1
|
Ladetto MF, Gantner ME, Rodenak-Kladniew BE, Rodriguez S, Cuestas ML, Talevi A, Castro GR. Promising Prodiginins Biological Activities. Chem Biodivers 2025:e202402940. [PMID: 40244866 DOI: 10.1002/cbdv.202402940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/19/2025]
Abstract
Prodiginins are a large family of at least 34 pyrrolic compounds, including the well-studied red pigment prodigiosin. Prodiginins are produced by several microorganisms displaying broad biological activities, including antimicrobial, antiviral, antiparasitic, antiproliferative, and immunosuppressive activities. The present review aims to compile and analyze the main physicochemical and biological properties and mechanisms of action of prodiginins for microbial disease treatment, particularly SARS-CoV-2 disease and opportunistic infections related to COVID-19. The interaction of prodigiosin, as a model molecule, with cellular membranes, potential drug delivery devices, and toxicological studies, and in silico studies using molecular dynamics showed that the prodigiosin motif, which interacts with lipids, opens a new door for the potential therapeutic use of prodiginins.
Collapse
Affiliation(s)
- María F Ladetto
- Laboratorio de Nanobiomateriales, CINDEFI-Departamento de Química, Facultad de Ciencias Exactas, CONICET-UNLP (CCT La Plata), La Plata, Buenos Aires, Argentina
- Institute for Research in Microbiology and Medical Parasitology (IMPaM), University of Buenos Aires, Buenos Aires, Argentina
| | - Melisa E Gantner
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Boris E Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Santiago Rodriguez
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - María L Cuestas
- Institute for Research in Microbiology and Medical Parasitology (IMPaM), University of Buenos Aires, Buenos Aires, Argentina
| | - Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina
| | - Guillermo R Castro
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, Sao Paulo, Brazil
| |
Collapse
|
2
|
Seshadri K, Abad AND, Nagasawa KK, Yost KM, Johnson CW, Dror MJ, Tang Y. Synthetic Biology in Natural Product Biosynthesis. Chem Rev 2025; 125:3814-3931. [PMID: 40116601 DOI: 10.1021/acs.chemrev.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Synthetic biology has played an important role in the renaissance of natural products research during the post-genomics era. The development and integration of new tools have transformed the workflow of natural product discovery and engineering, generating multidisciplinary interest in the field. In this review, we summarize recent developments in natural product biosynthesis from three different aspects. First, advances in bioinformatics, experimental, and analytical tools to identify natural products associated with predicted biosynthetic gene clusters (BGCs) will be covered. This will be followed by an extensive review on the heterologous expression of natural products in bacterial, fungal and plant organisms. The native host-independent paradigm to natural product identification, pathway characterization, and enzyme discovery is where synthetic biology has played the most prominent role. Lastly, strategies to engineer biosynthetic pathways for structural diversification and complexity generation will be discussed, including recent advances in assembly-line megasynthase engineering, precursor-directed structural modification, and combinatorial biosynthesis.
Collapse
Affiliation(s)
- Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Abner N D Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Kyle K Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Karl M Yost
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Colin W Johnson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Moriel J Dror
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Kugizaki R, Haketa Y, Kamada K, Maeda H. Ion-Pairing Assemblies of Anion-Responsive π-Electronic Systems That Have Noncovalently Assisted Expanded Planar Region. Chemistry 2024; 30:e202401932. [PMID: 38837549 DOI: 10.1002/chem.202401932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Arylethynyl-substituted dipyrrolyldiketone BF2 complexes as anion-responsive π-electronic molecules exhibited characteristic electronic properties derived from conformation changes upon anion binding, which caused an increase in UV/vis absorption and associated two-photon absorption. The anion complexes showed expanded planar regions assisted by intramolecular interactions, resulting in charge-by-charge ion-pairing assemblies in the solid state.
Collapse
Affiliation(s)
- Rio Kugizaki
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Yohei Haketa
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kenji Kamada
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, 563-8577, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| |
Collapse
|
4
|
Girão M, Freitas S, Martins TP, Urbatzka R, Carvalho MF, Leão PN. Decylprodigiosin: a new member of the prodigiosin family isolated from a seaweed-associated Streptomyces. Front Pharmacol 2024; 15:1347485. [PMID: 38576493 PMCID: PMC10991731 DOI: 10.3389/fphar.2024.1347485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Bioprospecting actinobacterial secondary metabolism from untapped marine sources may lead to the discovery of biotechnologically-relevant compounds. While studying the diversity and bioactive potential of Actinomycetota associated with Codium tomentosum, a green seaweed collected in the northern Portuguese cost, strain CT-F61, identified as Streptomyces violaceoruber, was isolated. Its extracts displayed a strong anticancer activity on breast carcinoma T-47D and colorectal carcinoma HCT116 cells, being effective as well against a panel of human and fish pathogenic bacteria. Following a bioactivity-guided isolation pipeline, a new analogue of the red-pigmented family of the antibiotics prodigiosins, decylprodigiosin (1), was identified and chemically characterized. Despite this family of natural products being well-known for a long time, we report a new analogue and the first evidence for prodigiosins being produced by a seaweed-associated actinomycete.
Collapse
Affiliation(s)
- Mariana Girão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- School of Medicine and Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Sara Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Maria F. Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
- School of Medicine and Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| |
Collapse
|
5
|
Berning L, Lenz T, Bergmann AK, Poschmann G, Brass HUC, Schlütermann D, Friedrich A, Mendiburo MJ, David C, Akgün S, Pietruszka J, Stühler K, Stork B. The Golgi stacking protein GRASP55 is targeted by the natural compound prodigiosin. Cell Commun Signal 2023; 21:275. [PMID: 37798768 PMCID: PMC10552397 DOI: 10.1186/s12964-023-01275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Hannah U C Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - María José Mendiburo
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Seda Akgün
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany.
| |
Collapse
|
6
|
Kossmann DF, Huang M, Weihmann R, Xiao X, Gätgens F, Weber TM, Brass HUC, Bitzenhofer NL, Ibrahim S, Bangert K, Rehling L, Mueller C, Tiso T, Blank LM, Drepper T, Jaeger KE, Grundler FMW, Pietruszka J, Schleker ASS, Loeschcke A. Production of tailored hydroxylated prodiginine showing combinatorial activity with rhamnolipids against plant-parasitic nematodes. Front Microbiol 2023; 14:1151882. [PMID: 37200918 PMCID: PMC10187637 DOI: 10.3389/fmicb.2023.1151882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/03/2023] [Indexed: 05/20/2023] Open
Abstract
Bacterial secondary metabolites exhibit diverse remarkable bioactivities and are thus the subject of study for different applications. Recently, the individual effectiveness of tripyrrolic prodiginines and rhamnolipids against the plant-parasitic nematode Heterodera schachtii, which causes tremendous losses in crop plants, was described. Notably, rhamnolipid production in engineered Pseudomonas putida strains has already reached industrial implementation. However, the non-natural hydroxyl-decorated prodiginines, which are of particular interest in this study due to a previously described particularly good plant compatibility and low toxicity, are not as readily accessible. In the present study, a new effective hybrid synthetic route was established. This included the engineering of a novel P. putida strain to provide enhanced levels of a bipyrrole precursor and an optimization of mutasynthesis, i.e., the conversion of chemically synthesized and supplemented monopyrroles to tripyrrolic compounds. Subsequent semisynthesis provided the hydroxylated prodiginine. The prodiginines caused reduced infectiousness of H. schachtii for Arabidopsis thaliana plants resulting from impaired motility and stylet thrusting, providing the first insights on the mode of action in this context. Furthermore, the combined application with rhamnolipids was assessed for the first time and found to be more effective against nematode parasitism than the individual compounds. To obtain, for instance, 50% nematode control, it was sufficient to apply 7.8 μM hydroxylated prodiginine together with 0.7 μg/ml (~ 1.1 μM) di-rhamnolipids, which corresponded to ca. ¼ of the individual EC50 values. In summary, a hybrid synthetic route toward a hydroxylated prodiginine was established and its effects and combinatorial activity with rhamnolipids on plant-parasitic nematode H. schachtii are presented, demonstrating potential application as antinematodal agents. Graphical Abstract.
Collapse
Affiliation(s)
- D. F. Kossmann
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - M. Huang
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - R. Weihmann
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - X. Xiao
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - F. Gätgens
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - T. M. Weber
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - H. U. C. Brass
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - N. L. Bitzenhofer
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - S. Ibrahim
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - K. Bangert
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - L. Rehling
- INRES, Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | - C. Mueller
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - T. Tiso
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - L. M. Blank
- iAMB—Institute of Applied Microbiology, ABBt—Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - T. Drepper
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - K.-E. Jaeger
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - J. Pietruszka
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| | | | - A. Loeschcke
- Institute of Molecular Enzyme Technology, Forschungszentrum Jülich, Heinrich Heine University Düsseldorf, Jülich, Germany
| |
Collapse
|
7
|
Grenade NL, Chiriac DS, Pasternak ARO, Babulic JL, Rowland BE, Howe GW, Ross AC. Discovery of a Tambjamine Gene Cluster in Streptomyces Suggests Convergent Evolution in Bipyrrole Natural Product Biosynthesis. ACS Chem Biol 2023; 18:223-229. [PMID: 36599132 DOI: 10.1021/acschembio.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While bacterial natural products are a valuable source of therapeutics, the molecules produced by most biosynthetic gene clusters remain unknown. Tambjamine YP1, produced by Pseudoalteromonas tunicata, is partially derived from fatty acids siphoned from primary metabolism. A structurally similar tambjamine produced by Streptomyces, BE-18591, had not been linked to a gene cluster. Using enzymes putatively implicated in the construction of these two tambjamines, we used sequence similarity networks and gene knockout experiments to identify the biosynthetic gene cluster responsible for the production of tambjamine BE-18591 in Streptomyces albus. Despite the structural similarities between YP1 and BE-18591, the biosynthesis of the alkylamine tails of these molecules differs significantly, with the S. albus gene cluster putatively encoding a dedicated system for the construction of the fatty acid precursor to BE-18591. These different pathways in Pseudoalteromonas and Streptomyces suggest that evolutionary convergence is operative, with similar selective pressures leading to the emergence of structurally similar tambjamine natural products using different biosynthetic logic.
Collapse
Affiliation(s)
- Neil L Grenade
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dragos S Chiriac
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - A R Ola Pasternak
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Bronwyn E Rowland
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Graeme W Howe
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
8
|
Vollmann DJ, Winand L, Nett M. Emerging concepts in the semisynthetic and mutasynthetic production of natural products. Curr Opin Biotechnol 2022; 77:102761. [DOI: 10.1016/j.copbio.2022.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
9
|
Synthesis, Anticancer Potential and Comprehensive Toxicity Studies of Novel Brominated Derivatives of Bacterial Biopigment Prodigiosin from Serratia marcescens ATCC 27117. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123729. [PMID: 35744855 PMCID: PMC9227013 DOI: 10.3390/molecules27123729] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022]
Abstract
Prodigiosins (prodiginines) are a class of bacterial secondary metabolites with remarkable biological activities and color. In this study, optimized production, purification, and characterization of prodigiosin (PG) from easily accessible Serratia marcescens ATCC 27117 strain has been achieved to levels of 14 mg/L of culture within 24 h. Furthermore, environmentally friendly bromination of produced PG was used to afford both novel mono- and dibrominated derivatives of PG. PG and its Br derivatives showed anticancer potential with IC50 values range 0.62–17.00 µg/mL for all tested cancer cell lines and induction of apoptosis but low selectivity against healthy cell lines. All compounds did not affect Caenorhabditiselegans at concentrations up to 50 µg/mL. However, an improved toxicity profile of Br derivatives in comparison to parent PG was observed in vivo using zebrafish (Danio rerio) model system, when 10 µg/mL applied at 6 h post fertilization caused death rate of 100%, 30% and 0% by PG, PG-Br, and PG-Br2, respectively, which is a significant finding for further structural optimizations of bacterial prodigiosins. The drug-likeness of PG and its Br derivatives was examined, and the novel Br derivatives obey the Lipinski’s “rule of five”, with an exemption of being more lipophilic than PG, which still makes them good targets for further structural optimization.
Collapse
|
10
|
Production of natural colorants by metabolically engineered microorganisms. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20-Membered Macrocyclic Pseudo-Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022; 61:e202114328. [PMID: 34978373 PMCID: PMC9303634 DOI: 10.1002/anie.202114328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 01/02/2023]
Abstract
Design and synthesis of pseudo-natural products (PNPs) through recombination of natural product (NP) fragments in unprecedented arrangements enables the discovery of novel biologically relevant chemical matter. With a view to wider coverage of NP-inspired chemical and biological space, we describe the combination of this principle with macrocycle formation. PNP-macrocycles were synthesized efficiently in a stereoselective one-pot procedure including the 1,3-dipolar cycloadditions of different dipolarophiles with dimeric cinchona alkaloid-derived azomethine ylides formed in situ. The 20-membered bis-cycloadducts embody 18 stereocenters and an additional fragment-sized NP-structure. After further functionalization, a collection of 163 macrocyclic PNPs was obtained. Biological investigation revealed potent inducers of the lipidation of the microtubule associated protein 1 light chain 3 (LC3) protein, which plays a prominent role in various autophagy-related processes.
Collapse
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Anastasia Knyazeva
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Raphael Gasper
- Max Planck Institute of Molecular PhysiologyCrystallography and Biophysics UnitOtto-Hahn-Strasse 1144227DortmundGermany
| | - Dale Corkery
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Julian J. Holstein
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
- Technical University DortmundFaculty of Chemistry, Inorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS)Otto-Hahn-Strasse 1144221DortmundGermany
| | - Yao‐Wen Wu
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
12
|
Brehl C, Brass HUC, Lüchtrath C, Böckmann L, Ihling N, Classen T, Pietruszka J, Büchs J. Optimized prodigiosin production with Pseudomonas putida KT2440 using parallelized non-invasive online monitoring. Biotechnol Prog 2022; 38:e3245. [PMID: 35170260 DOI: 10.1002/btpr.3245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/02/2022]
Abstract
The red pigment prodigiosin is of high pharmaceutical interest, due to its potential applications as an antitumor drug and antibiotic agent. As previously demonstrated, Pseudomonas putida KT2440 is a suitable host for prodigiosin production, as it exhibits high tolerance towards the antimicrobial properties of prodigiosin. So far, prodigiosin concentrations of up to 94 mg/L have been achieved in shake flask cultivations. For the characterization and optimization of the prodigiosin production process, the scattered light of P. putida and fluorescence of prodigiosin was measured. The excitation and emission wavelengths for prodigiosin measurement were analyzed by recording 2D fluorescence spectra. The strongest prodigiosin fluorescence was obtained at a wavelength combination of 535/560 nm. By reducing the temperature to 18 °C and using 16 g/L glucose, the prodigiosin concentration was more than doubled compared to the initial cultivation conditions. The obtained results demonstrate the capabilities of parallelized microscale cultivations combined with non-invasive online monitoring of fluorescence for rapid bioprocess development, using prodigiosin as a molecule of current biotechnological interest.
Collapse
Affiliation(s)
- Carl Brehl
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Hannah U C Brass
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Jülich, Germany
| | - Clara Lüchtrath
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lukas Böckmann
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Nina Ihling
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Thomas Classen
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute for Bio- and Geosciences 1: Bioorganic Chemistry (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Pietruszka
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Jülich, Germany.,Institute for Bio- and Geosciences 1: Bioorganic Chemistry (IBG-1), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
13
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20‐Membered Macrocyclic Pseudo‐Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Anastasia Knyazeva
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology Crystallography and Biophysics Unit Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Dale Corkery
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Julian J. Holstein
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS) Otto-Hahn-Strasse 11 44221 Dortmund Germany
| | - Yao‐Wen Wu
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
14
|
Rong G, Zhang Y, Chen Y, Chen J, Jiang N, Merchuk JC. The prodigiosin change on the surface of Serratia marcescens detected by flow cytometry. Cytometry A 2021; 101:254-263. [PMID: 34448526 DOI: 10.1002/cyto.a.24497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
The potential of flow cytometry for the study of changes in prodigiosin on the cell surface of Serratia marcescens is of academic and practical interest. This is because S. marcescens can produce prodigiosin, a secondary metabolite, with potential use as a cancer-cell inhibitor. In this study, three groups of bacterial cultures with different carbon sources were compared, and the effect of the addition of cAMP to the sucrose-based culture was studied. Both cellular morphology and DNA content were detected by flow cytometry, rendering a broad description of the bacterial behavior. It is the first use of flow cytometry to investigate the dynamics of prodigiosin on the surface of S. marcescens during growth in different media. The fluorescence intensity is related to the DNA content, the forward-scattered light is related to cell volume, and the side-scattered light is related to the surface morphology, especially the surface prodigiosin. These may contribute to the potential development of a bacterial metabolic monitoring strategy using both DNA content analysis and bacterial morphology based on flow cytometry technique.
Collapse
Affiliation(s)
- Guangjian Rong
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.,Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, LiuFang Campus, Wuhan, China.,Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, LiuFang Campus, Wuhan, China
| | - Youhong Zhang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China.,Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, LiuFang Campus, Wuhan, China.,Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, LiuFang Campus, Wuhan, China.,School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Yan Chen
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jie Chen
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Nan Jiang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jose C Merchuk
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
Towards robust Pseudomonas cell factories to harbour novel biosynthetic pathways. Essays Biochem 2021; 65:319-336. [PMID: 34223620 PMCID: PMC8314020 DOI: 10.1042/ebc20200173] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Biotechnological production in bacteria enables access to numerous valuable chemical compounds. Nowadays, advanced molecular genetic toolsets, enzyme engineering as well as the combinatorial use of biocatalysts, pathways, and circuits even bring new-to-nature compounds within reach. However, the associated substrates and biosynthetic products often cause severe chemical stress to the bacterial hosts. Species of the Pseudomonas clade thus represent especially valuable chassis as they are endowed with multiple stress response mechanisms, which allow them to cope with a variety of harmful chemicals. A built-in cell envelope stress response enables fast adaptations that sustain membrane integrity under adverse conditions. Further, effective export machineries can prevent intracellular accumulation of diverse harmful compounds. Finally, toxic chemicals such as reactive aldehydes can be eliminated by oxidation and stress-induced damage can be recovered. Exploiting and engineering these features will be essential to support an effective production of natural compounds and new chemicals. In this article, we therefore discuss major resistance strategies of Pseudomonads along with approaches pursued for their targeted exploitation and engineering in a biotechnological context. We further highlight strategies for the identification of yet unknown tolerance-associated genes and their utilisation for engineering next-generation chassis and finally discuss effective measures for pathway fine-tuning to establish stable cell factories for the effective production of natural compounds and novel biochemicals.
Collapse
|
16
|
Abstract
Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| | - Angela Sester
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
- Current address: Chair of Technical BiochemistryTechnical University of DresdenBergstrasse 6601069DresdenGermany
| | - Markus Nett
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| |
Collapse
|
17
|
Berning L, Schlütermann D, Friedrich A, Berleth N, Sun Y, Wu W, Mendiburo MJ, Deitersen J, Brass HUC, Skowron MA, Hoffmann MJ, Niegisch G, Pietruszka J, Stork B. Prodigiosin Sensitizes Sensitive and Resistant Urothelial Carcinoma Cells to Cisplatin Treatment. Molecules 2021; 26:1294. [PMID: 33673611 PMCID: PMC7957586 DOI: 10.3390/molecules26051294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 01/21/2023] Open
Abstract
Cisplatin-based treatment is the standard of care therapy for urothelial carcinomas. However, complex cisplatin resistance mechanisms limit the success of this approach. Both apoptosis and autophagy have been shown to contribute to this resistance. Prodigiosin, a secondary metabolite from various bacteria, exerts different biological activities including the modulation of these two cellular stress response pathways. We analyzed the effect of prodigiosin on protein levels of different autophagy- and apoptosis-related proteins in cisplatin-sensitive and -resistant urothelial carcinoma cells (UCCs). Furthermore, we investigated the effect on cell viability of prodigiosin alone or in combination with cisplatin. We made use of four different pairs of cisplatin-sensitive and -resistant UCCs. We found that prodigiosin blocked autophagy in UCCs and re-sensitized cisplatin-resistant cells to apoptotic cell death. Furthermore, we found that prodigiosin is a potent anticancer agent with nanomolar IC50 values in all tested UCCs. In combination studies, we observed that prodigiosin sensitized both cisplatin-sensitive and -resistant urothelial carcinoma cell lines to cisplatin treatment with synergistic effects in most tested cell lines. These effects of prodigiosin are at least partially mediated by altering lysosomal function, since we detected reduced activities of cathepsin B and L. We propose that prodigiosin is a promising candidate for the therapy of cisplatin-resistant urothelial carcinomas, either as a single agent or in combinatory therapeutic approaches.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (L.B.); (D.S.); (A.F.); (N.B.); (Y.S.); (W.W.); (M.J.M.); (J.D.)
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (L.B.); (D.S.); (A.F.); (N.B.); (Y.S.); (W.W.); (M.J.M.); (J.D.)
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (L.B.); (D.S.); (A.F.); (N.B.); (Y.S.); (W.W.); (M.J.M.); (J.D.)
| | - Niklas Berleth
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (L.B.); (D.S.); (A.F.); (N.B.); (Y.S.); (W.W.); (M.J.M.); (J.D.)
| | - Yadong Sun
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (L.B.); (D.S.); (A.F.); (N.B.); (Y.S.); (W.W.); (M.J.M.); (J.D.)
| | - Wenxian Wu
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (L.B.); (D.S.); (A.F.); (N.B.); (Y.S.); (W.W.); (M.J.M.); (J.D.)
| | - María José Mendiburo
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (L.B.); (D.S.); (A.F.); (N.B.); (Y.S.); (W.W.); (M.J.M.); (J.D.)
| | - Jana Deitersen
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (L.B.); (D.S.); (A.F.); (N.B.); (Y.S.); (W.W.); (M.J.M.); (J.D.)
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Forschungszentrum Jülich, Stetternicher Forst, 52428 Jülich, Germany; (H.U.C.B.); (J.P.)
- Institute for Bio- and Geosciences 1: Bioorganic Chemistry (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Margaretha A. Skowron
- Department of Urology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.A.S.); (M.J.H.); (G.N.)
| | - Michèle J. Hoffmann
- Department of Urology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.A.S.); (M.J.H.); (G.N.)
| | - Günter Niegisch
- Department of Urology, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (M.A.S.); (M.J.H.); (G.N.)
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Forschungszentrum Jülich, Stetternicher Forst, 52428 Jülich, Germany; (H.U.C.B.); (J.P.)
- Institute for Bio- and Geosciences 1: Bioorganic Chemistry (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (L.B.); (D.S.); (A.F.); (N.B.); (Y.S.); (W.W.); (M.J.M.); (J.D.)
| |
Collapse
|
18
|
Brands S, Brass HUC, Klein AS, Sikkens JG, Davari MD, Pietruszka J, Ruff AJ, Schwaneberg U. KnowVolution of prodigiosin ligase PigC towards condensation of short-chain prodiginines. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02297g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One round of KnowVolution enhanced the catalytic activity of prodigiosin ligase PigC with short-chain monopyrroles, opening access to anticancer prodiginines.
Collapse
Affiliation(s)
- Stefanie Brands
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry
- Bioeconomy Science Center (BioSC)
- Heinrich Heine University Düsseldorf
- 52426 Jülich
- Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry
- Bioeconomy Science Center (BioSC)
- Heinrich Heine University Düsseldorf
- 52426 Jülich
- Germany
| | - Jarno G. Sikkens
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry
- Bioeconomy Science Center (BioSC)
- Heinrich Heine University Düsseldorf
- 52426 Jülich
- Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- Bioeconomy Science Center (BioSC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
19
|
Brands S, Sikkens JG, Davari MD, Brass HUC, Klein AS, Pietruszka J, Ruff AJ, Schwaneberg U. Understanding substrate binding and the role of gatekeeping residues in PigC access tunnels. Chem Commun (Camb) 2021; 57:2681-2684. [DOI: 10.1039/d0cc08226k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prodigiosin ligase PigC has been engineered by semi-rational design to accept short chain-pyrroles, providing molecular understanding of access tunnels and the substrate-binding pocket.
Collapse
Affiliation(s)
- Stefanie Brands
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| | - Jarno G. Sikkens
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- Bioeconomy Science Center (BioSC)
- Building 15.8
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- Bioeconomy Science Center (BioSC)
- Building 15.8
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- Bioeconomy Science Center (BioSC)
- Building 15.8
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- Bioeconomy Science Center (BioSC)
- Worringerweg 3
- Aachen 52074
| |
Collapse
|
20
|
Lehner KM, Stella NA, Calvario RC, Shanks RMQ. mCloverBlaster: A tool to make markerless deletions and fusions using lambda red and I-SceI in Gram-negative bacterial genomes. J Microbiol Methods 2020; 178:106058. [PMID: 32931841 PMCID: PMC7952467 DOI: 10.1016/j.mimet.2020.106058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022]
Abstract
This study introduces mCloverBlaster as a genetic tool to create deletions and transcriptional and translational fusions in bacterial genomes using recombineering. The major advantage of this system is that it can be used to make deletions and fusions without leaving a selectable marker on the chromosome. mCloverBlaster has a kanamycin resistance cassette with an I-SceI restriction site flanked by fragments of the gene for the mClover3 fluorescent protein including direct repeats of mClover3 sequence on both sides of the kanamycin resistance gene. The mCloverBlaster sequence is introduced into the chromosome using lambda red recombineering, expression of I-SceI creates a double stranded break in the kanamycin resistance cassette that initiates a recombination event that can occur in the mClover3 repeats. This recombination results in the simultaneous removal of the kanamycin resistance gene and the restoration of a functional mClover3 gene that can be used as a reporter. Here, this system was used to replace the rcsB stress response gene in Serratia marcescens. The resulting strain was tested for mClover3 fluorescence as a reporter for rcsB gene expression and evaluated for pigment biosynthesis. In summary, mCloverBlaster is a molecular genetic tool to make markerless mClover3 fusions and gene deletions.
Collapse
Affiliation(s)
- Kara M Lehner
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Nicholas A Stella
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Rachel C Calvario
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Robert M Q Shanks
- Department of Ophthalmology, Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
21
|
Wang SL, Nguyen VB, Doan CT, Tran TN, Nguyen MT, Nguyen AD. Production and Potential Applications of Bioconversion of Chitin and Protein-Containing Fishery Byproducts into Prodigiosin: A Review. Molecules 2020; 25:E2744. [PMID: 32545769 PMCID: PMC7356639 DOI: 10.3390/molecules25122744] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
The technology of microbial conversion provides a potential way to exploit compounds of biotechnological potential. The red pigment prodigiosin (PG) and other PG-like pigments from bacteria, majorly from Serratia marcescens, have been reported as bioactive secondary metabolites that can be used in the broad fields of agriculture, fine chemicals, and pharmacy. Increasing PG productivity by investigating the culture conditions especially the inexpensive carbon and nitrogen (C/N) sources has become an important factor for large-scale production. Investigations into the bioactivities and applications of PG and its related compounds have also been given increased attention. To save production cost, chitin and protein-containing fishery byproducts have recently been investigated as the sole C/N source for the production of PG and chitinolytic/proteolytic enzymes. This strategy provides an environmentally-friendly selection using inexpensive C/N sources to produce a high yield of PG together with chitinolytic and proteolytic enzymes by S. marcescens. The review article will provide effective references for production, bioactivity, and application of S. marcescens PG in various fields such as biocontrol agents and potential pharmaceutical drugs.
Collapse
Affiliation(s)
- San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Minh Trung Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| |
Collapse
|
22
|
Loeschcke A, Thies S. Engineering of natural product biosynthesis in Pseudomonas putida. Curr Opin Biotechnol 2020; 65:213-224. [PMID: 32498036 DOI: 10.1016/j.copbio.2020.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
23
|
Picott KJ, Deichert JA, deKemp EM, Snieckus V, Ross AC. Purification and Kinetic Characterization of the Essential Condensation Enzymes Involved in Prodiginine and Tambjamine Biosynthesis. Chembiochem 2020; 21:1036-1042. [DOI: 10.1002/cbic.201900503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/11/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Katherine J. Picott
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Julie A. Deichert
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Ella M. deKemp
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Victor Snieckus
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| | - Avena C. Ross
- Department of ChemistryQueen's University 90 Bader Lane Kingston ON K7L 3N6 Canada
| |
Collapse
|
24
|
Brothers KM, Stella NA, Shanks RMQ. Biologically active pigment and ShlA cytolysin of Serratia marcescens induce autophagy in a human ocular surface cell line. BMC Ophthalmol 2020; 20:120. [PMID: 32216768 PMCID: PMC7098141 DOI: 10.1186/s12886-020-01387-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cellular process of autophagy is essential for maintaining the health of ocular tissue. Dysregulation of autophagy is associated with several ocular diseases including keratoconus and macular degeneration. It is known that autophagy can be used to respond to microbial infections and that certain microbes can exploit the autophagic process to their benefit. In this study, a genetic approach was used to identify surface-associated and secreted products generated by the opportunistic pathogen Serratia marcescens involved in activation of autophagy. METHODS A recombinant human corneal limbal epithelial cell line expressing a LC3-GFP fusion protein was challenged with normalized secretomes from wild-type and mutant S. marcescens derivatives. LC3-GFP fluorescence patterns were used to assess the ability of wild-type and mutant bacteria to influence autophagy. Purified prodigiosin was obtained from stationary phase bacteria and used to challenge ocular cells. RESULTS Mutations in the global regulators eepR and gumB genes highly reduced the ability of the bacteria to activate autophagy in corneal cells. This effect was further narrowed down to the secreted cytolysin ShlA and the biologically active pigment prodigiosin. Purified prodigiosin and ShlA from Escherichia coli further supported the role of these factors in activating autophagy in human corneal cells. Additional genetic data indicate a role for flagellin and type I pili, but not the nuclease, S-layer protein, or serratamolide biosurfactant in activation of autophagy. CONCLUSIONS This work identifies specific bacterial components that activate autophagy and give insight into potential host-pathogen interactions or compounds that can be used to therapeutically manipulate autophagy.
Collapse
Affiliation(s)
- Kimberly M Brothers
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, EEI 1020, 203 Lothrop Street, Pittsburgh, Pennsylvania, 15213, USA
| | - Nicholas A Stella
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, EEI 1020, 203 Lothrop Street, Pittsburgh, Pennsylvania, 15213, USA
| | - Robert M Q Shanks
- The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, EEI 1020, 203 Lothrop Street, Pittsburgh, Pennsylvania, 15213, USA.
| |
Collapse
|
25
|
Setiyono E, Adhiwibawa MA, Indrawati R, Prihastyanti MNU, Shioi Y, Brotosudarmo THP. An Indonesian Marine Bacterium, Pseudoalteromonas rubra, Produces Antimicrobial Prodiginine Pigments. ACS OMEGA 2020; 5:4626-4635. [PMID: 32175509 PMCID: PMC7066656 DOI: 10.1021/acsomega.9b04322] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/14/2020] [Indexed: 05/19/2023]
Abstract
Red pigmented marine bacteria, Pseudoalteromonas rubra strains PS1 and SB14, were isolated from two sampling locations in different ecosystems on Alor Island, Indonesia, and cultured in the laboratory. We analyzed the 16S rRNA gene sequences and examined the pigment composition and found that both strains produced cycloprodigiosin (3), prodigiosin (4), and 2-methyl-3-hexyl-prodiginine (5) as major compounds. In addition, we detected three minor compounds: prodigiosin derivatives 2-methyl-3-propyl prodiginine (1), 2-methyl-3-butyl prodiginine (2), and 2-methyl-3-heptyl-prodiginine (6). To our knowledge, this is the first report that P. rubra synthesizes not only prodigiosin and cycloprodigiosin but also four prodigiosin derivatives that differ in the length of the alkyl chain. The antimicrobial activity of cycloprodigiosin, prodigiosin, and 2-methyl-3-hexyl-prodiginine was examined by a disk-diffusion test against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Candida albicans. We found that, at a concentration of 20 μg/mL, cycloprodigiosin showed the greatest inhibition (25.1 ± 0.55 mm) against S. aureus.
Collapse
Affiliation(s)
- Edi Setiyono
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Marcelinus Alfasisurya
Setya Adhiwibawa
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Renny Indrawati
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Monika Nur Utami Prihastyanti
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Yuzo Shioi
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| | - Tatas Hardo Panintingjati Brotosudarmo
- Ma Chung Research Center
for Photosynthetic Pigments (MRCPP) and Department of Chemistry, Universitas Ma Chung, Villa Puncak Tidar N01, Malang 65151, Jawa Timur, Indonesia
| |
Collapse
|
26
|
Couturier M, Bhalara HD, Chawrai SR, Monson R, Williamson NR, Salmond GPC, Leeper FJ. Substrate Flexibility of the Flavin-Dependent Dihydropyrrole Oxidases PigB and HapB Involved in Antibiotic Prodigiosin Biosynthesis. Chembiochem 2020; 21:523-530. [PMID: 31433555 PMCID: PMC7065143 DOI: 10.1002/cbic.201900424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 11/28/2022]
Abstract
In the biosynthesis of the tripyrrolic pigment prodigiosin, PigB is a predicted flavin-dependent oxidase responsible for the formation of 2-methyl-3-amylpyrrole (MAP) from a dihydropyrrole. To prove which dihydropyrrole is the true intermediate, both possibilities, 5-methyl-4-pentyl-3,4-dihydro-2H-pyrrole (5 a, resulting from transamination of the aldehyde of 3-acetyloctanal) and 2-methyl-3-pentyl-3,4-dihydro-2H-pyrrole (6, resulting from transamination of the ketone), were synthesised. Only 5 a restored pigment production in a strain of Serratia sp. ATCC 39006 blocked earlier in MAP biosynthesis. PigB is membrane-associated and inactive when its transmembrane domain was deleted, but HapB, its homologue in Hahella chejuensis, lacks the transmembrane domain and is active in solution. Two colourimetric assays for PigB and HapB were developed, and the HapB-catalysed reaction was kinetically characterised. Ten analogues of 5 a were synthesised, varying in the C2 and C3 side chains, and tested as substrates of HapB in vitro and for restoration of pigment production in Serratia ΔpigD in vivo. All lengths of side chain tested at C3 were accepted, but only short side chains at C2 were accepted. The knowledge that 5 a is an intermediate in prodigiosin biosynthesis and the ease of synthesis of analogues of 5 a makes a range of prodigiosin analogues readily available by mutasynthesis.
Collapse
Affiliation(s)
- Maxime Couturier
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Hiral D. Bhalara
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Suresh R. Chawrai
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Rita Monson
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Neil R. Williamson
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - George P. C. Salmond
- Department of BiochemistryUniversity of CambridgeTennis Court RoadCambridgeCB2 1QWUK
| | - Finian J. Leeper
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
27
|
RedH and PigC Catalyze the Biosynthesis of Hybrubins via Phosphorylation of 4'-Methoxy-2,2'-Bipyrrole-5'-Carbaldehyde. Appl Environ Microbiol 2020; 86:AEM.02331-19. [PMID: 31704680 DOI: 10.1128/aem.02331-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
Hybrubins are "unnatural" alkaloids with the same 4'-methoxy-2,2'-bipyrrole-5'-methine moiety found in prodiginines and a different ring derived from tetramic acids. Here, we demonstrated that RedH, a homologue of prodigiosin synthetase PigC, was responsible for the biosynthesis of hybrubins A and B in Streptomyces lividans In vitro reactions indicated that RedH and PigC catalyzed the intermolecular condensation between 4'-methoxy-2,2'-bipyrrole-5'-carbaldehyde (MBC) and (Z)-5-ethylidenetetramic acid (ETA) to produce hybrubin B. Moreover, we demonstrated that RedH and PigC activated MBC via phosphorylation of the aldehyde group to form an intermediate Pi-MBC and that the subsequent condensation between Pi-MBC and (Z)-5-ethylidenetetramic acid occurs in a nonenzymatic way.IMPORTANCE Hybrubins are an emerging class of prodiginines possessing a new C ring derived from 5'-substituted tetramic acids and the methylene bridge connecting the C ring at a different position. We have supposed that condensation between 4'-methoxy-2,2'-bipyrrole-5'-carbaldehyde (MBC) and 5-ethylidenetetramic acid (ETA) yields the hybrid natural products hybrubins, which was proposed to be catalyzed by the undecylprodigiosin synthetase RedH. However, it is doubted whether RedH is able to catalyze another type of condensation between MBC and tetramic acids. In this study, we have demonstrated that the MBC-ETA condensation proceeds through RedH/PigC-catalyzed enzymatic activation of MBC via phosphorylation and a nonenzymatic condensation of Pi-MBC with ETA. Since MBC analogues have been shown to be accepted by PigC, more hybrubin analogues might be produced by using combinations of MBC analogues and other tetramic acids in future studies.
Collapse
|
28
|
Brands S, Brass HUC, Klein AS, Pietruszka J, Ruff AJ, Schwaneberg U. A colourimetric high-throughput screening system for directed evolution of prodigiosin ligase PigC. Chem Commun (Camb) 2020; 56:8631-8634. [DOI: 10.1039/d0cc02181d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A colourimetric high-throughput screening system was developed for the first directed evolution campaign on PigC towards production of artificial prodiginines.
Collapse
Affiliation(s)
- Stefanie Brands
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- 52426 Jülich
- Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- 52426 Jülich
- Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry
- Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich
- Stetternicher Forst
- 52426 Jülich
- Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI-Leibniz Institut für Interaktive Materialien
| |
Collapse
|
29
|
Habash SS, Brass HUC, Klein AS, Klebl DP, Weber TM, Classen T, Pietruszka J, Grundler FMW, Schleker ASS. Novel Prodiginine Derivatives Demonstrate Bioactivities on Plants, Nematodes, and Fungi. FRONTIERS IN PLANT SCIENCE 2020; 11:579807. [PMID: 33178246 PMCID: PMC7596250 DOI: 10.3389/fpls.2020.579807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/18/2020] [Indexed: 05/06/2023]
Abstract
Bacterial metabolites represent an invaluable source of bioactive molecules which can be used as such or serve as chemical frameworks for developing new antimicrobial compounds for various applications including crop protection against pathogens. Prodiginines are tripyrrolic, red-colored compounds produced by many bacterial species. Recently, due to the use of chemical-, bio-, or mutasynthesis, a novel group of prodiginines was generated. In our study, we perform different assays to evaluate the effects of prodigiosin and five derivatives on nematodes and plant pathogenic fungi as well as on plant development. Our results showed that prodigiosin and the derivatives were active against the bacterial feeding nematode Caenorhabditis elegans in a concentration- and derivative-dependent manner while a direct effect on infective juveniles of the plant parasitic nematode Heterodera schachtii was observed for prodigiosin only. All compounds were found to be active against the plant pathogenic fungi Phoma lingam and Sclerotinia sclerotiorum. Efficacy varied depending on compound concentration and chemical structure. We observed that prodigiosin (1), the 12 ring- 9, and hexenol 10 derivatives are neutral or even positive for growth of Arabidopsis thaliana depending on the applied compound concentration, whereas other derivatives appear to be suppressive. Our infection assays revealed that the total number of developed H. schachtii individuals on A. thaliana was decreased to 50% in the presence of compounds 1 or 9. Furthermore, female nematodes and their associated syncytia were smaller in size. Prodiginines seem to indirectly inhibit H. schachtii parasitism of the plant. Further research is needed to elucidate their mode of action. Our results indicate that prodiginines are promising metabolites that have the potential to be developed into novel antinematodal and antifungal agents.
Collapse
Affiliation(s)
- Samer S. Habash
- INRES Molecular Phytomedicine, University of Bonn, Bonn, Germany
- *Correspondence: Samer S. Habash, ; orcid.org/0000-0002-4493-1451
| | - Hannah U. C. Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - David P. Klebl
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - Tim Moritz Weber
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
| | - Thomas Classen
- IBG-1: Bioorganic Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Stetternicher Forst, Jülich, Germany
- IBG-1: Bioorganic Chemistry, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - A. Sylvia S. Schleker
- INRES Molecular Phytomedicine, University of Bonn, Bonn, Germany
- A. Sylvia S. Schleker,
| |
Collapse
|
30
|
Pseudomonas putida in the quest of programmable chemistry. Curr Opin Biotechnol 2019; 59:111-121. [DOI: 10.1016/j.copbio.2019.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 11/19/2022]
|
31
|
Wynands B, Otto M, Runge N, Preckel S, Polen T, Blank LM, Wierckx N. Streamlined Pseudomonas taiwanensis VLB120 Chassis Strains with Improved Bioprocess Features. ACS Synth Biol 2019; 8:2036-2050. [PMID: 31465206 DOI: 10.1021/acssynbio.9b00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microbes harbor many traits that are dispensable or even unfavorable under industrial and laboratory settings. The elimination of such traits could improve the host's efficiency, genetic stability, and robustness, thereby increasing the predictability and boosting its performance as a microbial cell factory. We engineered solvent-tolerant Pseudomonas taiwanensis VLB120 to yield streamlined chassis strains with higher growth rates and biomass yields, enhanced solvent tolerance, and improved process performance. In total, the genome was reduced by up to 10%. This was achieved by the elimination of genes that enable the cell to swim and form biofilms and by the deletion of the megaplasmid pSTY and large proviral segments. The resulting strain GRC1 had a 15% higher growth rate and biomass yield than the wildtype. However, this strain lacks the pSTY-encoded efflux pump TtgGHI, rendering it solvent-sensitive. Through reintegration of ttgGHI by chromosomal insertion without (GRC2) and with (GRC3) the corresponding regulator genes, the solvent-tolerant phenotype was enhanced. The generated P. taiwanensis GRC strains enlarge the repertoire of streamlined chassis with enhanced key performance indicators, making them attractive hosts for biotechnological applications. The different solvent tolerance levels of GRC1, GRC2, and GRC3 enable the selection of a fitting host platform in relation to the desired process requirements in a chassis à la carte principle. This was demonstrated in a metabolic engineering approach for the production of phenol from glycerol. The streamlined producer GRC1Δ5-TPL38 outperformed the equivalent nonstreamlined producer VLB120Δ5-TPL38 concerning phenol titer, rate, and yield, thereby highlighting the added value of the streamlined chassis.
Collapse
Affiliation(s)
- Benedikt Wynands
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Maike Otto
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nadine Runge
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sarah Preckel
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
32
|
Kampers LFC, Volkers RJM, Martins dos Santos VAP. Pseudomonas putida KT2440 is HV1 certified, not GRAS. Microb Biotechnol 2019; 12:845-848. [PMID: 31199068 PMCID: PMC6680625 DOI: 10.1111/1751-7915.13443] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas putida is rapidly becoming a workhorse for industrial production due to its metabolic versatility, genetic accessibility and stress-resistance properties. The P. putida strain KT2440 is often described as Generally Regarded as Safe, or GRAS, indicating the strain is safe to use as food additive. This description is incorrect. P. putida KT2440 is classified by the FDA as HV1 certified, indicating it is safe to use in a P1 or ML1 environment.
Collapse
Affiliation(s)
- Linde F. C. Kampers
- Laboratory of Systems and Synthetic BiologyWageningen University and Research CentreStippeneng 46708WageningenThe Netherlands
| | - Rita J. M. Volkers
- Laboratory of Systems and Synthetic BiologyWageningen University and Research CentreStippeneng 46708WageningenThe Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic BiologyWageningen University and Research CentreStippeneng 46708WageningenThe Netherlands
- Lifeglimmer GmbHMarkelstr. 3812163BerlinGermany
| |
Collapse
|
33
|
Romanowski EG, Lehner KM, Martin NC, Patel KR, Callaghan JD, Stella NA, Shanks RMQ. Thermoregulation of Prodigiosin Biosynthesis by Serratia marcescens is Controlled at the Transcriptional Level and Requires HexS. Pol J Microbiol 2019; 68:43-50. [PMID: 31050252 PMCID: PMC6943984 DOI: 10.21307/pjm-2019-005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 11/11/2022] Open
Abstract
Several biotypes of the Gram-negative bacterium Serratia marcescens produce the tri-pyrole pigment and secondary metabolite prodigiosin. The biological activities of this pigment have therapeutic potential. For over half a century it has been known that biosynthesis of prodi giosin is inhibited when bacteria are grown at elevated temperatures, yet the fundamental mechanism underlying this thermoregulation has not been characterized. In this study, chromosomal and plasmid-borne luxCDABE transcriptional reporters revealed reduced transcription of the prodigiosin biosynthetic operon at 37°C compared to 30°C indicating transcriptional control of pigment production. Moreover, induced expression of the prodigiosin biosynthetic operon at 37°C was able to produce pigmented colonies and cultures demonstrating that physiological conditions at 37°C allow prodigiosin production and indicating that post-transcriptional control is not a major contributor to the thermoregulation of prodigiosin pigmentation. Genetic experiments support the model that the HexS transcription factor is a key contributor to thermoregulation of pigmentation, whereas CRP plays a minor role, and a clear role for EepR and PigP was not observed. Together, these data indicate that thermoregulation of prodigiosin production at elevated temperatures is controlled largely, if not exclusively, at the transcriptional level.
Collapse
Affiliation(s)
- Eric G Romanowski
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh , Pittsburgh PA
| | - Kara M Lehner
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh , Pittsburgh PA
| | - Natalie C Martin
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh , Pittsburgh PA
| | - Kriya R Patel
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh , Pittsburgh PA
| | - Jake D Callaghan
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh , Pittsburgh PA
| | - Nicholas A Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh , Pittsburgh PA
| | - Robert M Q Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh , Pittsburgh PA
| |
Collapse
|
34
|
Brass HUC, Klein AS, Nyholt S, Classen T, Pietruszka J. Condensing Enzymes fromPseudoalteromonadaceaefor Prodiginine Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hannah U. C. Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located atForschungszentrum Jülich Stetternicher Forst, Building 15.8 52426 Jülich Germany
| | - Andreas S. Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located atForschungszentrum Jülich Stetternicher Forst, Building 15.8 52426 Jülich Germany
| | - Silke Nyholt
- Institute of Bio- and Geosciences (IBG-1)Forschungszentrum Jülich 52426 Jülich Germany
| | - Thomas Classen
- Institute of Bio- and Geosciences (IBG-1)Forschungszentrum Jülich 52426 Jülich Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located atForschungszentrum Jülich Stetternicher Forst, Building 15.8 52426 Jülich Germany
- Institute of Bio- and Geosciences (IBG-1)Forschungszentrum Jülich 52426 Jülich Germany
| |
Collapse
|
35
|
Insights into the anti-infective properties of prodiginines. Appl Microbiol Biotechnol 2019; 103:2873-2887. [PMID: 30761415 DOI: 10.1007/s00253-019-09641-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/14/2022]
Abstract
Prodiginines are a large family of tripyrrole alkaloids that contain natural members produced by various bacteria and non-natural members obtained from chemical synthesis, enzymatic synthesis, and mutasynthesis. These compounds have attracted a great deal of attention due to their wide range of fascinating properties including anti-infective, anticancer, and immunosuppressive activities. In consideration of the great need for novel and effective anti-infective agents, this review is mainly focused on the current status of research on the anti-infective properties of prodiginines, highlighting their antibacterial, antifungal, antiprotozoal, anti-larval, and antiviral activities. Additionally, the multiple mechanisms by which prodiginines exert their anti-infective effects will also be discussed.
Collapse
|
36
|
Hage-Hülsmann J, Grünberger A, Thies S, Santiago-Schübel B, Klein AS, Pietruszka J, Binder D, Hilgers F, Domröse A, Drepper T, Kohlheyer D, Jaeger KE, Loeschcke A. Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS One 2018; 13:e0200940. [PMID: 30024935 PMCID: PMC6053208 DOI: 10.1371/journal.pone.0200940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/05/2018] [Indexed: 11/18/2022] Open
Abstract
Bacterial secondary metabolites are naturally produced to prevail amongst competitors in a shared habitat and thus represent a valuable source for antibiotic discovery. The transformation of newly discovered antibiotic compounds into effective drugs often requires additional surfactant components for drug formulation. Nature may also provide blueprints in this respect: A cocktail of two compounds consisting of the antibacterial red pigment prodigiosin and the biosurfactant serrawettin W1 is naturally produced by the bacterium Serratia marcescens, which occurs in highly competitive habitats including soil. We show here a combinatorial antibacterial effect of these compounds, but also of prodigiosin mixed with other (bio)surfactants, against the soil-dwelling bacterium Corynebacterium glutamicum taken as a model target bacterium. Prodigiosin exerted a combinatorial inhibitory effect with all tested surfactants in a disk diffusion assay which was especially pronounced in combination with N-myristoyltyrosine. Minimal inhibitory and bactericidal concentrations (MIC and MBC) of the individual compounds were 2.56 μg/mL prodigiosin and 32 μg/mL N-myristoyltyrosine, and the MIC of prodigiosin was decreased by 3 orders of magnitude to 0.005 μg/mL in the presence of 16 μg/mL N-myristoyltyrosine, indicative of synergistic interaction. Investigation of bacterial survival revealed similar combinatorial effects; moreover, antagonistic effects were observed at higher compound concentrations. Finally, the investigation of microcolony formation under combined application of concentrations just below the MBC revealed heterogeneity of responses with cell death or delayed growth. In summary, this study describes the combinatorial antibacterial effects of microbial biomolecules, which may have ecological relevance by inhibiting cohabiting species, but shall furthermore inspire drug development in the combat of infectious disease.
Collapse
Affiliation(s)
- Jennifer Hage-Hülsmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Grünberger
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Beatrix Santiago-Schübel
- Central Division of Analytical Chemistry ZEA-3: Analytik/Biospec, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Sebastian Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Jörg Pietruszka
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Dennis Binder
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Fabienne Hilgers
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Aachener Verfahrenstechnik (AVT.MSB), RWTH Aachen University, Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
- * E-mail:
| |
Collapse
|
37
|
Klein AS, Brass HUC, Klebl DP, Classen T, Loeschcke A, Drepper T, Sievers S, Jaeger KE, Pietruszka J. Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440. Chembiochem 2018; 19:1545-1552. [PMID: 29719131 DOI: 10.1002/cbic.201800154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 12/12/2022]
Abstract
Prodiginines are a group of naturally occurring pyrrole alkaloids produced by various microorganisms and known for their broad biological activities. The production of nature-inspired cyclic prodiginines was enabled by combining organic synthesis with a mutasynthesis approach based on the GRAS (generally recognized as safe) certified host strain Pseudomonas putida KT2440. The newly prepared prodiginines exerted antimicrobial effects against relevant alternative biotechnological microbial hosts whereas P. putida itself exhibited remarkable tolerance against all tested prodiginines, thus corroborating the bacterium's exceptional suitability as a mutasynthesis host for the production of these cytotoxic secondary metabolites. Moreover, the produced cyclic prodiginines proved to be autophagy modulators in human breast cancer cells. One promising cyclic prodiginine derivative stood out, being twice as potent as prodigiosin, the most prominent member of the prodiginine family, and its synthetic derivative obatoclax mesylate.
Collapse
Affiliation(s)
- Andreas Sebastian Klein
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Hannah Ursula Clara Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - David Paul Klebl
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Thomas Classen
- Insitute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52425, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS), Max Planck Institute of Molecular Physiology, 44202, Dortmund, Germany
| | - Karl-Erich Jaeger
- Insitute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52425, Jülich, Germany.,Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf located at Forschungszentrum Jülich, Stetternicher Forst, Building 15.8, 52426, Jülich, Germany.,Insitute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Stetternicher Forst, Building 15.8, 52425, Jülich, Germany
| |
Collapse
|
38
|
You Z, Liu X, Zhang S, Wang Y. Characterization of a prodigiosin synthetase PigC from Serratia marcescens jx-1 and its application in prodigiosin analogue synthesis. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Eckelmann D, Spiteller M, Kusari S. Spatial-temporal profiling of prodiginines and serratamolides produced by endophytic Serratia marcescens harbored in Maytenus serrata. Sci Rep 2018; 8:5283. [PMID: 29588473 PMCID: PMC5869619 DOI: 10.1038/s41598-018-23538-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
An endophytic bacterium, Serratia marcescens MSRBB2, isolated from inner bark of a Cameroonian Maytenus serrata plant, was subjected to the OSMAC (One Strain Many Compounds) approach and metabolic profiling using HPLC-HRMSn. We identified 7 prodiginines along with 26 serratamolides. Their biosynthetic pathways were elucidated by feeding with labeled precursors in combination with HRMSn. Dual-culture confrontation/restriction assays of the bacterial endophyte were devised with coexisting fungal endophytes (Pestalotiopsis virgatula, Aspergillus caesiellus and Pichia spp.) as well as with unrelated, non-endophytic fungi belonging to the same genera. The assays were combined with scanning electron microscopy (SEM) as well as matrix-assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS) for visualizing, both in high spatial and temporal resolution, the distribution and interplay of the compounds during microbial interactions. We demonstrated the effect of prodigiosin produced by endophytic S. marcescens MSRBB2 as an allelochemical that specifically inhibits coexisting endophytic fungi. Our results provide new insights into the physiological and ecological relevance of prodiginines and serratamolides within the context of allelopathy and chemical defense interaction occurring between coexisting endophytes harbored in M. serrata.
Collapse
Affiliation(s)
- Dennis Eckelmann
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Straße 6, 44221, Dortmund, Germany
| | - Michael Spiteller
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Straße 6, 44221, Dortmund, Germany
| | - Souvik Kusari
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Straße 6, 44221, Dortmund, Germany.
| |
Collapse
|
40
|
Wynands B, Lenzen C, Otto M, Koch F, Blank LM, Wierckx N. Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production. Metab Eng 2018; 47:121-133. [PMID: 29548982 DOI: 10.1016/j.ymben.2018.03.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/31/2022]
Abstract
Aromatic chemicals are important building blocks for the production of a multitude of everyday commodities. Currently, aromatics production relies almost exclusively on petrochemical processes. To achieve sustainability, alternative synthesis methods need to be developed. Here, we strived for an efficient production of phenol, a model aromatic compound of industrial relevance, from renewable carbon sources using the solvent-tolerant biocatalyst Pseudomonas taiwanensis VLB120. First, multiple catabolic routes for the degradation of aromatics and related compounds were inactivated, thereby obtaining the chassis strain P. taiwanensis VLB120Δ5 incapable of growing on 4-hydroxybenzoate (ΔpobA), tyrosine (Δhpd), and quinate (ΔquiC, ΔquiC1, ΔquiC2). In this context, a novel gene contributing to the quinate catabolism was identified (quiC2). Second, we employed a combination of reverse- and forward engineering to increase metabolic flux towards the product, using leads obtained from the analysis of aromatics producing Pseudomonas putida strains previously generated by mutagenesis. Phenol production was enabled by the heterologous expression of a codon-optimized and chromosomally integrated tyrosine phenol-lyase encoding gene from Pantoea agglomerans AJ2985 (PaTPL2). The genomic modification of endogenous genes encoding TrpEP290S, AroF-1P148L, and PheAT310I, and the deletion of pykA improved phenol production 17-fold, while also minimizing the burden caused by plasmids and auxotrophies. The additional overexpression of known bottleneck enzymes (AroGfbr, TyrAfbr) derived from Escherichia coli further enhanced phenol titers. The best producing strain P. taiwanensis VLB120Δ5-TPL36 reached yields of 15.8% and 18.5% (Cmol/Cmol) phenol from glucose and glycerol, respectively, in a mineral medium without addition of complex nutrients. This is the highest yield ever reported for microbially produced phenol.
Collapse
Affiliation(s)
- Benedikt Wynands
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Christoph Lenzen
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Maike Otto
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Falk Koch
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nick Wierckx
- Institute of Applied Microbiology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|