1
|
Zeng Z, Wei N, Cai X, Xiao J. A magnetic bifunctional endotoxin removal nano-agent for the efficient elimination of endotoxins in recombinant protein preparation. Int J Biol Macromol 2025; 311:143663. [PMID: 40311983 DOI: 10.1016/j.ijbiomac.2025.143663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Endotoxin contamination, as one of the most significant challenges in recombinant protein production by Escherichia coli, represents a critical biosafety concern and greatly hinders the biomedical application of recombinant proteins. Conventional methods, such as extreme-condition inactivation and chromatography-based separation, are plagued by issues including protein denaturation, low efficiency, and operational complexity in endotoxin removal. In this work, we developed a novel magnetic bifunctional endotoxin removal nano-agent (MagBER) with a multi-layered structure, consisting of a superparamagnetic Fe3O4 core, a mesoporous TiO2 intermediary layer, and an outer shell functionalized with boronic acid groups. This dual-functional design significantly enhances endotoxin removal efficiency through the TiO2 layer and boronic acid groups, ensuring stable endotoxin clearance performance even in high-salt environments and complex biological matrices. MagBER exhibits reusability while maintaining protein structural integrity. Moreover, MagBER has been successfully employed for endotoxin removal in various proteins, establishing it as a promising and sustainable solution for endotoxin clearance in biopharmaceutical applications.
Collapse
Affiliation(s)
- Zibing Zeng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Nannan Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China
| | - Xiangdong Cai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
2
|
Pan S, Zhang D, Wang L, Qiu Q, Guo Y. Synthesis of flower-like polyamine/C 18 dual-functional magnetic titanium dioxide-based oligopolymer microspheres and their application for the purification, detection and dietary exposure assessment of 52 pesticides in bayberry samples. Food Chem 2025; 471:142878. [PMID: 39823903 DOI: 10.1016/j.foodchem.2025.142878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Novel core-shell flower-like polyamine/C18 dual-functional magnetic titanium dioxide-based oligopolymer (Fe3O4@fTiO2-PAPMA/C18) microspheres were synthesized and used as a magnetic solid-phase extraction (MSPE) adsorbent to purify 52 pesticides in bayberry samples. The Fe3O4@fTiO2-PAPMA/C18 microspheres were fully characterized and it can obviously improve the purification ability of 52 pesticides in bayberry samples. Coupled to LC-MS/MS, the developed method indicated low limits of detection (LODs) and limits of quantification (LOQs) of 0.1-1.0 μg/kg and 0.3-3.0 μg/kg, respectively. Recoveries in bayberry samples ranged from 71.1 % to 108 %, with relative standard deviations (RSDs) of 1.5 % ∼ 9.6 % at four spiking levels. The established MSPE-LC-MS/MS method was employed to analyze 52 pesticide residues in 374 bayberry samples, and the top five pesticides with the highest detection rate were phenylether metronidazole, pyraclostrobin, carbendazim, imidacloprid and tebuconazole. Furthermore, the risk assessment to the 30 pesticides showed that the levels of pesticides found in bayberry samples do not pose a health risk.
Collapse
Affiliation(s)
- Shengdong Pan
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China.
| | - Dandan Zhang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China
| | - Li Wang
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China
| | - Qiaoli Qiu
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China
| | - Yanbo Guo
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
3
|
Shang D, Song Y, Cui Y, Chen C, Xu F, Zhu C, Dong X, Chen Y, Wang S, Li X, Liang X. Superhydrophilic Nanostructured Microparticles for Enhanced Phosphoprotein Enrichment from Alzheimer's Disease Brain. ACS NANO 2025; 19:8118-8130. [PMID: 39992002 DOI: 10.1021/acsnano.4c16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder and closely related to abnormal phosphoproteoforms. The analysis of low-abundance phosphoproteoforms relies heavily on the enrichment of phosphoproteins. However, existing phosphoprotein enrichment materials suffer from either low selectivity or low coverage due to the unavoidable unspecific adsorption of background proteins. Here, we propose a strategy of nanostructure-enabled superhydrophilic surfaces and synthesize Ti4+-functionalized superhydrophilic nanostructured microparticles (SNMs-Ti4+) via an emulsion interfacial polymerization process. In this process, hydrophilic and hydrophobic monomers assemble into a stable oil-in-water emulsion, producing microparticles with abundant hydrophilic phosphate nanoprotrusions on the surface. The microparticles are subsequently functionalized with Ti4+. SNMs-Ti4+ exhibit enormous nanoprotrusions and abundant Ti4+ modifications, which allow SNMs-Ti4+ to effectively adsorb the phosphoproteins and suppress the unspecific adsorption of background proteins. Using these SNMs-Ti4+, we identified 2256 phosphoproteins from HeLa cells, twice the number of those enriched with commercial kits. From AD mouse brains, 2603 phosphoproteins were successfully enriched, and 10 times of AD-related differentially regulated phosphoproteins were discovered than those without enrichment. These microparticles show great prospects for biomarker detection, disease diagnosis, and downstream biological process disclosure.
Collapse
Affiliation(s)
- Danyi Shang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun Cui
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Cheng Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Feifei Xu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Congcong Zhu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xuefang Dong
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Yifan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiuling Li
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xinmiao Liang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| |
Collapse
|
4
|
Lin Y, Du C, Ying H, Zhou Y, Kong F, Zhao H, Lan M. Multiply-mesoporous hydrophilic titanium dioxide nanohybrid for the highly-performed enrichment of N-glycopeptides from human serum. Anal Chim Acta 2024; 1287:342058. [PMID: 38182336 DOI: 10.1016/j.aca.2023.342058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/07/2024]
Abstract
N-glycopeptide is considered as one of significant biomarkers which provide guidance for the diagnosis and drug design of diseases. However, the direct analysis of N-glycopeptides is nearly impracticable mainly owing to their extremely low abundance and grave signal suppression from other interfering substances in the bio-samples. In this research, a multiply-mesoporous hydrophilic TiO2 nanohybrid (mM-TiO2@Cys) was synthesized by immobilizing Cys on a TiO2 substrate with hierarchical mesopores to achieve the highly-performed enrichment of N-glycopeptides. With the advantages of superior hydrophilicity and multiply-mesoporous structure, the obtained material exhibited an excellent selectivity (IgG digests and BSA digests at the molar ratio of 1/500), a high sensitivity (1 fmol μL-1 for IgG digests) and a good size-exclusion ability (IgG digests, IgG and BSA at the molar ratio of 1/500/500) in the enrichment of N-glycopeptides from IgG digests. As a result, 281 N-glycopeptides corresponded with 109 glycoproteins were identified from 2 μL serum digests of the patients with nasopharyngeal carcinoma, and 181 N-glycopeptides corresponded with 78 glycoproteins were identified from 2 μL serum digests of the healthy volunteers, revealing the potential application value of mM-TiO2@Cys in glycoproteomics.
Collapse
Affiliation(s)
- Yunfan Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengrun Du
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China.
| | - Yifan Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fangfang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
5
|
Aparna GM, Tetala KKR. Titanium particles incorporated polymer monolith microcolumn for phosphoprotein enrichment from biological samples. J Pharm Biomed Anal 2023; 233:115453. [PMID: 37224729 DOI: 10.1016/j.jpba.2023.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
In proteomic studies, selective enrichment of target phosphoproteins from biological samples is of importance. Of various enrichment methods, affinity chromatography is widely preferred method. Development of micro-affinity columns with simple strategies are in constant demand. Here in this report, for the first time, we have embedded TiO2 particles within the monolith structure in a single step. Fourier transform infrared spectroscopy and scanning electron microscope analysis has confirmed the successful incorporation of TiO2 particles within the polymer monolith. Incorporation of 3-(trimethoxy silyl) propyl methacrylate within the poly(hydroxyethyl methacrylate) based monolith composition has enhanced its rigidity and one fold phosphoprotein (α-casein) adsorption capacity. Presence of only 66.6 µg of TiO2 particles within the monolith has displayed a four-fold higher affinity to α-casein over the non-phosphoprotein i.e. bovine serum albumin. Under optimized conditions (TiO2 particle and acrylate silane), the affinity monolith has a maximum adsorption capacity of ∼ 72 mg per gram monolith. Translation of TiO2 particles-monolith into a microcolumn of 3 cm long and 19 µL volume was successful. α-casein was selectively separated from an artificial protein mixture of α-casein and BSA, α-casein spiked human plasma, and cow milk within 7 min.
Collapse
Affiliation(s)
- G M Aparna
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu 632014, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu 632014, India.
| |
Collapse
|
6
|
Batool R, Fatima B, Jabeen F, Hussain D, Imran M, Najam-ul-Haq M. Profiling of phosphorylated metabolites from lung cancer by zeolite loaded Mg-Al-Ce ternary hydroxide (Zeolite@MAC) composite. Heliyon 2023; 9:e16098. [PMID: 37215921 PMCID: PMC10196856 DOI: 10.1016/j.heliyon.2023.e16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Phosphorylated metabolites are linked to metabolism, and the dysregulation of metabolic reactions brings cancer. Dysregulated levels lead to hyperactivation of glycolytic and mitochondrial oxidative phosphorylation pathways. Abnormal concentrations are the indicators of energy-related disorders. In this work, Zeolite-loaded Mg-Al-Ce hydroxides (Zeolite@MAC) are prepared by co-precipitation and characterized through FTIR, XRD, SEM, BET, AFM, TEM, and DLS. Magnesium-Aluminum-Cerium-Zeolite particles enrich phosphate-containing small molecules. These ternary hydroxides carried out the main adsorption mechanism, which swapped the surface hydroxyl group ligands for phosphate and the inner-sphere complex of CePO4. XH2O. Cerium plays a significant role in the complexation of phosphate, and adding Mg and Al further helps disperse Ce and increase the surface charge on the adsorbent. ΑTP and AMP are the standard molecules for parameter optimization. Zeolite@MAC enriches phosphorylated metabolites followed by their desorption via UV-vis spectrophotometry. MS profiles for healthy and lung cancer serum samples are obtained for phosphorylated metabolites. Characteristic phosphorylated metabolites have been detected in lung cancer samples with high expression. The role of phosphorylated metabolites is explored for abnormal metabolic pathways in lung cancer. The fabricated material is sensitive, selective, and highly enriched for identifying phosphate-specific biomarkers.
Collapse
Affiliation(s)
- Rimsha Batool
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Fahmida Jabeen
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Imran
- Biochemistry Section, Institute of Chemical Sciences, University of Peshawar, 25120, Pakistan
| | - Muhammad Najam-ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| |
Collapse
|
7
|
Zeng X, Lan Y, Xiao J, Hu L, Tan L, Liang M, Wang X, Lu S, Peng T, Long F. Advances in phosphoproteomics and its application to COPD. Expert Rev Proteomics 2022; 19:311-324. [PMID: 36730079 DOI: 10.1080/14789450.2023.2176756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) was the third leading cause of global death in 2019, causing a huge economic burden to society. Therefore, it is urgent to identify specific phenotypes of COPD patients through early detection, and to promptly treat exacerbations. The field of phosphoproteomics has been a massive advancement, compelled by the developments in mass spectrometry, enrichment strategies, algorithms, and tools. Modern mass spectrometry-based phosphoproteomics allows understanding of disease pathobiology, biomarker discovery, and predicting new therapeutic modalities. AREAS COVERED In this article, we present an overview of phosphoproteomic research and strategies for enrichment and fractionation of phosphopeptides, identification of phosphorylation sites, chromatographic separation and mass spectrometry detection strategies, and the potential application of phosphorylated proteomic analysis in the diagnosis, treatment, and prognosis of COPD disease. EXPERT OPINION The role of phosphoproteomics in COPD is critical for understanding disease pathobiology, identifying potential biomarkers, and predicting new therapeutic approaches. However, the complexity of COPD requires the more comprehensive understanding that can be achieved through integrated multi-omics studies. Phosphoproteomics, as a part of these multi-omics approaches, can provide valuable insights into the underlying mechanisms of COPD.
Collapse
Affiliation(s)
- Xiaoyin Zeng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Yanting Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Mengdi Liang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xufei Wang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Shaohua Lu
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.,Guangdong South China Vaccine Co. Ltd, Guangzhou, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Yang J, Li J, Yan X, Lyu Y, Xing N, Yang P, Song P, Zuo M. Three-Dimensional Hierarchical HRP-MIL-100(Fe)@TiO 2@Fe 3O 4 Janus Magnetic Micromotor as a Smart Active Platform for Detection and Degradation of Hydroquinone. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6484-6498. [PMID: 35099171 DOI: 10.1021/acsami.1c18086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel multifunctional Janus magnetic micromotor was designed and constructed by using MIL-100(Fe)@TiO2@Fe3O4 multicore-shells modified with horseradish peroxidase (HRP) as a smart active platform to realize detection and degradation of hydroquinone (HQ). The obtained micromotor showed a unique three-dimensional (3D) hierarchical architecture with highly exposed active sites and could autonomously move at a speed of 140 ± 7.0 μm·s-1 by O2 bubbles generated from the catalytic decomposition of H2O2 fuel. Benefiting from the combination of active self-propulsive motion, high peroxidase-like activity, tuned heterojunctions with matching band structures, and a 3D hierarchical structure, an effective platform involving dynamically sensitive detection and quick removal of HQ from water was established by using the multifunctional HRP-integrated MIL-100(Fe)@TiO2@Fe3O4 Janus micromotor. The proposed multifunctional Janus magnetic micromotor had advantages of simple and feasible fabrication, sensitive detection and effective photo-Fenton degradation of HQ in a wide pH range of 4-7, and magnetic recycling, revealing potential for environmental remediation applications.
Collapse
Affiliation(s)
- Jie Yang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Jia Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Xiaohui Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Centre for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Yangsai Lyu
- Department of Mathematics and Statistics, Queen's University, Kingston K7L 3N6, Canada
| | - Ningning Xing
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Ping Yang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Peng Song
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| | - Min Zuo
- School of Material Science and Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
9
|
Qiao M, Guo PF, Zhang CY, Sun XY, Chen ML, Wang JH. Titanium dioxide-functionalized dendritic mesoporous silica nanoparticles for highly selective isolation of phosphoproteins. J Sep Sci 2021; 44:3618-3625. [PMID: 34365723 DOI: 10.1002/jssc.202100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023]
Abstract
Selective isolation of phosphoproteins is of great significance in biological applications. Herein, titanium dioxide-functionalized dendritic mesoporous silica nanoparticles are prepared via a post-grafting method for selective capture of phosphoproteins. The fabricated nanoparticles possess a unique central-radial pore structure with a surface area of 666.66 m2 /g and a pore size of 22.2 nm. The high-binding affinity of TiO2 with the phosphate groups facilitates the selective adsorption of phosphoproteins. Moreover, the open central-radial pore structure endows the dendritic mesoporous nanoparticles with better adsorption performance toward phosphoproteins with respect to the commercial titanium dioxide nanoparticles and titanium dioxide-functionalized conventional mesoporous silica nanoparticles by providing more accessible affinity sites. At pH 2, an adsorption capacity of 157.2 mg/g is derived for β-casein. The feasibility of the as-prepared dendritic material in real biological sample assay is demonstrated by the selective isolation of phosphoproteins from defatted milk, as illustrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay.
Collapse
Affiliation(s)
- Min Qiao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Chun-Yu Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Xiao-Yan Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
10
|
Poly amidoamine functionalized poly (styrene-divinylbenzene-glycidylmethacrylate) composites for the rapid enrichment and determination of N-phosphoryl peptides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Ionic liquid modification of metal-organic framework endows high selectivity for phosphoproteins adsorption. Anal Chim Acta 2021; 1147:144-154. [PMID: 33485572 DOI: 10.1016/j.aca.2020.12.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/02/2023]
Abstract
Zr-based metal-organic framework, UiO-66-NH2, provides favorable adsorption capacity to phosphoproteins, however, it exhibits obvious nonspecific adsorption to other proteins. In the present work, we report a facile strategy to reduce the nonspecific adsorption of nonphosphoproteins by modifying UiO-66-NH2 with imidazolium ionic liquids (ILs). With respect to bare UiO-66-NH2, the modified counterpart, UiO@IL, exhibits much improved selectivity to phosphoproteins while maintains comparable adsorption performance. The surface of UiO@IL presents a strong hydrophilicity due to the modification of ILs. Hydrophobic and electrostatic interaction between the absorbent and nonphosphoprotein is significantly reduced. In addition, the interaction between imidazole group of ILs moiety and phosphate group in phosphoprotein ensures the favorable adsorption capacity of UiO@IL for phosphoproteins. Anionic moieties of ILs, i.e., Cl-, Br-, BF4-, CF3SO3-, play negligible effect in the adsorption process. As a representative, phosphoprotein β-casein (β-ca) is selectively enriched at a mass ratio of BSA:β-ca = 100:1. UiO@IL was further applied for the selective enrichment of phosphoprotein in milk.
Collapse
|
12
|
Ghasemzadeh MA, Bakhshali‐Dehkordi R. Novel and Green Preparation of Fe
3
O
4
@TiO
2
‐Immobilized‐ILs Based on DABCO for Highly Efficient Synthesis of Primido[4,5‐d]pyrimidines. ChemistrySelect 2020. [DOI: 10.1002/slct.202002085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Ali Ghasemzadeh
- Department of Chemistry, Qom BranchIslamic Azad University Qom, Iran Post Box: 37491–13191 I. R. Iran
| | | |
Collapse
|
13
|
Guo PF, Gong HY, Zheng HW, Chen ML, Wang JH, Ye L. Iron-chelated thermoresponsive polymer brushes on bismuth titanate nanosheets for metal affinity separation of phosphoproteins. Colloids Surf B Biointerfaces 2020; 196:111282. [PMID: 32763792 DOI: 10.1016/j.colsurfb.2020.111282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 01/07/2023]
Abstract
Separation of phosphoproteins plays an important role for identification of biomarkers in life science. In this work, bismuth titanate supported, iron-chelated thermoresponsive polymer brushes were prepared for selective separation of phosphoproteins. The iron-chelated thermoresponsive polymer brushes were synthesized by surface-initiated atom transfer radical polymerization of N-isopropylacrylamide and glycidyl methacrylate, followed by a ring opening reaction of epoxy group, and chelation of the obtained cis-diols with Fe3+ ions. The composite material was characterized to determine the size and thickness, the content of the organic polymer and the metal loading. The bismuth titanate supported, iron-chelated thermoresponsive polymer brushes showed selective binding for phosphoproteins in the presence of abundant interfering proteins, and a high binding capacity for phosphoproteins by virtue of the metal affinity between the metal ions on the polymer brushes and the phosphate groups in the phosphoproteins (664 mg β-Casein per g sorbent). The thermoresponsive property of the polymer brushes made it possible to adjust phosphoprotein binding by changing temperature. Finally, separation of phosphoproteins from a complex biological sample (i.e. milk) was demonstrated using the nanosheet-supported thermoresponsive polymer brushes.
Collapse
Affiliation(s)
- Peng-Fei Guo
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden; Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Hai-Yue Gong
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Hong-Wei Zheng
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden.
| |
Collapse
|
14
|
Wang L, Xiu Y, Han B, Liu L, Niu X, Wang H. Magnetic mesoporous carbon material based electrochemical sensor for rapid detection of penicillin sodium in milk. J Food Sci 2020; 85:2435-2442. [PMID: 32645209 DOI: 10.1111/1750-3841.15328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022]
Abstract
In recent years, to increase growth rate and prevent infectious diseases, an excessive use of antibiotics in livestock breeding processes has resulted in the presence of antibiotic residues in animal foods. In this experiment, a new kind of electrochemical sensor is prepared based on magnetic mesoporous hollow carbon microspheres (MHM) as a penicillinase (Pen X) adsorption carrier to rapidly detect penicillin sodium (Pen G), named Pen X/MHM/MGCE. The MHM-adsorbed penicillinase can be separated from the solution by magnetic attraction and fixed on a magnetic glassy carbon electrode by physical adsorption, which is easy to operate and avoids the interference of a crosslinking agent at the active site of the enzyme. A differential pulse voltammetry (DPV) method is used to immerse the working electrode in test samples containing different concentrations of penicillin sodium solution with 0.5 mg/mL oxidized hematoxylin. According to the quantitative relationship between the current value and the concentration of penicillin sodium, the concentration of penicillin sodium in the tested samples can be determined. The detection range of the sensor is 10-8 to 10-2 mg/mL, the linear relationship is good (R2 = 0.9983), and the detection limit (LOD) is 2.655 × 10-7 mg/mL (S/N = 3). The detection of penicillin sodium in milk using a standard addition method shows good recovery. Furthermore, the proposed method has the advantages of a wide detection range, good enzyme immobilization capacity, good precision and stability, convenient cleaning, and recycling of solid materials. Thus, it can successfully achieve rapid detection in milk samples. PRACTICAL APPLICATION: The sensor provides a low detection limit and high recovery rate of electrode material; therefore, the sensor can realize the rapid and quantitative detection of penicillin sodium in milk.
Collapse
Affiliation(s)
- Li Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
| | - Yi Xiu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
| | - Baoqing Han
- College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
| | - Lu Liu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, P. R. China
| |
Collapse
|
15
|
Bakhshali‐Dehkordi R, Ghasemzadeh MA, Safaei‐Ghomi J. Preparation and characterization of a novel DABCO‐based ionic liquid supported on Fe
3
O
4
@TiO
2
nanoparticles and investigation of its catalytic activity in the synthesis of quinazolinones. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Javad Safaei‐Ghomi
- Department of Organic Chemistry, Faculty of ChemistryUniversity of Kashan Kashan Iran
| |
Collapse
|
16
|
An immobilization enzyme for screening lipase inhibitors from Tibetan medicines. J Chromatogr A 2020; 1615:460711. [DOI: 10.1016/j.chroma.2019.460711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
|
17
|
The Effect of SBA-15 Surface Modification on the Process of 18β-Glycyrrhetinic Acid Adsorption: Modeling of Experimental Adsorption Isotherm Data. MATERIALS 2019; 12:ma12223671. [PMID: 31703371 PMCID: PMC6888531 DOI: 10.3390/ma12223671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
This study aimed at the adsorption of 18β-glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid derivative of oleanane type, onto functionalized mesoporous SBA-15 silica and non-porous silica (Aerosil®) as the reference adsorbent. Although 18β-GA possesses various beneficial pharmacological properties including antitumor, anti-inflammatory, and antioxidant activity, it occurs is small amounts in plant materials. Thus, the efficient methods of this bioactive compound enrichment from vegetable raw materials are currently studied. Siliceous adsorbents were functionalized while using various alkoxysilane derivatives, such as (3-aminopropyl)trimethoxysilane (APTMS), [3-(methylamino)propyl]trimethoxysilane (MAPTMS), (N,N-dimethylaminopropyl)trimethoxysilane (DMAPTMS), and [3-(2-aminothylamino)propyl] trimethoxysilane (AEAPTMS). The effect of silica surface modification with agents differing in the structure and the order of amine groups on the adsorption capacity of the adsorbent and adsorption efficiency were thoroughly examined. The equilibrium adsorption data were analyzed while using the Langmuir, Freundlich, Redlich-Peterson, Temkin, Dubinin-Radushkevich, and Dubinin-Astakhov isotherms. Both linear regression and nonlinear fitting analysis were employed in order to find the best-fitted model. The adsorption isotherms of 18β-GA onto silicas functionalized with APTMS, MAPTMS, and AEAPTMS indicate the Langmuir-type adsorption, whereas sorbents modified with DMAPTMS show the constant distribution of the adsorbate between the adsorbent and the solution regardless of silica type. The Dubinin-Astakhov, Dubinin-Radushkevich, and Redlich-Peterson equations described the best the process of 18β-GA adsorption onto SBA-15 and Aerosil® silicas that were functionalized with APTMS, MAPTMS, and AEAPTMS, regardless of the method that was used for the estimation of isotherm parameters. Based on nonlinear fitting analysis (Dubinin-Astakhov model), it can be concluded that SBA-15 sorbent that was modified with APTMS, MAPTMS, and AEAPTMS is characterized by twice the adsorption capacity (202.8–237.3 mg/g) as compared to functionalized non-porous silica (118.2–144.2 mg/g).
Collapse
|
18
|
Yan Y, Deng C. Recent advances in nanomaterials for sample pre-treatment in phosphoproteomics research. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Gentili A. Cyclodextrin-based sorbents for solid phase extraction. J Chromatogr A 2019; 1609:460654. [PMID: 31679713 DOI: 10.1016/j.chroma.2019.460654] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
Abstract
Cyclodestrins (CDs) are cyclic oligosaccharides well-known for their ability to form host-guest inclusion complexes with properly sized compounds. They have been used for decades as chiral selectors as well as drug delivery systems within the frameworks of separation science and pharmaceutical science. More recently, their use has been extended to the field of extractive science under the stimulus of additional advantageous characteristics, such as low-price, negligible environmental impact, non-toxicity, as arising from the fact that natural CDs are starch degradation products. To abate their solubility in water and generate novel sorbents for solid phase extraction, the following approaches have been employed: (i) immobilization onto inert materials (silica, attapulgite, etc.); (ii) immobilization onto nanomaterials (magnetic nanoparticles, titanium oxide, carbon nanotubes, graphene oxide, etc.); (iii) polymerisation with specific cross-linkers to form the so-called CD-based nanosponges. Particularly promising are these last ones for their selectivity, mesoporous structure, insolubility in aqueous media and good dispersibility. This review offers a concise overview on the state of art and future prospects of CDs in this important sector of the analytical chemistry, offering a critical perspective of the most significant applications.
Collapse
Affiliation(s)
- Alessandra Gentili
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, "Sapienza" University of Rome, P.le A. Moro n° 5, 00185 Rome, Italy.
| |
Collapse
|
20
|
Wang MM, Chen S, Yu YL, Wang JH. Novel Ti 4+-Chelated Polyoxometalate/Polydopamine Composite Microspheres for Highly Selective Isolation and Enrichment of Phosphoproteins. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37471-37478. [PMID: 31542918 DOI: 10.1021/acsami.9b12872] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Selective isolation and enrichment of phosphoproteins play critical roles for identification of biomarkers in biological applications. Herein, a kind of polyoxometalate (P5W30)/polydopamine (PDA) composite microspheres is readily synthesized via an in situ polymerization way, followed by immobilization of Ti4+ on the surface of the microspheres to obtain P5W30/PDA-Ti4+. Due to metal affinity and π stacking interaction, this novel material exhibits high selectivity to β-casein (β-ca), and the theoretical maximum adsorption capacity is as high as 1250 mg g-1, fitting well with the Langmuir model. The captured β-ca can be collected by using Britton-Robinson (B-R) buffer at pH 7.0, and a recovery of 81.5% is acquired. The enrichment factor is over 150 at a mass ratio of BSA/β-ca = 100:1, indicating that phosphoproteins can be purified by P5W30/PDA-Ti4+. Moreover, the application of P5W30/PDA-Ti4+ as sorbent in real biological samples has been investigated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, and the consequences show that this kind of material is able to selectively isolate phosphoproteins from complex samples such as drinking milk and chicken egg white.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Research Center for Analytical Sciences, College of Sciences , Northeastern University , P.O. Box 332, Shenyang 110819 , China
| | - Shuai Chen
- College of Life and Health Sciences , Northeastern University , Shenyang 110169 , China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, College of Sciences , Northeastern University , P.O. Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, College of Sciences , Northeastern University , P.O. Box 332, Shenyang 110819 , China
| |
Collapse
|
21
|
Kupcik R, Macak JM, Rehulkova H, Sopha H, Fabrik I, Anitha VC, Klimentova J, Murasova P, Bilkova Z, Rehulka P. Amorphous TiO 2 Nanotubes as a Platform for Highly Selective Phosphopeptide Enrichment. ACS OMEGA 2019; 4:12156-12166. [PMID: 31460330 PMCID: PMC6682070 DOI: 10.1021/acsomega.9b00571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
This work reports highly selective phosphopeptide enrichment using amorphous TiO2 nanotubes (TiO2NTs) and the same material decorated with superparamagnetic Fe3O4 nanoparticles (TiO2NTs@Fe3O4NPs). TiO2NTs and TiO2NTs@Fe3O4NPs materials were applied for phosphopeptide enrichment both from a simple peptide mixture (tryptic digest of bovine serum albumin and α-casein) and from a complex peptide mixture (tryptic digest of Jurkat T cell lysate). The obtained enrichment efficiency and selectivity for phosphopeptides of TiO2NTs and TiO2NTs@Fe3O4NPs were increased to 28.7 and 25.3%, respectively, as compared to those of the well-established TiO2 microspheres. The enrichment protocol was extended for a second elution step facilitating the identification of additional phosphopeptides. It further turned out that both types of amorphous TiO2 nanotubes provide qualitatively new physicochemical features that are clearly advantageous for highly selective phosphopeptide enrichment. This has been confirmed experimentally resulting in substantial reduction of non-phosphorylated peptides in the enriched samples. In addition, TiO2NTs@Fe3O4NPs combine high selectivity and ease of handling due to the superparamagnetic character of the material. The presented materials and performances are further promising for applications toward a whole range of other types of biomolecules to be treated in a similar fashion.
Collapse
Affiliation(s)
- Rudolf Kupcik
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech Republic
| | - Jan M. Macak
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Helena Rehulkova
- Department
of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500
01 Hradec Kralove, Czech Republic
| | - Hanna Sopha
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkynova
123, 612 00 Brno, Czech Republic
| | - Ivo Fabrik
- Department
of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500
01 Hradec Kralove, Czech Republic
| | - V. C. Anitha
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Jana Klimentova
- Department
of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500
01 Hradec Kralove, Czech Republic
| | - Pavla Murasova
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech Republic
| | - Zuzana Bilkova
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech Republic
| | - Pavel Rehulka
- Department
of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500
01 Hradec Kralove, Czech Republic
| |
Collapse
|
22
|
Zhang X, Lu Q, Chen C, Li X, Qing G, Sun T, Liang X. Smart polymers driven by multiple and tunable hydrogen bonds for intact phosphoprotein enrichment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:858-869. [PMID: 31497179 PMCID: PMC6720224 DOI: 10.1080/14686996.2019.1643259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 05/04/2023]
Abstract
Separation of phosphoproteins is essential for understanding their vital roles in biological processes and pathology. Transition metal-based receptors and antibodies, the routinely used materials for phosphoproteins enrichment, both suffer from low sensitivity, low recovery and coverage. In this work, a novel smart copolymer material was synthesized by modifying porous silica gel with a poly[(N-isopropylacrylamide-co-4-(3-acryloylthioureido) benzoic acid)0.35] (denoted as NIPAAm-co-ATBA0.35@SiO2). Driven by the hydrogen bonds complexation of ATBA monomers with phosphate groups, the copolymer-modified surface exhibited a remarkable adsorption toward native α-casein (a model phosphoprotein), accompanied with significant changes in surface viscoelasticity and roughness. Moreover, this adsorption was tunable and critically dependent on the polarity of carrier solvent. Benefiting from these features, selective enrichment of phosphoprotein was obtained using NIPAAm-co-ATBA0.35@SiO2 under a dispersive solid-phase extraction (dSPE) mode. This result displays a good potential of smart polymeric materials in phosphoprotein enrichment, which may facilitate top-down phosphoproteomics studies.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Qi Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China
- Research & Development Center, Jushi Group. Co., P. R. China
| | - Cheng Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Xiuling Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, P. R. China
| |
Collapse
|
23
|
BRAF protein immunoprecipitation, elution, and digestion from cell extract using a microfluidic mixer for mutant BRAF protein quantification by mass spectrometry. Anal Bioanal Chem 2019; 411:1085-1094. [PMID: 30604035 DOI: 10.1007/s00216-018-1536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/23/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
This study utilized a microfluidic mixer for the sample pretreatment of cell extracts for target protein quantification by mass spectrometers, including protein immunoprecipitation and protein enzymatic digestion. The time of sample pretreatment was reduced and thus the throughput of quantitative mutant proteins was increased by using the proposed method. Whole cell lysates of the cancer cell line HT-29 with gene mutations were used as the sample. The target protein BRAF was immunoprecipitated using magnetic beads in a pneumatic micromixer. Purified protein was then eluted and digested by trypsin in another two micromixers to yield peptide fragments in the solution. Using stable isotope-labeled standard as the internal control, wild-type and mutant BRAF proteins were quantified using mass spectrometry, which could be used for cancer screening. Compared with conventional methods in which protein immunoprecipitation lasts overnight, the micromixer procedure takes only 1 h, likely improving the throughput of mutant BRAF protein quantification by mass spectrometry. Graphical abstract Three micromixers were used to reduce the sample pretreatment time of cell extracts for target protein quantification by mass spectrometers, including protein immunoprecipitation, protein elution, and protein enzymatic digestion.
Collapse
|
24
|
Kalantari M, Zhang J, Liu Y, Yu C. Dendritic mesoporous carbon nanoparticles for ultrahigh and fast adsorption of anthracene. CHEMOSPHERE 2019; 215:716-724. [PMID: 30352371 DOI: 10.1016/j.chemosphere.2018.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Developing highly effective adsorbents for efficient decontamination of organic pollutants from water is an evasive aim for community well-being and environmental protection. Here, we report the successful fabrication of dendritic mesoporous carbon nanoparticles (DMCNs) as an advantageous adsorbent for ultrahigh and fast adsorption of anthracene. Dendritic mesoporous organosilica nanoparticles with an octadecyl-rich framework were utilized to synthesize DMCNs through carbonization and removal of silica. The DMCNs show a high carbon content, large mesopore volume of 1.484 cm3 g-1 and high surface area of 1218 m2 g-1. It is revealed that both the high carbon content and highly accessible large surface area contribute to the excellent adsorption capacity towards anthracene (947.9 mg g-1), which is significantly higher than those in previous reports. Furthermore, the large radial pores of DMCNs with bimodal pore size distributions (2.1 and 18.4 nm) and open pore channels allow fast adsorption kinetics. The developed materials hold promise as effective adsorbents for efficient remediation of organic pollutants.
Collapse
Affiliation(s)
- Mohammad Kalantari
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jun Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Yang Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
25
|
Oz Y, Abdouni Y, Yilmaz G, Becer CR, Sanyal A. Magnetic glyconanoparticles for selective lectin separation and purification. Polym Chem 2019. [DOI: 10.1039/c8py01748d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A modular platform for the separation and purification of lectins using polymer coated iron oxide nanoparticles is developed.
Collapse
Affiliation(s)
- Yavuz Oz
- Department of Chemistry
- Bogazici University
- Turkey
| | - Yamin Abdouni
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- E1 4NS London
- UK
| | - Gokhan Yilmaz
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- E1 4NS London
- UK
| | - C. Remzi Becer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary University of London
- E1 4NS London
- UK
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Turkey
- Center for Life Sciences and Technologies
- Bogazici University
| |
Collapse
|
26
|
Magnetic boronate modified molecularly imprinted polymers on magnetite microspheres modified with porous TiO 2 (Fe 3O 4@pTiO 2@MIP) with enhanced adsorption capacity for glycoproteins and with wide operational pH range. Mikrochim Acta 2018; 185:565. [PMID: 30498865 DOI: 10.1007/s00604-018-3092-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Boronate-affinity based molecularly imprinted polymers (MIPs) are beset by the unsatisfied adsorption capacity and narrow working pH ranges. A magnetic molecularly imprinted polymer containing phenylboronic acid groups was placed on the surface of Fe3O4 (magnetite) microspheres coated with porous TiO2 (Fe3O4@pTiO2@MIP). In contrast to its silica analog (Fe3O4@SiO2@MIP), the flowerlike Fe3O4@pTiO2 offers more binding sites for templates. Thus, the adsorption capacity of the Fe3O4@pTiO2@MIP is strongly enhanced. The strong electron-withdrawing effects of Ti(IV) enable the boronic acid of the MIP to have better affinity for glycoproteins at a wide pH range from 6.0 to 9.0. Consequently, the Fe3O4@pTiO2@MIP exhibits higher adsorption for glycoproteins than Fe3O4@SiO2@MIP in both basic and acidic medium. The Fe3O4@pTiO2@MIPs were eluted with 5% acetic acid aqueous solution containing 30% acetonitrile, and the eluate was analyzed by MALDI-TOF MS. The method was applied to the selective extraction and quantitation of horseradish peroxidase (HRP) in spiked fetal bovine serum (FBS). The linear range is 0.40-10 μg·mL-1 with the limit of detection of 0.31 μg·mL-1. In our perception, this work has a wide scope in that is paves the way to a more widespread application of boronate affinity based MIPs for analysis of glycoproteins and related glyco compounds even at moderately acidic pH values. Graphical abstract Schematic presentation of the magnetic boronate modified molecularly imprinted polymer on magnetic spheres modified with porous TiO2 (Fe3O4@pTiO2@MIP). It was applied to extract glycoprotein in spiked both basic fetal bovine serum (FBS) and acidic urine samples prior to quantitation by MALDI-TOF mass spectrometry.
Collapse
|
27
|
Wang MM, Chen S, Zhang DD, Yu YL, Wang JH. Immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide for selective extraction of phosphoproteins. Mikrochim Acta 2018; 185:553. [PMID: 30456423 DOI: 10.1007/s00604-018-3095-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/10/2018] [Indexed: 01/26/2023]
Abstract
A sorbent for selective extraction of phosphoproteins was obtained by immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide (CeEGO). The resulting composites exhibit an adsorption capacity of 981 mg g-1 for β-casein due to the synergistic effect of metal-affinity interaction between Ce(IV) and phosphate groups and π-stacking interaction between the polyoxometalate framework and the phosphate groups. The results of LC-MS and SDS-PAGE analysis show that the CeEGO composites can be applied to the extraction of phosphoproteins from protein mixture, and as little as 50 μg mL-1 of the phosphoprotein β-casein can be detected by SDS-PAGE. It was also applied to the extraction of β-casein from spiked biological samples such as drinking milk, whole blood and swine heart tissue extract. Graphical abstract An efficient sorbent is obtained by immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide (CeEGO). The resulting composites exhibit highly selective capture capacity towards phosphoproteins due to the synergistic effect of metal-affinity interaction between Ce(IV) and phosphate groups and π-stacking interaction between the polyoxometalate framework and the phosphate groups.
Collapse
Affiliation(s)
- Meng-Meng Wang
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Dan-Dan Zhang
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| |
Collapse
|
28
|
Wang Q, Wu H, Lv F, Cao Y, Zhou Y, Gan N. A headspace sorptive extraction method with magnetic mesoporous titanium dioxide@covalent organic frameworks composite coating for selective determination of trace polychlorinated biphenyls in soils. J Chromatogr A 2018; 1572:1-8. [DOI: 10.1016/j.chroma.2018.08.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/05/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022]
|
29
|
Hong Y, Zhan Q, Pu C, Sheng Q, Zhao H, Lan M. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles. Talanta 2018; 187:223-230. [DOI: 10.1016/j.talanta.2018.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/12/2018] [Accepted: 05/08/2018] [Indexed: 02/02/2023]
|
30
|
Hong Y, Yao Y, Zhao H, Sheng Q, Ye M, Yu C, Lan M. Dendritic Mesoporous Silica Nanoparticles with Abundant Ti 4+ for Phosphopeptide Enrichment from Cancer Cells with 96% Specificity. Anal Chem 2018; 90:7617-7625. [PMID: 29799184 DOI: 10.1021/acs.analchem.8b01369] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Selective enrichment and sensitive detection of phosphopeptides are of great significance in many bioapplications. In this work, dendritic mesoporous silica nanoparticles modified with polydopamine and chelated Ti4+ (denoted DMSNs@PDA-Ti4+) were developed to improve the enrichment selectivity of phosphopeptides. The unique central-radial pore structures endowed DMSNs@PDA-Ti4+ with a high surface area (362 m2 g-1), a large pore volume (1.37 cm3 g-1), and a high amount of chelated Ti4+ (75 μg mg-1). Compared with conventional mesoporous silica-based materials with the same functionalization (denoted mSiO2@PDA-Ti4+) and commercial TiO2, DMSNs@PDA-Ti4+ showed better selectivity and a lower detection limit (0.2 fmol/μL). Moreover, 2422 unique phosphopeptides were identified from HeLa cell extracts with a high specificity (>95%) enabled by DMSNs@PDA-Ti4+, better than those in previous reports.
Collapse
Affiliation(s)
- Yayun Hong
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Yating Yao
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics , Chinese Academy of Sciences (CAS) , Dalian , China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Qianying Sheng
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| | - Mingliang Ye
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics , Chinese Academy of Sciences (CAS) , Dalian , China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , People's Republic of China
| |
Collapse
|
31
|
Tan S, Wang J, Han Q, Liang Q, Ding M. A porous graphene sorbent coated with titanium(IV)-functionalized polydopamine for selective lab-in-syringe extraction of phosphoproteins and phosphopeptides. Mikrochim Acta 2018; 185:316. [PMID: 29876662 DOI: 10.1007/s00604-018-2846-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/22/2018] [Indexed: 11/26/2022]
Abstract
A novel polydopamine coated three-dimensional porous graphene aerogel sorbent carrying immobilized titanium(IV) ions (denoted as Ti4+@PDA@GA) was fabricated without using an organic solvent. The material is shown to be a viable carbon foam type of monolithic sorbent for selective lab-in-syringe enrichment of phosphoproteins and phosphopeptides. The phosphoproteins can be separated from a sample by aspiration and then bind to the sorbent. The analytes then can be dispensed within 5 min. The weight percent of titanium in the monolith typically is 14%, and the absorption capacities for the model proteins β-casein and κ-casein are 1300 and 1345 mg g-1, respectively. The absorption capacities for nonphosphoproteins are much smaller, typically 160 mg g-1 for β-lactoglobulin, 125 mg g-1 for bovine serum, and 4.8 mg g-1 for lysozyme. The results demonstrate that the selectivity for phosphoproteins was excellent on multiple biological samples including standard protein mixtures, spiked human blood serum, and drinking milk. The selective enrichment of phosphopeptides also makes the method a promising tool in phosphoproteomics. Graphical abstract Schematic of a polydopamine coated three-dimensional porous graphene aerogel for immobilization of titanium(IV) ions. The material served as a monolithic sorbent for selective enrichment of phosphopeptides and phosphoproteins from biological samples. The enrichment process can be carried out conveniently using a lab-in-syringe way.
Collapse
Affiliation(s)
- Siyuan Tan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jundong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology;Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
32
|
Núñez C, Chantada-Vázquez MDP, Bravo SB, Vázquez-Estévez S. Novel functionalized nanomaterials for the effective enrichment of proteins and peptides with post-translational modifications. J Proteomics 2018; 181:170-189. [DOI: 10.1016/j.jprot.2018.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
|
33
|
Luo B, Yang M, Jiang P, Lan F, Wu Y. Multi-affinity sites of magnetic guanidyl-functionalized metal-organic framework nanospheres for efficient enrichment of global phosphopeptides. NANOSCALE 2018; 10:8391-8396. [PMID: 29701230 DOI: 10.1039/c8nr01914b] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetic guanidyl-functionalized metal-organic framework (MOF) nanospheres with multi-affinity sites composed of an inherent Zn-O cluster based on MOAC and specific recognized groups (amino group and guanidyl group) were for the first time synthesized by a combination strategy of epitaxial growth and post-synthetic modification of magnetic amino-derived MOFs, and they exhibit great potential for efficient enrichment of global phosphopeptides.
Collapse
Affiliation(s)
- Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | | | | | | | | |
Collapse
|
34
|
Wang M, Deng K, Lü W, Deng X, Li K, Shi Y, Ding B, Cheng Z, Xing B, Han G, Hou Z, Lin J. Rational Design of Multifunctional Fe@γ-Fe 2 O 3 @H-TiO 2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging-Guided Photothermal Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706747. [PMID: 29441613 DOI: 10.1002/adma.201706747] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/01/2018] [Indexed: 06/08/2023]
Abstract
Titanium dioxide (TiO2 ) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible-near infrared (Vis-NIR) region limits its application. Herein, multifunctional Fe@γ-Fe2 O3 @H-TiO2 nanocomposites (NCs) with multilayer-structure are synthesized by one-step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO2 in to hydrogenated TiO2 (H-TiO2 ), thus improving the absorption in the Vis-NIR region. Based on the excellent solar-driven photocatalytic activities of the H-TiO2 shell, the Fe@γ-Fe2 O3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ-Fe2 O3 @H-TiO2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H-TiO2 and γ-Fe2 O3 , and the electronic structures of Fe@γ-Fe2 O3 @H-TiO2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core-shell NCs can serve as an NIR-responsive photothermal agent for magnetic-targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging.
Collapse
Affiliation(s)
- Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kerong Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Wei Lü
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Electrical Engineering & Intelligentization, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Xiaoran Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Kai Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Yanshu Shi
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Bengang Xing
- School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
35
|
Chen K, Jin R, Luo C, Song G, Hu Y, Cheng H. Synthesis of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposites as an adsorbent for the fast determination of 16 priority polycyclic aromatic hydrocarbons in aqueous samples. J Sep Sci 2018; 41:1847-1855. [DOI: 10.1002/jssc.201700888] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Kun Chen
- Research Center of Analysis and Measurement; Fudan University; Shanghai China
- Shanghai Tobacco Group Co., Ltd.; Shanghai China
| | - Rongrong Jin
- Research Center of Analysis and Measurement; Fudan University; Shanghai China
- Shanghai Tobacco Group Co., Ltd.; Shanghai China
| | - Chen Luo
- Shanghai Tobacco Group Co., Ltd.; Shanghai China
| | - Guoxin Song
- Research Center of Analysis and Measurement; Fudan University; Shanghai China
- Shanghai Tobacco Group Co., Ltd.; Shanghai China
| | - Yaoming Hu
- Research Center of Analysis and Measurement; Fudan University; Shanghai China
- Shanghai Tobacco Group Co., Ltd.; Shanghai China
| | - Hefa Cheng
- College of Urban and Environmental Sciences; Peking University; Beijing China
| |
Collapse
|
36
|
Porous α-Fe2O3 microflowers: Synthesis, structure, and enhanced acetone sensing performances. J Colloid Interface Sci 2017; 505:1039-1046. [DOI: 10.1016/j.jcis.2017.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 11/22/2022]
|
37
|
Long XY, Zhang ZJ, Li JY, Sheng D, Lian HZ. Controllable Preparation of CuFeMnO4 Nanospheres as a Novel Multifunctional Affinity Probe for Efficient Adsorption and Selective Enrichment of Low-Abundance Peptides and Phosphopeptides. Anal Chem 2017; 89:10446-10453. [DOI: 10.1021/acs.analchem.7b02476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xing-Yu Long
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
- Editorial
Department of Journal, Guizhou Normal University, Guiyang 550001, China
| | - Zi-Jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Jia-Yuan Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Dong Sheng
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| |
Collapse
|
38
|
Highly selective enrichment of phosphorylated proteins by using Spore@Fe 3+ microspheres. Anal Chim Acta 2017; 986:161-170. [DOI: 10.1016/j.aca.2017.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/21/2022]
|
39
|
Atacan K, Çakıroğlu B, Özacar M. Efficient protein digestion using immobilized trypsin onto tannin modified Fe 3 O 4 magnetic nanoparticles. Colloids Surf B Biointerfaces 2017; 156:9-18. [DOI: 10.1016/j.colsurfb.2017.04.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/24/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
|
40
|
Lv N, Zhang J, Li G, Wang X, Ni J. Pyrophosphate-Imprinted Magnetic Mesoporous Silica Microspheres for Recognition, Enrichment and MS Detection of Phosphopeptides. ChemistrySelect 2017. [DOI: 10.1002/slct.201700035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nan Lv
- State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jilin Zhang
- State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Changchun 130022 P. R. China
| | - Guangming Li
- State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Xun Wang
- State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Jiazuan Ni
- State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; Changchun 130022 P. R. China
| |
Collapse
|
41
|
Atacan K, Çakıroğlu B, Özacar M. Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion. Int J Biol Macromol 2017; 97:148-155. [DOI: 10.1016/j.ijbiomac.2017.01.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022]
|
42
|
Long XY, Zhang ZJ, Li JY, Sheng D, Lian HZ. A combination strategy using two novel cerium-based nanocomposite affinity probes for the selective enrichment of mono- and multi-phosphopeptides in mass spectrometric analysis. Chem Commun (Camb) 2017; 53:4620-4623. [DOI: 10.1039/c7cc00540g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The sequential enrichment of mono- and multi-phosphopeptides was successfully achieved using two novel Ce-based nanocomposite affinity probes.
Collapse
Affiliation(s)
- Xing-yu Long
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Zi-jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Jia-yuan Li
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Dong Sheng
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| |
Collapse
|
43
|
Magnetic mesoporous carbon composites incorporating hydrophilic metallic nanoparticles for enrichment of phosphopeptides prior to their determination by MALDI-TOF mass spectrometry. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Identification and binding mechanism of phage displayed peptides with specific affinity to acidalkali treated titanium. Colloids Surf B Biointerfaces 2016; 146:307-17. [DOI: 10.1016/j.colsurfb.2016.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/27/2016] [Accepted: 06/18/2016] [Indexed: 11/20/2022]
|
45
|
Zhao D, He Z, Wang G, Wang H, Zhang Q, Li Y. Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment. J Colloid Interface Sci 2016; 478:227-35. [DOI: 10.1016/j.jcis.2016.05.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 01/03/2023]
|
46
|
Ma X, Ding C, Yao X, Jia L. Ethylene glycol assisted preparation of Ti4+-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins. Anal Chim Acta 2016; 929:23-30. [DOI: 10.1016/j.aca.2016.04.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/12/2016] [Accepted: 04/30/2016] [Indexed: 11/30/2022]
|
47
|
Murguía-Flores DA, Bonilla-Ríos J, Canales-Fiscal MR, Sánchez-Fernández A. Protein adsorption through Chitosan-Alginate membranes for potential applications. Chem Cent J 2016; 10:26. [PMID: 27141231 PMCID: PMC4852423 DOI: 10.1186/s13065-016-0167-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
Background Chitosan and Alginate were used as biopolymers to prepare membranes for protein adsorption. The network requires a cross-linker able to form bridges between polymeric chains. Viscopearl-mini® (VM) was used as a support to synthesize them. Six different types of membranes were prepared using the main compounds of the matrix: VM, Chitosan of low and medium molecular weight, and Alginate. Results Experiments were carried out to analyze the interactions within the matrix and improvements were found against porous cellulose beads. SEM characterization showed dispersion in the compounds. According to TGA, thermal behaviour remains similar for all compounds. Mechanical tests demonstrate the modulus of the composites increases for all samples, with major impact on materials containing VM. The adsorption capacity results showed that with the removal of globular protein, as the adsorbed amount increased, the adsorption percentage of Myoglobin from Horse Heart (MHH) decreased. Molecular electrostatic potential studies of Chitosan–Alginate have been performed by density functional theory (DFT) and ONIOM calculations (Our own N-layered integrated molecular orbital and molecular mechanics) which model large molecules by defining two or three layers within the structure that are treated at different levels of accuracy, at B3LYP/6-31G(d) and PM6/6-31G(d) level of theory, using PCM (polarizable continuum model) solvation model. Conclusions Finally, Viscopearl-mini® acts as a suitable support on the matrix for the synthesis of Chitosan–Alginate membranes instead of cross-linkers usage. Therefore, it suggests that it is a promise material for potential applications, such as: biomedical, wastewater treatment, among others.Chitosan, Alginate, and Cellulose beads-based membranes for protein adsorption. Special attention was given for preparation, charaterization, adsorption capacity, and molecular electrostatic potential studies calculation. Viscopearl-mini® gives support on the matrix of Chitosan–Alginate membranes instead of cross-linkers usage ![]()
Collapse
Affiliation(s)
- Dennise A Murguía-Flores
- Tecnologico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada Sur 2501, Tecnológico, 64849 Monterrey, Nuevo León Mexico
| | - Jaime Bonilla-Ríos
- Tecnologico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada Sur 2501, Tecnológico, 64849 Monterrey, Nuevo León Mexico
| | - Martha R Canales-Fiscal
- Tecnologico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada Sur 2501, Tecnológico, 64849 Monterrey, Nuevo León Mexico
| | - Antonio Sánchez-Fernández
- Tecnologico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada Sur 2501, Tecnológico, 64849 Monterrey, Nuevo León Mexico
| |
Collapse
|
48
|
Li XS, Yuan BF, Feng YQ. Recent advances in phosphopeptide enrichment: Strategies and techniques. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Long XY, Li JY, Sheng D, Lian HZ. Low-cost iron oxide magnetic nanoclusters affinity probe for the enrichment of endogenous phosphopeptides in human saliva. RSC Adv 2016. [DOI: 10.1039/c6ra11125d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Simple and low cost iron oxide magnetic nanoclusters (Fe3O4 MNCs) affinity material has been directly applied for phosphorylated peptides/proteins enrichment.
Collapse
Affiliation(s)
- Xing-yu Long
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Jia-yuan Li
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Dong Sheng
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| |
Collapse
|
50
|
Lv N, Wang Z, Bi W, Li G, Zhang J, Ni J. C8-modified CeO2//SiO2 Janus fibers for selective capture and individual MS detection of low-abundance peptides and phosphopeptides. J Mater Chem B 2016; 4:4402-4409. [DOI: 10.1039/c6tb00476h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel CeO2//SiO2-C8 probe with a Janus structure can selectively extract low-abundance peptides and phosphopeptides from biosamples for individual MS detection.
Collapse
Affiliation(s)
- Nan Lv
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Zhigang Wang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Wenzhi Bi
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Guangming Li
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Jilin Zhang
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
| | - Jiazuan Ni
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Changchun 130022
- P. R. China
| |
Collapse
|