcMNPV) has been exploited as a platform for bio-inputs production. This is why the improvement of the technologies used for the production of recombinant baculoviruses takes on particular relevance. To achieve this goal, we developed a highly versatile baculoviral transfer vector generation system called PluriBAC. The PluriBAC system consists of three insert entry levels using Golden Gate assembly technology. The wide availability of vectors and sticky ends allows enough versatility to combine more than four different promoters, genes of interest, and terminator sequences. Here, we report not only the rational design of the PluriBAC system but also its use for the generation of baculoviral reporter vectors applied to different fields of biotechnology. We demonstrated that recombinant AcMNPV baculoviruses generated with the PluriBAC system were capable of infecting Spodoptera frugiperda larvae. On the other hand, we found that the recombinant budded virions (BV) generated using our system were capable of transducing different types of tumor and normal cells both in vitro and in vivo. Our findings suggest that the PluriBAC system could constitute a versatile tool for the generation of insecticide and gene therapy vectors.
Collapse
Affiliation(s)
- Leslie C. Amorós Morales
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Abril Marchesini
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Santiago M. Gómez Bergna
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías García Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Silvana E. Tongiani
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Larisa Vásquez
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Guillermo A. Videla-Richardson
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Ciudad Autónoma de Buenos Aires C1121A6B, Argentina;
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías L. Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| |
Collapse
|
15
|
Zhu DL, Guo Y, Ma BC, Lin YQ, Wang HJ, Gao CX, Liu MQ, Zhang NX, Luo H, Hui CY. Pb(II)-inducible proviolacein biosynthesis enables a dual-color biosensor toward environmental lead. Front Microbiol 2023; 14:1218933. [PMID: 37577420 PMCID: PMC10413148 DOI: 10.3389/fmicb.2023.1218933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
With the rapid development of synthetic biology, various whole-cell biosensors have been designed as valuable biological devices for the selective and sensitive detection of toxic heavy metals in environmental water. However, most proposed biosensors are based on fluorescent and bioluminescent signals invisible to the naked eye. The development of visible pigment-based biosensors can address this issue. The pbr operon from Klebsiella pneumoniae is selectively induced by bioavailable Pb(II). In the present study, the proviolacein biosynthetic gene cluster was transcriptionally fused to the pbr Pb(II) responsive element and introduced into Escherichia coli. The resultant biosensor responded to Pb(II) in a time- and dose-dependent manner. After a 5-h incubation with Pb(II), the brown pigment was produced, which could be extracted into n-butanol. Extra hydrogen peroxide treatment during n-butanol extract resulted in the generation of a stable green pigment. An increased brown signal was observed upon exposure to lead concentrations above 2.93 nM, and a linear regression was fitted from 2.93 to 3,000 nM. Extra oxidation significantly decreased the difference between parallel groups. The green signal responded to as low as 0.183 nM Pb(II), and a non-linear regression was fitted in a wide concentration range from 0.183 to 3,000 nM. The specific response toward Pb(II) was not interfered with by various metals except for Cd(II) and Hg(II). The PV-based biosensor was validated in monitoring bioaccessible Pb(II) spiked into environmental water. The complex matrices did not influence the regression relationship between spiked Pb(II) and the dual-color signals. Direct reading with the naked eye and colorimetric quantification enable the PV-based biosensor to be a dual-color and low-cost bioindicator for pollutant heavy metal.
Collapse
Affiliation(s)
- De-long Zhu
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yan Guo
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Bing-chan Ma
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-qin Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hai-jun Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chao-xian Gao
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Ming-qi Liu
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Nai-xing Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hao Luo
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chang-ye Hui
- School of Public Health, Guangdong Medical University, Dongguan, China
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
16
|
Nemer G, Louka N, Rabiller Blandin P, Maroun RG, Vorobiev E, Rossignol T, Nicaud JM, Guénin E, Koubaa M. Purification of Natural Pigments Violacein and Deoxyviolacein Produced by Fermentation Using Yarrowia lipolytica. Molecules 2023; 28:4292. [PMID: 37298767 PMCID: PMC10254742 DOI: 10.3390/molecules28114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Violacein and deoxyviolacein are bis-indole pigments synthesized by a number of microorganisms. The present study describes the biosynthesis of a mixture of violacein and deoxyviolacein using a genetically modified Y. lipolytica strain as a production chassis, the subsequent extraction of the intracellular pigments, and ultimately their purification using column chromatography. The results show that the optimal separation between the pigments occurs using an ethyl acetate/cyclohexane mixture with different ratios, first 65:35 until both pigments were clearly visible and distinguishable, then 40:60 to create a noticeable separation between them and recover the deoxyviolacein, and finally 80:20, which allows the recovery of the violacein. The purified pigments were then analyzed by thin-layer chromatography and nuclear magnetic resonance.
Collapse
Affiliation(s)
- Georgio Nemer
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Nicolas Louka
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Paul Rabiller Blandin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Richard G. Maroun
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Eugène Vorobiev
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (T.R.); (J.-M.N.)
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (T.R.); (J.-M.N.)
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Mohamed Koubaa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| |
Collapse
|
17
|
Xu S, Gao S, An Y. Research progress of engineering microbial cell factories for pigment production. Biotechnol Adv 2023; 65:108150. [PMID: 37044266 DOI: 10.1016/j.biotechadv.2023.108150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Pigments are widely used in people's daily life, such as food additives, cosmetics, pharmaceuticals, textiles, etc. In recent years, the natural pigments produced by microorganisms have attracted increased attention because these processes cannot be affected by seasons like the plant extraction methods, and can also avoid the environmental pollution problems caused by chemical synthesis. Synthetic biology and metabolic engineering have been used to construct and optimize metabolic pathways for production of natural pigments in cellular factories. Building microbial cell factories for synthesis of natural pigments has many advantages, including well-defined genetic background of the strains, high-density and rapid culture of cells, etc. Until now, the technical means about engineering microbial cell factories for pigment production and metabolic regulation processes have not been systematically analyzed and summarized. Therefore, the studies about construction, modification and regulation of synthetic pathways for microbial synthesis of pigments in recent years have been reviewed, aiming to provide an up-to-date summary of engineering strategies for microbial synthesis of natural pigments including carotenoids, melanins, riboflavins, azomycetes and quinones. This review should provide new ideas for further improving microbial production of natural pigments in the future.
Collapse
Affiliation(s)
- Shumin Xu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resources Mining and Molecular Breeding, Shenyang, China; Liaoning Provincial Key Laboratory of Agricultural Biotechnology, Shenyang, China.
| |
Collapse
|
18
|
Lyakhovchenko NS, Travkin VM, Senchenkov VY, Solyanikova IP. Bacterial Violacein: Properties, Biosynthesis and Application Prospects. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
19
|
Singh HB, Kang MK, Kwon M, Kim SW. Developing methylotrophic microbial platforms for a methanol-based bioindustry. Front Bioeng Biotechnol 2022; 10:1050740. [PMID: 36507257 PMCID: PMC9727194 DOI: 10.3389/fbioe.2022.1050740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
Methanol, a relatively cheap and renewable single-carbon feedstock, has gained considerable attention as a substrate for the bio-production of commodity chemicals. Conventionally produced from syngas, along with emerging possibilities of generation from methane and CO2, this C1 substrate can serve as a pool for sequestering greenhouse gases while supporting a sustainable bio-economy. Methylotrophic organisms, with the inherent ability to use methanol as the sole carbon and energy source, are competent candidates as platform organisms. Accordingly, methanol bioconversion pathways have been an attractive target for biotechnological and bioengineering interventions in developing microbial cell factories. This review summarizes the recent advances in methanol-based production of various bulk and value-added chemicals exploiting the native and synthetic methylotrophic organisms. Finally, the current challenges and prospects of streamlining these methylotrophic platforms are discussed.
Collapse
Affiliation(s)
- Hawaibam Birla Singh
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Kang
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Moonhyuk Kwon
- Division of Life Science, ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju, South Korea,*Correspondence: Moonhyuk Kwon, ; Seon-Won Kim,
| |
Collapse
|
20
|
Hui CY, Guo Y, Zhu DL, Li LM, Yi J, Zhang NX. Metabolic engineering of the violacein biosynthetic pathway toward a low-cost, minimal-equipment lead biosensor. Biosens Bioelectron 2022; 214:114531. [PMID: 35810697 DOI: 10.1016/j.bios.2022.114531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
Metabolic engineered bacteria have been successfully employed to produce various natural colorants, which are expected to be used as the visually recognizable signals to develop mini-equipment biological devices for monitoring toxic heavy metals. The violacein biosynthetic pathway has been reconstructed in Escherichia coli (E. coli). Here the successful production of four violacein derivatives was achieved by integrating metabolic engineering and synthetic biology. Lead binding to the metalloregulator enables whole-cell colorimetric biosensors capable of assessing bioavailable lead. Deoxyviolacein-derived signal showed the most satisfied biosensing properties among prodeoxyviolacein (green), proviolacein (blue), deoxyviolacein (purple), and violacein (navy). The limit of detection (LOD) of pigment-based biosensors was 2.93 nM Pb(II), which is lower than that of graphite furnace atomic absorption spectrometry. Importantly, a good linear dose-response model in a wide dose range (2.93-6000 nM) was obtained in a non-cytotoxic deoxyviolacein-based biosensor, which was significantly better than cytotoxic violacein-based biosensor (2.93-750 nM). Among ten metal ions, only Cd(II) and Hg(II) exerted a slight influence on the response of the deoxyviolacein-based biosensor toward Pb(II). The deoxyviolacein-based biosensor was validated in detecting bioaccessible Pb(II) in environmental samples. Factors such as low cost and minimal-equipment requirement make this biosensor a suitable biological device for monitoring toxic lead in the environment.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - De-Long Zhu
- School of Public Health , Guangdong Medical University, Dongguan, 523808, China
| | - Li-Mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Nai-Xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| |
Collapse
|
21
|
Lee J, Bae J, Youn DY, Ahn J, Hwang WT, Bae H, Bae PK, Kim ID. Violacein-embedded nanofiber filters with antiviral and antibacterial activities. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 444:136460. [PMID: 35463870 PMCID: PMC9017092 DOI: 10.1016/j.cej.2022.136460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/09/2023]
Abstract
Most respiratory masks are made of fabrics, which only capture the infectious virus carriers into the matrix. However, these contagious viruses stay active for a long duration (∼7 days) within the fabric matrix possibly inducing post-contact transmissions. Moreover, conventional masks are vulnerable to bacterial growth with prolonged exposure to exhaled breaths. Herein, we combined violacein, a naturally-occurring antimicrobial agent, with porous nanofiber membranes to develop a series of functional filters that autonomously sterilizes viruses and bacteria. The violacein-embedded membrane inactivates viruses within 4 h (99.532 % reduction for influenza and 99.999 % for human coronavirus) and bacteria within 2 h (75.5 % reduction). Besides, its nanofiber structure physically filters out the nanoscale (<0.8 μm) and micron-scale (0.8 μm - 3 μm) particulates, providing high filtration efficiencies (99.7 % and 100 % for PM 1.0 and PM 10, respectively) with long-term stability (for 25 days). In addition, violacein provides additional UV-resistant property, which protects the skin from sunlight. The violacein-embedded membrane not only proved the sterile efficacy of microbe extracted pigments for biomedical products but also provided insights to advance the personal protective equipment (PPE) to fight against contagious pathogens.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehyeong Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA
| | - Doo-Young Youn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Tae Hwang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyunae Bae
- White BIO Technology, CJ CheilJedang Corporation, 55 Gwanggyo-ro, Suwon-si 16495, Gyeongggi-do, Republic of Korea
| | - Pan Kee Bae
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9246-9261. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Terpenes are a large class of secondary metabolites with diverse structures and functions that are commonly used as valuable raw materials in food, cosmetics, and medicine. With the development of metabolic engineering and emerging synthetic biology tools, these important terpene compounds can be sustainably produced using different microbial chassis. Currently, yeasts such as Saccharomyces cerevisiae and Yarrowia lipolytica have received extensive attention as potential hosts for the production of terpenes due to their clear genetic background and endogenous mevalonate pathway. In this review, we summarize the natural terpene biosynthesis pathways and various engineering strategies, including enzyme engineering, pathway engineering, and cellular engineering, to further improve the terpene productivity and strain stability in these two widely used yeasts. In addition, the future prospects of yeast-based terpene production are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liuwei Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
23
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ, Huang H. Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnol Adv 2022; 59:107984. [DOI: 10.1016/j.biotechadv.2022.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022]
|
24
|
Detection of environmental pollutant cadmium in water using a visual bacterial biosensor. Sci Rep 2022; 12:6898. [PMID: 35477977 PMCID: PMC9046199 DOI: 10.1038/s41598-022-11051-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Cadmium (Cd) contamination in water and soil is considered an environmental pollutant. Food crops can absorb and accumulate bioavailable Cd. Continuous monitoring of Cd levels in the environment can minimize exposure and harm to humans. Visual pigments have been demonstrated to have great potential in the development of minimal-equipment biosensors. In the present study, a metabolically engineered bacterium was employed to produce blue-purple pigment violacein responsive to toxic Cd(II). The high stability of the bisindole pigment contributed to determining the violacein at wavelengths of 578 nm. Visual and quantifiable signals could be captured after a 1.5-h Cd(II) exposure. This novel biosensor showed significantly stronger responses to Cd(II) than to other heavy metals including Pb(II), Zn(II), and Hg(II). A significant increase in pigment signal was found to respond to as low as 0.049 μM Cd(II). The naked eye can detect the color change when violacein-based biosensor is exposed to 25 μM Cd(II). A high-throughput method for rapid determination of soluble Cd(II) in environmental water was developed using a colorimetric microplate.
Collapse
|
25
|
Functional characterization of a novel violacein biosynthesis operon from Janthinobacterium sp. B9-8. Appl Microbiol Biotechnol 2022; 106:2903-2916. [PMID: 35445857 DOI: 10.1007/s00253-022-11929-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Violacein is a secondary metabolite mainly produced by Gram-negative bacteria that is formed from tryptophan by five enzymes encoded by a single operon. It is a broad-spectrum antibacterial pigment with various important biological activities such as anti-tumor, antiviral, and antioxidative effects. The newly discovered violacein operon vioABCDE was identified in the genome of the extremophile Janthinobacterium sp. B9-8. The key enzyme-encoding genes were cloned to construct the multigene coexpression plasmids pET-vioAB and pRSF-vioCDE. The violacein biosynthesis pathway was heterologously introduced into engineered Escherichia coli VioABCDE and VioABCDE-SD. The factors affecting violacein production, including temperature, pH, inoculum size, carbon and nitrogen source, precursor, and inducers were investigated. The violacein titer of VioABCDE-SD reached 107 mg/L in a two-stage fermentation process, representing a 454.4% increase over the original strain. The violacein operon from B9-8 provides a new microbial gene source for the analysis of the violacein synthesis mechanism, and the constructed engineering E. coli strains lay a foundation for the efficient and rapid synthesis of other natural products.Key points• The newly discovered violacein operon vioABCDE was identified in the genome of the extremophile Janthinobacterium sp. B9-8.• The violacein synthesis pathway was reconstructed in E. coli using two compatible plasmids.• A two-stage fermentation process was optimized for improved violacein accumulation.
Collapse
|
26
|
Development of Methylorubrum extorquens AM1 as a promising platform strain for enhanced violacein production from co-utilization of methanol and acetate. Metab Eng 2022; 72:150-160. [PMID: 35301124 DOI: 10.1016/j.ymben.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Violacein, a blue-violet compound with a wide range of beneficial bioactivities, is an attractive product for microbial production. Currently, violacein production has been demonstrated in several sugar heterotrophs through metabolic engineering; however, the cost of production remains an obstacle for business ventures. To address this issue, the development of host strains that can utilize inexpensive alternative substrates to reduce production costs would enable the commercialization of violacein. In this study, we engineered a facultative methylotroph, Methylorubrum extorquens AM1, to develop a methanol-based platform for violacein production. By optimizing expression vectors as well as inducer concentrations, 11.7 mg/L violacein production was first demonstrated using methanol as the sole substrate. Considering that unidentified bottlenecks for violacein biosynthesis in the shikimate pathway of M. extorquens AM1 would be difficult to address using generic metabolic engineering approaches, random mutagenesis and site-directed mutagenesis were implemented, and a 2-fold improvement in violacein production was achieved. Finally, by co-utilization of methanol and acetate, a remarkable enhancement of violacein production to 118 mg/L was achieved. Our results establish a platform strain for violacein production from non-sugar feedstocks, which may contribute to the development of an economically efficient large-scale fermentation system for violacein production.
Collapse
|
27
|
Li YW, Yang CL, Shen Q, Peng QQ, Guo Q, Nie ZK, Sun XM, Shi TQ, Ji XJ, Huang H. YALIcloneNHEJ: An Efficient Modular Cloning Toolkit for NHEJ Integration of Multigene Pathway and Terpenoid Production in Yarrowia lipolytica. Front Bioeng Biotechnol 2022; 9:816980. [PMID: 35308823 PMCID: PMC8924588 DOI: 10.3389/fbioe.2021.816980] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022] Open
Abstract
Non-homologous end-joining (NHEJ)-mediated random integration in Yarrowia lipolytica has been demonstrated to be an effective strategy for screening hyperproducer strains. However, there was no multigene assembly method applied for NHEJ integration, which made it challenging to construct and integrate metabolic pathways. In this study, a Golden Gate modular cloning system (YALIcloneNHEJ) was established to develop a robust DNA assembly platform in Y. lipolytica. By optimizing key factors, including the amounts of ligase and the reaction cycles, the assembly efficiency of 4, 7, and 10 fragments reached up to 90, 75, and 50%, respectively. This YALIcloneNHEJ system was subsequently applied for the overproduction of the sesquiterpene (-)-α-bisabolol by constructing a biosynthesis route and enhancing the flux in the mevalonate pathway. The resulting strain produced 4.4 g/L (-)-α-bisabolol, the highest titer reported in yeast to date. Our study expands the toolbox of metabolic engineering and is expected to enable a highly efficient production of various terpenoids.
Collapse
Affiliation(s)
- Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cai-Ling Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qi Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qi Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhi-Kui Nie
- Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Tian-Qiong Shi, ; Xiao-Jun Ji,
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Tian-Qiong Shi, ; Xiao-Jun Ji,
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
28
|
Sun ML, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Advancing Yarrowia lipolytica as a superior biomanufacturing platform by tuning gene expression using promoter engineering. BIORESOURCE TECHNOLOGY 2022; 347:126717. [PMID: 35031438 DOI: 10.1016/j.biortech.2022.126717] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Yarrowia lipolytica is recognized as an excellent non-conventional yeast in the field of biomanufacturing, where it is used as a host to produce oleochemicals, terpenes, organic acids, polyols and recombinant proteins. Consequently, metabolic engineering of this yeast is becoming increasingly popular to advance it as a superior biomanufacturing platform, of which promoters are the most basic elements for tuning gene expression. Endogenous promoters of Yarrowia lipolytica were reviewed, which are the basis for promoter engineering. The engineering strategies, such as hybrid promoter engineering, intron enhancement promoter engineering, and transcription factor-based inducible promoter engineering are described. Additionally, the applications of Yarrowia lipolytica promoter engineering to rationally reconstruct biosynthetic gene clusters and improve the genome-editing efficiency of the CRISPR-Cas systems were reviewed. Finally, research needs and future directions for promoter engineering are also discussed in this review.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
29
|
Seo SO, Jin YS. Next-Generation Genetic and Fermentation Technologies for Safe and Sustainable Production of Food Ingredients: Colors and Flavorings. Annu Rev Food Sci Technol 2022; 13:463-488. [DOI: 10.1146/annurev-food-052720-012228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A growing human population is a significant issue in food security owing to the limited land and resources available for agricultural food production. To solve these problems, sustainable food manufacturing processes and the development of alternative foods and ingredients are needed. Metabolic engineering and synthetic biology can help solve the food security issue and satisfy the demand for alternative food production. Bioproduction of food ingredients by microbial fermentation is a promising method to replace current manufacturing processes, such as extraction from natural materials and chemical synthesis, with more ecofriendly and sustainable operations. This review highlights successful examples of bioproduction for food additives by engineered microorganisms, with an emphasis on colorants and flavors that are extensively used in the food industry. Recent strain engineering developments and fermentation strategies for producing selected food colorants and flavors are introduced with discussions on the current status and future perspectives. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Seung-Oh Seo
- Department of Food Science and Nutrition, Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
30
|
Yan C, Yu W, Zhai X, Yao L, Guo X, Gao J, Zhou YJ. Characterizing and engineering promoters for metabolic engineering of Ogataea polymorpha. Synth Syst Biotechnol 2022; 7:498-505. [PMID: 34977394 PMCID: PMC8685918 DOI: 10.1016/j.synbio.2021.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Bio-manufacturing via microbial cell factory requires large promoter library for fine-tuned metabolic engineering. Ogataea polymorpha, one of the methylotrophic yeasts, possesses advantages in broad substrate spectrum, thermal-tolerance, and capacity to achieve high-density fermentation. However, a limited number of available promoters hinders the engineering of O. polymorpha for bio-productions. Here, we systematically characterized native promoters in O. polymorpha by both GFP fluorescence and fatty alcohol biosynthesis. Ten constitutive promoters (PPDH, PPYK, PFBA, PPGM, PGLK, PTRI, PGPI, PADH1, PTEF1 and PGCW14) were obtained with the activity range of 13%–130% of the common promoter PGAP (the promoter of glyceraldehyde-3-phosphate dehydrogenase), among which PPDH and PGCW14 were further verified by biosynthesis of fatty alcohol. Furthermore, the inducible promoters, including ethanol-induced PICL1, rhamnose-induced PLRA3 and PLRA4, and a bidirectional promoter (PMal-PPer) that is strongly induced by sucrose, further expanded the promoter toolbox in O. polymorpha. Finally, a series of hybrid promoters were constructed via engineering upstream activation sequence (UAS), which increased the activity of native promoter PLRA3 by 4.7–10.4 times without obvious leakage expression. Therefore, this study provided a group of constitutive, inducible, and hybrid promoters for metabolic engineering of O. polymorpha, and also a feasible strategy for rationally regulating the promoter strength.
Collapse
Affiliation(s)
- Chunxiao Yan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, PR China.,Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| |
Collapse
|
31
|
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, Fávaro WJ, Ferreira-Halder CV, Justo GZ, Tasic L. Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 2021; 37:151. [PMID: 34398340 DOI: 10.1007/s11274-021-03120-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.
Collapse
Affiliation(s)
- Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil. .,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Ignasio R Berti
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Danijela Stanisic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Laboratory of Tropical Diseases, Department of Genetic, Evolution and Bioagents , Biology Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmen V Ferreira-Halder
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Departamento de Ciências Farmacêuticas (Campus Diadema) e Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo (UNIFESP), 3 de Maio, 100, São Paulo, SP, 04044-020, Brazil.
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
32
|
Yarrowia lipolytica Strains and Their Biotechnological Applications: How Natural Biodiversity and Metabolic Engineering Could Contribute to Cell Factories Improvement. J Fungi (Basel) 2021; 7:jof7070548. [PMID: 34356927 PMCID: PMC8307478 DOI: 10.3390/jof7070548] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
Among non-conventional yeasts of industrial interest, the dimorphic oleaginous yeast Yarrowia lipolytica appears as one of the most attractive for a large range of white biotechnology applications, from heterologous proteins secretion to cell factories process development. The past, present and potential applications of wild-type, traditionally improved or genetically modified Yarrowia lipolytica strains will be resumed, together with the wide array of molecular tools now available to genetically engineer and metabolically remodel this yeast. The present review will also provide a detailed description of Yarrowia lipolytica strains and highlight the natural biodiversity of this yeast, a subject little touched upon in most previous reviews. This work intends to fill this gap by retracing the genealogy of the main Yarrowia lipolytica strains of industrial interest, by illustrating the search for new genetic backgrounds and by providing data about the main publicly available strains in yeast collections worldwide. At last, it will focus on exemplifying how advances in engineering tools can leverage a better biotechnological exploitation of the natural biodiversity of Yarrowia lipolytica and of other yeasts from the Yarrowia clade.
Collapse
|
33
|
Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ. Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin. J Biol Eng 2021; 15:10. [PMID: 33706806 PMCID: PMC7948353 DOI: 10.1186/s13036-021-00262-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss violacein and prodigiosin, two chromogenic bacterial secondary metabolites that have diverse biological activities. Although both compounds were "discovered" more than seven decades ago, interest into their biological applications has grown in the last two decades, particularly driven by their antimicrobial and anticancer properties. These topics will be discussed in the first half of this review. The latter half delves into the current efforts of groups to produce these two compounds. This includes in both their native bacterial hosts and heterogeneously in other bacterial hosts, including discussing some of the caveats related to the yields reported in the literature, and some of the synthetic biology techniques employed in this pursuit.
Collapse
Affiliation(s)
- Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sungbin Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Kyoung-Hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea.
| | - Jin I Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Wonju, Gangwon-do, South Korea.
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|