1
|
Huang HL, Huang CC, Su CK. Post-administration labeling with Palladium(II) ions enables ICP-MS-based determination of the biodistribution of carbonized nanogels. Anal Chim Acta 2023; 1256:341155. [PMID: 37037630 DOI: 10.1016/j.aca.2023.341155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Carbonized nanogels (CNGs) are carbon-based nanomaterials possessing excellent antibacterial and antiviral activities for treating infectious diseases. Thus, investigations of the biodistribution of CNGs are crucial in ensuring their biosafety for in vivo applications. In this study, we combined a labeling scheme, employing tetrachloropalladate (PdCl42-) ions to selectively label the administered CNGs in solubilized tissue samples, and an automatic sample pretreatment scheme, using a knotted reactor to effectively separate the PdCl42--labeled CNGs from the free PdCl42- ions and the tissue matrices, to enable reliable and interference-free quantification of CNGs through measuring the signal intensities of Pd using inductively coupled plasma mass spectrometry (ICP-MS). After optimizing the labeling conditions and the separation scheme, we observed that the PdCl42- ions bound strongly to the CNGs (dissociation constant: 23.0 nM), with the method's detection limits reaching 1.6 fg L-1 and 0.9 μg L-1 within working ranges from 10-4 to 1 μg L-1 and from 1 to 1000 μg L-1, respectively. We verified the reliability and applicability of this analytical method through spike analyses of solubilized rat liver, spleen, kidney, lung, brain, and blood samples (recoveries ranging from 96 to 102%) and through analyses of these rat organ and tissue samples after giving rats an intravenous dose of CNGs (2.5 mg kg-1 body weight). The biodistribution data indicated that these administered CNGs deposited mainly in the liver, lung, and spleen at 10 min and 1 h post-administration. Our study revealed that this post-administration labeling scheme coupled with ICP-MS allows accurate determination of the biodistribution of carbonized nanomaterials.
Collapse
|
2
|
Chang XL, Chen L, Liu B, Yang ST, Wang H, Cao A, Chen C. Stable isotope labeling of nanomaterials for biosafety evaluation and drug development. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Jiang Q, Feng J, Sun M. Carbon fibers modified with carbon nanoparticles by a facile and fast flame preparation for in-tube solid-phase microextraction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
4
|
Liu W, Ye X, He L, Cheng J, Luo W, Zheng M, Hu Y, Zhang W, Cao Y, Ran H, Yang L. A novel targeted multifunctional nanoplatform for visual chemo-hyperthermia synergy therapy on metastatic lymph nodes via lymphatic delivery. J Nanobiotechnology 2021; 19:432. [PMID: 34930301 PMCID: PMC8686382 DOI: 10.1186/s12951-021-01186-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background Distant metastasis to vital organs is the major contributor to breast cancer mortality, and regional lymph node metastasis is an important facilitator of distant metastasis and recurrence in this cancer. The early diagnosis and precise treatment of lymph node metastasis are crucial for staging and prognosis in breast cancer. Herein, we report a visualized precision medicine nanoplatform of metastatic lymph nodes for ultrasonic/photoacoustic (US/PA) dual modal imaging-guided in situ targeted hyperthermia-combined chemotherapy. Results Carbon nanoparticles (CNs), approved by the China Food and Drug Administration, were loaded with docetaxel and rationally combined with anti-hypoxia-inducible factor 1α antibody-modified poly (lactic-co-glycolic acid) (PLGA) nanoparticles to achieve the combination of passive targeting at the lymph nodes and intracellular targeting at HIF 1α factor. The accumulation and retention of nanoparticles in metastatic lymph nodes via lymphatic delivery were enhanced. Docetaxel could be effectively offloaded by CNs that have active carbon nanoparticles, and the PLGA membrane prevented drug leakage. The nanoparticles exhibited excellent photothermal performance with a photothermal conversion efficiency of 28.9%, killing tumor cells in metastatic lymph nodes through hyperthermia. In vitro and in vivo systematic evaluations revealed that hyperpyrexia triggered the rupture of nanoparticles caused by the phase transition of perfluorohexane, resulting in docetaxel release for achieving in situ hyperthermia-combined chemotherapy. Conclusions The laser-triggered highly efficient in situ chemotherapy nanosystem achieves targeted synergistic chemo-hyperthermia treatment of metastatic lymph nodes, and lymphatic delivery represents a strategy to avoid additional injury caused by drugs entering the blood circulation. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01186-8.
Collapse
Affiliation(s)
- Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiaoping Ye
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Lingyun He
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Juan Cheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wenpei Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.,Department of Breast and Thyroid, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Min Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yaqin Hu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| | - Lu Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China. .,Department of Breast and Thyroid, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
5
|
Luo X, Xie J, Zhou Z, Ma S, Wang L, Li M, Liu J, Wang P, Li Y, Luo F, Yan J. Virus-Inspired Gold Nanorod-Mesoporous Silica Core-Shell Nanoparticles Integrated with tTF-EG3287 for Synergetic Tumor Photothermal Therapy and Selective Therapy for Vascular Thrombosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44013-44027. [PMID: 34494427 DOI: 10.1021/acsami.1c11947] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synergetic therapy includes the combination of two or more conventional therapeutic approaches and can be used for tumor treatment by combining the advantages and avoiding the drawbacks of each type of treatment. In the present study, truncated tissue factor (tTF)-EG3287 fusion protein-encapsulated gold nanorod (GNR)-virus-inspired mesoporous silica core-shell nanoparticles (vinyl hybrid silica nanoparticles; VSNP) (GNR@VSNP-tTF-EG3287) were synthesized to achieve synergetic therapy by utilizing selective vascular thrombosis therapy (SVTT) and photothermal therapy (PTT). By integrating the targeted coagulation activity of tTF-EG3287 and the high tumor ablation effect of GNR@VSNP, local hyperthermia could induce a high percentage of apoptosis of vascular endothelial cells by using near-infrared light. This provided additional phospholipid sites for tTF-EG3287 and enhanced its procoagulant activity in vitro. In addition, the nanoparticles, which had unique topological viral structures, exhibited superior cellular uptake properties leading to significant antitumor efficacy. The in vivo antitumor results further demonstrated an interaction between SVTT and PTT, whereas the synergetic therapy (SVTT and PTT) achieved an enhanced effect, which was superior to the respective treatment efficacy of each modality or the additive effect of their individual efficacies. In summary, the synthesized GNR@VSNP-tTF-EG3287 exerted synergetic effects and enhanced the antitumor efficiency by avoiding multiple injections and suboptimal administration. These effects simultaneously affected both tumor blood supply and cancer cell proliferation. The data suggested that the integration of SVTT induced by tTF-EG3287 and PTT could provide potential strategies for synergetic tumor therapy.
Collapse
Affiliation(s)
- Xian Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Jun Xie
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Zonglang Zhou
- The 174th Clinic College of People's Liberation Army, Anhui Medical University, Hefei 230031, Republic of China
| | - Sihan Ma
- School of Energy, Xiamen University, Xiamen 361005, Republic of China
- Fujian Research Center for Nuclear, Xiamen 361002, Republic of China
| | - Li Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Mengqi Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Jiajing Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, Republic of China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024, Republic of China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| | - Jianghua Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, Republic of China
| |
Collapse
|
6
|
Carbon nanoparticles suspension injection for the delivery of doxorubicin: Comparable efficacy and reduced toxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:416-423. [PMID: 30184767 DOI: 10.1016/j.msec.2018.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
Drug delivery systems for doxorubicin (DOX) have attracted tremendous interest nowadays for the improved efficacy and/or reduced toxicity. Due to the aromatic structures and hydrophobic domains, carbon nanoparticle suspension injection (CNSI), a clinical applied reagent for lymph node mapping, strongly adsorbs DOX and holds great potential in cancer therapy. Herein, we evaluated the therapeutic effects of CNSI-DOX to establish its delivery applications for cancer drugs. CNSI adsorbed DOX from solution quickly after the mixing, and the release of DOX from CNSI followed a pH-dependent way. CNSI-DOX and free DOX had nearly identical inhibitive effects on cancer cells, while the vehicle CNSI was nontoxic. CNSI-DOX largely prolonged the life span of ascites tumor bearing mice after the intraperitoneally injection and the ascites weights showed significant decreases. CNSI-DOX also inhibited the growth of subcutaneous xenografts following the same administration route. The therapeutic efficacy of CNSI-DOX was similar to that of free DOX in ascites tumor model, but slightly lower in subcutaneous xenografts model. The advantage of using CNSI was majorly reflected by the reduced toxicity of DOX according to the bodyweight changes, serum biochemical indicators and histopathological observations. The LD50 (median lethal dose) value of CNSI-DOX was 43.8 mg/kg bodyweight, nearly three times of that of free DOX (15.2 mg/kg bodyweight). Our results suggested that CNSI might be used for DOX delivery through "off label" use to benefit the patients immediately.
Collapse
|
7
|
Wang Z, Liu J, Cheng Y, Chen S, Yang M, Huang J, Wang H, Wu G, Wu H. Alignment of Boron Nitride Nanofibers in Epoxy Composite Films for Thermal Conductivity and Dielectric Breakdown Strength Improvement. NANOMATERIALS 2018; 8:nano8040242. [PMID: 29662038 PMCID: PMC5923572 DOI: 10.3390/nano8040242] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
Development of polymer-based composites with simultaneously high thermal conductivity and breakdown strength has attracted considerable attention owing to their important applications in both electronic and electric industries. In this work, boron nitride (BN) nanofibers (BNNF) are successfully prepared as fillers, which are used for epoxy composites. In addition, the BNNF in epoxy composites are aligned by using a film casting method. The composites show enhanced thermal conductivity and dielectric breakdown strength. For instance, after doping with BNNF of 2 wt%, the thermal conductivity of composites increased by 36.4% in comparison with that of the epoxy matrix. Meanwhile, the breakdown strength of the composite with 1 wt% BNNF is 122.9 kV/mm, which increased by 6.8% more than that of neat epoxy (115.1 kV/mm). Moreover, the composites have maintained a low dielectric constant and alternating current conductivity among the range of full frequency, and show a higher thermal decomposition temperature and glass-transition temperature. The composites with aligning BNNF have wide application prospects in electronic packaging material and printed circuit boards.
Collapse
Affiliation(s)
- Zhengdong Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jingya Liu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yonghong Cheng
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Siyu Chen
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mengmeng Yang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jialiang Huang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hongkang Wang
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guanglei Wu
- Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
- Institute of Materials for Energy and Environment, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Hongjing Wu
- Department of Applied Physics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
8
|
Ran F, Lei W, Cui Y, Jiao J, Mao Y, Wang S, Wang S. Size effect on oral absorption in polymer-functionalized mesoporous carbon nanoparticles. J Colloid Interface Sci 2017; 511:57-66. [PMID: 28972896 DOI: 10.1016/j.jcis.2017.09.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 02/01/2023]
Abstract
In this manuscript, the effect of the particle size of polymer-functionalized mesoporous carbon (MPP) nanoparticles on enhancing oral absorption of a water-insoluble drug is first investigated. The insoluble drug, fenofibrate (Fen), was selected as the model drug loaded in the MPP nanoparticles. MPP nanoparticles with different particle sizes were designed for improving the oral bioavailability of drugs, in which the branched polyethyleneimine (PEI) and polyacrylic acid (PAA) were modified on the surfaces of mesoporous carbon nanoparticles (MCNs) with amide bonds. In addition, PEI-functionalized carbon quantum dots (PCA) and radioisotope 125I were applied to label the MPP nanoparticles to trace in the vivo process. According to the data, the MPP nanoparticles could markedly improve the dissolution rate and oral bioavailability of Fen. Interestingly, the MPP nanoparticle size had a notable effect on Fen oral absorption, and intermediate sized MPP nanoparticles were expected to be more ideal oral drug carriers. The nanoparticles were safe and easily excreted. These findings present the prospect of MPP nanoparticles for oral application, and guides the rational design of an oral delivery system with respect to particle size.
Collapse
Affiliation(s)
- Fu Ran
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Wei Lei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Yu Cui
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Jian Jiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Shengyu Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
9
|
Chen L, Wang C, Li H, Qu X, Yang ST, Chang XL. Bioaccumulation and Toxicity of 13C-Skeleton Labeled Graphene Oxide in Wheat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10146-10153. [PMID: 28771335 DOI: 10.1021/acs.est.7b00822] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Graphene nanomaterials have many diverse applications, but are considered to be emerging environmental pollutants. Thus, their potential environmental risks and biosafety are receiving increased attention. Bioaccumulation and toxicity evaluations in plants are essential for biosafety assessment. In this study, 13C-stable isotope labeling of the carbon skeleton of graphene oxide (GO) was applied to investigate the bioaccumulation and toxicity of GO in wheat. Bioaccumulation of GO was accurately quantified according to the 13C/12C ratio. Wheat seedlings were exposed to 13C-labeled GO at 1.0 mg/mL in nutrient solution for 15 d. 13C-GO accumulated predominantly in the root with a content of 112 μg/g at day 15, hindered the development and growth of wheat plants, disrupted root structure and cellular ultrastructure, and promoted oxidative stress. The GO that accumulated in the root showed extremely limited translocation to the stem and leaves. During the experimental period, GO was excreted slowly from the root. GO inhibited the germination of wheat seeds at high concentrations (≥0.4 mg/mL). The mechanism of GO toxicity to wheat may be associated with oxidative stress induced by GO bioaccumulation, reflected by the changes of malondialdehyde concentration, catalase activity, and peroxidase activity. The results demonstrate that 13C labeling is a promising method to investigate environmental impacts and fates of carbon nanomaterials in biological systems.
Collapse
Affiliation(s)
- Lingyun Chen
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University , Chengdu 610041, P. R. China
| | - Chenglong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Hongliang Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University , Chengdu 610041, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Xiulong Qu
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University , Chengdu 610041, P. R. China
| | - Sheng-Tao Yang
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University , Chengdu 610041, P. R. China
| | - Xue-Ling Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
10
|
Xie P, Xin Q, Yang ST, He T, Huang Y, Zeng G, Ran M, Tang X. Skeleton labeled 13C-carbon nanoparticles for the imaging and quantification in tumor drainage lymph nodes. Int J Nanomedicine 2017; 12:4891-4899. [PMID: 28744123 PMCID: PMC5513824 DOI: 10.2147/ijn.s134493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Carbon nanoparticles (CNPs) have been widely used in tumor drainage lymph node (TDLN) imaging, drug delivery, photothermal therapy, and so on. However, during the theranostic applications, the accumulation efficiency of CNPs in target organs is unknown yet, which largely hinders the extension of CNPs into clinical uses. Herein, we prepared skeleton-labeled 13C-CNPs that had identical properties to commercial CNPs suspension injection (CNSI) for the imaging and quantification in TDLN. 13C-CNPs were prepared by arc discharge method, followed by homogenization with polyvinylpyrrolidone. The size distribution and morphology of 13C-CNPs were nearly the same as those of CNSI under transmission electron microscope. The hydrodynamic radii of both 13C-CNPs and CNSI were similar, too. According to X-ray photoelectron spectroscopy and infrared spectroscopy analyses, the chemical compositions and chemical states of elements were also nearly identical for both labeled and commercial forms. The skeleton labeling of 13C was reflected by the shift of G-band toward lower frequency in Raman spectra. 13C-CNPs showed competitive performance in TDLN imaging, where the three lymph nodes (popliteal lymph node, common iliac artery lymph node, and paraaortic lymph node) were stained black upon the injection into the hind extremity of mice. The direct quantification of 13C-CNPs indicated that 877 μg/g of 13C-CNPs accumulated in the first station of TDLN (popliteal lymph node). The second station of TDLN (common iliac artery lymph node) had even higher accumulation level (1,062 μg/g), suggesting that 13C-CNPs migrated efficiently along lymphatic vessel. The value decreased to 405 μg/g in the third station of TDLN (paraaortic lymph node). Therefore, the 13C-CNPs provided quantitative approach to image and quantify CNSI in biological systems. The implication in biomedical applications and biosafety evaluations of CNSI is discussed.
Collapse
Affiliation(s)
- Ping Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu
| | - Qian Xin
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
| | - Sheng-Tao Yang
- College of Chemistry & Environment Protection Engineering, Southwest University for Nationalities
| | - Tiantian He
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
- College of Life Sciences, Sichuan Normal University
| | | | - Guangfu Zeng
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
- College of Life Sciences, Sichuan Normal University
| | - Maosheng Ran
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Xiaohai Tang
- Chongqing Lummy Pharmaceutical Co., Ltd, Chongqing
| |
Collapse
|
11
|
Phase-Transition Nanodroplets for Real-Time Photoacoustic/Ultrasound Dual-Modality Imaging and Photothermal Therapy of Sentinel Lymph Node in Breast Cancer. Sci Rep 2017; 7:45213. [PMID: 28338071 PMCID: PMC5364557 DOI: 10.1038/srep45213] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023] Open
Abstract
Pathological status of lymph nodes (LNs) plays a critical role in staging and treatment for the patients with breast cancer. Sentinel lymph node biopsy has become the standard method in determining pathological status of axillary LNs. Therefore, the determination of sentinel lymph nodes (SLNs) and therapy of metastatic LNs are highly desirable in clinic. Herein, an unprecedented carbon nanoparticles (CNs)-incorporated liquid-gas phase-transition nanodroplets (CNPs) with strong near-infrared (NIR) absorption, good biocompatibility, excellent photoacoustic (PA) and ultrasound (US) contrast, and high photothermal-conversion efficiency are reported in this study. Upon laser irradiation, liquid-gas phase transition of the CNPs has been demonstrated to provide excellent contrasts for PA/US dual-modality imaging both in vitro and in vivo. Additionally, the CNPs are capable of staining lymph nodes, which can contribute significantly to the identification of LNs with naked eyes. With increased laser energy, the CNPs exhibit the high performance in killing the breast cancer cells both in vitro and in vivo, due to the photothermal effect induced from the CNs within CNPs. These results suggest that the developed multifunctional phase-transition nanodroplets have high potential to act as the theranostic agents in both SLNs detection and therapy of metastatic LNs.
Collapse
|
12
|
Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 2017; 8:63-77. [PMID: 28451149 PMCID: PMC5304706 DOI: 10.1039/c6sc02403c] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Recent advances in nanomedicine have shown that dramatic improvements in nanoparticle therapeutics and diagnostics can be achieved through the use of disease specific targeting ligands. Although immunoglobulins have successfully been employed for the generation of actively targeted nanoparticles, their use is often hampered by the suboptimal characteristics of the resulting complexes. Emerging data suggest that a switch in focus from full antibodies to antibody derived fragments could help to alleviate these problems and expand the potential of antibody-nanoparticle conjugates as biomedical tools. This review aims to highlight how antibody derived fragments have been utilised to overcome both fundamental and practical issues encountered during the design and application of antibody-targeted nanoparticles.
Collapse
Affiliation(s)
- Daniel A Richards
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; ; Tel: +44 (0)207 679 2077
| |
Collapse
|
13
|
Yao VJ, D'Angelo S, Butler KS, Theron C, Smith TL, Marchiò S, Gelovani JG, Sidman RL, Dobroff AS, Brinker CJ, Bradbury ARM, Arap W, Pasqualini R. Ligand-targeted theranostic nanomedicines against cancer. J Control Release 2016; 240:267-286. [PMID: 26772878 PMCID: PMC5444905 DOI: 10.1016/j.jconrel.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.
Collapse
Affiliation(s)
- Virginia J Yao
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Sara D'Angelo
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kimberly S Butler
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Christophe Theron
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131
| | - Tracey L Smith
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Serena Marchiò
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; Department of Oncology, University of Turin, Candiolo, 10060, Italy
| | - Juri G Gelovani
- Department of Biomedical Engineering, College of Engineering and School of Medicine, Wayne State University, Detroit, MI 48201
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Andrey S Dobroff
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C Jeffrey Brinker
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131; Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM 87131; Cancer Research and Treatment Center, Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131; Self-Assembled Materials Department, Sandia National Laboratories, Albuquerque, NM 87185
| | - Andrew R M Bradbury
- Bioscience Division, Los Alamos National Laboratories, Los Alamos, NM, 87545
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131; Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131.
| |
Collapse
|
14
|
Liu Y, Wang P, Shiral Fernando KA, LeCroy GE, Maimaiti H, Harruff-Miller BA, Lewis WK, Bunker CE, Hou ZL, Sun YP. Enhanced Fluorescence Properties of Carbon Dots in Polymer Films. JOURNAL OF MATERIALS CHEMISTRY. C 2016; 4:6967-6974. [PMID: 28133537 PMCID: PMC5268499 DOI: 10.1039/c6tc01932c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon dots of small carbon nanoparticles surface-functionalized with 2,2'-(ethylenedioxy)bis(ethylamine) (EDA) were synthesized, and the as-synthesized sample was separated on an aqueous gel column to obtain fractions of the EDA-carbon dots with different fluorescence quantum yields. As already discussed in the literature, the variations in fluorescence performance among the fractions were attributed to the different levels and/or effectiveness of the surface functionalization-passivation in the carbon dots. These fractions, as well as carbon nanoparticles without any deliberate surface functionalization, were dispersed into poly(vinyl alcohol) (PVA) for composite films. In the PVA film matrix, the carbon dots and nanoparticles exhibited much enhanced fluorescence emissions in comparison with their corresponding aqueous solutions. The increased fluorescence quantum yields in the films were determined quantitatively by using a specifically designed and constructed film sample holder in the emission spectrometer. The observed fluorescence decays of the EDA-carbon dots in film and in solution were essentially the same, suggesting that the significant enhancement in fluorescence quantum yields from solution to film is static in nature. Mechanistic implications of the results, including a rationalization in terms of the compression effect on the surface passivation layer (similar to a soft corona) in carbon dots when embedded in the more restrictive film environment resulting in more favorable radiative recombinations of the carbon particle surface-trapped electrons and holes, and also potential technological applications of the brightly fluorescent composite films are highlighted and discussed.
Collapse
Affiliation(s)
- Yamin Liu
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634
| | - Ping Wang
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634
| | - K. A. Shiral Fernando
- University of Dayton Research Institute, Sensors Technology Office, Dayton, Ohio 45469
| | - Gregory E. LeCroy
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634
| | - Halidan Maimaiti
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634
| | | | - William K. Lewis
- Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson Air Force Base, Ohio 45433
| | - Christopher E. Bunker
- Air Force Research Laboratory, Propulsion Directorate, Wright-Patterson Air Force Base, Ohio 45433
| | - Zhi-Ling Hou
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634
| | - Ya-Ping Sun
- Department of Chemistry and Laboratory for Emerging Materials and Technology, Clemson University, Clemson, South Carolina 29634
| |
Collapse
|
15
|
Petersen EJ, Flores-Cervantes DX, Bucheli TD, Elliott LCC, Fagan JA, Gogos A, Hanna S, Kägi R, Mansfield E, Montoro Bustos AR, Plata DL, Reipa V, Westerhoff P, Winchester MR. Quantification of Carbon Nanotubes in Environmental Matrices: Current Capabilities, Case Studies, and Future Prospects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4587-605. [PMID: 27050152 PMCID: PMC4943226 DOI: 10.1021/acs.est.5b05647] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carbon nanotubes (CNTs) have numerous exciting potential applications and some that have reached commercialization. As such, quantitative measurements of CNTs in key environmental matrices (water, soil, sediment, and biological tissues) are needed to address concerns about their potential environmental and human health risks and to inform application development. However, standard methods for CNT quantification are not yet available. We systematically and critically review each component of the current methods for CNT quantification including CNT extraction approaches, potential biases, limits of detection, and potential for standardization. This review reveals that many of the techniques with the lowest detection limits require uncommon equipment or expertise, and thus, they are not frequently accessible. Additionally, changes to the CNTs (e.g., agglomeration) after environmental release and matrix effects can cause biases for many of the techniques, and biasing factors vary among the techniques. Five case studies are provided to illustrate how to use this information to inform responses to real-world scenarios such as monitoring potential CNT discharge into a river or ecotoxicity testing by a testing laboratory. Overall, substantial progress has been made in improving CNT quantification during the past ten years, but additional work is needed for standardization, development of extraction techniques from complex matrices, and multimethod comparisons of standard samples to reveal the comparability of techniques.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - D. Xanat Flores-Cervantes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Thomas D. Bucheli
- Agroscope, Institute of Sustainability Sciences ISS, 8046 Zurich, Switzerland
| | - Lindsay C. C. Elliott
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alexander Gogos
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- Agroscope, Institute of Sustainability Sciences ISS, 8046 Zurich, Switzerland
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ralf Kägi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Elisabeth Mansfield
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Antonio R. Montoro Bustos
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Desiree L. Plata
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Vytas Reipa
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Paul Westerhoff
- School of Sustainable Engineering and The Built Environment, Arizona State University, Box 3005, Tempe, Arizona 85278-3005, United States
| | - Michael R. Winchester
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
16
|
Wang C, Bai Y, Li H, Liao R, Li J, Zhang H, Zhang X, Zhang S, Yang ST, Chang XL. Surface modification-mediated biodistribution of ¹³C-fullerene C₆₀ in vivo. Part Fibre Toxicol 2016; 13:14. [PMID: 26956156 PMCID: PMC4784322 DOI: 10.1186/s12989-016-0126-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Functionalization is believed to have a considerable impact on the biodistribution of fullerene in vivo. However, a direct comparison of differently functionalized fullerenes is required to prove the hypothesis. The purpose of this study was to investigate the influences of surface modification on the biodistribution of fullerene following its exposure via several routs of administration. METHODS (13)C skeleton-labeled fullerene C60 ((13)C-C60) was functionalized with carboxyl groups ((13)C-C60-COOH) or hydroxyl groups ((13)C-C60-OH). Male ICR mice (~25 g) were exposed to a single dose of 400 μg of (13)C-C60-COOH or (13)C-C60-OH in 200 μL of aqueous 0.9% NaCl solution by three different exposure pathways, including tail vein injection, gavage and intraperitoneal exposure. Tissue samples, including blood, heart, liver, spleen, stomach, kidneys, lungs, brain, large intestine, small intestine, muscle, bone and skin were subsequently collected, dissected, homogenized, lyophilized, and analyzed by isotope ratio mass spectrometry. RESULTS The liver, bone, muscle and skin were found to be the major target organs for C60-COOH and C60-OH after their intravenous injection, whereas unmodified C60 was mainly found in the liver, spleen and lung. The total uptakes in liver and spleen followed the order: C60 > > C60-COOH > C60-OH. The distribution rate over 24 h followed the order: C60 > C60-OH > C60-COOH. C60-COOH and C60-OH were both cleared from the body at 7 d post exposure. C60-COOH was absorbed in the gastrointestinal tract following gavage exposure and distributed into the heart, liver, spleen, stomach, lungs, intestine and bone tissues. The translocation of C60-OH was more widespread than that of C60-COOH after intraperitoneal injection. CONCLUSIONS The surface modification of fullerene C60 led to a decreased in its accumulation level and distribution rate, as well as altering its target organs. These results therefore demonstrate that the chemical functionalization of fullerene had a significant impact on its translocation and biodistribution properties. Further surface modifications could therefore be used to reduce the toxicity of C60 and improve its biocompatibility, which would be beneficial for biomedical applications.
Collapse
Affiliation(s)
- Chenglong Wang
- Northwest University, Xi'an, 710069, P. R. China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Yitong Bai
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, P. R. China.
| | - Hongliang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, P. R. China.
| | - Rong Liao
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, P. R. China.
| | - Jiaxin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China.
| | - Han Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China.
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P.R. China.
| | - Sujuan Zhang
- Northwest University, Xi'an, 710069, P. R. China.
| | - Sheng-Tao Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
- College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu, 610041, P. R. China.
| | - Xue-Ling Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
17
|
Campos BB, Oliva MM, Contreras-Cáceres R, Rodriguez-Castellón E, Jiménez-Jiménez J, da Silva JCE, Algarra M. Carbon dots on based folic acid coated with PAMAM dendrimer as platform for Pt(IV) detection. J Colloid Interface Sci 2016; 465:165-73. [DOI: 10.1016/j.jcis.2015.11.059] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
|
18
|
Zheng J, Wang K, Luo E, Wu D, Zhu F, Jiang R, Su C, Wei C, Ouyang G. Monodisperse microporous carbon nanospheres: An efficient and stable solid phase microextraction coating material. Anal Chim Acta 2015; 884:44-51. [DOI: 10.1016/j.aca.2015.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/03/2023]
|
19
|
Wang C, Ruan L, Chang XL, Zhang X, Yang ST, Guo X, Yuan H, Guo C, Shi W, Sun B, Zhao Y. The isotopic effects of 13C-labeled large carbon cage (C70) fullerenes and their formation process. RSC Adv 2015. [DOI: 10.1039/c5ra06588g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
13C-enriched large carbon cage-based fullerenes were synthesized on a large scale by an arc discharge method.
Collapse
|
20
|
Amenta V, Aschberger K. Carbon nanotubes: potential medical applications and safety concerns. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:371-86. [PMID: 25429905 DOI: 10.1002/wnan.1317] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 09/29/2014] [Accepted: 10/11/2014] [Indexed: 11/06/2022]
Abstract
Carbon nanotubes (CNTs) have unique atomic structure, as well as outstanding thermal, mechanical, and electronic properties, making them extremely attractive materials for several different applications. Many research groups are focusing on biomedical applications of carbon-based nanomaterials, however the application of CNTs to the biomedical field is not developing as fast as in other areas. While CNTs-based products are already being used in textiles, polymer matrices to strengthen materials, sports articles, microelectronics, energy storage, etc., medicinal products and medical devices for in vivo application based on CNTs have not been commercialized yet. However, CNTs for biomedical application, i.e., CNTs conjugated to siRNA for cancer therapy, or CNTs for imaging of colorectal cancer and many other products may enter clinical trials in the next years. Concerns related to the toxicity of CNTs must be overcome in order to have these products commercialized in a near future. This article reviews emerging biomedical applications of CNTs, specifically for therapy. It also deals with challenges associated with possible medical applications of CNTs, such as their not fully understood toxicological profile in the human body.
Collapse
Affiliation(s)
- Valeria Amenta
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | | |
Collapse
|