1
|
Shcheslavskiy VI, Shirmanova MV, Yashin KS, Rück AC, Skala MC, Becker W. Fluorescence Lifetime Imaging Techniques-A Review on Principles, Applications and Clinical Relevance. JOURNAL OF BIOPHOTONICS 2025:e202400450. [PMID: 39973086 DOI: 10.1002/jbio.202400450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
This article gives an overview of the most frequently used fluorescence-lifetime imaging (FLIM) techniques, their capabilities, and typical applications. Starting from a general introduction to fluorescence and phosphorescence lifetime, we will show that the fluorescence lifetime or, more accurately, the fluorescence decay function of a fluorophore is a direct indicator of the interaction with its molecular environment. FLIM is therefore more than a simple contrast technique in microscopy-it is a technique of molecular imaging. FLIM techniques can be classified into time-domain and frequency-domain techniques, analogue and photon counting techniques, and scanning and wide-field techniques. Starting from an overview of these general technical principles we will describe the features and peculiarities of the different FLIM techniques in use. An extended section is dedicated to TCSPC FLIM, addressing unique capabilities that make the technique especially interesting to FLIM of biological systems.
Collapse
Affiliation(s)
- V I Shcheslavskiy
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Becker&Hickl GmbH, Berlin, Germany
| | - M V Shirmanova
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - K S Yashin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - A C Rück
- Centre for Biomedical Research, Microscopy/Neurology Group, University Ulm, Ulm, Germany
| | - M C Skala
- Morgridge Institute for Research, Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - W Becker
- Becker&Hickl GmbH, Berlin, Germany
| |
Collapse
|
2
|
Saccomano SC, Branning JM, Samo TJ, Nuccio EE, Sodia TZ, Mendonsa AA, Weber PK, Cash KJ. A scalable and autoclavable oxygen nanosensor platform for metabolic monitoring of Saccharomyces cerevisiae in a bioreactor and other in situ systems. Mikrochim Acta 2025; 192:120. [PMID: 39890649 DOI: 10.1007/s00604-025-06989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
Polymer-encapsulated dye nanoparticle sensors are a valuable approach to achieving in situ analyte measurements with luminescence; however, typical emulsion-based nanosensors are poorly suited for large-scale biological samples due to limitations of synthesis scalability and stability. Branched polyethylenimine (PEI) is a versatile polymer scaffold ideal for constructing nanoparticles with various covalently conjugated moieties due to their high density of reactive primary amines, high water solubility, and biological stability. In this work, we used branched polyethylenimine as a scaffold-based approach for making a stable and scalable ratiometric oxygen sensor. Pt (II) tetracarboxyporphine was used as an oxygen-sensing dye and coumarin 343 as a reference dye, all covalently linked to the PEI scaffold producing a product that could withstand sterilization procedures and easily be scaled. To minimize toxicity from the PEI scaffold, we conjugated it with 2000 MW PEG. The applicability of the sensors was demonstrated in a 200 mL Saccharomyces cerevisiae yeast culture, using orthogonal luminescent and electrochemical oxygen measurements to validate sensor response and measure the metabolic activity of the yeast in our culture. This approach was able to match the sensitivity of our electrochemical measurements while improving upon drawbacks of other luminescent methods of oxygen detection, demonstrating effective monitoring for at least 20 h. Our scaffold-based approach is a modular and easily translatable technology that could be useful in various biotechnological applications.
Collapse
Affiliation(s)
- Samuel C Saccomano
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - John M Branning
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, 80401, USA
- The MITRE Corporation, Bedford, MA, USA
| | - Ty J Samo
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Erin E Nuccio
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Tyler Z Sodia
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Adrian A Mendonsa
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Peter K Weber
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Kevin J Cash
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, 80401, USA.
| |
Collapse
|
3
|
Lang A, Collins JM, Nijsure MP, Belali S, Khan MP, Moharrer Y, Schipani E, Yien YY, Fan Y, Gelinsky M, Vinogradov SA, Koch C, Boerckel JD. Local erythropoiesis directs oxygen availability in bone fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632440. [PMID: 39829797 PMCID: PMC11741344 DOI: 10.1101/2025.01.10.632440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Bone fracture ruptures blood vessels and disrupts the bone marrow, the site of new red blood cell production (erythropoiesis). Current dogma holds that bone fracture causes severe hypoxia at the fracture site, due to vascular rupture, and that this hypoxia must be overcome for regeneration. Here, we show that the early fracture site is not hypoxic, but instead exhibits high oxygen tension (> 55 mmHg, or 8%), similar to the red blood cell reservoir, the spleen. This elevated oxygen stems not from angiogenesis but from activated erythropoiesis in the adjacent bone marrow. Fracture-activated erythroid progenitor cells concentrate oxygen through haemoglobin formation. Blocking transferrin receptor 1 (CD71)-mediated iron uptake prevents oxygen binding by these cells, induces fracture site hypoxia, and enhances bone repair through increased angiogenesis and osteogenesis. These findings upend our current understanding of the early phase of bone fracture repair, provide a mechanism for high oxygen tension in the bone marrow after injury, and reveal an unexpected and targetable role of erythroid progenitors in fracture repair.
Collapse
Affiliation(s)
- Annemarie Lang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph M. Collins
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P. Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Simin Belali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette Y. Yien
- Division of Hematology/Oncology, Department of Medicine and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sergei A. Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Cameron Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D. Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Grilj V, Leavitt RJ, El Khatib M, Paisley R, Franco-Perez J, Petit B, Ballesteros-Zebadua P, Vozenin MC. In vivo measurements of change in tissue oxygen level during irradiation reveal novel dose rate dependence. Radiother Oncol 2024; 201:110539. [PMID: 39299575 DOI: 10.1016/j.radonc.2024.110539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND PURPOSE This study aimed to investigate the radiochemical oxygen depletion (ROD) in vivo by directly measuring oxygen levels in various mouse tissues during ultra-high dose rate (UHDR) irradiation at clinically relevant doses and dose rates. MATERIALS AND METHODS Mice bearing subcutaneous human glioblastoma (U-87 MG) tumors were used for tumor and normal tissue (skin, muscle, brain) measurements. An oxygen-sensitive phosphorescent probe (Oxyphor PtG4) was injected into the tissues, and oxygen levels were monitored using a fiberoptic phosphorometer during UHDR irradiation with a 6 MeV electron linear accelerator (LINAC). Dose escalation experiments (10-40 Gy) were performed at a dose rate of 1300 Gy/s, and dose rate escalation experiments were conducted at a fixed dose of 40 Gy with dose rates ranging from 2 to 101 Gy/s. RESULTS Radiation-induced change in tissue oxygenation (ΔpO2) increased linearly with dose and correlated with baseline tissue oxygenation levels in the range of 0 - 30 mmHg. At higher baseline tissue oxygenation levels, such as those observed in muscle and brain, there was no corresponding increase in ΔpO2. When we modulated dose rate, ΔpO2 increased steeply up to ∼ 20 Gy/s and plateaued thereafter. The relationship between ΔpO2 and dose rate showcases the interplay between ROD and reoxygenation. CONCLUSION While UHDR irradiation induces measurable oxygen depletion in tissues, the observed changes in oxygenation levels do not support the hypothesis that ROD-induced radioresistance is responsible for the FLASH tissue-sparing effect at clinically relevant doses and dose rates. These findings highlight the need for further investigation into alternative mechanisms underlying the FLASH effect.
Collapse
Affiliation(s)
- Veljko Grilj
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland; Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Ron J Leavitt
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Ryan Paisley
- Institute of Radiation Physics, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Javier Franco-Perez
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City, Mexico; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benoit Petit
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paola Ballesteros-Zebadua
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City, Mexico; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marie-Catherine Vozenin
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Kühl M, Nielsen DA, Borisov SM. In Vivo Lifetime Imaging of the Internal O 2 Dynamics in Corals with near-Infrared-Emitting Sensor Nanoparticles. ACS Sens 2024; 9:4671-4679. [PMID: 39179239 PMCID: PMC11443520 DOI: 10.1021/acssensors.4c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Mapping of O2 with luminescent sensors within intact animals is challenging due to attenuation of excitation and emission light caused by tissue absorption and scattering as well as interfering background fluorescence. Here we show the application of luminescent O2 sensor nanoparticles (∼50-70 nm) composed of the O2 indicator platinum(II) tetra(4-fluoro)phenyltetrabenzoporphyrin (PtTPTBPF) immobilized in poly(methyl methacrylate-co-methacrylic acid) (PMMA-MA). We injected the sensor nanoparticles into the gastrovascular system of intact colony fractions of reef-building tropical corals that harbor photosynthetic microalgae in their tissues. The sensor nanoparticles are excited by red LED light (617 nm) and emit in the near-infrared (780 nm), which enhances the transmission of excitation and emission light through biological materials. This enabled us to map the internal O2 concentration via time-domain luminescence lifetime imaging through the outer tissue layers across several coral polyps in flowing seawater. After injection, nanoparticles dispersed within the coral tissue for several hours. While luminescence intensity imaging showed some local aggregation of sensor particles, lifetime imaging showed a more homogeneous O2 distribution across a larger area of the coral colony. Local stimulation of symbiont photosynthesis in corals induced oxygenation of illuminated tissue areas and formation of lateral O2 gradients toward surrounding respiring tissues, which were dissipated rapidly after the onset of darkness. Such measurements are key to improving our understanding of how corals regulate their internal chemical microenvironment and metabolic activity, and how they are affected by environmental stress such as ocean warming, acidification, and deoxygenation. Our experimental approach can also be adapted for in vivo O2 imaging in other natural systems such as biofilms, plant and animal tissues, as well as in organoids and other cell constructs, where imaging internal O2 conditions are relevant and challenging due to high optical density and background fluorescence.
Collapse
Affiliation(s)
- Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
- Climate Change Cluster, University of Technology Sydney, Broadway 2007, Australia
| | | | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
6
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
7
|
El Khatib M, Motlagh AO, Beyer JN, Troxler T, Allu SR, Sun Q, Burslem GM, Vinogradov SA. Direct Measurements of FLASH-Induced Changes in Intracellular Oxygenation. Int J Radiat Oncol Biol Phys 2024; 118:781-789. [PMID: 37729972 PMCID: PMC11474819 DOI: 10.1016/j.ijrobp.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE The goal of our study was to characterize the dynamics of intracellular oxygen during application of radiation at conventional (CONV) and FLASH dose rates and obtain evidence for or against the oxygen depletion hypothesis as a mechanism of the FLASH effect. METHODS AND MATERIALS The measurements were performed by the phosphorescence quenching method using probe Oxyphor PtG4, which was delivered into the cellular cytosol by electroporation. RESULTS Intracellular radiochemical oxygen depletion (ROD) g-value for a dose rate of 100 Gy/s in the normoxic range was found to be 0.58 ± 0.03 μM/Gy. Intracellular ROD g-values for FLASH and CONV dose rates in the normoxic range were found to be nearly equal. As in solution-based studies, intracellular ROD was found to exhibit strong dependence on oxygen concentration in the range of 0 to ∼40 μM [O2]. CONCLUSIONS Depletion of oxygen in cells in vitro by a clinical dose of proton radiation delivered as FLASH is unable to produce a transient state of hypoxia and, therefore, unable to induce radioprotection. The difference between ROD g-values for FLASH and CONV dose rates, detected previously in solutions-based experiments, disappears when measurements are conducted inside cells. Understanding this phenomenon should provide additional insight into the role of oxygen in FLASH radiation therapy and help to decipher the mechanism of the FLASH effect.
Collapse
Affiliation(s)
- Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Azar O Motlagh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jenna N Beyer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas Troxler
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Qi Sun
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Zong W, Friedman ES, Allu SR, Firrman J, Tu V, Daniel SG, Bittinger K, Liu L, Vinogradov SA, Wu GD. Disruption of intestinal oxygen balance in acute colitis alters the gut microbiome. Gut Microbes 2024; 16:2361493. [PMID: 38958039 PMCID: PMC11225921 DOI: 10.1080/19490976.2024.2361493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
The juxtaposition of well-oxygenated intestinal colonic tissue with an anerobic luminal environment supports a fundamentally important relationship that is altered in the setting of intestinal injury, a process likely to be relevant to diseases such as inflammatory bowel disease. Herein, using two-color phosphorometry to non-invasively quantify both intestinal tissue and luminal oxygenation in real time, we show that intestinal injury induced by DSS colitis reduces intestinal tissue oxygenation in a spatially defined manner and increases the flux of oxygen from the tissue into the gut lumen. By characterizing the composition of the microbiome in both DSS colitis-affected gut and in a bioreactor containing a stable human fecal community exposed to microaerobic conditions, we provide evidence that the increased flux of oxygen into the gut lumen augments glycan degrading bacterial taxa rich in glycoside hydrolases which are known to inhabit gut mucosal surface. Continued disruption of the intestinal mucus barrier through such a mechanism may play a role in the perpetuation of the intestinal inflammatory process.
Collapse
Affiliation(s)
- Wenjing Zong
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - Elliot S. Friedman
- Department of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Srinivasa Rao Allu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - Scott G. Daniel
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA ,USA
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, Wyndmoor, PA, USA
| | - Sergei A. Vinogradov
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary D. Wu
- Department of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Lamb DR, Greenfield A, Thangaraju K, Setua S, Eiker G, Wang Q, Vahedi A, Khan MA, Yahya A, Cabrales P, Palmer AF, Buehler PW. The Molecular Size of Bioengineered Oxygen Carriers Determines Tissue Oxygenation in a Hypercholesterolemia Guinea Pig Model of Hemorrhagic Shock and Resuscitation. Mol Pharm 2023; 20:5739-5752. [PMID: 37843033 DOI: 10.1021/acs.molpharmaceut.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Polymerized human hemoglobin (PolyhHb) has shown promise in preclinical hemorrhagic shock settings. Different synthetic and purification schemes can control the size of PolyhHbs, yet research is lacking on the impact of polymerized hemoglobin size on tissue oxygenation following hemorrhage and resuscitation in specialized animal models that challenge their resuscitative capabilities. Pre-existing conditions that compromise the vasculature and end organs, such as the liver, may limit the effectiveness of resuscitation and exacerbate the toxicity of these molecules, which is an important but minimally explored therapeutic dimension. In this study, we compared the effective oxygen delivery of intermediate molecular weight PolyhHb (PolyhHb-B3; 500-750 kDa) to high molecular weight PolyhHb (PolyhHb-B4; 750 kDa-0.2 μm) for resuscitative effectiveness in guinea pig models subjected to hemorrhagic shock. We evaluated how the size of PolyhHb impacts hemodynamics and tissue oxygenation in normal guinea pigs and guinea pigs on an atherogenic diet. We observed that while PolyhHb-B3 and -B4 equivalently restore hemodynamic parameters of normal-dieted guinea pigs, high-fat-dieted guinea pigs resuscitated with PolyhHb-B4 have lower mean arterial pressures, impaired tissue oxygenation, and higher plasma lactate levels than those receiving PolyhHb-B3. We characterized the plasma of these animals following resuscitation and found that despite similar oxygen delivery kinetics, circulating PolyhHb-B3 and -B4 demonstrated a size-dependent increase in the plasma viscosity, consistent with impaired perfusion in the PolyhHb-B4 transfusion group. We conclude that intermediate-sized PolyhHbs (such as -B3) are ideal for further research given the effective resuscitation of hemorrhagic shock based on tissue oxygenation in hypercholesterolemic guinea pigs.
Collapse
Affiliation(s)
- Derek R Lamb
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Alisyn Greenfield
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Kiruphagaran Thangaraju
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Saini Setua
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Gena Eiker
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Qihong Wang
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
| | - Amid Vahedi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Mohd Asim Khan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Ahmad Yahya
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, United States
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 452 CBEC, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Paul W Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, HSF III, 670 West Baltimore St., Baltimore, Maryland 21202, United States
- Department of Pathology, University of Maryland School of Medicine, 10 S Pine St # 700A, Baltimore, Maryland 21201, United States
| |
Collapse
|
10
|
Zanetti C, Gaspar RDL, Zhdanov AV, Maguire NM, Joyce SA, Collins SG, Maguire AR, Papkovsky DB. Heterosubstituted Derivatives of PtPFPP for O 2 Sensing and Cell Analysis: Structure–Activity Relationships. Bioconjug Chem 2022; 33:2161-2169. [DOI: 10.1021/acs.bioconjchem.2c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chiara Zanetti
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | | | - Alexander V. Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Nuala M. Maguire
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Susan A. Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| | - Stuart G. Collins
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Anita R. Maguire
- School of Chemistry and School of Pharmacy, University College Cork, Cork T12 YN60, Ireland
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 XF62, Ireland
| |
Collapse
|
11
|
Chong SH, Ong YH, El Khatib M, Allu SR, Parthasarathy AB, Greenberg JH, Yodh AG, Vinogradov SA. Real-time tracking of brain oxygen gradients and blood flow during functional activation. NEUROPHOTONICS 2022; 9:045006. [PMID: 36457848 PMCID: PMC9704417 DOI: 10.1117/1.nph.9.4.045006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/01/2022] [Indexed: 06/11/2023]
Abstract
Significance Cerebral metabolic rate of oxygen ( CMRO 2 ) consumption is a key physiological variable that characterizes brain metabolism in a steady state and during functional activation. Aim We aim to develop a minimally invasive optical technique for real-time measurement of CMRO 2 concurrently with cerebral blood flow (CBF). Approach We used a pair of macromolecular phosphorescent probes with nonoverlapping optical spectra, which were localized in the intra- and extravascular compartments of the brain tissue, thus providing a readout of oxygen gradients between these two compartments. In parallel, we measured CBF using laser speckle contrast imaging. Results The method enables computation and tracking of CMRO 2 during functional activation with high temporal resolution ( ∼ 7 Hz ). In contrast to other approaches, our assessment of CMRO 2 does not require measurements of CBF or hemoglobin oxygen saturation. Conclusions The independent records of intravascular and extravascular partial pressures of oxygen, CBF, and CMRO 2 provide information about the physiological events that accompany neuronal activation, creating opportunities for dynamic quantification of brain metabolism.
Collapse
Affiliation(s)
- Sang Hoon Chong
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Yi Hong Ong
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Ashwin B. Parthasarathy
- University of South Florida, Department of Electrical Engineering, Tampa, Florida, United States
| | - Joel H. Greenberg
- University of Pennsylvania, Department of Neurology, Philadelphia, Pennsylvania, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, Pennsylvania, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| |
Collapse
|
12
|
El Khatib M, Cheprakov AV, Vinogradov SA. Unusual Reactivity and Metal Affinity of Water-Soluble Dipyrrins. Inorg Chem 2022; 61:12746-12758. [PMID: 35917291 PMCID: PMC10178602 DOI: 10.1021/acs.inorgchem.2c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dipyrrins are a versatile class of organic ligands capable of fluorogenic complexation of metal ions. The primary goal of our study was to evaluate dipyrrins functionalized with ester and amide groups in 2,2'-positions in sensing applications. While developing the synthesis, we found that 3,3',4,4'-tetraalkyldipyrrins 2,2'-diesters as well as 2,2'-diamides can undergo facile addition of water at the meso-bridge, transforming into colorless meso-hydroxydipyrromethanes. Spectroscopic and computational investigation revealed that this transformation proceeds via dipyrrin cations, which exist in equilibrium with the hydroxydipyrromethanes. While trace amounts of acid favor conversion of dipyrrins to hydroxydipyrromethanes, excess acid shifts the equilibrium toward the cations. Similarly, the presence of Zn2+ facilitates elimination of water from hydroxydipyrromethanes with chromogenic regeneration of the dipyrrin system. In organic solutions in the presence of Zn2+, dipyrrin-2,2'-diesters exist as mixtures of mono-(LZnX) and bis-(L2Zn) complexes. In L2Zn, the dipyrrin ligands are oriented in a nonorthogonal fashion, causing strong exciton coupling. In aqueous solutions, dipyrrins bind Zn2+ in a 1:1 stoichiometry, forming mono-dipyrrinates (LZnX). Unexpectedly, dipyrrins with more electron-rich 2,2'-carboxamide groups revealed ∼20-fold lower affinity for Zn2+ than the corresponding 2,2'-diesters. Density Functional Theory (DFT) calculations with explicit inclusion of water reproduced the observed trends and allowed us to trace the low affinity of the dipyrrin-diamides to the stabilization of the corresponding free bases via hydrogen bonding with water molecules. Overall, our results reveal unusual trends in the reactivity of dipyrrins and provide clues for the design of dipyrrin-based sensors for biological applications.
Collapse
|
13
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
14
|
Van Slyke AL, El Khatib M, Velalopoulou A, Diffenderfer E, Shoniyozov K, Kim MM, Karagounis IV, Busch TM, Vinogradov SA, Koch CJ, Wiersma RD. Oxygen Monitoring in Model Solutions and In Vivo in Mice During Proton Irradiation at conventional and FLASH Dose Rates. Radiat Res 2022; 198:181-189. [PMID: 35640166 PMCID: PMC10176203 DOI: 10.1667/rade-21-00232.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/06/2022] [Indexed: 11/03/2022]
Abstract
FLASH is a high-dose-rate form of radiation therapy that has the reported ability, compared with conventional dose rates, to spare normal tissues while being equipotent in tumor control, thereby increasing the therapeutic ratio. The mechanism underlying this normal tissue sparing effect is currently unknown, however one possibility is radiochemical oxygen depletion (ROD) during dose delivery in tissue at FLASH dose rates. In order to investigate this possibility, we used the phosphorescence quenching method to measure oxygen partial pressure before, during and after proton radiation delivery in model solutions and in normal muscle and sarcoma tumors in mice, at both conventional (Conv) (∼0.5 Gy/s) and FLASH (∼100 Gy/s) dose rates. Radiation dosimetry was determined by Advanced Markus Chamber and EBT-XL film. For solutions contained in sealed glass vials, phosphorescent probe Oxyphor PtG4 (1 μM) was dissolved in a buffer (10 mM HEPES) containing glycerol (1 M), glucose (5 mM) and glutathione (5 mM), designed to mimic the reducing and free radical-scavenging nature of the intracellular environment. In vivo oxygen measurements were performed 24 h after injection of PtG4 into the interstitial space of either normal thigh muscle or intra-muscular sarcoma tumors in mice. The "g-value" for ROD is reported in mmHg/Gy, which represents a slight modification of the more standard chemical definition (μM/Gy). In solutions, proton irradiation at conventional dose rates resulted in a g-value for ROD of up to 0.55 mmHg/Gy, consistent with earlier studies using X or gamma rays. At FLASH dose rates, the g-value for ROD was ∼25% lower, 0.37 mmHg/Gy. pO2 levels were stable after each dose delivery. For normal muscle in vivo, oxygen depletion during irradiation was counterbalanced by resupply from the vasculature. This process was fast enough to maintain tissue pO2 virtually unchanged at Conv dose rates. However, during FLASH irradiation there was a stepwise decrease in pO2 (g-value ∼0.28 mmHg/Gy), followed by a rebound to the initial level after ∼8 s. The g-values were smaller and recovery times longer in tumor tissue when compared to muscle and may be related to the lower initial endogenous pO2 levels in the former. Considering that the FLASH effect is seen in vivo even at doses as low as 10 Gy, it is difficult to reconcile the amount of protection seen by oxygen depletion alone. However, the phosphorescence probe in our experiments was confined to the extracellular space, and it remains possible that intracellular oxygen depletion was greater than observed herein. In cell-mimicking solutions the oxygen depletion g-vales were indeed significantly higher than observed in vivo.
Collapse
Affiliation(s)
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Eric Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia
| | | | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia
| | - Ilias V Karagounis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia
| | - Theresa M Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cameron J Koch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia
| | - Rodney D Wiersma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia
| |
Collapse
|
15
|
Khatib ME, Van Slyke AL, Velalopoulou A, Kim MM, Shoniyozov K, Allu SR, Diffenderfer EE, Busch TM, Wiersma RD, Koch CJ, Vinogradov SA. Ultrafast Tracking of Oxygen Dynamics during Proton FLASH. Int J Radiat Oncol Biol Phys 2022; 113:624-634. [DOI: 10.1016/j.ijrobp.2022.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
|
16
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
17
|
Chelushkin PS, Shakirova JR, Kritchenkov IS, Baigildin VA, Tunik SP. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton Trans 2021; 51:1257-1280. [PMID: 34878463 DOI: 10.1039/d1dt03077a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.
Collapse
Affiliation(s)
- Pavel S Chelushkin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Julia R Shakirova
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Ilya S Kritchenkov
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Vadim A Baigildin
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr., 26, 198504, St. Petersburg, Russia.
| |
Collapse
|
18
|
Cao X, Zhang R, Esipova TV, Allu SR, Ashraf R, Rahman M, Gunn JR, Bruza P, Gladstone DJ, Williams BB, Swartz HM, Hoopes PJ, Vinogradov SA, Pogue BW. Quantification of Oxygen Depletion During FLASH Irradiation In Vitro and In Vivo. Int J Radiat Oncol Biol Phys 2021; 111:240-248. [PMID: 33845146 PMCID: PMC8338745 DOI: 10.1016/j.ijrobp.2021.03.056] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Delivery of radiation at ultrahigh dose rates (UHDRs), known as FLASH, has recently been shown to preferentially spare normal tissues from radiation damage compared with tumor tissues. However, the underlying mechanism of this phenomenon remains unknown, with one of the most widely considered hypotheses being that the effect is related to substantial oxygen depletion upon FLASH, thereby altering the radiochemical damage during irradiation, leading to different radiation responses of normal and tumor cells. Testing of this hypothesis would be advanced by direct measurement of tissue oxygen in vivo during and after FLASH irradiation. METHODS AND MATERIALS Oxygen measurements were performed in vitro and in vivo using the phosphorescence quenching method and a water-soluble molecular probe Oxyphor 2P. The changes in oxygen per unit dose (G-values) were quantified in response to irradiation by 10 MeV electron beam at either UHDR reaching 300 Gy/s or conventional radiation therapy dose rates of 0.1 Gy/s. RESULTS In vitro experiments with 5% bovine serum albumin solutions at 23°C resulted in G-values for oxygen consumption of 0.19 to 0.21 mm Hg/Gy (0.34-0.37 μM/Gy) for conventional irradiation and 0.16 to 0.17 mm Hg/Gy (0.28-0.30 μM/Gy) for UHDR irradiation. In vivo, the total decrease in oxygen after a single fraction of 20 Gy FLASH irradiation was 2.3 ± 0.3 mm Hg in normal tissue and 1.0 ± 0.2 mm Hg in tumor tissue (P < .00001), whereas no decrease in oxygen was observed from a single fraction of 20 Gy applied in conventional mode. CONCLUSIONS Our observations suggest that oxygen depletion to radiologically relevant levels of hypoxia is unlikely to occur in bulk tissue under FLASH irradiation. For the same dose, FLASH irradiation induces less oxygen consumption than conventional irradiation in vitro, which may be related to the FLASH sparing effect. However, the difference in oxygen depletion between FLASH and conventional irradiation could not be quantified in vivo because measurements of oxygen depletion under conventional irradiation are hampered by resupply of oxygen from the blood.
Collapse
Affiliation(s)
- Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School or Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School or Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Benjamin B Williams
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Harold M Swartz
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School or Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire.
| |
Collapse
|
19
|
Villari V, Micali N, Nicosia A, Mineo P. Water-Soluble Non-Ionic PEGylated Porphyrins: A Versatile Category of Dyes for Basic Science and Applications. Top Curr Chem (Cham) 2021; 379:35. [PMID: 34382110 DOI: 10.1007/s41061-021-00348-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022]
Abstract
This review arises from the need to rationalize the huge amount of information on the structural and spectroscopic properties of a peculiar class of porphyrin derivatives-the non-ionic PEGylated porphyrins-collected during almost two decades of research. The lack of charged groups in the molecular architecture of these porphyrin derivatives is the leitmotif of the work and plays an outstanding role in highlighting those interactions between porphyrins, or between porphyrins and target molecules (e.g., hydrophobic-, hydrogen bond related-, and coordination-interactions, to name just a few) that are often masked by stronger electrostatic contributions. In addition, it is exactly these weaker interactions between porphyrins that make the aggregated forms more prone to couple efficiently with external perturbative fields like weak hydrodynamic vortexes or temperature gradients. In the absence of charge, solubility in water is very often achieved by covalent functionalization of the porphyrin ring with polyethylene glycol chains. Various modifications, including of chain length or the number of chains, the presence of a metal atom in the porphyrin core, or having two or more porphyrin rings in the molecular architecture, result in a wide range of properties. These encompass self-assembly with different aggregate morphology, molecular recognition of biomolecules, and different photophysical responses, which can be translated into numerous promising applications in the sensing and biomedical field, based on turn-on/turn-off fluorescence and on photogeneration of radical species.
Collapse
Affiliation(s)
- Valentina Villari
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy.
| | - Norberto Micali
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy
| | - Angelo Nicosia
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Placido Mineo
- IPCF-CNR, Istituto per i Processi Chimico-Fisici, Viale F. Stagno d'Alcontres 37, 98158, Messina, Italy
- Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
20
|
Abstract
Two-photon Phosphorescence Lifetime Microscopy (2PLM) is an emerging nonlinear optical technique that has great potential to improve our understanding of the basic biology underlying human health and disease. Although analogous to 2-photon Fluorescence Lifetime Imaging Microscopy (2P-FLIM), the contrast in 2PLM is fundamentally different from various intensity-based forms of imaging since it is based on the lifetime of an excited state and can be regarded as a "functional imaging" technique. 2PLM signal originates from the deactivation of the excited triplet state (phosphorescence) [1, 2]. Typically, this triplet state is a much longer-lived excited state than the singlet excited state resulting in phosphorescence emission times of microseconds to milliseconds at room temperature as opposed to nanoseconds for fluorescence emission [3]. The long-lived nature of the triplet state makes it highly sensitive to quenching molecules in the surrounding environment such as biomolecular oxygen (O2). Therefore, 2PLM can provide not only information on the distribution pattern of the probe in the sample (via intensity) but also determine the local oxygen tension (via phosphorescence lifetime quenching) [1]. The ability to create three-dimensional optical sections in the plane of focus within a thick biological specimen while maintaining relatively low phototoxicity due to the use of near-infrared wavelengths for two-photon excitation gives 2PLM powerful advantages over other techniques for longitudinal imaging and monitoring of oxygen within living organisms [4]. In this chapter, we will provide background on the development of 2PLM, discuss the most common oxygen sensing measurement methods and concepts, and explain the general principles and optical configuration of a 2PLM system. We also discuss the key characteristics and strategies for improvement of the technique. Finally, we will present an overview of the current primary scientific literature of how 2PLM has been used for oxygen sensing in biological applications and how this technique is improving our understanding of the basic biology underlying several areas of human health.
Collapse
|
21
|
Allu SR, Ravotto L, Troxler T, Vinogradov SA. syn-Diarylphthalimidoporphyrins: Effects of Symmetry Breaking on Two-Photon Absorption and Linear Photophysical Properties. J Phys Chem A 2021; 125:2977-2988. [PMID: 33822621 DOI: 10.1021/acs.jpca.1c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatically π-extended porphyrins possess exceptionally intense one-photon (1P) and sometimes two-photon (2P) absorption bands, presenting interest for construction of optical imaging probes and photodynamic agents. Here we investigated how breaking the molecular symmetry affects linear and 2PA properties of π-extended porphyrins. First, we developed the synthesis of porphyrins fused with two phthalimide fragments, termed syn-diarylphthalimidoporphyrins (DAPIP). Second, the photophysical properties of H2, Zn, Pd, and Pt DAPIP were measured and compared to those of fully symmetric tetraarylphthalimidoporphyrins (TAPIP). The data were interpreted using DFT/TDDFT calculations and sum-over-states (SOS) formalism. Overall, the picture of 2PA in DAPIP was found to resemble that in centrosymmetric porphyrins, indicating that symmetry breaking, even as significant as by syn-phthalimido-fusion, induces a relatively small perturbation to the porphyrin electronic structure. Collectively, the compact size, versatile synthesis, high 1PA and 2PA cross sections, and bright luminescence make DAPIP valuable chromophores for construction of imaging probes and other bioapplications.
Collapse
Affiliation(s)
- Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Luca Ravotto
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas Troxler
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Ravotto L, Meloni SL, Esipova TV, Masunov AE, Anna JM, Vinogradov SA. Three-Photon Spectroscopy of Porphyrins. J Phys Chem A 2020; 124:11038-11050. [PMID: 33337890 DOI: 10.1021/acs.jpca.0c08334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances in laser technology have made three-photon (3P) microscopy a real possibility, raising interest in the phenomenon of 3P absorption (3PA). Understanding 3PA of organic chromophores is especially important in view of those imaging applications that rely on exogenous probes, whose optical properties can be manipulated and optimized. Here, we present measurements and theoretical analysis of the degenerate 3PA spectra of several phosphorescent metalloporphyrins, which are used in the construction of biological oxygen probes. The effective 3PA cross sections (σ(3)) of these porphyrins near 1700 nm, a new promising biological optical window, were found to be on the order of 1000 GM3 (1 GM3 = 10-83 cm6 s2), therefore being among the highest values reported to date for organic chromophores. To interpret our data, we developed a qualitative four-state model specific for porphyrins and used it in conjunction with quantitative analysis based on the time-dependent density functional theory (TDDFT)/a posteriori Tamm-Dancoff approximation (ATDA)/sum-over-states (SOS) formalism. The analysis revealed that B (Soret) state plays a key role in the enhancement of 3PA of porphyrins in the Q band region, while the low-lying two-photon (2P)-allowed gerade states interfere negatively and diminish the 3PA strength. This study features the first systematic examination of 3PA properties of porphyrins, suggesting ways to improve their performance and optimize them for imaging and other biomedical applications.
Collapse
Affiliation(s)
- Luca Ravotto
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stephen L Meloni
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Artëm E Masunov
- NanoScience Technology Center, Department of Chemistry, and School of Modeling, Simulation and Training, University of Central Florida, Orlando, Florida 32826, United States.,National Nuclear Research University MEPhI, Kashirskoye Shosse 31, Moscow 115409, Russia.,South Ural State University, Lenin Pr. 76, Chelyabinsk 454080, Russia
| | - Jessica M Anna
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
23
|
Sen R, Zhdanov AV, Bastiaanssen TFS, Hirvonen LM, Svihra P, Fitzgerald P, Cryan JF, Andersson-Engels S, Nomerotski A, Papkovsky DB. Mapping O 2 concentration in ex-vivo tissue samples on a fast PLIM macro-imager. Sci Rep 2020; 10:19006. [PMID: 33149165 PMCID: PMC7642408 DOI: 10.1038/s41598-020-75928-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
O2 PLIM microscopy was employed in various studies, however current platforms have limitations in sensitivity, image acquisition speed, accuracy and general usability. We describe a new PLIM imager based on the Timepix3 camera (Tpx3cam) and its application for imaging of O2 concentration in various tissue samples stained with a nanoparticle based probe, NanO2-IR. Upon passive staining of mouse brain, lung or intestinal tissue surface with minute quantities of NanO2-IR or by microinjecting the probe into the lumen of small or large intestine fragments, robust phosphorescence intensity and lifetime signals were produced, which allow mapping of O2 in the tissue within 20 s. Inhibition of tissue respiration or limitation of O2 diffusion to tissue produced the anticipated increases or decreases in O2 levels, respectively. The difference in O2 concentration between the colonic lumen and air-exposed serosal surface was around 140 µM. Furthermore, subcutaneous injection of 5 µg of the probe in intact organs (a paw or tail of sacrificed mice) enabled efficient O2 imaging at tissue depths of up to 0.5 mm. Overall, the PLIM imager holds promise for metabolic imaging studies with various ex vivo models of animal tissue, and also for use in live animals.
Collapse
Affiliation(s)
- Rajannya Sen
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Alexander V Zhdanov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Liisa M Hirvonen
- Centre for Microscopy, Characterisation and Analysis (CMCA), The University of Western Australia, Crawley, WA, 6009, Australia
| | - Peter Svihra
- Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19, Prague, Czech Republic
- Department of Physics and Astronomy, School of Natural Sciences, The University of Manchester, Manchester, M139PL, UK
| | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Andrei Nomerotski
- Physics Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Dmitri B Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Cao X, Gunn JR, Allu SR, Bruza P, Jiang S, Vinogradov SA, Pogue BW. Implantable sensor for local Cherenkov-excited luminescence imaging of tumor pO2 during radiotherapy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200229SSR. [PMID: 33236619 PMCID: PMC7685386 DOI: 10.1117/1.jbo.25.11.112704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 05/16/2023]
Abstract
SIGNIFICANCE The necessity to use exogenous probes for optical oxygen measurements in radiotherapy poses challenges for clinical applications. Options for implantable probe biotechnology need to be improved to alleviate toxicity concerns in human use and facilitate translation to clinical trial use. AIM To develop an implantable oxygen sensor containing a phosphorescent oxygen probe such that the overall administered dose of the probe would be below the Federal Drug Administration (FDA)-prescribed microdose level, and the sensor would provide local high-intensity signal for longitudinal measurements of tissue pO2. APPROACH PtG4, an oxygen quenched dendritic molecule, was mixed into an agarose matrix at 100 μM concentration, allowing for local injection into tumors at the total dose of 10 nmol per animal, forming a gel at the site of injection. Cherenkov-excited luminescence imaging (CELI) was used to acquire the phosphorescence and provide intratumoral pO2. RESULTS Although PtG4 does not form covalent bonds with agarose and gradually leaches out into the surrounding tissue, its retention time within the gel was sufficiently long to demonstrate the capability to measure intratumoral pO2 with the implantable gel sensors. The sensor's performance was first evaluated in vitro in tissue simulation phantoms, and then the sensor was used to measure changes in oxygen in MDA-MB-231 tumors during hypofractionated radiotherapy. CONCLUSIONS Our study demonstrates that implantable oxygen sensors in combination with CELI present a promising approach for quantifying oxygen changes during the course of radiation therapy and thus for evaluating the tumor response to radiation. By improving the design of the gel-probe composition in order to prevent leaching of the probe into the tissue, biosensors can be created that should allow longitudinal oxygen measurements in tumors by means of CELI while using FDA-compliant microdose levels of the probe and thus lowering toxicity concerns.
Collapse
Affiliation(s)
- Xu Cao
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Ministry of Education, Xidian University, Engineering Research Center of Molecular and Neuroimaging, School of Life Science and Technology, Xi’an, Shaanxi, China
- Address all correspondence to Xu Cao, ; Brian W. Pogue,
| | - Jason R. Gunn
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School or Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Petr Bruza
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Shudong Jiang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School or Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
- Address all correspondence to Xu Cao, ; Brian W. Pogue,
| |
Collapse
|
25
|
Cao X, Allu SR, Jiang S, Gunn Bs JR, Yao PhD C, Xin PhD J, Bruza PhD P, Gladstone ScD DJ, Jarvis Md PhD LA, Tian PhD J, Swartz Md Msph PhD HM, Vinogradov PhD SA, Pogue PhD BW. High-Resolution pO 2 Imaging Improves Quantification of the Hypoxic Fraction in Tumors During Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 109:603-613. [PMID: 33002542 DOI: 10.1016/j.ijrobp.2020.09.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE The extreme microscopic heterogeneity of tumors makes it difficult to characterize tumor hypoxia. We evaluated how changes in the spatial resolution of oxygen imaging could alter measures of tumor hypoxia and their correlation to radiation therapy response. METHODS AND MATERIALS Cherenkov-Excited Luminescence Imaging in combination with an oxygen probe, Oxyphor PtG4 was used to directly image tumor pO2 distributions with 0.2 mm spatial resolution at the time of radiation delivery. These pO2 images were analyzed with variations of reduced spatial resolution from 0.2 mm to 5 mm, to investigate the influence of how reduced imaging spatial resolution would affect the observed tumor hypoxia. As an in vivo validation test, mice bearing tumor xenografts were imaged for hypoxic fraction and median pO2 to examine the predictive link with tumor response to radiation therapy, while accounting for spatial resolution. RESULTS In transitioning from voxel sizes of 200 μm to 3 mm, the median pO2 values increased by a few mm Hg, and the hypoxic fraction decreased by more than 50%. When looking at radiation-responsive tumors, the median pO2 values changed just a few mm Hg as a result of treatment, and the hypoxic fractions changed by as much as 50%. This latter change, however, could only be seen when sampling was performed with high spatial resolution. Median pO2 or similar quantities obtained from low resolution measurements are commonly used in clinical practice, however these parameters are much less sensitive to changes in the tumor microenvironment than the tumor hypoxic fraction obtained from high-resolution oxygen images. CONCLUSIONS This study supports the hypothesis that for adequate measurements of the tumor response to radiation therapy, oxygen imaging with high spatial resolution is required to accurately characterize the hypoxic fraction.
Collapse
Affiliation(s)
- Xu Cao
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire; Xidian University, Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xi'an, Shaanxi, China
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School or Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shudong Jiang
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Jason R Gunn Bs
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire
| | - Cuiping Yao PhD
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire; Xi'an Jiaotong University, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an, Shaanxi, China
| | - Jing Xin PhD
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire; Xi'an Jiaotong University, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an, Shaanxi, China
| | - Petr Bruza PhD
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire
| | - David J Gladstone ScD
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Lesley A Jarvis Md PhD
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Jie Tian PhD
- Xidian University, Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xi'an, Shaanxi, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | | | - Sergei A Vinogradov PhD
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Chemistry, School or Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian W Pogue PhD
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire.
| |
Collapse
|
26
|
Norvaiša K, Kielmann M, Senge MO. Porphyrins as Colorimetric and Photometric Biosensors in Modern Bioanalytical Systems. Chembiochem 2020; 21:1793-1807. [PMID: 32187831 PMCID: PMC7383976 DOI: 10.1002/cbic.202000067] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Advances in porphyrin chemistry have provided novel materials and exciting technologies for bioanalysis such as colorimetric sensor array (CSA), photo-electrochemical (PEC) biosensing, and nanocomposites as peroxidase mimetics for glucose detection. This review highlights selected recent advances in the construction of supramolecular assemblies based on the porphyrin macrocycle that provide recognition of various biologically important entities through the unique porphyrin properties associated with colorimetry, spectrophotometry, and photo-electrochemistry.
Collapse
Affiliation(s)
- Karolis Norvaiša
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Marc Kielmann
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
| | - Mathias O. Senge
- School of Chemistry, SFI Tetrapyrrole LaboratoryTrinity Biomedical Sciences Institute152–160 Pearse Street, Trinity College Dublin The University of DublinDublin2Ireland
- Institute for Advanced Study (TUM-IAS)Lichtenberg-Strasse 2a85748GarchingGermany
| |
Collapse
|
27
|
Gillani SS, Munawar MA, Khan KM, Chaudhary JA. Synthesis, characterization and applications of poly-aliphatic amine dendrimers and dendrons. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [PMCID: PMC7298932 DOI: 10.1007/s13738-020-01973-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the current era, the dendrimers have vast potential applications in the area of electronics, healthcare, pharmaceuticals, biotechnology, engineering products, photonics, drug delivery, catalysis, electronic devices, nanotechnologies and environmental issues. This review recaps the synthesis, characterization and applications of poly-aliphatic amine dendrimers.
Collapse
|
28
|
Liu Y, Gu Y, Yuan W, Zhou X, Qiu X, Kong M, Wang Q, Feng W, Li F. Quantitative Mapping of Liver Hypoxia in Living Mice Using Time-Resolved Wide-Field Phosphorescence Lifetime Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902929. [PMID: 32537394 PMCID: PMC7284196 DOI: 10.1002/advs.201902929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 05/28/2023]
Abstract
Hypoxia has been identified to contribute the pathogenesis of a wide range of liver diseases, and therefore, quantitative mapping of liver hypoxia is important for providing critical information in the diagnosis and treatment of hepatic diseases. However, the existing imaging methods are unsuitable to quantitatively assess liver hypoxia due to the need of liver-specific contrast agents and be easily affected by other imaging factors. Here, a time-resolved lifetime-based imaging method is established for quantitative mapping of the distribution of hypoxia in the livers of mice by combining a wide-field luminescence lifetime imaging system with an oxygen-sensitive nanoprobe. It is shown that the method is suitable for real-time quantification of the change of oxygen pressure in the process of hepatic ischemia-reperfusion of the mouse. Moreover, the developed lifetime imaging methodology is used to quantitatively map liver hypoxia regions in the mouse model of orthotopic liver tumor, where the average oxygen pressure in tumorous liver is far below the normal liver.
Collapse
Affiliation(s)
- Yawei Liu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Yuyang Gu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Wei Yuan
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Xiaobo Zhou
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Xiaochen Qiu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Mengya Kong
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Qingbing Wang
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of Medicine197 Rui Jin Er RoadShanghai200025China
| | - Wei Feng
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Fuyou Li
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| |
Collapse
|
29
|
Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 2020; 578:278-283. [PMID: 32025033 PMCID: PMC7021587 DOI: 10.1038/s41586-020-1971-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
The biology of hematopoietic stem cells (HSCs) has predominantly been studied under transplantation conditions1,2. Particularly challenging has been the study of dynamic HSC behaviors given that live animal HSC visualization in the native niche still represents an elusive goal in the field. Here, we describe a dual genetic strategy in mice that restricts reporter labeling to a subset of the most quiescent long-term HSCs (LT-HSCs) and that is compatible with current intravital imaging approaches in the calvarial bone marrow (BM)3–5. We find that this subset of LT-HSCs resides in close proximity to both sinusoidal blood vessels and the endosteal surface. In contrast, multipotent progenitor cells (MPPs) display a broader distance distribution from the endosteum and are more likely to be associated with transition zone vessels. LT-HSCs are not found in BM niches with the deepest hypoxia and instead are found in similar hypoxic environments as MPPs. In vivo time-lapse imaging reveals that LT-HSCs display limited motility at steady-state. Following activation, LT-HSCs display heterogenous responses, with some cells becoming highly motile and a fraction of HSCs expanding clonally within spatially restricted domains. These domains have defined characteristics, as HSC expansion is found almost exclusively in a subset of BM cavities exhibiting bone-remodeling activities. In contrast, cavities with low bone-resorbing activities do not harbor expanding HSCs. These findings point to a new degree of heterogeneity within the BM microenvironment, imposed by the stages of bone turnover. Overall, our approach enables direct visualization of HSC behaviors and dissection of heterogeneity in HSC niches.
Collapse
|
30
|
Cao X, Rao Allu S, Jiang S, Jia M, Gunn JR, Yao C, LaRochelle EP, Shell JR, Bruza P, Gladstone DJ, Jarvis LA, Tian J, Vinogradov SA, Pogue BW. Tissue pO 2 distributions in xenograft tumors dynamically imaged by Cherenkov-excited phosphorescence during fractionated radiation therapy. Nat Commun 2020; 11:573. [PMID: 31996677 PMCID: PMC6989492 DOI: 10.1038/s41467-020-14415-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/04/2020] [Indexed: 12/24/2022] Open
Abstract
Hypoxia in solid tumors is thought to be an important factor in resistance to therapy, but the extreme microscopic heterogeneity of the partial pressures of oxygen (pO2) between the capillaries makes it difficult to characterize the scope of this phenomenon without invasive sampling of oxygen distributions throughout the tissue. Here we develop a non-invasive method to track spatial oxygen distributions in tumors during fractionated radiotherapy, using oxygen-dependent quenching of phosphorescence, oxygen probe Oxyphor PtG4 and the radiotherapy-induced Cherenkov light to excite and image the phosphorescence lifetimes within the tissue. Mice bearing MDA-MB-231 breast cancer and FaDu head neck cancer xenografts show different pO2 responses during each of the 5 fractions (5 Gy per fraction), delivered from a clinical linear accelerator. This study demonstrates subsurface in vivo mapping of tumor pO2 distributions with submillimeter spatial resolution, thus providing a methodology to track response of tumors to fractionated radiotherapy.
Collapse
Affiliation(s)
- Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Shudong Jiang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Mengyu Jia
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Cuiping Yao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Jennifer R Shell
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Lesley A Jarvis
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. .,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
31
|
Plunkett S, El Khatib M, Şencan İ, Porter JE, Kumar ATN, Collins JE, SakadŽić S, Vinogradov SA. In vivo deep-tissue microscopy with UCNP/Janus-dendrimers as imaging probes: resolution at depth and feasibility of ratiometric sensing. NANOSCALE 2020; 12:2657-2672. [PMID: 31939953 PMCID: PMC7101076 DOI: 10.1039/c9nr07778b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one 'face' of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 μm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.
Collapse
Affiliation(s)
- Shane Plunkett
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - İkbal Şencan
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Jason E Porter
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Anand T N Kumar
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | | | - Sava SakadŽić
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Torres Filho IP, Barraza D, Hildreth K, Williams C, Dubick MA. Cremaster muscle perfusion, oxygenation, and heterogeneity revealed by a new automated acquisition system in a rodent model of prolonged hemorrhagic shock. J Appl Physiol (1985) 2019; 127:1548-1561. [PMID: 31670599 DOI: 10.1152/japplphysiol.00570.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Local blood flow/oxygen partial pressure (Po2) distributions and flow-Po2 relationships are physiologically relevant. They affect the pathophysiology and treatment of conditions like hemorrhagic shock (HS), but direct noninvasive measures of flow, Po2, and their heterogeneity during prolonged HS are infrequently presented. To fill this void, we report the first quantitative evaluation of flow-Po2 relationships and heterogeneities in normovolemia and during several hours of HS using noninvasive, unbiased, automated acquisition. Anesthetized rats were subjected to tracheostomy, arterial/venous catheterizations, cremaster muscle exteriorization, hemorrhage (40% total blood volume), and laparotomy. Control animals equally instrumented were not subjected to hemorrhage/laparotomy. Every 0.5 h for 4.5 h, noninvasive laser speckle contrast imaging and phosphorescence quenching were employed for nearly 7,000 flow/Po2 measurements in muscles from eight animals, using an automated system. Precise alignment of 16 muscle areas allowed overlapping between flow and oxygenation measurements to evaluate spatial heterogeneity, and repeated measurements were used to estimate temporal heterogeneity. Systemic physiological parameters and blood chemistry were simultaneously assessed by blood samplings replaced with crystalloids. Hemodilution was associated with local hypoxia, but increased flow prevented major oxygen delivery decline. Adding laparotomy and prolonged HS resulted in hypoxia, ischemia, decreased tissue oxygen delivery, and logarithmic flow/Po2 relationships in most regions. Flow and Po2 spatial heterogeneities were higher than their respective temporal heterogeneities, although this did not change significantly over the studied period. This quantitative framework establishes a basis for evaluating therapies aimed at restoring muscle homeostasis, positively impacting outcomes of civilian and military trauma/HS victims.NEW & NOTEWORTHY This is the first study on flow-Po2 relationships during normovolemia, hemodilution, and prolonged hemorrhagic shock using noninvasive methods in multiple skeletal muscle areas of monitored animals. Automated flow/Po2 measurements revealed temporal/spatial heterogeneities, hypoxia, ischemia, and decreased tissue oxygen delivery after trauma/severe hemorrhage. Hemodilution was associated with local hypoxia, but hyperemia prevented a major decline in oxygen delivery. This framework provides a quantitative basis for testing therapeutics that positively impacts muscle homeostasis and outcomes of trauma/hemorrhagic shock victims.
Collapse
Affiliation(s)
- Ivo P Torres Filho
- Damage Control Resuscitation, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - David Barraza
- Damage Control Resuscitation, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Kim Hildreth
- Damage Control Resuscitation, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Charnae Williams
- Damage Control Resuscitation, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Michael A Dubick
- Damage Control Resuscitation, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
33
|
Ding L, Zhang W, Zhang Y, Lin Z, Wang XD. Luminescent Silica Nanosensors for Lifetime Based Imaging of Intracellular Oxygen with Millisecond Time Resolution. Anal Chem 2019; 91:15625-15633. [DOI: 10.1021/acs.analchem.9b03726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Longjiang Ding
- Department of Chemistry, Fudan University, 200433 Shanghai, P. R. China
| | - Wei Zhang
- Department of Chemistry, Fudan University, 200433 Shanghai, P. R. China
| | - Yinglu Zhang
- Department of Chemistry, Fudan University, 200433 Shanghai, P. R. China
| | - Zhenzhen Lin
- Department of Chemistry, Fudan University, 200433 Shanghai, P. R. China
| | - Xu-dong Wang
- Department of Chemistry, Fudan University, 200433 Shanghai, P. R. China
| |
Collapse
|
34
|
Schilling K, El Khatib M, Plunkett S, Xue J, Xia Y, Vinogradov SA, Brown E, Zhang X. Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33548-33558. [PMID: 31436082 PMCID: PMC6916729 DOI: 10.1021/acsami.9b08341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Tissue oxygenation is one of the key determining factors in bone repair and bone tissue engineering. Adequate tissue oxygenation is essential for survival and differentiation of the bone-forming cells and ultimately the success of bone tissue regeneration. Two-photon phosphorescence lifetime microscopy (2PLM) has been successfully applied in the past to image oxygen distributions in tissue with high spatial resolution. However, delivery of phosphorescent probes into avascular compartments, such as those formed during early bone defect healing, poses significant problems. Here, we report a multifunctional oxygen-reporting fibrous matrix fabricated through encapsulation of a hydrophilic oxygen-sensitive, two-photon excitable phosphorescent probe, PtP-C343, in the core of fibers during coaxial electrospinning. The oxygen-sensitive fibers support bone marrow stromal cell growth and differentiation and at the same time enable real-time high-resolution probing of partial pressures of oxygen via 2PLM. The hydrophilicity of the probe facilitates its gradual release into the nearby microenvironment, allowing fibers to act as a vehicle for probe delivery into the healing tissue. In conjunction with a cranial defect window chamber model, which permits simultaneous imaging of the bone and neovasculature in vivo via two-photon laser scanning microscopy, the oxygen-reporting fibers provide a useful tool for minimally invasive, high-resolution, real-time 3D mapping of tissue oxygenation during bone defect healing, facilitating studies aimed at understanding the healing process and advancing design of tissue-engineered constructs for enhanced bone repair and regeneration.
Collapse
Affiliation(s)
- Kevin Schilling
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 146421, USA
| | - Mirna El Khatib
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shane Plunkett
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Sergei A. Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| | - Edward Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| | - Xinping Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14620, USA
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 146421, USA
- Corresponding authors contact information: Xinping Zhang, The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA, ; Edward Brown, Department of Biomedical Engineering, University of Rochester, Goergen Hall Box 270168Rochester, NY 14642, USA, ; Sergei A. Vinogradov, Department of Biochemistry and Biophysics, Perelman School of Medicine, Department of Chemistry, School of Arts and Sciences University of Pennsylvania Philadelphia, PA 19104,
| |
Collapse
|
35
|
Wilson RL, Connell JP, Grande-Allen KJ. Monitoring Oxygen Levels within Large, Tissue-Engineered Constructs Using Porphyin-Hydrogel Microparticles. ACS Biomater Sci Eng 2019; 5:4522-4530. [PMID: 33438417 DOI: 10.1021/acsbiomaterials.9b00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A major barrier to the creation of engineered organs is the limited diffusion of oxygen through biological tissues. Advances in biofabrication bring us increasingly closer to complex vascular networks capable of supplying oxygen to large cellularized scaffolds. However, technologies for monitoring oxygen levels in engineered tissues do not accommodate imaging depths of more than a few dozen micrometers. Here, we report the creation of fluorescent porphyrin-hydrogel microparticles that can be used at depths of 2 mm into artificial tissues. By combining an oxygen-responsive porphyrin dye with a reference dye, the microparticles generate a ratiometric signal that is photostable, unaffected by attenuation from biological material, and responsive to physiological change in oxygen concentration. These microparticles can measure long-distance oxygen gradients within 3D, cellularized constructs and accurately report cellular oxygen consumption rates. Furthermore, they are compatible with a number of hydrogel polymerization chemistries and cell types, including primary human cells. We believe this technology will significantly advance efforts to visualize oxygen gradients in cellularized constructs and inform efforts to tissue engineer solid organs.
Collapse
Affiliation(s)
- Reid L Wilson
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Jennifer P Connell
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - K Jane Grande-Allen
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
36
|
Li B, Esipova TV, Sencan I, Kılıç K, Fu B, Desjardins M, Moeini M, Kura S, Yaseen MA, Lesage F, Østergaard L, Devor A, Boas DA, Vinogradov SA, Sakadžić S. More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction. eLife 2019; 8:42299. [PMID: 31305237 PMCID: PMC6636997 DOI: 10.7554/elife.42299] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.
Collapse
Affiliation(s)
- Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Ikbal Sencan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Kıvılcım Kılıç
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Michele Desjardins
- Department of Radiology, University of California, San Diego, La Jolla, United States
| | - Mohammad Moeini
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.,Research Centre, Montreal Heart Institute, Montréal, Canada
| | - Sreekanth Kura
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Frederic Lesage
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.,Research Centre, Montreal Heart Institute, Montréal, Canada
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States.,Department of Radiology, University of California, San Diego, La Jolla, United States
| | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Biomedical Engineering, Boston University, Boston, United States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| |
Collapse
|
37
|
Zhou C, Zhao WX, You FT, Geng ZX, Peng HS. Highly Stable and Luminescent Oxygen Nanosensor Based on Ruthenium-Containing Metallopolymer for Real-Time Imaging of Intracellular Oxygenation. ACS Sens 2019; 4:984-991. [PMID: 30859818 DOI: 10.1021/acssensors.9b00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal complex-based luminescent oxygen nanosensors have been intensively studied for biomedical applications. In terms of monitoring dynamics of intracellular oxygen, however, high-quality nanosensors are still badly needed, because of stringent requirements on stability, biocompatibility and luminescence intensity, aside from oxygen sensitivity. In this paper, we reported a type of highly luminescent and stable oxygen nanosensors prepared from metallopolymer. First, a novel ruthenium(II)-containing metallopolymer was synthesized by chelating the oxygen probe [Ru(bpy)3]2+ with a bipyridine-branched hydrophobic copolymer, which was then doped into polymeric nanoparticles (NPs) by a reprecipitation method, followed by further conjugation to selectively target mitochondria (Mito-NPs). The resultant Mtio-NPs possessed a small hydrodynamic size of ∼85 nm, good biocompatibility and high stability resulting from PEGylation and stable nature of Ru-complex. Because the complexed [Ru(bpy)3]2+ homogeneously resided on particle surface, Mito-NPs exhibited strong luminescence at 608 nm that was free of aggregation-caused-quenching, the utmost oxygen sensitivity of free [Ru(bpy)3]2+ probe ( Q = 75%), and linear Stern-Volmer oxygen luminescence quenching plots. Taking advantage of the mitochondria-specific nanosensors, intracellular oxygenation and deoxygenation processes were real-time monitored for 10 min by confocal luminescence imaging, visualized by the gradual weakening (by more than 90%) and enhancing (by 50%) of the red emission, respectively.
Collapse
Affiliation(s)
- Chao Zhou
- College of Science, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Wu-xing Zhao
- College of Science, Minzu University of China, Beijing, 100081, China
| | - Fang-tian You
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhao-xin Geng
- College of Science, Minzu University of China, Beijing, 100081, China
| | - Hong-shang Peng
- College of Science, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
38
|
Del Secco B, Ravotto L, Esipova TV, Vinogradov SA, Genovese D, Zaccheroni N, Rampazzo E, Prodi L. Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochem Photobiol Sci 2019; 18:2142-2149. [PMID: 31011734 DOI: 10.1039/c9pp00047j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silica nanoparticles (NPs) are versatile nanomaterials, which are safe with respect to biomedical applications, and therefore are highly investigated. The advantages of NPs include their ease of preparation, inexpensive starting materials and the possibility of functionalization or loading with various doping agents. However, the solubility of the doping agent(s) imposes constraints on the choice of the reaction system and hence limits the range of molecules that can be included in the interior of NPs. To overcome this problem, herein, we improved the current state of the art synthetic strategy based on Pluronic F127 by enabling the synthesis in the presence of large amounts of organic solvents. The new method enables the preparation of nanoparticles doped with large amounts of water-insoluble doping agents. To illustrate the applicability of the technology, we successfully incorporated a range of phosphorescent metalloporphyrins into the interior of NPs. The resulting phosphorescent nanoparticles may exhibit potential for biological oxygen sensing.
Collapse
Affiliation(s)
- Benedetta Del Secco
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luca Ravotto
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Tatiana V Esipova
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sergei A Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Enrico Rampazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Luca Prodi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
39
|
Esipova TV, Barrett MJP, Erlebach E, Masunov AE, Weber B, Vinogradov SA. Oxyphor 2P: A High-Performance Probe for Deep-Tissue Longitudinal Oxygen Imaging. Cell Metab 2019; 29:736-744.e7. [PMID: 30686745 PMCID: PMC6402963 DOI: 10.1016/j.cmet.2018.12.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/22/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023]
Abstract
Quantitative imaging of oxygen distributions in tissue can provide invaluable information about metabolism in normal and diseased states. Two-photon phosphorescence lifetime microscopy (2PLM) has been developed to perform measurements of oxygen in vivo with micron-scale resolution in 3D; however, the method's potential has not yet been fully realized due to the limitations of current phosphorescent probe technology. Here, we report a new sensor, Oxyphor 2P, that enables oxygen microscopy twice as deep (up to 600 μm below the tissue surface) and with ∼60 times higher speed than previously possible. Oxyphor 2P allows longitudinal oxygen measurements without having to inject the probe directly into the imaged region. As proof of principle, we monitored oxygen dynamics for days following micro-stroke induced by occlusion of a single capillary in the mouse brain. Oxyphor 2P opens up new possibilities for studies of tissue metabolic states using 2PLM in a wide range of biomedical research areas.
Collapse
Affiliation(s)
- Tatiana V Esipova
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich 8057, Switzerland
| | - Eva Erlebach
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich 8057, Switzerland; Neuroscience Center, University of Zurich, Zurich 8057, Switzerland
| | - Artëm E Masunov
- NanoScience Technology Center, Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA; School of Modeling, Simulation and Training, University of Central Florida, Orlando, FL 32826, USA; National Research Nuclear University MEPhI, Kashirskoye Shosse 31, Moscow 115409, Russia; South Ural State University, Lenin Pr. 76, Chelyabinsk 454080, Russia
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich 8057, Switzerland; Neuroscience Center, University of Zurich, Zurich 8057, Switzerland.
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Şencan İ, Esipova TV, Yaseen MA, Fu B, Boas DA, Vinogradov SA, Shahidi M, Sakadžić S. Two-photon phosphorescence lifetime microscopy of retinal capillary plexus oxygenation in mice. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 30516039 PMCID: PMC6278707 DOI: 10.1117/1.jbo.23.12.126501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/07/2018] [Indexed: 05/23/2023]
Abstract
Impaired oxygen delivery and/or consumption in the retinal tissue underlies the pathophysiology of many retinal diseases. However, the essential tools for measuring oxygen concentration in retinal capillaries and studying oxygen transport to retinal tissue are still lacking. We show that two-photon phosphorescence lifetime microscopy can be used to map absolute partial pressures of oxygen (pO2) in the retinal capillary plexus. Measurements were performed at various retinal depths in anesthetized mice under systemic normoxic and hyperoxic conditions. We used a newly developed two-photon phosphorescent oxygen probe, based on a two-photon absorbing platinum tetraphthalimidoporphyrin, and commercially available optics without correction for optical aberrations of the eye. The transverse and axial distances within the tissue volume were calibrated using a model of the eye's optical system. We believe this is the first demonstration of in vivo depth-resolved imaging of pO2 in retinal capillaries. Application of this method has the potential to advance our understanding of oxygen delivery on the microvascular scale and help elucidate mechanisms underlying various retinal diseases.
Collapse
Affiliation(s)
- İkbal Şencan
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Tatiana V. Esipova
- University of Pennsylvania, Departments of Biochemistry and Biophysics and of Chemistry, Philadelphia, Pennsylvania, United States
| | - Mohammad A. Yaseen
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Buyin Fu
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - David A. Boas
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Departments of Biochemistry and Biophysics and of Chemistry, Philadelphia, Pennsylvania, United States
| | - Mahnaz Shahidi
- University of Southern California, Departments of Ophthalmology and Biomedical Engineering, Los Angeles, California, United States
| | - Sava Sakadžić
- Massachusetts General Hospital, Harvard Medical School, Athinuola A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
41
|
Jia MJ, Bruza P, Jarvis LA, Gladstone DJ, Pogue BW. Multi-beam scan analysis with a clinical LINAC for high resolution Cherenkov-excited molecular luminescence imaging in tissue. BIOMEDICAL OPTICS EXPRESS 2018; 9:4217-4234. [PMID: 30615721 PMCID: PMC6157777 DOI: 10.1364/boe.9.004217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/16/2018] [Accepted: 08/06/2018] [Indexed: 05/22/2023]
Abstract
Cherenkov-excited luminescence scanned imaging (CELSI) is achieved with external beam radiotherapy to map out molecular luminescence intensity or lifetime in tissue. Just as in fluorescence microscopy, the choice of excitation geometry can affect the imaging time, spatial resolution and contrast recovered. In this study, the use of spatially patterned illumination was systematically studied comparing scan shapes, starting with line scan and block patterns and increasing from single beams to multiple parallel beams and then to clinically used treatment plans for radiation therapy. The image recovery was improved by a spatial-temporal modulation-demodulation method, which used the ability to capture simultaneous images of the excitation Cherenkov beam shape to deconvolve the CELSI images. Experimental studies used the multi-leaf collimator on a clinical linear accelerator (LINAC) to create the scanning patterns, and image resolution and contrast recovery were tested at different depths of tissue phantom material. As hypothesized, the smallest illumination squares achieved optimal resolution, but at the cost of lower signal and slower imaging time. Having larger excitation blocks provided superior signal but at the cost of increased radiation dose and lower resolution. Increasing the scan beams to multiple block patterns improved the performance in terms of image fidelity, lower radiation dose and faster acquisition. The spatial resolution was mostly dependent upon pixel area with an optimized side length near 38mm and a beam scan pitch of P = 0.33, and the achievable imaging depth was increased from 14mm to 18mm with sufficient resolving power for 1mm sized test objects. As a proof-of-concept, in-vivo tumor mouse imaging was performed to show 3D rendering and quantification of tissue pO2 with values of 5.6mmHg in a tumor and 77mmHg in normal tissue.
Collapse
Affiliation(s)
- Mengyu Jeremy Jia
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Lesley A. Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Norris Cotton Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Norris Cotton Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA
| |
Collapse
|
42
|
Sullender CT, Mark AE, Clark TA, Esipova TV, Vinogradov SA, Jones TA, Dunn AK. Imaging of cortical oxygen tension and blood flow following targeted photothrombotic stroke. NEUROPHOTONICS 2018; 5:035003. [PMID: 30137881 PMCID: PMC6062776 DOI: 10.1117/1.nph.5.3.035003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/02/2018] [Indexed: 05/24/2023]
Abstract
We present a dual-modality imaging system combining laser speckle contrast imaging and oxygen-dependent quenching of phosphorescence to simultaneously map cortical blood flow and oxygen tension ( pO 2 ) in mice. Phosphorescence signal localization is achieved through the use of a digital micromirror device (DMD) that allows for selective excitation of arbitrary regions of interest. By targeting both excitation maxima of the oxygen-sensitive Oxyphor PtG4, we are able to examine the effects of excitation wavelength on the measured phosphorescence lifetime. We demonstrate the ability to measure the differences in pO 2 between arteries and veins and large changes during a hyperoxic challenge. We dynamically monitor blood flow and pO 2 during DMD-targeted photothrombotic occlusion of an arteriole and highlight the presence of an ischemia-induced depolarization. Chronic tracking of the ischemic lesion over eight days revealed a rapid recovery, with the targeted vessel fully reperfusing and pO 2 returning to baseline values within five days. This system has broad applications for studying the acute and chronic pathophysiology of ischemic stroke and other vascular diseases of the brain.
Collapse
Affiliation(s)
- Colin T. Sullender
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Andrew E. Mark
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Taylor A. Clark
- University of Texas at Austin, Department of Psychology, Austin, Texas, United States
- University of Texas at Austin, Institute for Neuroscience, Austin, Texas, United States
| | - Tatiana V. Esipova
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
| | - Theresa A. Jones
- University of Texas at Austin, Department of Psychology, Austin, Texas, United States
- University of Texas at Austin, Institute for Neuroscience, Austin, Texas, United States
| | - Andrew K. Dunn
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
- University of Texas at Austin, Institute for Neuroscience, Austin, Texas, United States
| |
Collapse
|
43
|
Filho AFDM, Gewehr PM, Maia JM, Jakubiak DR. Polystyrene Oxygen Optodes Doped with Ir(III) and Pd(II) meso-Tetrakis(pentafluorophenyl)porphyrin Using an LED-Based High-Sensitivity Phosphorimeter. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1953. [PMID: 29914139 PMCID: PMC6021951 DOI: 10.3390/s18061953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
This paper presents a gaseous oxygen detection system based on time-resolved phosphorimetry (time-domain), which is used to investigate O2 optical transducers. The primary sensing elements were formed by incorporating iridium(III) and palladium(II) meso-tetrakis(pentafluorophenyl)porphyrin complexes (IrTFPP-CO-Cl and PdTFPP) in polystyrene (PS) solid matrices. Probe excitation was obtained using a violet light-emitting diode (LED) (low power), and the resulting phosphorescence was detected by a high-sensitivity compact photomultiplier tube. The detection system performance and the preparation of the transducers are presented along with their optical properties, phosphorescence lifetimes, calibration curves and photostability. The developed lifetime measuring system showed a good signal-to-noise ratio, and reliable results were obtained from the optodes, even when exposed to moderate levels of O2. The new IrTFPP-CO-Cl membranes exhibited room temperature phosphorescence and moderate sensitivity: <τ0>/<τ21%> ratio of ≈6. A typically high degree of dynamic phosphorescence quenching was observed for the traditional indicator PdTFPP: <τ0>/<τ21%> ratio of ≈36. Pulsed-source time-resolved phosphorimetry combined with a high-sensitivity photodetector can offer potential advantages such as: (i) major dynamic range, (ii) extended temporal resolution (Δτ/Δ[O2]) and (iii) high operational stability. IrTFPP-CO-Cl immobilized in polystyrene is a promising alternative for O2 detection, offering adequate photostability and potentially mid-range sensitivity over Pt(II) and Pd(II) metalloporphyrins.
Collapse
Affiliation(s)
| | - Pedro M Gewehr
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology-Paraná (UTFPR), Curitiba 80230-901, Brazil.
| | - Joaquim M Maia
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology-Paraná (UTFPR), Curitiba 80230-901, Brazil.
| | - Douglas R Jakubiak
- Department of Electronics (DAELN), Federal University of Technology-Paraná (UTFPR), Curitiba 80230-901, Brazil.
| |
Collapse
|
44
|
Wang XH, Peng HS, Cheng K, Liu XM, Liu YA, Yang W. Two-photon oxygen nanosensors based on a conjugated fluorescent polymer doped with platinum porphyrins. Methods Appl Fluoresc 2018; 6:035008. [DOI: 10.1088/2050-6120/aabe03] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Simultaneous Phosphorescence and Fluorescence Lifetime Imaging by Multi-Dimensional TCSPC and Multi-Pulse Excitation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1035:19-30. [PMID: 29080128 DOI: 10.1007/978-3-319-67358-5_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
TCSPC FLIM/PLIM is based on a multi-dimensional time-correlated single-photon counting process. The sample is scanned by a high-frequency-pulsed laser beam which is additionally modulated on/off synchronously with the pixels of the scan. FLIM is obtained by building up the distribution of the photons over the scanning coordinates and the times of the photons in the excitation pulse sequence, PLIM is obtained by building up the photon distribution over the scanning coordinates and the photon times in the modulation period. FLIM and PLIM data are thus obtained simultaneously within the same imaging process. Since the technique uses not only one but many excitation pulses for every phosphorescence signal period the sensitivity is much higher than for techniques that excite with a single pulse only. TCSPC FLIM/PLIM works both with one-photon and two-photon excitation, does not require a reduction of the laser pulse repetition rate by a pulse picker, and eliminates the need of high pulse energy for phosphorescence excitation.
Collapse
|
46
|
Carey JN, Mettert EL, Roggiani M, Myers KS, Kiley PJ, Goulian M. Regulated Stochasticity in a Bacterial Signaling Network Permits Tolerance to a Rapid Environmental Change. Cell 2018; 173:196-207.e14. [PMID: 29502970 DOI: 10.1016/j.cell.2018.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/01/2017] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.
Collapse
Affiliation(s)
- Jeffrey N Carey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin S Myers
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
47
|
Ahmed SR, Jia JM, Bruza P, Vinogradov S, Jiang S, Gladstone DJ, Jarvis LA, Pogue BW. Radiotherapy-induced Cherenkov luminescence imaging in a human body phantom. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-4. [PMID: 29560623 PMCID: PMC7560997 DOI: 10.1117/1.jbo.23.3.030504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/26/2018] [Indexed: 05/25/2023]
Abstract
Radiation therapy produces Cherenkov optical emission in tissue, and this light can be utilized to activate molecular probes. The feasibility of sensing luminescence from a tissue molecular oxygen sensor from within a human body phantom was examined using the geometry of the axillary lymph node region. Detection of regions down to 30-mm deep was feasible with submillimeter spatial resolution with the total quantity of the phosphorescent sensor PtG4 near 1 nanomole. Radiation sheet scanning in an epi-illumination geometry provided optimal coverage, and maximum intensity projection images provided illustration of the concept. This work provides the preliminary information needed to attempt this type of imaging in vivo.
Collapse
Affiliation(s)
- Syed Rakin Ahmed
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Jeremy Mengyu Jia
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Petr Bruza
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Sergei Vinogradov
- University of Pennsylvania, Departments of Biophysics and Biochemistry and of Chemistry, Philadelphia, Pennsylvania, United States
| | - Shudong Jiang
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - David J. Gladstone
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Geisel School of Medicine at Dartmouth, Department of Medicine, Hanover, New Hampshire, United States
- Dartmouth–Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire, United States
| | - Lesley A. Jarvis
- Geisel School of Medicine at Dartmouth, Department of Medicine, Hanover, New Hampshire, United States
- Dartmouth–Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire, United States
| | - Brian W. Pogue
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Dartmouth–Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, New Hampshire, United States
| |
Collapse
|
48
|
Solomatina AI, Su SH, Lukina MM, Dudenkova VV, Shcheslavskiy VI, Wu CH, Chelushkin PS, Chou PT, Koshevoy IO, Tunik SP. Water-soluble cyclometalated platinum(ii) and iridium(iii) complexes: synthesis, tuning of the photophysical properties, and in vitro and in vivo phosphorescence lifetime imaging. RSC Adv 2018; 8:17224-17236. [PMID: 35539280 PMCID: PMC9080394 DOI: 10.1039/c8ra02742k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/29/2018] [Indexed: 12/12/2022] Open
Abstract
This paper presents synthesis and photophysical investigation of cyclometalated water-soluble Pt(ii) and Ir(iii) complexes containing auxiliary sulfonated diphosphine (bis(diphenylphosphino)benzene (dppb), P^P*) ligand. The complexes demonstrate considerable variations in excitation (extending up to 450 nm) and emission bands (with maxima ranging from ca. 450 to ca. 650 nm), as well as in the sensitivity of excited state lifetimes to molecular oxygen (from almost negligible to more than 4-fold increase in degassed solution). Moreover, all the complexes possess high two-photon absorption cross sections (400–500 GM for Pt complexes, and 600–700 GM for Ir complexes). Despite their negative net charge, all the complexes demonstrate good uptake by HeLa cells and low cytotoxicity within the concentration and time ranges suitable for two-photon phosphorescence lifetime (PLIM) microscopy. The most promising complex, [(ppy)2Ir(sulfo-dppb)] (Ir1*), upon incubation in HeLa cells demonstrates two-fold lifetime variations under normal and nitrogen atmosphere, correspondingly. Moreover, its in vivo evaluation in athymic nude mice bearing HeLa tumors did not reveal acute toxicity upon both intravenous and topical injections. Finally, Ir1* demonstrated statistically significant difference in lifetimes between normal tissue (muscle) and tumor in macroscopic in vivo PLIM imaging. Novel water-soluble iridium complexes with sulfonated diphosphine allow in vitro and in vivo lifetime hypoxia imaging.![]()
Collapse
Affiliation(s)
| | - Shih-Hao Su
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
| | - Maria M. Lukina
- Institute of Biomedical Technologies
- Privolzhskiy Research Medical University
- Nizhny Novgorod 603005
- Russia
| | - Varvara V. Dudenkova
- Institute of Biomedical Technologies
- Privolzhskiy Research Medical University
- Nizhny Novgorod 603005
- Russia
| | | | - Cheng-Ham Wu
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
| | | | - Pi-Tai Chou
- Department of Chemistry
- National Taiwan University
- Taipei
- Republic of China
| | - Igor O. Koshevoy
- Department of Chemistry
- University of Eastern Finland
- 80101 Joensuu
- Finland
| | - Sergey P. Tunik
- St. Petersburg State University
- Institute of Chemistry
- St. Petersburg
- Russia
| |
Collapse
|
49
|
Zheng Z, Ayhan MM, Liao YY, Calin N, Bucher C, Andraud C, Bretonnière Y. Design of two-photon absorbing fluorophores for FRET antenna-core oxygen probes. NEW J CHEM 2018. [DOI: 10.1039/c7nj05073a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Four two-photon absorbing fluorophores A1–A4 are reported and their spectroscopic properties are analyzed for use, in combination with palladium–porphyrinato complexes C1 and C2, as two-photon absorbing antennas and energy donors for FRET-based antenna-core oxygen sensitive phosphorescent probes.
Collapse
Affiliation(s)
- Zheng Zheng
- Univ Lyon
- ENS de Lyon
- CNRS UMR 5182
- UCB Lyon I
- Laboratoire de Chimie
| | | | - Yuan-Yuan Liao
- Univ Lyon
- ENS de Lyon
- CNRS UMR 5182
- UCB Lyon I
- Laboratoire de Chimie
| | - Nathalie Calin
- Univ Lyon
- ENS de Lyon
- CNRS UMR 5182
- UCB Lyon I
- Laboratoire de Chimie
| | | | - Chantal Andraud
- Univ Lyon
- ENS de Lyon
- CNRS UMR 5182
- UCB Lyon I
- Laboratoire de Chimie
| | - Yann Bretonnière
- Univ Lyon
- ENS de Lyon
- CNRS UMR 5182
- UCB Lyon I
- Laboratoire de Chimie
| |
Collapse
|
50
|
Akons K, Dann EJ, Yelin D. Measuring blood oxygen saturation along a capillary vessel in human. BIOMEDICAL OPTICS EXPRESS 2017; 8:5342-5348. [PMID: 29188124 PMCID: PMC5695974 DOI: 10.1364/boe.8.005342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 05/22/2023]
Abstract
Measuring oxygen saturation in capillary vessels could provide valuable information on oxygen transport and tissue viability. Most spectroscopic measurement techniques, however, lack the spatial resolution to account for the small vessel dimensions within a scattering tissue and the steep gradients of oxygen saturation levels. Here, we developed a noninvasive technique for image-guided confocal measurement of the optical absorption spectrum from a small region that is comparable in size to the cross section of a single capillary vessel. A wide range of oxygen saturation levels were measured in a single capillary in a human volunteer, with blood deoxygenation rates of 7.1% per hundred microns. The technique could help in studying oxygen exchange dynamics in tissues and could play a key role in future clinical diagnosis and therapeutic applications that require localized functional tissue inspection.
Collapse
|