1
|
Chen Y, Xia W, Lu F, Chen Z, Liu Y, Cao M, He N. Cell-free synthesis system: An accessible platform from biosensing to biomanufacturing. Microbiol Res 2025; 293:128079. [PMID: 39908944 DOI: 10.1016/j.micres.2025.128079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
The fundamental aspect of cell-free synthesis systems is the in vitro transcription-translation process. By artificially providing the components required for protein expression, in vitro protein production alleviates various limitations tied to in vivo production, such as oxygen supply and nutrient constraints, thus showcasing substantial potential in engineering applications. This article presents a comprehensive review of cell-free synthesis systems, with a primary focus on biosensing and biomanufacturing. In terms of biosensing, it summarizes the recognition-response mechanisms and key advantages of cell-free biosensors. Moreover, it examines the strategies for the cell-free production of intricate proteins, including membrane proteins and glycoproteins. Additionally, the integration of cell-free metabolic engineering approaches with cell-free synthesis systems in biomanufacturing is thoroughly discussed, with the expectation that biotechnology will embrace greater prosperity.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| |
Collapse
|
2
|
Shivakumar T, Clark J, Goode A, Anyanwu VE, Williams PM. A Design of Experiments Approach for Enhancing Room Temperature Stability of a Lyophilised and Paper-Based Bacterial Cell-Free System. Bioengineering (Basel) 2025; 12:223. [PMID: 40150688 PMCID: PMC11939460 DOI: 10.3390/bioengineering12030223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Centralised cell-based biomanufacturing severely limits applicability in low-resource and extreme environments, where a largely untreated human population is present. Cell-free protein synthesis (CFPS) can surpass many of these limitations, due to its flexibility and low maintenance. After initial optimisation for high-level expression, we conceptualised CFPS platforms composed of lyophilised pellets and cellulose stacks for ease of storage and distribution. The latter platform consisted of lyophilised components on cellulose discs, which were layered and rehydrated to kickstart protein synthesis. Such paper-encompassed reactions were capable of robust expression, where the system can be modulated by simply changing the DNA layer. Using an initial screening design followed by a minimalistic design of experiments approach, we were able to improve the shelf life of lyophilised CFPS at room temperature from <1 week to 100% preservation at month 1. We anticipate that our strategy will enable quicker and more efficient stability optimisation for sustainable applications in all environments.
Collapse
Affiliation(s)
| | | | | | | | - Philip M. Williams
- Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK (A.G.)
| |
Collapse
|
3
|
Caschera F. Cell-free protein synthesis platforms for accelerating drug discovery. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2025; 6:126-132. [PMID: 40123759 PMCID: PMC11929937 DOI: 10.1016/j.biotno.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025]
Abstract
Cell-free protein synthesis is a platform for streamlined production of macromolecules. Recently, several proteins with pharmaceutical relevance were synthesised and characterised. Off-the-shelf reagents and parallelised experimentation have enabled the exploration of many different conditions for in vitro protein synthesis and engineering. Herein is described how machine learning algorithms were applied for protein yield maximisation as well as for protein engineering and de novo design. Cell-free protein synthesis provides the biotechnological platform to unlock the power and benefit of AI/ML for drug discovery and improve human health.
Collapse
|
4
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Alfaro-Palma J, Johnston WA, Behrendorff J, Cui Z, Moradi SV, Alexandrov K. Development of Lyophilized Eukaryotic Cell-Free Protein Expression System Based on Leishmania tarentolae. ACS Synth Biol 2024; 13:449-456. [PMID: 38268082 DOI: 10.1021/acssynbio.3c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Eukaryotic cell-free protein expression systems enable rapid production of recombinant multidomain proteins in their functional form. A cell-free system based on the rapidly growing protozoan Leishmania tarentolae (LTE) has been extensively used for protein engineering and analysis of protein interaction networks. However, like other eukaryotic cell-free systems, LTE deteriorates at ambient temperatures and requires deep freezing for transport and storage. In this study, we report the development of a lyophilized version of LTE. Use of lyoprotectants such as poly(ethylene glycol) and trehalose during the drying process allows retention of 76% of protein expression activity versus nonlyophilized controls. Lyophilized LTE is capable of withstanding storage at room temperature for over 2 weeks. We demonstrated that upon reconstitution the lyophilized LTE could be used for in vitro expression of active enzymes, analysis of protein-protein interactions by AlphaLISA assay, and functional analysis of protein biosensors. Development of lyophilized LTE lowers the barriers to its distribution and opens the door to its application in remote areas.
Collapse
Affiliation(s)
- Juan Alfaro-Palma
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wayne A Johnston
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - James Behrendorff
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT 2601, Australia
| | - Zhenling Cui
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Shayli Varasteh Moradi
- Protein Expression Facility, AIBN Building, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
6
|
Brookwell AW, Gonzalez JL, Martinez AW, Oza JP. Development of Solid-State Storage for Cell-Free Expression Systems. ACS Synth Biol 2023; 12:2561-2577. [PMID: 37490644 DOI: 10.1021/acssynbio.3c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The fragility of biological systems during storage, transport, and utilization necessitates reliable cold-chain infrastructure and limits the potential of biotechnological applications. In order to unlock the broad applications of existing and emerging biological technologies, we report the development of a novel solid-state storage platform for complex biologics. The resulting solid-state biologics (SSB) platform meets four key requirements: facile rehydration of solid materials, activation of biochemical activity, ability to support complex downstream applications and functionalities, and compatibility for deployment in a variety of reaction formats and environments. As a model system of biochemical complexity, we utilized crudeEscherichia colicell extracts that retain active cellular metabolism and support robust levels of in vitro transcription and translation. We demonstrate broad versatility and utility of SSB through proof-of-concepts for on-demand in vitro biomanufacturing of proteins at a milliliter scale, the activation of downstream CRISPR activity, as well as deployment on paper-based devices. SSBs unlock a breadth of applications in biomanufacturing, discovery, diagnostics, and education in resource-limited environments on Earth and in space.
Collapse
Affiliation(s)
- August W Brookwell
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Jorge L Gonzalez
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Andres W Martinez
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Javin P Oza
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| |
Collapse
|
7
|
Rasor BJ, Karim AS, Alper HS, Jewett MC. Cell Extracts from Bacteria and Yeast Retain Metabolic Activity after Extended Storage and Repeated Thawing. ACS Synth Biol 2023; 12:904-908. [PMID: 36848582 DOI: 10.1021/acssynbio.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cell-free synthetic biology enables rapid prototyping of biological parts and synthesis of proteins or metabolites in the absence of cell growth constraints. Cell-free systems are frequently made from crude cell extracts, where composition and activity can vary significantly based on source strain, preparation and processing, reagents, and other considerations. This variability can cause extracts to be treated as black boxes for which empirical observations guide practical laboratory practices, including a hesitance to use dated or previously thawed extracts. To better understand the robustness of cell extracts over time, we assessed the activity of cell-free metabolism during storage. As a model, we studied conversion of glucose to 2,3-butanediol. We found that cell extracts from Escherichia coli and Saccharomyces cerevisiae subjected to an 18-month storage period and repeated freeze-thaw cycles retain consistent metabolic activity. This work gives users of cell-free systems a better understanding of the impacts of storage on extract behavior.
Collapse
|
8
|
Warfel K, Williams A, Wong DA, Sobol SE, Desai P, Li J, Chang YF, DeLisa MP, Karim AS, Jewett MC. A Low-Cost, Thermostable, Cell-Free Protein Synthesis Platform for On-Demand Production of Conjugate Vaccines. ACS Synth Biol 2023; 12:95-107. [PMID: 36548479 PMCID: PMC9872175 DOI: 10.1021/acssynbio.2c00392] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Cell-free protein synthesis systems that can be lyophilized for long-term, non-refrigerated storage and transportation have the potential to enable decentralized biomanufacturing. However, increased thermostability and decreased reaction cost are necessary for further technology adoption. Here, we identify maltodextrin as an additive to cell-free reactions that can act as both a lyoprotectant to increase thermostability and a low-cost energy substrate. As a model, we apply optimized formulations to produce conjugate vaccines for ∼$0.50 per dose after storage at room temperature (∼22 °C) or 37 °C for up to 4 weeks, and ∼$1.00 per dose after storage at 50 °C for up to 4 weeks, with costs based on raw materials purchased at the laboratory scale. We show that these conjugate vaccines generate bactericidal antibodies against enterotoxigenic Escherichia coli (ETEC) O78 O-polysaccharide, a pathogen responsible for diarrheal disease, in immunized mice. We anticipate that our low-cost, thermostable cell-free glycoprotein synthesis system will enable new models of medicine biosynthesis and distribution that bypass cold-chain requirements.
Collapse
Affiliation(s)
- Katherine
F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Asher Williams
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 United States
| | - Derek A. Wong
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Sarah E. Sobol
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Primit Desai
- Biochemistry,
Molecular & Cell Biology, Cornell University, Ithaca, New York 14853 United States
| | - Jie Li
- Department
of Population Medicine and Diagnostic Sciences, College of Veterinary
Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Yung-Fu Chang
- Department
of Population Medicine and Diagnostic Sciences, College of Veterinary
Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 United States
- Biochemistry,
Molecular & Cell Biology, Cornell University, Ithaca, New York 14853 United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853 United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, 676 North
Saint Clair Street, Suite 1200, Chicago, Illinois 60611, United States
- Simpson
Querrey Institute, Northwestern University, 303 East Superior Street, Suite
11-131, Chicago, Illinois 60611, United States
| |
Collapse
|
9
|
Sánchez-Costa M, López-Gallego F. Solid-Phase Cell-Free Protein Synthesis and Its Applications in Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:21-46. [PMID: 37306703 DOI: 10.1007/10_2023_226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-free systems for the in vitro production of proteins have revolutionized the synthetic biology field. In the last decade, this technology is gaining momentum in molecular biology, biotechnology, biomedicine and even education. Materials science has burst into the field of in vitro protein synthesis to empower the value of existing tools and expand its applications. In this sense, the combination of solid materials (normally functionalized with different biomacromolecules) together with cell-free components has made this technology more versatile and robust. In this chapter, we discuss the combination of solid materials with DNA and transcription-translation machinery to synthesize proteins within compartments, to immobilize and purify in situ the nascent protein, to transcribe and transduce DNAs immobilized on solid surfaces, and the combination of all or some of these strategies.
Collapse
Affiliation(s)
- Mercedes Sánchez-Costa
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| |
Collapse
|
10
|
Jew K, Smith PEJ, So B, Kasman J, Oza JP, Black MW. Characterizing and Improving pET Vectors for Cell-free Expression. Front Bioeng Biotechnol 2022; 10:895069. [PMID: 35814024 PMCID: PMC9259831 DOI: 10.3389/fbioe.2022.895069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/26/2022] [Indexed: 11/15/2022] Open
Abstract
Cell-free protein synthesis (CFPS) is an in vitro process that enables diverse applications in research, biomanufacturing, point-of-care diagnostics, therapeutics, and education using minimal laboratory equipment and reagents. One of the major limitations of CFPS implementation is its sensitivity to plasmid type. Specifically, plasmid templates based on commonly used vector backbones such as the pET series of bacterial expression vectors result in the inferior production of proteins. To overcome this limitation, we have evaluated the effect of expression cassette elements present in the pET30 vector on protein production across three different CFPS systems: NEBExpress, PURExpress, and CFAI-based E. coli extracts. Through the systematic elimination of genetic elements within the pET30 vector, we have identified elements that are responsible for the poor performance of pET30 vectors in the various CFPS systems. As a result, we demonstrate that through the removal of the lac operator (lacO) and N-terminal tags included in the vector backbone sequence, a pET vector can support high titers of protein expression when using extract-based CFPS systems. This work provides two key advances for the research community: 1) identification of vector sequence elements that affect robust production of proteins; 2) evaluation of expression across three unique CFPS systems including CFAI extracts, NEBexpress, and PURExpress. We anticipate that this work will improve access to CFPS by enabling researchers to choose the correct expression backbone within the context of their preferred expression system.
Collapse
Affiliation(s)
- Kara Jew
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Philip E. J. Smith
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Byungcheol So
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Jillian Kasman
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Javin P. Oza
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Michael W. Black
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, United States
| |
Collapse
|
11
|
Cell-Free Escherichia coli Synthesis System Based on Crude Cell Extracts: Acquisition of Crude Extracts and Energy Regeneration. Processes (Basel) 2022. [DOI: 10.3390/pr10061122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cell-free synthetic biology is advancing with unprecedented control and design. The development of cell-free biosynthesis involves both pure enzyme and crude enzyme systems. The relatively cheap crude enzyme system is more suitable for the scientific research needs of ordinary laboratories. The key factor in giving full play to the advantages of the system is to obtain high-quality cell crude extract and its energy regeneration system, but there is no systematic report on the development history of these two aspects. Therefore, in this paper, the development history of the process of obtaining crude extract from cell-free biosynthesis was carried out based on Escherichia coli, which is widely used at present, and the energy regeneration system was briefly introduced. Finally, the challenges of current cell-free synthetic systems are discussed.
Collapse
|
12
|
Guzman-Chavez F, Arce A, Adhikari A, Vadhin S, Pedroza-Garcia JA, Gandini C, Ajioka JW, Molloy J, Sanchez-Nieto S, Varner JD, Federici F, Haseloff J. Constructing Cell-Free Expression Systems for Low-Cost Access. ACS Synth Biol 2022; 11:1114-1128. [PMID: 35259873 PMCID: PMC9098194 DOI: 10.1021/acssynbio.1c00342] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Cell-free systems for gene expression have gained attention as platforms for the facile study of genetic circuits and as highly effective tools for teaching. Despite recent progress, the technology remains inaccessible for many in low- and middle-income countries due to the expensive reagents required for its manufacturing, as well as specialized equipment required for distribution and storage. To address these challenges, we deconstructed processes required for cell-free mixture preparation and developed a set of alternative low-cost strategies for easy production and sharing of extracts. First, we explored the stability of cell-free reactions dried through a low-cost device based on silica beads, as an alternative to commercial automated freeze dryers. Second, we report the positive effect of lactose as an additive for increasing protein synthesis in maltodextrin-based cell-free reactions using either circular or linear DNA templates. The modifications were used to produce active amounts of two high-value reagents: the isothermal polymerase Bst and the restriction enzyme BsaI. Third, we demonstrated the endogenous regeneration of nucleoside triphosphates and synthesis of pyruvate in cell-free systems (CFSs) based on phosphoenol pyruvate (PEP) and maltodextrin (MDX). We exploited this novel finding to demonstrate the use of a cell-free mixture completely free of any exogenous nucleotide triphosphates (NTPs) to generate high yields of sfGFP expression. Together, these modifications can produce desiccated extracts that are 203-424-fold cheaper than commercial versions. These improvements will facilitate wider use of CFS for research and education purposes.
Collapse
Affiliation(s)
| | - Anibal Arce
- ANID
− Millennium Institute for Integrative Biology (iBio), FONDAP
Center for Genome Regulation, Institute for Biological and Medical
Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Abhinav Adhikari
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sandra Vadhin
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jose Antonio Pedroza-Garcia
- Department
of Biochemistry, Faculty of Chemistry, National
Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Chiara Gandini
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0FD Cambridge, U.K.
| | - Jim W. Ajioka
- Department
of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, U.K.
| | - Jenny Molloy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0FD Cambridge, U.K.
| | - Sobeida Sanchez-Nieto
- Department
of Biochemistry, Faculty of Chemistry, National
Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Jeffrey D. Varner
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernan Federici
- ANID
− Millennium Institute for Integrative Biology (iBio), FONDAP
Center for Genome Regulation, Institute for Biological and Medical
Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Jim Haseloff
- Department
of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, U.K.
| |
Collapse
|
13
|
Streamlining cell-free protein synthesis biosensors for use in human fluids: In situ RNase inhibitor production during extract preparation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Sharpes CE, McManus JB, Blum SM, Mgboji GE, Lux MW. Assessment of Colorimetric Reporter Enzymes in the PURE System. ACS Synth Biol 2021; 10:3205-3208. [PMID: 34723497 DOI: 10.1021/acssynbio.1c00360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorimetric reporter enzymes are useful for generating eye-readable biosensor readouts that do not require a device to interpret, an attractive property for applications in remote or developing parts of the world. The use of cell-free gene expression further facilitates such applications via amenability to lyophilization and incorporation into materials like paper. Currently, detection of multiple analytes simultaneously with these systems requires multiple reactions or a device. Here we evaluate seven enzymes and 15 corresponding substrates for functionality in a particular cell-free expression system known as PURE. We report eight enzyme/substrate pairs spanning four enzymes that are compatible with PURE. Of the four enzymes, three pairings exhibit no cross-reactivity. We finally show that at least one pairing can be used to create a third color when both are present, highlighting the potential use of these reporters for multiplex sensing.
Collapse
Affiliation(s)
- Caitlin E. Sharpes
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Excet, Inc., 6225 Brandon Avenue 360, Springfield, Virginia 22150, United States
| | - John B. McManus
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Steven M. Blum
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Glory E. Mgboji
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Oak Ridge Institute for Science and Education, 1299 Bethel Valley Road, Oak Ridge, Tennessee 37830-6209, United States
| | - Matthew W. Lux
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
15
|
|
16
|
Burrington LR, Watts KR, Oza JP. Characterizing and Improving Reaction Times for E. coli-Based Cell-Free Protein Synthesis. ACS Synth Biol 2021; 10:1821-1829. [PMID: 34269580 DOI: 10.1021/acssynbio.1c00195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-free protein synthesis (CFPS) is a platform biotechnology that has enabled the on-demand synthesis of proteins for a variety of applications. Numerous advances have improved the productivity of the CFPS platform to result in high-yielding reactions; however, many applications remain limited due to long reaction times. To overcome this limitation, we first established the benchmarks reaction times for CFPS across in-house E. coli extracts and commercial kits. We then set out to fine-tune our in-house extract systems to improve reaction times. Through the optimization of reaction composition and titration of low-cost additives, we have identified formulations that reduce reaction times by 30-50% to obtain high protein titers for biomanufacturing applications, and reduce times by more than 50% to reach the sfGFP detection limit for applications in education and diagnostics. Under optimum conditions, we report the visible observation of sfGFP signal in less than 10 min. Altogether, these advances enhance the utility of CFPS as a rapid, user-defined platform.
Collapse
Affiliation(s)
- Logan R. Burrington
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Katharine R. Watts
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Javin P. Oza
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| |
Collapse
|
17
|
Soltani M, Hunt JP, Bundy BC. Rapid RNase inhibitor production to enable low-cost, on-demand cell-free protein synthesis biosensor use in human body fluids. Biotechnol Bioeng 2021; 118:3973-3983. [PMID: 34185319 DOI: 10.1002/bit.27874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
Human body fluids contain biomarkers which are used extensively for prognostication, diagnosis, monitoring, and evaluation of different treatments for a variety of diseases and disorders. The application of biosensors based on cell-free protein synthesis (CFPS) offers numerous advantages including on-demand and at-home use for fast, accurate detection of a variety of biomarkers in human fluids at an affordable price. However, current CFPS-based biosensors use commercial RNase inhibitors to inhibit different RNases present in human fluids and this reagent is approximately 90% of the expense of these biosensors. Here the flexible nature of Escherichia coli-lysate-based CFPS was used for the first time to produce murine RNase Inhibitor (m-RI) and to optimize its soluble and active production by tuning reaction temperature, reaction time, reduced potential, and addition of GroEL/ES folding chaperons. Furthermore, RNase inhibition activity of m-RI with the highest activity and stability was determined against increasing amounts of three human fluids of serum, saliva, and urine (0%-100% v/v) in lyophilized CFPS reactions. To further demonstrate the utility of the CFPS-produced m-RI, a lyophilized saliva-based glutamine biosensor was demonstrated to effectively work with saliva samples. Overall, the use of CFPS-produced m-RI reduces the total reagent costs of CFPS-based biosensors used in human body fluids approximately 90%.
Collapse
Affiliation(s)
- Mehran Soltani
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
18
|
Hammerling MJ, Warfel KF, Jewett MC. Lyophilization of premixed COVID-19 diagnostic RT-qPCR reactions enables stable long-term storage at elevated temperature. Biotechnol J 2021; 16:e2000572. [PMID: 33964860 PMCID: PMC8237061 DOI: 10.1002/biot.202000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Reverse transcriptase‐quantitative polymerase chain reaction (RT‐qPCR) diagnostic tests for SARS‐CoV‐2 are the cornerstone of the global testing infrastructure. However, these tests require cold‐chain shipping to distribute, and the labor of skilled technicians to assemble reactions and interpret the results. Strategies to reduce shipping and labor costs at the point‐of‐care could aid in diagnostic testing scale‐up and response to the COVID‐19 outbreak, as well as in future outbreaks.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA.,Simpson Querrey Institute, Northwestern University, Evanston, Illinois, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
19
|
Blum SM, Lee MS, Mgboji GE, Funk VL, Beabout K, Harbaugh SV, Roth PA, Liem AT, Miklos AE, Emanuel PA, Walper SA, Chávez JL, Lux MW. Impact of Porous Matrices and Concentration by Lyophilization on Cell-Free Expression. ACS Synth Biol 2021; 10:1116-1131. [PMID: 33843211 DOI: 10.1021/acssynbio.0c00634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free expression systems have drawn increasing attention as a tool to achieve complex biological functions outside of the cell. Several applications of the technology involve the delivery of functionality to challenging environments, such as field-forward diagnostics or point-of-need manufacturing of pharmaceuticals. To achieve these goals, cell-free reaction components are preserved using encapsulation or lyophilization methods, both of which often involve an embedding of components in porous matrices like paper or hydrogels. Previous work has shown a range of impacts of porous materials on cell-free expression reactions. Here, we explored a panel of 32 paperlike materials and 5 hydrogel materials for the impact on reaction performance. The screen included a tolerance to lyophilization for reaction systems based on both cell lysates and purified expression components. For paperlike materials, we found that (1) materials based on synthetic polymers were mostly incompatible with cell-free expression, (2) lysate-based reactions were largely insensitive to the matrix for cellulosic and microfiber materials, and (3) purified systems had an improved performance when lyophilized in cellulosic but not microfiber matrices. The impact of hydrogel materials ranged from completely inhibitory to a slight enhancement. The exploration of modulating the rehydration volume of lyophilized reactions yielded reaction speed increases using an enzymatic colorimetric reporter of up to twofold with an optimal ratio of 2:1 lyophilized reaction to rehydration volume for the lysate system and 1.5:1 for the purified system. The effect was independent of the matrices assessed. Testing with a fluorescent nonenzymatic reporter and no matrix showed similar improvements in both yields and reaction speeds for the lysate system and yields but not reaction speeds for the purified system. We finally used these observations to show an improved performance of two sensors that span reaction types, matrix, and reporters. In total, these results should enhance efforts to develop field-forward applications of cell-free expression systems.
Collapse
Affiliation(s)
- Steven M. Blum
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Marilyn S. Lee
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Glory E. Mgboji
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830-6209, United States
| | - Vanessa L. Funk
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Kathryn Beabout
- UES, Inc., Dayton, Ohio 45432, United States
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Svetlana V. Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Pierce A. Roth
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Alvin T. Liem
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Aleksandr E. Miklos
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Peter A. Emanuel
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Scott A. Walper
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Jorge Luis Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| |
Collapse
|
20
|
Hershewe JM, Warfel KF, Iyer SM, Peruzzi JA, Sullivan CJ, Roth EW, DeLisa MP, Kamat NP, Jewett MC. Improving cell-free glycoprotein synthesis by characterizing and enriching native membrane vesicles. Nat Commun 2021; 12:2363. [PMID: 33888690 PMCID: PMC8062659 DOI: 10.1038/s41467-021-22329-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery. As a model, we focus on bacterial glycoengineering. We first use multiple, orthogonal techniques to characterize vesicles and show how extract processing methods can be used to increase concentrations of membrane vesicles in CFE systems. Then, we show that extracts enriched in vesicle number also display enhanced concentrations of heterologous membrane protein cargo. Finally, we apply our methods to enrich membrane-bound oligosaccharyltransferases and lipid-linked oligosaccharides for improving cell-free N-linked and O-linked glycoprotein synthesis. We anticipate that these methods will facilitate on-demand glycoprotein production and enable new CFE systems with membrane-associated activities.
Collapse
Affiliation(s)
- Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Shaelyn M Iyer
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Claretta J Sullivan
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization and Experimentation (NUANCE) Center, Tech Institute A/B Wing A173, Evanston, IL, 60208, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Neha P Kamat
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Technological Institute E310, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
21
|
Cole SD, Miklos AE, Chiao AC, Sun ZZ, Lux MW. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synth Syst Biotechnol 2020; 5:252-267. [PMID: 32775710 PMCID: PMC7398980 DOI: 10.1016/j.synbio.2020.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-free systems that mimic essential cell functions, such as gene expression, have dramatically expanded in recent years, both in terms of applications and widespread adoption. Here we provide a review of cell-extract methods, with a specific focus on prokaryotic systems. Firstly, we describe the diversity of Escherichia coli genetic strains available and their corresponding utility. We then trace the history of cell-extract methodology over the past 20 years, showing key improvements that lower the entry level for new researchers. Next, we survey the rise of new prokaryotic cell-free systems, with associated methods, and the opportunities provided. Finally, we use this historical perspective to comment on the role of methodology improvements and highlight where further improvements may be possible.
Collapse
Affiliation(s)
- Stephanie D. Cole
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Aleksandr E. Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Abel C. Chiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Zachary Z. Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
22
|
Development of a robust Escherichia coli-based cell-free protein synthesis application platform. Biochem Eng J 2020; 165:107830. [PMID: 33100890 PMCID: PMC7568173 DOI: 10.1016/j.bej.2020.107830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
A robust cell-free protein synthesis platform has been developed. Engineering strategies were explored to improve the synthesis efficiency. The platform has been applied in prototyping, screening and on-demand synthesis.
Since the cell-free protein synthesis system is not limited by the cell growth, all the substrates are used to produce the protein of interest, and the reaction environment can be flexibly controlled. All the advantages allow it to synthesize toxic proteins, membrane proteins, and unnatural proteins that are difficult to make in vivo. However, one typical reason why the cell-free system has not been widely accepted as a practical alternative, is its expression efficiency problem. The Escherichia coli-based system was chosen in this study, and the model protein deGFP was expressed to explore a more efficient cell-free system. The results showed that Mg2+ with a concentration of 15 mM in the cell-free system with BL21 Star (DE3) as the extract could better synthesize protein. The smaller the vectors, the lighter the burden, the higher the protein synthesis. Simulating the crowding effect in the cell does not improve the protein expression efficiency of the optimized cell-free protein synthesis system. Based on the optimized system, the cell-free fundamental research platform, primary screening platform, and portable biomolecular synthesis platform were established. This study provides a robust cell-free protein synthesis toolbox with easy extract preparation and high protein yield. It also enables more researchers to reap the benefits from the cell-free biosynthesis platform.
Collapse
|
23
|
Hunt JP, Barnett RJ, Robinson H, Soltani M, Nelson JAD, Bundy BC. Rapid sensing of clinically relevant glutamine concentrations in human serum with metabolically engineered E. coli-based cell-free protein synthesis. J Biotechnol 2020; 325:389-394. [PMID: 32961202 DOI: 10.1016/j.jbiotec.2020.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/27/2022]
Abstract
Bioavailable glutamine (Gln) is critical for metabolism, intestinal health, immune function, and cell signaling. Routine measurement of serum Gln concentrations could facilitate improved diagnosis and treatment of severe infections, anorexia nervosa, chronic kidney disease, diabetes, and cancer. Current methods for quantifying tissue Gln concentrations rely mainly on HPLC, which requires extensive sample preparation and expensive equipment. Consequently, patient Gln levels may be clinically underutilized. Cell-free protein synthesis (CFPS) is an emerging sensing platform with promising clinical applications, including detection of hormones, amino acids, nucleic acids, and other biomarkers. In this work, in vitro E. coli amino acid metabolism is engineered with methionine sulfoximine to inhibit glutamine synthetase and create a CFPS Gln sensor. The sensor features a strong signal-to-noise ratio and a detection range ideally suited to physiological Gln concentrations. Furthermore, it quantifies Gln concentration in the presence of human serum. This work demonstrates that CFPS reactions which harness the metabolic power of E. coli lysate may be engineered to detect clinically relevant analytes in human samples. This approach could lead to transformative point-of-care diagnostics and improved treatment regimens for a variety of diseases including cancer, diabetes, anorexia nervosa, chronic kidney disease, and severe infections.
Collapse
Affiliation(s)
- J Porter Hunt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - R Jordan Barnett
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - Hannah Robinson
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - Mehran Soltani
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - J Andrew D Nelson
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, United States.
| |
Collapse
|
24
|
Lee MS, Hung CS, Phillips DA, Buck CC, Gupta MK, Lux MW. Silk fibroin as an additive for cell-free protein synthesis. Synth Syst Biotechnol 2020; 5:145-154. [PMID: 32637668 PMCID: PMC7320238 DOI: 10.1016/j.synbio.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 01/06/2023] Open
Abstract
Cell-free systems contain many proteins and metabolites required for complex functions such as transcription and translation or multi-step metabolic conversions. Research into expanding the delivery of these systems by drying or by embedding into other materials is enabling new applications in sensing, point-of-need manufacturing, and responsive materials. Meanwhile, silk fibroin from the silk worm, Bombyx mori, has received attention as a protective additive for dried enzyme formulations and as a material to build biocompatible hydrogels for controlled localization or delivery of biomolecular cargoes. In this work, we explore the effects of silk fibroin as an additive in cell-free protein synthesis (CFPS) reactions. Impacts of silk fibroin on CFPS activity and stability after drying, as well as the potential for incorporation of CFPS into hydrogels of crosslinked silk fibroin are assessed. We find that simple addition of silk fibroin increased productivity of the CFPS reactions by up to 42%, which we attribute to macromolecular crowding effects. However, we did not find evidence that silk fibroin provides a protective effects after drying as previously described for purified enzymes. Further, the enzymatic crosslinking transformations of silk fibroin typically used to form hydrogels are inhibited in the presence of the CFPS reaction mixture. Crosslinking attempts did not impact CFPS activity, but did yield localized protein aggregates rather than a hydrogel. We discuss the mechanisms at play in these results and how the silk fibroin-CFPS system might be improved for the design of cell-free devices.
Collapse
Affiliation(s)
- Marilyn S. Lee
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Chia-Suei Hung
- US Air Force Research Laboratory, 2179 12th St., B652/R122 Wright-Patterson Air Force Base, OH, 45433, USA
| | - Daniel A. Phillips
- US Naval Research Laboratory Center for Bio/Molecular Science and Engineering, Bldg. 42, Room 303 4555 Overlook Ave. Washington, DC 20375, UES Inc., 4401 Dayton Xenia Rd., Beavercreek, OH 45432, USA
| | - Chelsea C. Buck
- US Air Force Research Laboratory, 2179 12th St., B652/R122 Wright-Patterson Air Force Base, OH, 45433, USA
- US Naval Research Laboratory Center for Bio/Molecular Science and Engineering, Bldg. 42, Room 303 4555 Overlook Ave. Washington, DC 20375, UES Inc., 4401 Dayton Xenia Rd., Beavercreek, OH 45432, USA
| | - Maneesh K. Gupta
- US Air Force Research Laboratory, 2179 12th St., B652/R122 Wright-Patterson Air Force Base, OH, 45433, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
25
|
Lee MS, Raig RM, Gupta MK, Lux MW. Lyophilized Cell-Free Systems Display Tolerance to Organic Solvent Exposure. ACS Synth Biol 2020; 9:1951-1957. [PMID: 32646213 DOI: 10.1021/acssynbio.0c00267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell-free systems offer a powerful way to deliver biochemical activity to the field without cold chain storage. These systems are capable of sensing as well as biosynthesis of useful molecules at the point of need. So far, cell-free protein synthesis (CFPS) reactions have been studied as aqueous solutions in test tubes or absorbed into paper or cloth. Embedding biological functionality into broadly used materials, such as plastic polymers, represents an attractive goal. Unfortunately, this goal has for the most part remained out of reach, presumably due to the fragility of biological systems outside of aqueous environments. Here, we describe a surprising and useful feature of lyophilized cell-free lysate systems: tolerance to a variety of organic solvents. Screens of individual CFPS reagents and different CFPS methods reveal that solvent tolerance varies by CFPS reagent composition. Tolerance to suspension in organic solvents may facilitate the use of polymers to deliver dry cell-free reactions in the form of coatings or fibers, or allow dosing of analytes or substrates dissolved in nonaqueous solvents, among other processing possibilities.
Collapse
Affiliation(s)
- Marilyn S. Lee
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Rebecca M. Raig
- US Air Force Research Laboratory, 2179 12th Street, B652/R122 Wright-Patterson Air Force Base, Ohio 45433, United States
- UES Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Maneesh K. Gupta
- US Air Force Research Laboratory, 2179 12th Street, B652/R122 Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
26
|
Williams LC, Gregorio NE, So B, Kao WY, Kiste AL, Patel PA, Watts KR, Oza JP. The Genetic Code Kit: An Open-Source Cell-Free Platform for Biochemical and Biotechnology Education. Front Bioeng Biotechnol 2020; 8:941. [PMID: 32974303 PMCID: PMC7466673 DOI: 10.3389/fbioe.2020.00941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023] Open
Abstract
Teaching the processes of transcription and translation is challenging due to the intangibility of these concepts and a lack of instructional, laboratory-based, active learning modules. Harnessing the genetic code in vitro with cell-free protein synthesis (CFPS) provides an open platform that allows for the direct manipulation of reaction conditions and biological machinery to enable inquiry-based learning. Here, we report our efforts to transform the research-based CFPS biotechnology into a hands-on module called the “Genetic Code Kit” for implementation into teaching laboratories. The Genetic Code Kit includes all reagents necessary for CFPS, as well as a laboratory manual, student worksheet, and augmented reality activity. This module allows students to actively explore transcription and translation while gaining exposure to an emerging research technology. In our testing of this module, undergraduate students who used the Genetic Code Kit in a teaching laboratory showed significant score increases on transcription and translation questions in a post-lab questionnaire compared with students who did not participate in the activity. Students also demonstrated an increase in self-reported confidence in laboratory methods and comfort with CFPS, indicating that this module helps prepare students for careers in laboratory research. Importantly, the Genetic Code Kit can accommodate a variety of learning objectives beyond transcription and translation and enables hypothesis-driven science. This opens the possibility of developing Course-Based Undergraduate Research Experiences (CUREs) based on the Genetic Code Kit, as well as supporting next-generation science standards in 8–12th grade science courses.
Collapse
Affiliation(s)
- Layne C Williams
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Nicole E Gregorio
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Byungcheol So
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Wesley Y Kao
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Alan L Kiste
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Pratish A Patel
- Department of Finance, Orfalea College of Business, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Katharine R Watts
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Javin P Oza
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA, United States
| |
Collapse
|
27
|
Canepa J, Torgerson J, Kim DK, Lindahl E, Takahashi R, Whitelock K, Heying M, Wilkinson SP. Characterizing osmolyte chemical class hierarchies and functional group requirements for thermal stabilization of proteins. Biophys Chem 2020; 264:106410. [PMID: 32574923 DOI: 10.1016/j.bpc.2020.106410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/20/2022]
Abstract
Osmolytes are naturally occurring organic compounds that protect cellular proteins and other macromolecules against various forms of stress including temperature extremes. While biological studies have correlated the accumulation of certain classes of osmolytes with specific forms of stress, including thermal stress, it remains unclear whether or not these observations reflect an intrinsic chemical class hierarchy amongst the osmolytes with respect to effects on protein stability. In addition, very little is known in regards to the molecular elements of the osmolytes themselves that are essential for their functions. In this study, we use differential scanning fluorimetry to quantify the thermal stabilizing effects of members from each of the three main classes of protecting osmolytes on two model protein systems, C-reactive protein and tumor necrosis factor alpha. Our data reveals the absence of a strict chemical class hierarchy amongst the osmolytes with respect to protein thermal stabilization, and indicates differential responses of these proteins to certain osmolytes. In the second part of this investigation we dissected the molecular elements of amino acid osmolytes required for thermal stabilization of myoglobin and C-reactive protein. We show that the complete amino acid zwitterion is required for thermal stabilization of myoglobin, whereas removal of the osmolyte amino group does not diminish stabilizing effects on C-reactive protein. These disparate responses of proteins to osmolytes and other small molecules are consistent with previous observations that osmolyte effects on protein stability are protein-specific. Moreover, the data reported in this study support the view that osmolyte effects cannot be fully explained by considering only the solvent accessibility of the polypeptide backbone in the native and denatured states, and corroborate the need for more complex models that take into account the entire protein fabric.
Collapse
Affiliation(s)
- J Canepa
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - J Torgerson
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - D K Kim
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - E Lindahl
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - R Takahashi
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - K Whitelock
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - M Heying
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA
| | - S P Wilkinson
- Department of Chemistry & Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA.
| |
Collapse
|
28
|
Köhler T, Heida T, Hoefgen S, Weigel N, Valiante V, Thiele J. Cell-free protein synthesis and in situ immobilization of deGFP-MatB in polymer microgels for malonate-to-malonyl CoA conversion. RSC Adv 2020; 10:40588-40596. [PMID: 35520868 PMCID: PMC9057574 DOI: 10.1039/d0ra06702d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
We describe a bottom-up approach towards functional enzymes utilizing microgels as carriers for genetic information that enable cell-free protein synthesis, in situ immobilization, and utilization of functional deGFP-MatB.
Collapse
Affiliation(s)
- Tony Köhler
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Thomas Heida
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses
- Department of Molecular and Applied Microbiology
- Leibniz Institute for Natural Product Research and Infection Biology
- 07745 Jena
- Germany
| | - Niclas Weigel
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses
- Department of Molecular and Applied Microbiology
- Leibniz Institute for Natural Product Research and Infection Biology
- 07745 Jena
- Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| |
Collapse
|