1
|
Hong Y, Lertphadungkit P, Lv Y, Xu P. Recent advances in microbial synthesis of polyphenols. Curr Opin Biotechnol 2025; 93:103308. [PMID: 40328180 DOI: 10.1016/j.copbio.2025.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 05/08/2025]
Abstract
Polyphenols are plant-derived secondary metabolites known for their antioxidants, anti-inflammatory, and antimicrobial properties, with flavonoids being the most structurally diverse and medically relevant subclass. Traditional plant extraction is limited by low abundance and difficulty in separating from analogs. Microbial synthesis has emerged as an alternative method to complement plant extraction. This review summarizes recent advancements in microbe-sourced polyphenols, especially flavonoids and related derivatives. Key strategies, including modular design, CRISPR-based optimization, co-culture, and dynamic regulatory systems, have been employed to enhance microbial factory production efficiency. Emerging artificial intelligence-driven computational modeling and pathway optimization hold significant promise for enhancing polyphenol biosynthesis. Taken together, microbial synthesis offers a scalable and sustainable alternative to plant extraction. The cost-effective production of polyphenols will expand their applications in pharmaceuticals, nutraceuticals, and food industry.
Collapse
Affiliation(s)
- Yuxiang Hong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China; The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 320002, Israel
| | - Pornpatsorn Lertphadungkit
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China; Center for Lipid Engineering, Muyuan Laboratory, Zhengzhou, Henan 450016, China
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China; Center for Lipid Engineering, Muyuan Laboratory, Zhengzhou, Henan 450016, China.
| |
Collapse
|
2
|
Yi S, Kim E, Yang S, Kim G, Bae D, Son S, Jeong B, Ji JS, Lee HH, Hahn J, Cha S, Yoon YJ, Lee NK. Direct Quantification of Protein-Protein Interactions in Living Bacterial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414777. [PMID: 40125621 PMCID: PMC12097012 DOI: 10.1002/advs.202414777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Quantitative measurement of protein-protein interactions (PPIs) within living cells is vital for understanding their cellular functions at the molecular level and for applications in synthetic biology, protein engineering, and drug discovery. Although several techniques have been developed to measure PPI strength in vitro, direct measurement of PPI strength within living bacterial cells remains challenging. Here, a method for quantitatively measuring PPIs by determining the dissociation constant (Kd) in living E. coli using fluorescence resonance energy transfer (FRET), a technique termed KD-FRET, is reported. It is found that the direct excitation of the acceptor fluorophore among spectral crosstalks primarily results in non-interacting pairs exhibiting an apparent Kd, leading to false-positive signals. KD-FRET proves highly effective in quantifying various PPI Kd values, including both heterologous and homologous pairs. Moreover, KD-FRET enables the quantification of Kd for interaction pairs that are unmeasurable in vitro owing to their instability under standard buffer conditions. KD-FRET is successfully applied in the development of a novel synthetic biology tool to enhance naringenin production in E. coli and lycopene production in S. cerevisiae by precisely engineering metabolic pathway. These results demonstrate the potential of KD-FRET as a powerful tool for studying PPIs in their native cellular environments.
Collapse
Affiliation(s)
- Soojung Yi
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Eunji Kim
- Natural Products Research InstituteCollege of PharmacySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Sora Yang
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Gyeongmin Kim
- Department of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Da‐Woon Bae
- Department of Chemistry and NanoscienceEwha Womans University52 Ewhayeodae‐gil, Seodaemun‐guSeoul03760Republic of Korea
| | - Se‐Young Son
- Department of Chemistry and NanoscienceEwha Womans University52 Ewhayeodae‐gil, Seodaemun‐guSeoul03760Republic of Korea
| | - Bo‐Gyeong Jeong
- Department of Chemistry and NanoscienceEwha Womans University52 Ewhayeodae‐gil, Seodaemun‐guSeoul03760Republic of Korea
| | - Jeong Seok Ji
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Hyung Ho Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Ji‐Sook Hahn
- Department of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Sun‐Shin Cha
- Department of Chemistry and NanoscienceEwha Womans University52 Ewhayeodae‐gil, Seodaemun‐guSeoul03760Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research InstituteCollege of PharmacySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Nam Ki Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
3
|
Li Y, Liu M, Yang C, Fu H, Wang J. Engineering microbial metabolic homeostasis for chemicals production. Crit Rev Biotechnol 2025; 45:373-392. [PMID: 39004513 DOI: 10.1080/07388551.2024.2371465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
Microbial-based bio-refining promotes the development of a biotechnology revolution to encounter and tackle the enormous challenges in petroleum-based chemical production by biomanufacturing, biocomputing, and biosensing. Nevertheless, microbial metabolic homeostasis is often incompatible with the efficient synthesis of bioproducts mainly due to: inefficient metabolic flow, robust central metabolism, sophisticated metabolic network, and inevitable environmental perturbation. Therefore, this review systematically summarizes how to optimize microbial metabolic homeostasis by strengthening metabolic flux for improving biotransformation turnover, redirecting metabolic direction for rewiring bypass pathway, and reprogramming metabolic network for boosting substrate utilization. Future directions are also proposed for providing constructive guidance on the development of industrial biotechnology.
Collapse
Affiliation(s)
- Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingxiong Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changyang Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongxin Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
5
|
Xu X, Lv X, Liu Y, Li J, Du G, Chen J, Ledesma-Amaro R, Liu L. CRISPR/Cas13X-assisted programmable and multiplexed translation regulation for controlled biosynthesis. Nucleic Acids Res 2025; 53:gkae1293. [PMID: 39777467 PMCID: PMC11705078 DOI: 10.1093/nar/gkae1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Developing efficient gene regulation tools is essential for optimizing microbial cell factories, but most existing tools only modulate gene expression at the transcriptional level. Regulation at the translational level provides a faster dynamic response, whereas developing a programmable, efficient and multiplexed translational regulation tool remains a challenge. Here, we have developed CRISPRi and CRISPRa systems based on hfCas13X that can regulate gene translation in Bacillus subtilis. First, we constructed a CRISPRi system to regulate gene translation based on catalytically deactivated hfCas13X (dhfCas13X). Second, we designed unique mRNA-crRNA pairs to construct DiCRISPRa (degradation-inhibited CRISPRa) and TsCRISPRa (translation-started CRISPRa) systems, which can activate downstream gene translation by enhancing mRNA stability or initiating mRNA translation. In addition, we found that fusing dhfCas13X with the RNA-binding chaperone BHfq significantly improved the activation efficiency of the DiCRISPRa and TsCRISPRa systems (43.2-fold). Finally, we demonstrated that the constructed CRISPR systems could be used to optimize the metabolic networks of two biotechnologically relevant compounds, riboflavin and 2'-fucosyllactose, increasing their titers by 3- and 1.2-fold, respectively. The CRISPRa and CRISPRi systems developed here provide new tools for the regulation of gene expression at the translation level and offer new ideas for the construction of CRISPRa systems.
Collapse
Affiliation(s)
- Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
- Science Center for Future Foods, Ministry of Education, Jiangnan University, No. 1800, Lihu Avenue, Binhu District, Wuxi 214122, China
| |
Collapse
|
6
|
Shi P, Liu Y, Wang Y, Li L, Liang Y, Lin H, Yuan Z, Ding G. Physiological and molecular regulatory mechanism of flavonoid metabolite biosynthesis during low temperature adaptation in Lavandula angustifolia Mill. BMC PLANT BIOLOGY 2024; 24:1263. [PMID: 39731022 DOI: 10.1186/s12870-024-05991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Lavandula angustifolia Mill., a valuable aromatic plant, often encounters low temperature stress during its growth in Northeast China. Understanding the mechanisms behind its resistance to low temperatures is essential for enhancing this trait. Flavonoids play a vital role as stress-resistant compounds, significantly contributing to plants' responses to low-temperature stress. However, the molecular mechanism governing flavonoid biosynthesis in L. angustifolia under low-temperature stress is remains inadequately understood. RESULTS In this study, the physiological indexes, metabolome, and transcriptome of L. angustifolia were studied under temperatures of 30 °C, 20 °C, 10 °C, and 0 °C. The activities of peroxidase (POD) and superoxide dismutase (SOD) were notably the highest at 0 ℃, demonstrating optimal scavenging of reactive oxygen species (ROS). Among the 1150 metabolites analyzed, 52 flavonoid differential expression metabolites (DEMs) significantly increased at 10 °C and 0 °C. Furthermore, 55 differential expression genes (DEGs) involved in the flavonoid biosynthesis pathway showed significant up-regulation as the temperature dropped from 30 °C to 0 °C, indicating their role in positively regulating flavonoid biosynthesis under low temperatures. The flavonoid biosynthetic pathway was established based on key DEGs, including LaPAL-5, LaPAL-11, LaC4H-2, LaHCT, LaC3'H-4, LaCHS, LaF3PH-3, LaCCoAOMT-2, LaCCoAOMT-3, and LaDFR. Conserved domains predicted in 10 key proteins were identified as being responsible for catalytic functions that promote flavonoid biosynthesis under low temperatures. The synergistic enhancement between flavonoid DEMs and antioxidant enzymes was found to significantly contribute to the cold resistance of L.angustifolia. CONCLUSIONS The findings of this study provide a valuable reference for understanding the molecular regulation of L. angustifolia in response to low temperatures, laying a crucial foundation for future molecular breeding efforts aimed at developing cold-resistant varieties.
Collapse
Affiliation(s)
- Pixiu Shi
- College of Life Science and Technology, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Yinan Liu
- College of Life Science and Technology, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Yu Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Ling Li
- College of Life Science and Technology, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Yuchen Liang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Haijiao Lin
- College of Life Science and Technology, Harbin Normal University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China
| | - Zening Yuan
- College of Life Science and Technology, Harbin Normal University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China.
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China.
| | - Guohua Ding
- College of Life Science and Technology, Harbin Normal University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Plant Biology in Ordinary Colleges and Universities, Harbin Normal University, Harbin, China.
- Key Laboratory of Aquatic Biodiversity Research in Hei Longjiang Province, Harbin Normal University, Harbin, China.
| |
Collapse
|
7
|
Kurnia K, Efimova E, Santala V, Santala S. Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production. Metab Eng Commun 2024; 19:e00249. [PMID: 39555486 PMCID: PMC11568779 DOI: 10.1016/j.mec.2024.e00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Naringenin, a flavanone and a precursor for a variety of flavonoids, has potential applications in the health and pharmaceutical sectors. The biological production of naringenin using genetically engineered microbes is considered as a promising strategy. The naringenin synthesis pathway involving chalcone synthase (CHS) and chalcone isomerase (CHI) relies on the efficient supply of key substrates, malonyl-CoA and p-coumaroyl-CoA. In this research, we utilized a soil bacterium, Acinetobacter baylyi ADP1, which exhibits several characteristics that make it a suitable candidate for naringenin biosynthesis; the strain naturally tolerates and can uptake and metabolize p-coumaric acid, a primary compound in alkaline-pretreated lignin and a precursor for naringenin production. A. baylyi ADP1 also produces intracellular lipids, such as wax esters, thereby being able to provide malonyl-CoA for naringenin biosynthesis. Moreover, the genomic engineering of this strain is notably straightforward. In the course of the construction of a naringenin-producing strain, the p-coumarate catabolism was eliminated by a single gene knockout (ΔhcaA) and various combinations of plant-derived CHS and CHI were evaluated. The best performance was obtained by a novel combination of genes encoding for a CHS from Hypericum androsaemum and a CHI from Medicago sativa, that enabled the production of 17.9 mg/L naringenin in batch cultivations from p-coumarate. Furthermore, the implementation of a fed-batch system led to a 3.7-fold increase (66.4 mg/L) in naringenin production. These findings underscore the potential of A. baylyi ADP1 as a host for naringenin biosynthesis as well as advancement of lignin-based bioproduction.
Collapse
Affiliation(s)
- Kesi Kurnia
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| |
Collapse
|
8
|
Kutraite I, Augustiniene E, Malys N. Maleylpyruvic Acid-Inducible Gene Expression System and Its Application for the Development of Gentisic Acid Biosensors. Anal Chem 2024; 96:18727-18735. [PMID: 39548649 PMCID: PMC11603403 DOI: 10.1021/acs.analchem.4c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Gentisic acid is a secondary plant metabolite, known for its health benefits, not only widely used as a supplement but also implicated as a potential biomarker for cancer-associated metabolism alterations. To advance bioproduction and detection of this compound or its derivatives, cell-based approaches have become of interest in recent years. However, the lack of tools for high-throughput gentisic acid monitoring and compound-metabolizing organism screening limits the progress in this area. Here, we analyzed the gene cluster responsible for gentisic acid metabolism in Cupriavidus necator H16. The transcriptional regulator GtdR-based inducible gene expression system CnGtdR/PgtdA was elucidated, showing that it was activated when C. necator cells were subjected to gentisic acid. Subsequently, a 3-maleylpyruvic acid was identified as a primary inducer for this inducible system. Furthermore, genes gtdA and gtdT, encoding for gentisate 1,2-dioxygenase and MFS transporter, were shown to be essential for inducible system activation in the presence of gentisic acid with GtdA enabling conversion of this phenolic acid into the inducer. The CnGtdRAT/PgtdA-based inducible system was employed to develop a whole-cell biosensor for the intracellular and extracellular detection of gentisic acid. The potential of the 3-maleylpyruvic acid-inducible system was demonstrated by its application in metabolic pathway research, detection of highly unstable 3-maleylpyruvic acid, and development of biosensors for the intracellular or extracellular determination of gentisic acid. In addition, the utility of the biosensor was emphasized by its application for detection of gentisic acid as a potential biomarker for cancer in urine samples.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
| | - Ernesta Augustiniene
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
| | - Naglis Malys
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
- Department
of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
| |
Collapse
|
9
|
Wu S, Zhou Y, Dai L, Yang A, Qiao J. Assembly of functional microbial ecosystems: from molecular circuits to communities. FEMS Microbiol Rev 2024; 48:fuae026. [PMID: 39496507 PMCID: PMC11585282 DOI: 10.1093/femsre/fuae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Microbes compete and cooperate with each other via a variety of chemicals and circuits. Recently, to decipher, simulate, or reconstruct microbial communities, many researches have been engaged in engineering microbiomes with bottom-up synthetic biology approaches for diverse applications. However, they have been separately focused on individual perspectives including genetic circuits, communications tools, microbiome engineering, or promising applications. The strategies for coordinating microbial ecosystems based on different regulation circuits have not been systematically summarized, which calls for a more comprehensive framework for the assembly of microbial communities. In this review, we summarize diverse cross-talk and orthogonal regulation modules for de novo bottom-up assembling functional microbial ecosystems, thus promoting further consortia-based applications. First, we review the cross-talk communication-based regulations among various microbial communities from intra-species and inter-species aspects. Then, orthogonal regulations are summarized at metabolites, transcription, translation, and post-translation levels, respectively. Furthermore, to give more details for better design and optimize various microbial ecosystems, we propose a more comprehensive design-build-test-learn procedure including function specification, chassis selection, interaction design, system build, performance test, modeling analysis, and global optimization. Finally, current challenges and opportunities are discussed for the further development and application of microbial ecosystems.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| | - Yongsheng Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300, China
| |
Collapse
|
10
|
Kao CT, Yang FW, Wu MC, Hung TH, Hu CW, Chen CH, Liou PC, Mai TL, Chang CC, Lin TY, Chen YL, Lin YCJ, Su JC. Systematic synthesis and identification of monolignol pathway metabolites. THE NEW PHYTOLOGIST 2024; 244:1143-1167. [PMID: 39267260 DOI: 10.1111/nph.20101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in Populus trichocarpa and Eucalyptus grandis, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.
Collapse
Affiliation(s)
- Chung-Ting Kao
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Fan-Wei Yang
- College of Pharmaceutical Sciences, Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Wu
- College of Pharmaceutical Sciences, Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Tzu-Huan Hung
- Crop Genetic Resources and Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Chen-Wei Hu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Chiu-Hua Chen
- Crop Genetic Resources and Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Pin-Chien Liou
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Te-Lun Mai
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Chia-Chih Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701401, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Ying-Chung Jimmy Lin
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 106319, Taiwan
| | - Jung-Chen Su
- College of Pharmaceutical Sciences, Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| |
Collapse
|
11
|
Wang J, Chen C, Guo Q, Gu Y, Shi TQ. Advances in Flavonoid and Derivative Biosynthesis: Systematic Strategies for the Construction of Yeast Cell Factories. ACS Synth Biol 2024; 13:2667-2683. [PMID: 39145487 DOI: 10.1021/acssynbio.4c00383] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Flavonoids, a significant group of natural polyphenolic compounds, possess a broad spectrum of pharmacological effects. Recent advances in the systematic metabolic engineering of yeast cell factories (YCFs) provide new opportunities for enhanced flavonoid production. Herein, we outline the latest research progress on typical flavonoid products in YCFs. Advanced engineering strategies involved in flavonoid biosynthesis are discussed in detail, including enhancing precursor supply, cofactor engineering, optimizing core pathways, eliminating competitive pathways, relieving transport limitations, and dynamic regulation. Additionally, we highlight the existing problems in the biosynthesis of flavonoid glucosides in yeast, such as endogenous degradation of flavonoid glycosides, substrate promiscuity of UDP-glycosyltransferases, and an insufficient supply of UDP-sugars, with summaries on the corresponding solutions. Discussions also cover other typical postmodifications like prenylation and methylation, and the recent biosynthesis of complex flavonoid compounds in yeast. Finally, a series of advanced technologies are envisioned, i.e., semirational enzyme engineering, ML/DL algorithn, and systems biology, with the aspiration of achieving large-scale industrial production of flavonoid compounds in the future.
Collapse
Affiliation(s)
- Jian Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210046, People's Republic of China
| |
Collapse
|
12
|
Mao J, Zhang H, Chen Y, Wei L, Liu J, Nielsen J, Chen Y, Xu N. Relieving metabolic burden to improve robustness and bioproduction by industrial microorganisms. Biotechnol Adv 2024; 74:108401. [PMID: 38944217 DOI: 10.1016/j.biotechadv.2024.108401] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Metabolic burden is defined by the influence of genetic manipulation and environmental perturbations on the distribution of cellular resources. The rewiring of microbial metabolism for bio-based chemical production often leads to a metabolic burden, followed by adverse physiological effects, such as impaired cell growth and low product yields. Alleviating the burden imposed by undesirable metabolic changes has become an increasingly attractive approach for constructing robust microbial cell factories. In this review, we provide a brief overview of metabolic burden engineering, focusing specifically on recent developments and strategies for diminishing the burden while improving robustness and yield. A variety of examples are presented to showcase the promise of metabolic burden engineering in facilitating the design and construction of robust microbial cell factories. Finally, challenges and limitations encountered in metabolic burden engineering are discussed.
Collapse
Affiliation(s)
- Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Hongyu Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Liang Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jun Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen, Denmark.
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark.
| | - Ning Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China.
| |
Collapse
|
13
|
Wang D, Zhou Y, Hua L, Hu M, Zhu N, Liu Y, Zhou Y. The role of the natural compound naringenin in AMPK-mitochondria modulation and colorectal cancer inhibition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155786. [PMID: 38875812 DOI: 10.1016/j.phymed.2024.155786] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Although AMP-activated protein kinase (AMPK) has been extensively studied in cellular processes, the understanding of its substrates, downstream functions, contributions to cell fate and colorectal cancer (CRC) progression remains incomplete. PURPOSE The aim of this study was to investigate the effects and mechanisms of naringenin on CRC. METHODS The biological and cellular properties of naringenin and its anticancer activity were evaluated in CRC. In addition, the effect of combined treatment with naringenin and 5-fluorouracil on tumor growth in vitro and in vivo was evaluated. RESULTS The present study found that naringenin inhibits the proliferation of CRC and promote its apoptosis. Compared with the naringenin group, naringenin combined with 5-fluorouracil had significant effect on inhibiting cell proliferation and promoting its apoptosis. It is showed that naringenin activates AMPK phosphorylation and mitochondrial fusion in CRC. Naringenin combined with 5-fluorouracil significantly reduces cardiotoxicity and liver damage induced by 5-fluorouracil in nude mice bearing subcutaneous CRC tumors, and attenuates colorectal injuries in azoxymethane/DSS dextran sulfate (AOM/DSS)-induced CRC. The combination of these two drugs alters mitochondrial function by increasing reactive oxygen species (ROS) levels and decreasing the mitochondrial membrane potential (MMP), thereby stimulating AMPK/mTOR signaling. Mitochondrial dynamics are thereby regulated by activating the AMPK/p-AMPK pathway, and mitochondrial homeostasis is coordinated through increased mitochondrial fusion and reduced fission to activate apoptosis in cancer cells. CONCLUSIONS Our data suggest that naringenin is important for inhibiting CRC proliferation, possibly through the AMPK pathway, to regulate mitochondrial function and induce apoptosis in CRC.
Collapse
Affiliation(s)
- Dan Wang
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yue Zhou
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Li Hua
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Meichun Hu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Ni Zhu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
| | - Yifei Liu
- School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| | - Yanhong Zhou
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China.
| |
Collapse
|
14
|
Ferreira SS, Antunes MS. Genetically encoded Boolean logic operators to sense and integrate phenylpropanoid metabolite levels in plants. THE NEW PHYTOLOGIST 2024; 243:674-687. [PMID: 38752334 DOI: 10.1111/nph.19823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Synthetic biology has the potential to revolutionize biotechnology, public health, and agriculture. Recent studies have shown the enormous potential of plants as chassis for synthetic biology applications. However, tools to precisely manipulate metabolic pathways for bioproduction in plants are still needed. We used bacterial allosteric transcription factors (aTFs) that control gene expression in a ligand-specific manner and tested their ability to repress semi-synthetic promoters in plants. We also tested the modulation of their repression activity in response to specific plant metabolites, especially phenylpropanoid-related molecules. Using these aTFs, we also designed synthetic genetic circuits capable of computing Boolean logic operations. Three aTFs, CouR, FapR, and TtgR, achieved c. 95% repression of their respective target promoters. For TtgR, a sixfold de-repression could be triggered by inducing its ligand accumulation, showing its use as biosensor. Moreover, we designed synthetic genetic circuits that use AND, NAND, IMPLY, and NIMPLY Boolean logic operations and integrate metabolite levels as input to the circuit. We showed that biosensors can be implemented in plants to detect phenylpropanoid-related metabolites and activate a genetic circuit that follows a predefined logic, demonstrating their potential as tools for exerting control over plant metabolic pathways and facilitating the bioproduction of natural products.
Collapse
Affiliation(s)
- Savio S Ferreira
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Mauricio S Antunes
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
15
|
Tong Y, Li N, Zhou S, Zhang L, Xu S, Zhou J. Improvement of Chalcone Synthase Activity and High-Efficiency Fermentative Production of (2 S)-Naringenin via In Vivo Biosensor-Guided Directed Evolution. ACS Synth Biol 2024; 13:1454-1466. [PMID: 38662928 DOI: 10.1021/acssynbio.3c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Chalcone synthase (CHS) catalyzes the rate-limiting step of (2S)-naringenin (the essential flavonoid skeleton) biosynthesis. Improving the activity of the CHS by protein engineering enhances (2S)-naringenin production by microbial fermentation and can facilitate the production of valuable flavonoids. A (2S)-naringenin biosensor based on the TtgR operon was constructed in Escherichia coli and its detection range was expanded by promoter optimization to 0-300 mg/L, the widest range for (2S)-naringenin reported. The high-throughput screening scheme for CHS was established based on this biosensor. A mutant, SjCHS1S208N with a 2.34-fold increase in catalytic activity, was discovered by directed evolution and saturation mutagenesis. A pathway for de novo biosynthesis of (2S)-naringenin by SjCHS1S208N was constructed in Saccharomyces cerevisiae, combined with CHS precursor pathway optimization, increasing the (2S)-naringenin titer by 65.34% compared with the original strain. Fed-batch fermentation increased the titer of (2S)-naringenin to 2513 ± 105 mg/L, the highest reported so far. These findings will facilitate efficient flavonoid biosynthesis and further modification of the CHS in the future.
Collapse
Affiliation(s)
- Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ning Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Chaisupa P, Wright RC. State-of-the-art in engineering small molecule biosensors and their applications in metabolic engineering. SLAS Technol 2024; 29:100113. [PMID: 37918525 PMCID: PMC11314541 DOI: 10.1016/j.slast.2023.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Genetically encoded biosensors are crucial for enhancing our understanding of how molecules regulate biological systems. Small molecule biosensors, in particular, help us understand the interaction between chemicals and biological processes. They also accelerate metabolic engineering by increasing screening throughput and eliminating the need for sample preparation through traditional chemical analysis. Additionally, they offer significantly higher spatial and temporal resolution in cellular analyte measurements. In this review, we discuss recent progress in in vivo biosensors and control systems-biosensor-based controllers-for metabolic engineering. We also specifically explore protein-based biosensors that utilize less commonly exploited signaling mechanisms, such as protein stability and induced degradation, compared to more prevalent transcription factor and allosteric regulation mechanism. We propose that these lesser-used mechanisms will be significant for engineering eukaryotic systems and slower-growing prokaryotic systems where protein turnover may facilitate more rapid and reliable measurement and regulation of the current cellular state. Lastly, we emphasize the utilization of cutting-edge and state-of-the-art techniques in the development of protein-based biosensors, achieved through rational design, directed evolution, and collaborative approaches.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
17
|
Zhu X, Wu J, Li S, Xiang L, Jin JM, Liang C, Tang SY. Artificial Biosynthetic Pathway for Efficient Synthesis of Vanillin, a Feruloyl-CoA-Derived Natural Product from Eugenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6463-6470. [PMID: 38501643 DOI: 10.1021/acs.jafc.3c08723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Eugenol, the main component of essential oil from the Syzygium aromaticum clove tree, has great potential as an alternative bioresource feedstock for biosynthesis purposes. Although eugenol degradation to ferulic acid was investigated, an efficient method for directly converting eugenol to targeted natural products has not been established. Herein we identified the inherent inhibitions by simply combining the previously reported ferulic acid biosynthetic pathway and vanillin biosynthetic pathway. To overcome this, we developed a novel biosynthetic pathway for converting eugenol into vanillin, by introducing cinnamoyl-CoA reductase (CCR), which catalyzes conversion of coniferyl aldehyde to feruloyl-CoA. This approach bypasses the need for two catalysts, namely coniferyl aldehyde dehydrogenase and feruloyl-CoA synthetase, thereby eliminating inhibition while simplifying the pathway. To further improve efficiency, we enhanced CCR catalytic efficiency via directed evolution and leveraged an artificialvanillin biosensor for high-throughput screening. Switching the cofactor preference of CCR from NADP+ to NAD+ significantly improved pathway efficiency. This newly designed pathway provides an alternative strategy for efficiently biosynthesizing feruloyl-CoA-derived natural products using eugenol.
Collapse
Affiliation(s)
- Xiaochong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieyuan Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhong Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - La Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Yue SJ, Zhou Z, Huang P, Wei YC, Zhan SX, Feng TT, Liu JR, Sun HC, Han WS, Xue ZL, Yan ZX, Wang W, Zhang XH, Hu HB. Development of the Static and Dynamic Gene Expression Regulation Toolkit in Pseudomonas chlororaphis. ACS Synth Biol 2024; 13:913-920. [PMID: 38377538 DOI: 10.1021/acssynbio.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The advancement of metabolic engineering and synthetic biology has promoted in-depth research on the nonmodel microbial metabolism, and the potential of nonmodel organisms in industrial biotechnology is becoming increasingly evident. The nonmodel organism Pseudomonas chlororaphis is a safe plant growth promoting bacterium for the production of phenazine compounds; however, its application is seriously hindered due to the lack of an effective gene expression precise regulation toolkit. In this study, we constructed a library of 108 promoter-5'-UTR (PUTR) and characterized them through fluorescent protein detection. Then, 6 PUTRs with stable low, intermediate, and high intensities were further characterized by report genes lacZ encoding β-galactosidase from Escherichia coli K12 and phzO encoding PCA monooxygenase from P. chlororaphis GP72 and thus developed as a static gene expression regulation system. Furthermore, the stable and high-intensity expressed PMOK_RS0128085UTR was fused with the LacO operator to construct an IPTG-induced plasmid, and a self-induced plasmid was constructed employing the high-intensity PMOK_RS0116635UTR regulated by cell density, resulting in a dynamic gene expression regulation system. In summary, this study established two sets of static and dynamic regulatory systems for P. chlororaphis, providing an effective toolkit for fine-tuning gene expression and reprograming the metabolism flux.
Collapse
Affiliation(s)
- Sheng-Jie Yue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Chen Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-Xuan Zhan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tong-Tong Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji-Rui Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao-Cheng Sun
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Shang Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Long Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Xin Yan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Liu M, Wu J, Yue M, Ning Y, Guan X, Gao S, Zhou J. YaliCMulti and YaliHMulti: Stable, efficient multi-copy integration tools for engineering Yarrowia lipolytica. Metab Eng 2024; 82:29-40. [PMID: 38224832 DOI: 10.1016/j.ymben.2024.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Yarrowia lipolytica is widely used in biotechnology to produce recombinant proteins, food ingredients and diverse natural products. However, unstable expression of plasmids, difficult and time-consuming integration of single and low-copy-number plasmids hampers the construction of efficient production pathways and application to industrial production. Here, by exploiting sequence diversity in the long terminal repeats (LTRs) of retrotransposons and ribosomal DNA (rDNA) sequences, a set of vectors and methods that can recycle multiple and high-copy-number plasmids was developed that can achieve stable integration of long-pathway genes in Y. lipolytica. By combining these sequences, amino acids and antibiotic tags with the Cre-LoxP system, a series of multi-copy site integration recyclable vectors were constructed and assessed using the green fluorescent protein (HrGFP) reporter system. Furthermore, by combining the consensus sequence with the vector backbone of a rapidly degrading selective marker and a weak promoter, multiple integrated high-copy-number vectors were obtained and high levels of stable HrGFP expression were achieved. To validate the universality of the tools, simple integration of essential biosynthesis modules was explored, and 7.3 g/L of L-ergothioneine and 8.3 g/L of (2S)-naringenin were achieved in a 5 L fermenter, the highest titres reported to date for Y. lipolytica. These novel multi-copy genome integration strategies provide convenient and effective tools for further metabolic engineering of Y. lipolytica.
Collapse
Affiliation(s)
- Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Junjun Wu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yang Ning
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xin Guan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
20
|
Kruse LH, Sunstrum FG, Garcia D, López Pérez G, Jancsik S, Bohlmann J, Irmisch S. Improved production of the antidiabetic metabolite montbretin A in Nicotiana benthamiana: discovery, characterization, and use of Crocosmia shikimate shunt genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:766-785. [PMID: 37960967 DOI: 10.1111/tpj.16528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The plant-specialized metabolite montbretin A (MbA) is being developed as a new treatment option for type-2 diabetes, which is among the ten leading causes of premature death and disability worldwide. MbA is a complex acylated flavonoid glycoside produced in small amounts in below-ground organs of the perennial plant Montbretia (Crocosmia × crocosmiiflora). The lack of a scalable production system limits the development and potential application of MbA as a pharmaceutical or nutraceutical. Previous efforts to reconstruct montbretin biosynthesis in Nicotiana benthamiana (Nb) resulted in low yields of MbA and higher levels of montbretin B (MbB) and montbretin C (MbC). MbA, MbB, and MbC are nearly identical metabolites differing only in their acyl moieties, derived from caffeoyl-CoA, coumaroyl-CoA, and feruloyl-CoA, respectively. In contrast to MbA, MbB and MbC are not pharmaceutically active. To utilize the montbretia caffeoyl-CoA biosynthesis for improved MbA engineering in Nb, we cloned and characterized enzymes of the shikimate shunt of the general phenylpropanoid pathway, specifically hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (CcHCT), p-coumaroylshikimate 3'-hydroxylase (CcC3'H), and caffeoylshikimate esterase (CcCSE). Gene expression patterns suggest that CcCSE enables the predominant formation of MbA, relative to MbB and MbC, in montbretia. This observation is supported by results from in vitro characterization of CcCSE and reconstruction of the shikimate shunt in yeast. Using CcHCT together with montbretin biosynthetic genes in multigene constructs resulted in a 30-fold increase of MbA in Nb. This work advances our understanding of the phenylpropanoid pathway and features a critical step towards improved MbA production in bioengineered Nb.
Collapse
Affiliation(s)
- Lars H Kruse
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Frederick G Sunstrum
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Daniela Garcia
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Guillermo López Pérez
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sharon Jancsik
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Forest and Conservation Science, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sandra Irmisch
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Plant Sciences, Institute of Biology, Leiden University, Leiden, 2333 BE, Netherlands
| |
Collapse
|
21
|
Zhu Z, Chen R, Zhang L. Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Nat Prod Rep 2024; 41:6-24. [PMID: 37807808 DOI: 10.1039/d3np00012e] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Covering: 2000 to 2023Simple phenylpropanoids are a large group of natural products with primary C6-C3 skeletons. They are not only important biomolecules for plant growth but also crucial chemicals for high-value industries, including fragrances, nutraceuticals, biomaterials, and pharmaceuticals. However, with the growing global demand for simple phenylpropanoids, direct plant extraction or chemical synthesis often struggles to meet current needs in terms of yield, titre, cost, and environmental impact. Benefiting from the rapid development of metabolic engineering and synthetic biology, microbial production of natural products from inexpensive and renewable sources provides a feasible solution for sustainable supply. This review outlines the biological activities of simple phenylpropanoids, compares their biosynthetic pathways in different species (plants, bacteria, and fungi), and summarises key research on the microbial production of simple phenylpropanoids over the last decade, with a focus on engineering strategies that seem to hold most potential for further development. Moreover, constructive solutions to the current challenges and future perspectives for industrial production of phenylpropanoids are presented.
Collapse
Affiliation(s)
- Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China
- Innovative Drug R&D Centre, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
22
|
Blick E, Mormino M, Siewers V, Nygård Y. Development of an Haa1-Based Biosensor for Acetic Acid Sensing in Saccharomyces cerevisiae. Methods Mol Biol 2024; 2844:221-238. [PMID: 39068343 DOI: 10.1007/978-1-0716-4063-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Transcription factor (TF)-based biosensors are important tools in strain development and screening as they can allow accurate monitoring of intracellular concentrations of a molecule. Acetic acid is one of the main inhibitors in lignocellulosic biomass and a major challenge when using yeast cell factories for biorefinery applications. Thus, developing acetic acid tolerant strains is of great importance. The acetic acid sensing biosensor developed relies on the endogenous Saccharomyces cerevisiae TF Haa1 that upon binding of acetic acid translocates to the nucleus. The acetic acid biosensor can be used as a tool for strain development and evaluation, as well as for screening of acetic acid-producing strains and for dynamic monitoring of acetic acid accumulation. This chapter describes a methodology for developing a TF-based biosensor for acetic acid sensing. Protocols for design considerations, part construction, and characterization procedures are included. The approach can potentially be adapted to any molecule where a suitable TF can be identified.
Collapse
Affiliation(s)
- Elin Blick
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Maurizio Mormino
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Life Sciences, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yvonne Nygård
- Department of Life Sciences, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland.
| |
Collapse
|
23
|
Qu G, Liu Y, Ma Q, Li J, Du G, Liu L, Lv X. Progress and Prospects of Natural Glycoside Sweetener Biosynthesis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15926-15941. [PMID: 37856872 DOI: 10.1021/acs.jafc.3c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
To achieve an adequate sense of sweetness with a healthy low-sugar diet, it is necessary to explore and produce sugar alternatives. Recently, glycoside sweeteners and their biosynthetic approaches have attracted the attention of researchers. In this review, we first outlined the synthetic pathways of glycoside sweeteners, including the key enzymes and rate-limiting steps. Next, we reviewed the progress in engineered microorganisms producing glycoside sweeteners, including de novo synthesis, whole-cell catalysis synthesis, and in vitro synthesis. The applications of metabolic engineering strategies, such as cofactor engineering and enzyme modification, in the optimization of glycoside sweetener biosynthesis were summarized. Finally, the prospects of combining enzyme engineering and machine learning strategies to enhance the production of glycoside sweeteners were discussed. This review provides a perspective on synthesizing glycoside sweeteners in microbial cells, theoretically guiding the bioproduction of glycoside sweeteners.
Collapse
Affiliation(s)
- Guanyi Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Qinyuan Ma
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, P. R. China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
| |
Collapse
|
24
|
An T, Lin G, Liu Y, Qin L, Xu Y, Feng X, Li C. De novo biosynthesis of anticarcinogenic icariin in engineered yeast. Metab Eng 2023; 80:207-215. [PMID: 37852432 DOI: 10.1016/j.ymben.2023.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Icariin (ICA) has wide applications in nutraceuticals and medicine with strong anticancer activities. However, the structural complexity and low abundance in plants of ICA lead to the unsustainable and high-cost supply from chemical synthesis and plant extraction. Here, the whole biosynthesis pathway of ICA was elucidated, then was constructed in Saccharomyces cerevisiae, including a 13-step heterologous ICA pathway from eleven kinds of plants as well as deletions or overexpression of ten yeast endogenous genes. Spatial regulation of 8-C-prenyltransferase to mitochondria and three-stage sequential control of 4'-O-methyltransferase, 3-OH rhamnosyltransferase, and 7-OH glycosyltransferase expression successfully achieved the de novo synthesis of ICA with a titer of 130 μg/L under shake-flask culture. The ICA synthesis from glucose represents the longest reconstructed pathway of flavonoid in microbe so far. This study provides a potential choice for the sustainable microbial production of number of complex flavonoids.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Guangyuan Lin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Ganesan V, Monteiro L, Pedada D, Stohr A, Blenner M. High-Efficiency Multiplexed Cytosine Base Editors for Natural Product Synthesis in Yarrowia lipolytica. ACS Synth Biol 2023; 12:3082-3091. [PMID: 37768786 DOI: 10.1021/acssynbio.3c00435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Yarrowia lipolytica is an industrial host with a high fatty acid flux. Even though CRISPR-based tools have accelerated its metabolic engineering, there remains a need to develop tools for rapid multiplexed strain engineering to accelerate the design-build-test-learn cycle. Base editors have the potential to perform high-efficiency multiplexed gene editing because they do not depend upon double-stranded DNA breaks. Here, we identified that base editors are less toxic than CRISPR-Cas9 for multiplexed gene editing. We increased the editing efficiency by removing the extra nucleotides between tRNA and gRNA and increasing the base editor and gRNA copy number in a Ku70 deficient strain. We achieved five multiplexed gene editing in the ΔKu70 strain at 42% efficiency. Initially, we were unsuccessful at performing multiplexed base editing in NHEJ competent strain; however, we increased the editing efficiency by using a co-selection approach to enrich base editing events. Base editor-mediated canavanine gene (CAN1) knockout provided resistance to the import of canavanine, which enriched the base editing in other unrelated genetic loci. We performed multiplexed editing of up to three genes at 40% efficiency in the Po1f strain through the CAN1 co-selection approach. Finally, we demonstrated the application of multiplexed cytosine base editor for rapid multigene knockout to increase naringenin production by 2-fold from glucose or glycerol as a carbon source.
Collapse
Affiliation(s)
- Vijaydev Ganesan
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lummy Monteiro
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dheeraj Pedada
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Anthony Stohr
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mark Blenner
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
26
|
Jiang T, Li C, Teng Y, Zhang J, Logan DA, Yan Y. Dynamic Metabolic Control: From the Perspective of Regulation Logic. SYNTHETIC BIOLOGY AND ENGINEERING 2023; 1:10012. [PMID: 38572077 PMCID: PMC10986841 DOI: 10.35534/sbe.2023.10012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Establishing microbial cell factories has become a sustainable and increasingly promising approach for the synthesis of valuable chemicals. However, introducing heterologous pathways into these cell factories can disrupt the endogenous cellular metabolism, leading to suboptimal production performance. To address this challenge, dynamic pathway regulation has been developed and proven effective in improving microbial biosynthesis. In this review, we summarized typical dynamic regulation strategies based on their control logic. The applicable scenarios for each control logic were highlighted and perspectives for future research direction in this area were discussed.
Collapse
Affiliation(s)
- Tian Jiang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Chenyi Li
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yuxi Teng
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Diana Alexis Logan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
27
|
Zhang J, Gong X, Gan Q, Yan Y. Application of Metabolite-Responsive Biosensors for Plant Natural Products Biosynthesis. BIOSENSORS 2023; 13:633. [PMID: 37366998 DOI: 10.3390/bios13060633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Plant natural products (PNPs) have shown various pharmaceutical activities, possessing great potential in global markets. Microbial cell factories (MCFs) provide an economical and sustainable alternative for the synthesis of valuable PNPs compared with traditional approaches. However, the heterologous synthetic pathways always lack native regulatory systems, bringing extra burden to PNPs production. To overcome the challenges, biosensors have been exploited and engineered as powerful tools for establishing artificial regulatory networks to control enzyme expression in response to environments. Here, we reviewed the recent progress involved in the application of biosensors that are responsive to PNPs and their precursors. Specifically, the key roles these biosensors played in PNP synthesis pathways, including isoprenoids, flavonoids, stilbenoids and alkaloids, were discussed in detail.
Collapse
Affiliation(s)
- Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Xinyu Gong
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Kakko N, Rantasalo A, Koponen T, Vidgren V, Kannisto M, Maiorova N, Nygren H, Mojzita D, Penttilä M, Jouhten P. Inducible Synthetic Growth Regulation Using the ClpXP Proteasome Enhances cis,cis-Muconic Acid and Glycolic Acid Yields in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:1021-1033. [PMID: 36976676 PMCID: PMC10127448 DOI: 10.1021/acssynbio.2c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 03/29/2023]
Abstract
Engineered microbial cells can produce sustainable chemistry, but the production competes for resources with growth. Inducible synthetic control over the resource use would enable fast accumulation of sufficient biomass and then divert the resources to production. We developed inducible synthetic resource-use control overSaccharomyces cerevisiae by expressing a bacterial ClpXP proteasome from an inducible promoter. By individually targeting growth-essential metabolic enzymes Aro1, Hom3, and Acc1 to the ClpXP proteasome, cell growth could be efficiently repressed during cultivation. The ClpXP proteasome was specific to the target proteins, and there was no reduction in the targets when ClpXP was not induced. The inducible growth repression improved product yields from glucose (cis,cis-muconic acid) and per biomass (cis,cis-muconic acid and glycolic acid). The inducible ClpXP proteasome tackles uncertainties in strain optimization by enabling model-guided repression of competing, growth-essential, and metabolic enzymes. Most importantly, it allows improving production without compromising biomass accumulation when uninduced; therefore, it is expected to mitigate strain stability and low productivity challenges.
Collapse
Affiliation(s)
- Natalia Kakko
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo FI-00076 AALTO, Finland
| | - Anssi Rantasalo
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Tino Koponen
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Virve Vidgren
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Matti Kannisto
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Natalia Maiorova
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Heli Nygren
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Dominik Mojzita
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Merja Penttilä
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo FI-00076 AALTO, Finland
| | - Paula Jouhten
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo FI-00076 AALTO, Finland
| |
Collapse
|
29
|
Tous Mohedano M, Mao J, Chen Y. Optimization of Pinocembrin Biosynthesis in Saccharomyces cerevisiae. ACS Synth Biol 2022; 12:144-152. [PMID: 36534476 PMCID: PMC9872169 DOI: 10.1021/acssynbio.2c00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The flavonoid pinocembrin and its derivatives have gained increasing interest for their benefits on human health. While pinocembrin and its derivatives can be produced in engineered Saccharomyces cerevisiae, yields remain low. Here, we describe novel strategies for improved de novo biosynthesis of pinocembrin from glucose based on overcoming existing limitations in S. cerevisiae. First, we identified cinnamic acid as an inhibitor of pinocembrin synthesis. Second, by screening for more efficient enzymes and optimizing the expression of downstream genes, we reduced cinnamic acid accumulation. Third, we addressed other limiting factors by boosting the availability of the precursor malonyl-CoA, while eliminating the undesired byproduct 2',4',6'-trihydroxy dihydrochalcone. After optimizing cultivation conditions, 80 mg/L pinocembrin was obtained in a shake flask, the highest yield reported for S. cerevisiae. Finally, we demonstrated that pinocembrin-producing strains could be further engineered to generate 25 mg/L chrysin, another interesting flavone. The strains generated in this study will facilitate the production of flavonoids through the pinocembrin biosynthetic pathway.
Collapse
|