1
|
Yu Z, Abe I. Recently discovered heteromeric enzymes in natural product biosynthesis. J Biol Chem 2025; 301:108516. [PMID: 40246025 DOI: 10.1016/j.jbc.2025.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
The abundant diversity and elegant complexity in the chemical structures of natural products have attracted vigorous investigations of the chemistry and enzymology underlying their biosynthetic processes over the past few decades. Among the biochemical events, the formation of complexes of heteromeric enzymes has been observed in the biosynthesis of several natural products and metabolic pathways. In this review, we aim to consolidate the recently discovered cases of heteromeric enzymes in natural product biosynthesis and metabolism, in order to clarify the genetic and structural bases leading to the formation of these heteromeric complexes and provide insights for the rational redesign of proteins in biosynthetic machineries.
Collapse
Affiliation(s)
- Zhongtian Yu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Abad AND, Seshadri K, Ohashi M, Delgadillo DA, de Moraes LS, Nagasawa KK, Liu M, Johnson S, Nelson HM, Tang Y. Discovery and Characterization of Pyridoxal 5'-Phosphate-Dependent Cycloleucine Synthases. J Am Chem Soc 2024; 146:14672-14684. [PMID: 38743881 PMCID: PMC11390345 DOI: 10.1021/jacs.4c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are the most versatile biocatalysts for synthesizing nonproteinogenic amino acids. α,α-Disubstituted quaternary amino acids, such as 1-aminocyclopentane-1-carboxylic acid (cycloleucine), are useful building blocks for pharmaceuticals. In this study, starting with the biosynthesis of fusarilin A, we discovered a family of PLP-dependent enzymes that can facilitate tandem carbon-carbon forming steps to catalyze an overall [3 + 2]-annulation. In the first step, the cycloleucine synthases use SAM as the latent electrophile and an in situ-generated enamine as the nucleophile for γ-substitution. Whereas previously characterized γ-replacement enzymes protonate the resulting α-carbon and release the acyclic amino acid, cycloleucine synthases can catalyze an additional, intramolecular aldol or Mannich reaction with the nucleophilic α-carbon to form the substituted cyclopentane. Overall, the net [3 + 2]-annulation reaction can lead to 2-hydroxy or 2-aminocycloleucine products. These studies further expand the biocatalytic scope of PLP-dependent enzymes.
Collapse
Affiliation(s)
- Abner N. D. Abad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Kaushik Seshadri
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - David A. Delgadillo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lygia S. de Moraes
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kyle K. Nagasawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Mengting Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Samuel Johnson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Hosea M. Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Xu SY, Zhou L, Xu Y, Hong HY, Dai C, Wang YJ, Zheng YG. Recent advances in structure-based enzyme engineering for functional reconstruction. Biotechnol Bioeng 2023; 120:3427-3445. [PMID: 37638646 DOI: 10.1002/bit.28540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Structural information can help engineer enzymes. Usually, specific amino acids in particular regions are targeted for functional reconstruction to enhance the catalytic performance, including activity, stereoselectivity, and thermostability. Appropriate selection of target sites is the key to structure-based design, which requires elucidation of the structure-function relationships. Here, we summarize the mutations of residues in different specific regions, including active center, access tunnels, and flexible loops, on fine-tuning the catalytic performance of enzymes, and discuss the effects of altering the local structural environment on the functions. In addition, we keep up with the recent progress of structure-based approaches for enzyme engineering, aiming to provide some guidance on how to take advantage of the structural information.
Collapse
Affiliation(s)
- Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Han-Yue Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Dai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Khusnutdinova AN, Batyrova KA, Brown G, Fedorchuk T, Chai YS, Skarina T, Flick R, Petit AP, Savchenko A, Stogios P, Yakunin AF. Structural insights into hydrolytic defluorination of difluoroacetate by microbial fluoroacetate dehalogenases. FEBS J 2023; 290:4966-4983. [PMID: 37437000 DOI: 10.1111/febs.16903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Fluorine forms the strongest single bond to carbon with the highest bond dissociation energy among natural products. However, fluoroacetate dehalogenases (FADs) have been shown to hydrolyze this bond in fluoroacetate under mild reaction conditions. Furthermore, two recent studies demonstrated that the FAD RPA1163 from Rhodopseudomonas palustris can also accept bulkier substrates. In this study, we explored the substrate promiscuity of microbial FADs and their ability to defluorinate polyfluorinated organic acids. Enzymatic screening of eight purified dehalogenases with reported fluoroacetate defluorination activity revealed significant hydrolytic activity against difluoroacetate in three proteins. Product analysis using liquid chromatography-mass spectrometry identified glyoxylic acid as the final product of enzymatic DFA defluorination. The crystal structures of DAR3835 from Dechloromonas aromatica and NOS0089 from Nostoc sp. were determined in the apo-state along with the DAR3835 H274N glycolyl intermediate. Structure-based site-directed mutagenesis of DAR3835 demonstrated a key role for the catalytic triad and other active site residues in the defluorination of both fluoroacetate and difluoroacetate. Computational analysis of the dimer structures of DAR3835, NOS0089, and RPA1163 indicated the presence of one substrate access tunnel in each protomer. Moreover, protein-ligand docking simulations suggested similar catalytic mechanisms for the defluorination of both fluoroacetate and difluoroacetate, with difluoroacetate being defluorinated via two consecutive defluorination reactions producing glyoxylate as the final product. Thus, our findings provide molecular insights into substrate promiscuity and catalytic mechanism of FADs, which are promising biocatalysts for applications in synthetic chemistry and bioremediation of fluorochemicals.
Collapse
Affiliation(s)
- Anna N Khusnutdinova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
- Biological Chemistry and Drug Discovery Division, School of Life Sciences, University of Dundee, UK
| | - Khorcheska A Batyrova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Tatiana Fedorchuk
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Russia
| | - Yao Sheng Chai
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alain-Pierre Petit
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Biological Chemistry and Drug Discovery Division, School of Life Sciences, University of Dundee, UK
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Health Research Innovation Centre, University of Calgary, AB, Canada
| | - Peter Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON, Canada
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, UK
| |
Collapse
|
5
|
Vitali T, Vanoni MA, Bellosta P. Quantitation of Glutamine Synthetase 1 Activity in Drosophila melanogaster. Methods Mol Biol 2023; 2675:237-260. [PMID: 37258768 DOI: 10.1007/978-1-0716-3247-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protocols to assay the activity of glutamine synthetase (GS) are presented as they have been used in our laboratory to correlate the expression levels of the gene encoding Drosophila GS1 gene, the GS1 protein levels, and its activity in extracts of larvae and heads from Drosophila melanogaster. The assays are based on the glutamine synthetase-catalyzed formation of γ-glutamylhydroxylamine in the presence of ATP, L-glutamate, and hydroxylamine, in which hydroxylamine substitutes for ammonia in the reaction. Formation of γ-glutamylhydroxylamine is monitored spectrophotometrically in discontinuous assays upon complex formation with FeCl3. Fixed-time assays and those based on monitoring the time-course of product formation at different reaction times are described. The protocols can be adapted to quantify glutamine synthetase activity on biological materials other than Drosophila.
Collapse
Affiliation(s)
- Teresa Vitali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
- Department of Medicine, New York University-Langone Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Armstrong FA, Cheng B, Herold RA, Megarity CF, Siritanaratkul B. From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. Chem Rev 2022; 123:5421-5458. [PMID: 36573907 PMCID: PMC10176485 DOI: 10.1021/acs.chemrev.2c00397] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein film electrochemistry (PFE) has given unrivalled insight into the properties of redox proteins and many electron-transferring enzymes, allowing investigations of otherwise ill-defined or intractable topics such as unstable Fe-S centers and the catalytic bias of enzymes. Many enzymes have been established to be reversible electrocatalysts when attached to an electrode, and further investigations have revealed how unusual dependences of catalytic rates on electrode potential have stark similarities with electronics. A special case, the reversible electrochemistry of a photosynthetic enzyme, ferredoxin-NADP+ reductase (FNR), loaded at very high concentrations in the 3D nanopores of a conducting metal oxide layer, is leading to a new technology that brings PFE to myriad enzymes of other classes, the activities of which become controlled by the primary electron exchange. This extension is possible because FNR-based recycling of NADP(H) can be coupled to a dehydrogenase, and thence to other enzymes linked in tandem by the tight channelling of cofactors and intermediates within the nanopores of the material. The earlier interpretations of catalytic wave-shapes and various analogies with electronics are thus extended to initiate a field perhaps aptly named "cascade-tronics", in which the flow of reactions along an enzyme cascade is monitored and controlled through an electrochemical analyzer. Unlike in photosynthesis where FNR transduces electron transfer and hydride transfer through the unidirectional recycling of NADPH, the "electrochemical leaf" (e-Leaf) can be used to drive reactions in both oxidizing and reducing directions. The e-Leaf offers a natural way to study how enzymes are affected by nanoconfinement and crowding, mimicking the physical conditions under which enzyme cascades operate in living cells. The reactions of the trapped enzymes, often at very high local concentration, are thus studied electrochemically, exploiting the potential domain to control rates and direction and the current-rate analogy to derive kinetic data. Localized NADP(H) recycling is very efficient, resulting in very high cofactor turnover numbers and new opportunities for controlling and exploiting biocatalysis.
Collapse
Affiliation(s)
- Fraser A. Armstrong
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Beichen Cheng
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Ryan A. Herold
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Clare F. Megarity
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
7
|
Understanding Life at High Temperatures: Relationships of Molecular Channels in Enzymes of Methanogenic Archaea and Their Growth Temperatures. Int J Mol Sci 2022; 23:ijms232315149. [PMID: 36499474 PMCID: PMC9741079 DOI: 10.3390/ijms232315149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Analyses of protein structures have shown the existence of molecular channels in enzymes from Prokaryotes. Those molecular channels suggest a critical role of spatial voids in proteins, above all, in those enzymes functioning under high temperature. It is expected that these spaces within the protein structure are required to access the active site and to maximize availability and thermal stability of their substrates and cofactors. Interestingly, numerous substrates and cofactors have been reported to be highly temperature-sensitive biomolecules. Methanogens represent a singular phylogenetic group of Archaea that performs anaerobic respiration producing methane during growth. Methanogens inhabit a variety of environments including the full range of temperatures for the known living forms. Herein, we carry out a dimensional analysis of molecular tunnels in key enzymes of the methanogenic pathway from methanogenic Archaea growing optimally over a broad temperature range. We aim to determine whether the dimensions of the molecular tunnels are critical for those enzymes from thermophiles. Results showed that at increasing growth temperature the dimensions of molecular tunnels in the enzymes methyl-coenzyme M reductase and heterodisulfide reductase become increasingly restrictive and present strict limits at the highest growth temperatures, i.e., for hyperthermophilic methanogens. However, growth at lower temperature allows a wide dimensional range for the molecular spaces in these enzymes. This is in agreement with previous suggestions on a potential major role of molecular tunnels to maintain biomolecule stability and activity of some enzymes in microorganisms growing at high temperatures. These results contribute to better understand archaeal growth at high temperatures. Furthermore, an optimization of the dimensions of molecular tunnels would represent an important adaptation required to maintain the activity of key enzymes of the methanogenic pathway for those methanogens growing optimally at high temperatures.
Collapse
|
8
|
Bai R, He AL, Guo J, Li Z, Yu X, Zeng J, Mi Y, Wang L, Zhang J, Yang D. Novel pathogenic variant (c.2947C > T) of the carbamoyl phosphate synthetase 1 gene in neonatal-onset deficiency. Front Neurosci 2022; 16:1025572. [PMID: 36340787 PMCID: PMC9634248 DOI: 10.3389/fnins.2022.1025572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder characterized by hyperammonaemia. The biochemical measurement of the intermediate metabolites is helpful for CPS1D diagnosis; it however cannot distinguish CPS1D from N-acetylglutamate synthetase deficiency. Therefore, next-generation sequencing (NGS) is often essential for the accurate diagnosis of CPS1D. Methods NGS was performed to identify candidate gene variants of CPS1D in a Asian neonatal patient presented with poor feeding, reduced activity, tachypnea, lethargy, and convulsions. The potential pathogenicity of the identified variants was predicted by various types of bioinformatical analyses, including evolution conservation, domain and 3D structure simulations. Results Compound heterozygosity of CPS1D were identified. One was in exon 24 with a novel heterozygous missense variant c.2947C > T (p.P983S), and another was previously reported in exon 20 with c.2548C > T (p.R850C). Both variants were predicted to be deleterious. Conservation analysis and structural modeling showed that the two substituted amino acids were highly evolutionarily conserved, resulting in potential decreases of the binding pocket stability and the partial loss of enzyme activity. Conclusion In this study, two pathogenic missense variants were identified with NGS, expanding the variants pectrum of the CPS1 gene. The variants and related structural knowledge of CPS enzyme demonstrate the applicability for the accurate diagnosis of CPS1D.
Collapse
Affiliation(s)
- Ruimiao Bai
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - ALing He
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Jinzhen Guo
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Zhankui Li
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Xiping Yu
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - JunAn Zeng
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Lin Wang
- Genetics Center, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Jingjing Zhang
- Medical Imaging Center, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Dong Yang
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| |
Collapse
|
10
|
Shivakumaraswamy S, Kumar S, Bellur A, Polisetty SD, Balaram H. Mechanistic Insights into the Functioning of a Two-Subunit GMP Synthetase, an Allosterically Regulated, Ammonia Channeling Enzyme. Biochemistry 2022; 61:1988-2006. [PMID: 36040251 DOI: 10.1021/acs.biochem.2c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guanosine 5'-monophosphate (GMP) synthetases, enzymes that catalyze the conversion of xanthosine 5'-monophosphate (XMP) to GMP, are composed of two different catalytic units, which are either two domains of a polypeptide chain or two subunits that associate to form a complex. The glutamine amidotransferase (GATase) unit hydrolyzes glutamine generating ammonia, and the ATP pyrophosphatase (ATPPase) unit catalyzes the formation of an AMP-XMP intermediate. The substrate-bound ATPPase allosterically activates GATase, and the ammonia thus generated is tunneled to the ATPPase active site where it reacts with AMP-XMP generating GMP. In ammonia channeling enzymes reported thus far, a tight complex of the two subunits is observed, while the interaction of the two subunits of Methanocaldococcus jannaschii GMP synthetase (MjGMPS) is transient with the underlying mechanism of allostery and substrate channeling largely unclear. Here, we present a mechanistic model encompassing the various steps in the catalytic cycle of MjGMPS based on biochemical experiments, crystal structure, and cross-linking mass spectrometry guided integrative modeling. pH dependence of enzyme kinetics establishes that ammonia is tunneled across the subunits with the lifetime of the complex being ≤0.5 s. The crystal structure of the XMP-bound ATPPase subunit reported herein highlights the role of conformationally dynamic loops in enabling catalysis. The structure of MjGMPS derived using restraints obtained from cross-linking mass spectrometry has enabled the visualization of subunit interactions that enable allostery under catalytic conditions. We integrate the results and propose a functional mechanism for MjGMPS detailing the various steps involved in catalysis.
Collapse
Affiliation(s)
- Santosh Shivakumaraswamy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Satya Dev Polisetty
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
11
|
Sharma N, Singh S, Tanwar AS, Mondal J, Anand R. Mechanism of Coordinated Gating and Signal Transduction in Purine Biosynthetic Enzyme Formylglycinamidine Synthetase. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nandini Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sukhwinder Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ajay S. Tanwar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jagannath Mondal
- Centre for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
12
|
Papageorgiou AC. Structural Characterization of Multienzyme Assemblies: An Overview. Methods Mol Biol 2022; 2487:51-72. [PMID: 35687229 DOI: 10.1007/978-1-0716-2269-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multienzyme assemblies have attracted significant attention in recent years for use in industrial applications instead of single enzymes. Owing to their ability to catalyze cascade reactions, multienzyme assemblies have become inspirational tools for the in vitro construction of multienzyme molecular machines. The use of such molecular machines could offer several advantages such as fewer side reactions, a high product yield, a fast reaction speed, easy product separation, a tolerable toxic environment, and robust system operability compared to current microbial cell catalytic systems. Besides, they can provide all the benefits found in the use of enzymes, including reusability, catalytic efficiency, and specificity. Similar to single enzymes, multienzyme assemblies could offer economical and environmentally friendly alternatives to conventional catalysts and play a central role as biocatalysts in green chemistry applications. However, detailed characterization of multienzyme assemblies and a full understanding of their mechanistic details are required for their efficient use in industrial biotransformations. Since the determination of the first enzyme structure in 1965, structural information has played a pivotal role in the characterization of enzymes and elucidation of their structure-function relationship. Among the structural biology techniques, X-ray crystallography has provided key mechanistic details into multienzyme assemblies. Here, the structural characterization of multienzyme assemblies is reviewed and several examples are provided.
Collapse
|
13
|
Singh S, Anand R. Tunnel Architectures in Enzyme Systems that Transport Gaseous Substrates. ACS OMEGA 2021; 6:33274-33283. [PMID: 34926879 PMCID: PMC8674909 DOI: 10.1021/acsomega.1c05430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Molecular tunnels regulate delivery of substrates/intermediates in enzymes which either harbor deep-seated reaction centers or are for transport of reactive/toxic intermediates that need to be specifically delivered. Here, we focus on the importance of structural diversity in tunnel architectures, especially for the gaseous substrate translocation, in rendering differential substrate preferences and directionality. Two major types of tunnels have been discussed, one that transports stable gases from the environment to the active site, namely, external gaseous (EG) tunnels, and the other that transports molecules between active sites, namely, internal gaseous (IG) tunnels. Aspects as to how the gaseous tunnels have shaped during the course of evolution and their potential to modulate the substrate flow and enzymatic function are examined. In conclusion, the review highlights our perspective on the pulsation mechanism that could facilitate unidirectional translocation of the gaseous molecules through buried tunnels.
Collapse
|
14
|
Korasick DA, Christgen SL, Qureshi IA, Becker DF, Tanner JJ. Probing the function of a ligand-modulated dynamic tunnel in bifunctional proline utilization A (PutA). Arch Biochem Biophys 2021; 712:109025. [PMID: 34506758 DOI: 10.1016/j.abb.2021.109025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022]
Abstract
In many bacteria, the reactions of proline catabolism are catalyzed by the bifunctional enzyme known as proline utilization A (PutA). PutA catalyzes the two-step oxidation of l-proline to l-glutamate using distinct proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase (GSALDH) active sites, which are separated by over 40 Å and connected by a complex tunnel system. The tunnel system consists of a main tunnel that connects the two active sites and functions in substrate channeling, plus six ancillary tunnels whose functions are unknown. Here we used tunnel-blocking mutagenesis to probe the role of a dynamic ancillary tunnel (tunnel 2a) whose shape is modulated by ligand binding to the PRODH active site. The 1.90 Å resolution crystal structure of Geobacter sulfurreducens PutA variant A206W verified that the side chain of Trp206 cleanly blocks tunnel 2a without perturbing the surrounding structure. Steady-state kinetic measurements indicate the mutation impaired PRODH activity without affecting the GSALDH activity. Single-turnover experiments corroborated a severe impairment of PRODH activity with flavin reduction decreased by nearly 600-fold in A206W relative to wild-type. Substrate channeling is also significantly impacted as A206W exhibited a 3000-fold lower catalytic efficiency in coupled PRODH-GSALDH activity assays, which measure NADH formation as a function of proline. The structure suggests that Trp206 inhibits binding of the substrate l-proline by preventing the formation of a conserved glutamate-arginine ion pair and closure of the PRODH active site. Our data are consistent with tunnel 2a serving as an open space through which the glutamate of the ion pair travels during the opening and closing of the active site in response to binding l-proline. These results confirm the essentiality of the conserved ion pair in binding l-proline and support the hypothesis that the ion pair functions as a gate that controls access to the PRODH active site.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Shelbi L Christgen
- Department Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States
| | - Insaf A Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Donald F Becker
- Department Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, NE, 68588, United States.
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
15
|
Pareek V, Sha Z, He J, Wingreen NS, Benkovic SJ. Metabolic channeling: predictions, deductions, and evidence. Mol Cell 2021; 81:3775-3785. [PMID: 34547238 PMCID: PMC8485759 DOI: 10.1016/j.molcel.2021.08.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/19/2022]
Abstract
With the elucidation of myriad anabolic and catabolic enzyme-catalyzed cellular pathways crisscrossing each other, an obvious question arose: how could these networks operate with maximal catalytic efficiency and minimal interference? A logical answer was the postulate of metabolic channeling, which in its simplest embodiment assumes that the product generated by one enzyme passes directly to a second without diffusion into the surrounding medium. This tight coupling of activities might increase a pathway's metabolic flux and/or serve to sequester unstable/toxic/reactive intermediates as well as prevent their access to other networks. Here, we present evidence for this concept, commencing with enzymes that feature a physical molecular tunnel, to multi-enzyme complexes that retain pathway substrates through electrostatics or enclosures, and finally to metabolons that feature collections of enzymes assembled into clusters with variable stoichiometric composition. Lastly, we discuss the advantages of reversibly assembled metabolons in the context of the purinosome, the purine biosynthesis metabolon.
Collapse
Affiliation(s)
- Vidhi Pareek
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhou Sha
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Jingxuan He
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Ned S Wingreen
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Stephen J Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
16
|
Omidvar M, Zdarta J, Sigurdardóttir SB, Pinelo M. Mimicking natural strategies to create multi-environment enzymatic reactors: From natural cell compartments to artificial polyelectrolyte reactors. Biotechnol Adv 2021; 54:107798. [PMID: 34265377 DOI: 10.1016/j.biotechadv.2021.107798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Engineering microenvironments for sequential enzymatic reactions has attracted specific interest within different fields of research as an effective strategy to improve the catalytic performance of enzymes. While in industry most enzymatic reactions occur in a single compartment carrier, living cells are however able to conduct multiple reactions simultaneously within confined sub-compartments, or organelles. Engineering multi-compartments with regulated environments and transformation properties enhances enzyme activity and stability and thus increases the overall yield of final products. In this review, we discuss current and potential methods to fabricate artificial cells for sequential enzymatic reactions, which are inspired by mechanisms and metabolic pathways developed by living cells. We aim to advance the understanding of living cell complexity and its compartmentalization and present solutions to mimic these processes in vitro. Particular attention has been given to layer-by-layer assembly of polyelectrolytes for developing multi-compartments. We hope this review paves the way for the next steps toward engineering of smart artificial multi-compartments with adoptive stimuli-responsive properties, mimicking living cells to improve catalytic properties and efficiency of the enzymes and enhance their stability.
Collapse
Affiliation(s)
- Maryam Omidvar
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Jakub Zdarta
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, 60965 Poznan, Poland
| | - Sigyn Björk Sigurdardóttir
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Manuel Pinelo
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
17
|
Wang Y, Maity N, Zhao L, Krämer M, Hasegawa JY, Shichibu Y, Konishi K, Wang X, Song Z, Bando M, Nakano T. A Triad Fluorenone Derivative Bearing Two Imidazole Groups That Switches between Three States by Base and Acid Stimuli. CHEM LETT 2021. [DOI: 10.1246/cl.210112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuting Wang
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Nabin Maity
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Liming Zhao
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Maximilian Krämer
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Institute for Catalysis, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Yukatsu Shichibu
- Faculty of Environmental Earth Sciences, Hokkaido University, N10 W5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Katsuaki Konishi
- Faculty of Environmental Earth Sciences, Hokkaido University, N10 W5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Xiaoyuan Wang
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Zhiyi Song
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Masayoshi Bando
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Tamaki Nakano
- Institute for Catalysis and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Institute for Catalysis, Hokkaido University, N21 W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
18
|
Vanoni MA. Iron-sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together. Open Biol 2021; 11:210010. [PMID: 33947244 PMCID: PMC8097209 DOI: 10.1098/rsob.210010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Iron-sulfur (Fe-S) flavoproteins form a broad and growing class of complex, multi-domain and often multi-subunit proteins coupling the most ancient cofactors (the Fe-S clusters) and the most versatile coenzymes (the flavin coenzymes, FMN and FAD). These enzymes catalyse oxidoreduction reactions usually acting as switches between donors of electron pairs and acceptors of single electrons, and vice versa. Through selected examples, the enzymes' structure−function relationships with respect to rate and directionality of the electron transfer steps, the role of the apoprotein and its dynamics in modulating the electron transfer process will be discussed.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
19
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
20
|
Dubey NC, Tripathi BP. Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS APPLIED BIO MATERIALS 2021; 4:1077-1114. [PMID: 35014469 DOI: 10.1021/acsabm.0c01293] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a biological system, the spatiotemporal arrangement of enzymes in a dense cellular milieu, subcellular compartments, membrane-associated enzyme complexes on cell surfaces, scaffold-organized proteins, protein clusters, and modular enzymes have presented many paradigms for possible multienzyme immobilization designs that were adapted artificially. In metabolic channeling, the catalytic sites of participating enzymes are close enough to channelize the transient compound, creating a high local concentration of the metabolite and minimizing the interference of a competing pathway for the same precursor. Over the years, these phenomena had motivated researchers to make their immobilization approach naturally realistic by generating multienzyme fusion, cluster formation via affinity domain-ligand binding, cross-linking, conjugation on/in the biomolecular scaffold of the protein and nucleic acids, and self-assembly of amphiphilic molecules. This review begins with the discussion of substrate channeling strategies and recent empirical efforts to build it synthetically. After that, an elaborate discussion covering prevalent concepts related to the enhancement of immobilized enzymes' catalytic performance is presented. Further, the central part of the review summarizes the progress in nature motivated multienzyme assembly over the past decade. In this section, special attention has been rendered by classifying the nature-inspired strategies into three main categories: (i) multienzyme/domain complex mimic (scaffold-free), (ii) immobilization on the biomolecular scaffold, and (iii) compartmentalization. In particular, a detailed overview is correlated to the natural counterpart with advances made in the field. We have then discussed the beneficial account of coassembly of multienzymes and provided a synopsis of the essential parameters in the rational coimmobilization design.
Collapse
Affiliation(s)
- Nidhi C Dubey
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
21
|
Computational investigations of allostery in aromatic amino acid biosynthetic enzymes. Biochem Soc Trans 2021; 49:415-429. [PMID: 33544132 DOI: 10.1042/bst20200741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Allostery, in which binding of ligands to remote sites causes a functional change in the active sites, is a fascinating phenomenon observed in enzymes. Allostery can occur either with or without significant conformational changes in the enzymes, and the molecular basis of its mechanism can be difficult to decipher using only experimental techniques. Computational tools for analyzing enzyme sequences, structures, and dynamics can provide insights into the allosteric mechanism at the atomic level. Combining computational and experimental methods offers a powerful strategy for the study of enzyme allostery. The aromatic amino acid biosynthesis pathway is essential in microorganisms and plants. Multiple enzymes involved in this pathway are sensitive to feedback regulation by pathway end products and are known to use allostery to control their activities. To date, four enzymes in the aromatic amino acid biosynthesis pathway have been computationally investigated for their allosteric mechanisms, including 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, anthranilate synthase, chorismate mutase, and tryptophan synthase. Here we review the computational studies and findings on the allosteric mechanisms of these four enzymes. Results from these studies demonstrate the capability of computational tools and encourage future computational investigations of allostery in other enzymes of this pathway.
Collapse
|
22
|
Planas-Iglesias J, Marques SM, Pinto GP, Musil M, Stourac J, Damborsky J, Bednar D. Computational design of enzymes for biotechnological applications. Biotechnol Adv 2021; 47:107696. [PMID: 33513434 DOI: 10.1016/j.biotechadv.2021.107696] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Enzymes are the natural catalysts that execute biochemical reactions upholding life. Their natural effectiveness has been fine-tuned as a result of millions of years of natural evolution. Such catalytic effectiveness has prompted the use of biocatalysts from multiple sources on different applications, including the industrial production of goods (food and beverages, detergents, textile, and pharmaceutics), environmental protection, and biomedical applications. Natural enzymes often need to be improved by protein engineering to optimize their function in non-native environments. Recent technological advances have greatly facilitated this process by providing the experimental approaches of directed evolution or by enabling computer-assisted applications. Directed evolution mimics the natural selection process in a highly accelerated fashion at the expense of arduous laboratory work and economic resources. Theoretical methods provide predictions and represent an attractive complement to such experiments by waiving their inherent costs. Computational techniques can be used to engineer enzymatic reactivity, substrate specificity and ligand binding, access pathways and ligand transport, and global properties like protein stability, solubility, and flexibility. Theoretical approaches can also identify hotspots on the protein sequence for mutagenesis and predict suitable alternatives for selected positions with expected outcomes. This review covers the latest advances in computational methods for enzyme engineering and presents many successful case studies.
Collapse
Affiliation(s)
- Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Gaspar P Pinto
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Milos Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic; IT4Innovations Centre of Excellence, Faculty of Information Technology, Brno University of Technology, 61266 Brno, Czech Republic
| | - Jan Stourac
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic.
| |
Collapse
|
23
|
Abstract
The focus of this review is the human de novo purine biosynthetic pathway. The pathway enzymes are enumerated, as well as the reactions they catalyze and their physical properties. Early literature evidence suggested that they might assemble into a multi-enzyme complex called a metabolon. The finding that fluorescently-tagged chimeras of the pathway enzymes form discrete puncta, now called purinosomes, is further elaborated in this review to include: a discussion of their assembly; the role of ancillary proteins; their locus at the microtubule/mitochondria interface; the elucidation that at endogenous levels, purinosomes function to channel intermediates from phosphoribosyl pyrophosphate to AMP and GMP; and the evidence for the purinosomes to exist as a protein condensate. The review concludes with a consideration of probable signaling pathways that might promote the assembly and disassembly of the purinosome, in particular the identification of candidate kinases given the extensive phosphorylation of the enzymes. These collective findings substantiate our current view of the de novo purine biosynthetic metabolon whose properties will be representative of how other metabolic pathways might be organized for their function.
Collapse
Affiliation(s)
- Vidhi Pareek
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
24
|
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
25
|
Wang TY, Zhao J, Savas AC, Zhang S, Feng P. Viral pseudoenzymes in infection and immunity. FEBS J 2020; 287:4300-4309. [PMID: 32889786 PMCID: PMC7605207 DOI: 10.1111/febs.15545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are proteins that are evolutionarily related to active enzymes, but lack relevant catalytic activity. As obligate intracellular pathogens, viruses complete their life cycle fully dependent on the cellular supplies of macromolecule and energy. Traditionally, studies of viral proteins sharing high homology with host counterparts reveal insightful mechanisms by which host signaling pathways are delicately regulated. Recent investigations into the action of cellular pseudoenzymes elucidate diverse molecular means how enzymes are differentially controlled under various physiological conditions, hinting to the potential that pathogens may exploit these regulatory modalities. To date, there have been three types of viral pseudoenzymes reported and our understanding concerning their mechanism of regulation is rudimentary at best. However, it is clear that viral pseudoenzymes are emerging with surprising functions in infection and immunity, and we are only at the beginning to understand this new group of enzyme regulators. In this review, we will summarize current knowledge in viral pseudoenzymes and provide a perspective for future research.
Collapse
Affiliation(s)
- Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jun Zhao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Shivakumaraswamy S, Pandey N, Ballut L, Violot S, Aghajari N, Balaram H. Helices on Interdomain Interface Couple Catalysis in the ATPPase Domain with Allostery in Plasmodium falciparum GMP Synthetase. Chembiochem 2020; 21:2805-2817. [PMID: 32358899 DOI: 10.1002/cbic.202000158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Indexed: 11/07/2022]
Abstract
GMP synthetase catalyses the conversion of XMP to GMP through a series of reactions that include hydrolysis of Gln to generate ammonia in the glutamine amidotransferase (GATase) domain, activation of XMP to adenyl-XMP intermediate in the ATP pyrophosphatase (ATPPase) domain and reaction of ammonia with the intermediate to generate GMP. The functioning of GMP synthetases entails bidirectional domain crosstalk, which leads to allosteric activation of the GATase domain, synchronization of catalytic events and tunnelling of ammonia. Herein, we have taken recourse to the analysis of structures of GMP synthetases, site-directed mutagenesis and steady-state and transient kinetics on the Plasmodium falciparum enzyme to decipher the molecular basis of catalysis in the ATPPase domain and domain crosstalk. Our results suggest an arrangement at the interdomain interface, of helices with residues that play roles in ATPPase catalysis as well as domain crosstalk enabling the coupling of ATPPase catalysis with GATase activation. Overall, the study enhances our understanding of GMP synthetases, which are drug targets in many infectious pathogens.
Collapse
Affiliation(s)
- Santosh Shivakumaraswamy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Nivedita Pandey
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Lionel Ballut
- Biocrystallography and Structural Biology of Therapeutic Targets Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS -, University of Lyon 1, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | - Sébastien Violot
- Biocrystallography and Structural Biology of Therapeutic Targets Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS -, University of Lyon 1, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | - Nushin Aghajari
- Biocrystallography and Structural Biology of Therapeutic Targets Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS -, University of Lyon 1, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
27
|
Five enzymes of the Arg/N-degron pathway form a targeting complex: The concept of superchanneling. Proc Natl Acad Sci U S A 2020; 117:10778-10788. [PMID: 32366662 DOI: 10.1073/pnas.2003043117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Arg/N-degron pathway targets proteins for degradation by recognizing their N-terminal (Nt) residues. If a substrate bears, for example, Nt-Asn, its targeting involves deamidation of Nt-Asn, arginylation of resulting Nt-Asp, binding of resulting (conjugated) Nt-Arg to the UBR1-RAD6 E3-E2 ubiquitin ligase, ligase-mediated synthesis of a substrate-linked polyubiquitin chain, its capture by the proteasome, and substrate's degradation. We discovered that the human Nt-Asn-specific Nt-amidase NTAN1, Nt-Gln-specific Nt-amidase NTAQ1, arginyltransferase ATE1, and the ubiquitin ligase UBR1-UBE2A/B (or UBR2-UBE2A/B) form a complex in which NTAN1 Nt-amidase binds to NTAQ1, ATE1, and UBR1/UBR2. In addition, NTAQ1 Nt-amidase and ATE1 arginyltransferase also bind to UBR1/UBR2. In the yeast Saccharomyces cerevisiae, the Nt-amidase, arginyltransferase, and the double-E3 ubiquitin ligase UBR1-RAD6/UFD4-UBC4/5 are shown to form an analogous targeting complex. These complexes may enable substrate channeling, in which a substrate bearing, for example, Nt-Asn, would be captured by a complex-bound Nt-amidase, followed by sequential Nt modifications of the substrate and its polyubiquitylation at an internal Lys residue without substrate's dissociation into the bulk solution. At least in yeast, the UBR1/UFD4 ubiquitin ligase interacts with the 26S proteasome, suggesting an even larger Arg/N-degron-targeting complex that contains the proteasome as well. In addition, specific features of protein-sized Arg/N-degron substrates, including their partly sequential and partly nonsequential enzymatic modifications, led us to a verifiable concept termed "superchanneling." In superchanneling, the synthesis of a substrate-linked poly-Ub chain can occur not only after a substrate's sequential Nt modifications, but also before them, through a skipping of either some or all of these modifications within a targeting complex.
Collapse
|
28
|
Uzdensky AB. Multifunctional Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Pravda L, Sehnal D, Toušek D, Navrátilová V, Bazgier V, Berka K, Svobodová Vareková R, Koca J, Otyepka M. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res 2019; 46:W368-W373. [PMID: 29718451 PMCID: PMC6030847 DOI: 10.1093/nar/gky309] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 12/27/2022] Open
Abstract
MOLEonline is an interactive, web-based application for the detection and characterization of channels (pores and tunnels) within biomacromolecular structures. The updated version of MOLEonline overcomes limitations of the previous version by incorporating the recently developed LiteMol Viewer visualization engine and providing a simple, fully interactive user experience. The application enables two modes of calculation: one is dedicated to the analysis of channels while the other was specifically designed for transmembrane pores. As the application can use both PDB and mmCIF formats, it can be leveraged to analyze a wide spectrum of biomacromolecular structures, e.g. stemming from NMR, X-ray and cryo-EM techniques. The tool is interconnected with other bioinformatics tools (e.g., PDBe, CSA, ChannelsDB, OPM, UniProt) to help both setup and the analysis of acquired results. MOLEonline provides unprecedented analytics for the detection and structural characterization of channels, as well as information about their numerous physicochemical features. Here we present the application of MOLEonline for structural analyses of α-hemolysin and transient receptor potential mucolipin 1 (TRMP1) pores. The MOLEonline application is freely available via the Internet at https://mole.upol.cz.
Collapse
Affiliation(s)
- Lukáš Pravda
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - David Sehnal
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Dominik Toušek
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Veronika Navrátilová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Václav Bazgier
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Karel Berka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Radka Svobodová Vareková
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jaroslav Koca
- CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tr. 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
30
|
Semmelmann F, Hupfeld E, Heizinger L, Merkl R, Sterner R. A Fold-Independent Interface Residue Is Crucial for Complex Formation and Allosteric Signaling in Class I Glutamine Amidotransferases. Biochemistry 2019; 58:2584-2588. [DOI: 10.1021/acs.biochem.9b00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Florian Semmelmann
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Enrico Hupfeld
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Leonhard Heizinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Reinhard Sterner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
31
|
Li L, Adachi M, Yu J, Kato K, Shinoda A, Ostermann A, Schrader TE, Ose T, Yao M. Neutron crystallographic study of heterotrimeric glutamine amidotransferase CAB. Acta Crystallogr F Struct Biol Commun 2019; 75:193-196. [PMID: 30839294 PMCID: PMC6404854 DOI: 10.1107/s2053230x19000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/05/2019] [Indexed: 11/10/2022] Open
Abstract
Heterotrimeric glutamine amidotransferase CAB (GatCAB) possesses an ammonia-self-sufficient mechanism in which ammonia is produced and used in the inner complex by GatA and GatB, respectively. The X-ray structure of GatCAB revealed that the two identified active sites of GatA and GatB are markedly distant, but are connected in the complex by a channel of 30 Å in length. In order to clarify whether ammonia is transferred through this channel in GatCAB by visualizing ammonia, neutron diffraction studies are indispensable. Here, GatCAB crystals were grown to approximate dimensions of 2.8 × 0.8 × 0.8 mm (a volume of 1.8 mm3) with the aid of a polymer using microseeding and macroseeding processes. Monochromatic neutron diffraction data were collected using the neutron single-crystal diffractometer BIODIFF at the Heinz Maier-Leibnitz Zentrum, Germany. The GatCAB crystals belonged to space group P212121, with unit-cell parameters a = 74.6, b = 94.5, c = 182.5 Å and with one GatCAB complex (molecular mass 119 kDa) in the asymmetric unit. This study represented a challenge in current neutron diffraction technology.
Collapse
Affiliation(s)
- Long Li
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Motoyasu Adachi
- National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Jian Yu
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Shinoda
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Tobias E. Schrader
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Toyoyuki Ose
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo 113-0033, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
32
|
Mitusińska K, Magdziarz T, Bzówka M, Stańczak A, Gora A. Exploring Solanum tuberosum Epoxide Hydrolase Internal Architecture by Water Molecules Tracking. Biomolecules 2018; 8:biom8040143. [PMID: 30424576 PMCID: PMC6315908 DOI: 10.3390/biom8040143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 11/17/2022] Open
Abstract
Several different approaches are used to describe the role of protein compartments and residues in catalysis and to identify key residues suitable for the modification of the activity or selectivity of the desired enzyme. In our research, we applied a combination of molecular dynamics simulations and a water tracking approach to describe the water accessible volume of Solanum tuberosum epoxide hydrolase. Using water as a molecular probe, we were able to identify small cavities linked with the active site: (i) one made up of conserved amino acids and indispensable for the proper positioning of catalytic water and (ii) two others in which modification can potentially contribute to enzyme selectivity and activity. Additionally, we identified regions suitable for de novo tunnel design that could also modify the catalytic properties of the enzyme. The identified hot-spots extend the list of the previously targeted residues used for modification of the regioselectivity of the enzyme. Finally, we have provided an example of a simple and elegant process for the detailed description of the network of cavities and tunnels, which can be used in the planning of enzyme modifications and can be easily adapted to the study of any other protein.
Collapse
Affiliation(s)
- Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
- Faculty of Chemistry, Silesian University of Technology, ks. Marcina Strzody 9, 44-100 Gliwice, Poland.
| | - Tomasz Magdziarz
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| | - Maria Bzówka
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
- Faculty of Chemistry, Silesian University of Technology, ks. Marcina Strzody 9, 44-100 Gliwice, Poland.
| | - Agnieszka Stańczak
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
- Faculty of Chemistry, Silesian University of Technology, ks. Marcina Strzody 9, 44-100 Gliwice, Poland.
| | - Artur Gora
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego 8, 44-100 Gliwice, Poland.
| |
Collapse
|
33
|
Gonzalez JM. Molecular Tunnels in Enzymes and Thermophily: A Case Study on the Relationship to Growth Temperature. Microorganisms 2018; 6:microorganisms6040109. [PMID: 30347813 PMCID: PMC6313320 DOI: 10.3390/microorganisms6040109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022] Open
Abstract
Developments in protein expression, analysis and computational capabilities are decisively contributing to a better understanding of the structure of proteins and their relationship to function. Proteins are known to be adapted to the growth rate of microorganisms and some microorganisms (named (hyper)thermophiles) thrive optimally at high temperatures, even above 100 °C. Nevertheless, some biomolecules show great instability at high temperatures and some of them are universal and required substrates and cofactors in multiple enzymatic reactions for all (both mesophiles and thermophiles) living cells. Only a few possibilities have been pointed out to explain the mechanisms that thermophiles use to successfully thrive under high temperatures. As one of these alternatives, the role of molecular tunnels or channels in enzymes has been suggested but remains to be elucidated. This study presents an analysis of channels in proteins (i.e., substrate tunnels), comparing two different protein types, glutamate dehydrogenase and glutamine phosphoribosylpyrophosphate amidotransferase, which are supposed to present a different strategy on the requirement for substrate tunnels with low and high needs for tunneling, respectively. The search and comparison of molecular tunnels in these proteins from microorganisms thriving optimally from 15 °C to 100 °C suggested that those tunnels in (hyper)thermophiles are required and optimized to specific dimensions at high temperatures for the enzyme glutamine phosphoribosylpyrophosphate amidotransferase. For the enzyme glutamate dehydrogenase, a reduction of empty spaces within the protein could explain the optimization at increasing temperatures. This analysis provides further evidence on molecular channeling as a feasible mechanism in hyperthermophiles with multiple relevant consequences contributing to better understand how they live under those extreme conditions.
Collapse
Affiliation(s)
- Juan Miguel Gonzalez
- Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes 10, 41702 Sevilla, Spain.
| |
Collapse
|
34
|
Tsitkov S, Pesenti T, Palacci H, Blanchet J, Hess H. Queueing Theory-Based Perspective of the Kinetics of “Channeled” Enzyme Cascade Reactions. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stanislav Tsitkov
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Theo Pesenti
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- École Supérieure de Physique et de Chimie Industrielles (ESPCI), Paris, 75231 Cedex 05, France
| | - Henri Palacci
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jose Blanchet
- Management Science and Engineering, Stanford University, Palo Alto, California 94305, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
35
|
McCluskey GD, Bearne SL. "Pinching" the ammonia tunnel of CTP synthase unveils coordinated catalytic and allosteric-dependent control of ammonia passage. Biochim Biophys Acta Gen Subj 2018; 1862:2714-2727. [PMID: 30251661 DOI: 10.1016/j.bbagen.2018.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 01/10/2023]
Abstract
Molecular gates within enzymes often play important roles in synchronizing catalytic events. We explored the role of a gate in cytidine-5'-triphosphate synthase (CTPS) from Escherichia coli. This glutamine amidotransferase catalyzes the biosynthesis of CTP from UTP using either l-glutamine or exogenous NH3 as a substrate. Glutamine is hydrolyzed in the glutaminase domain, with GTP acting as a positive allosteric effector, and the nascent NH3 passes through a gate located at the end of a ~25-Å tunnel before entering the synthase domain where CTP is generated. Substitution of the gate residue Val 60 by Ala, Cys, Asp, Trp, or Phe using site-directed mutagenesis and subsequent kinetic analyses revealed that V60-substitution impacts glutaminase activity, nucleotide binding, salt-dependent inhibition, and inter-domain NH3 transport. Surprisingly, the increase in steric bulk present in V60F perturbed the local structure consistent with "pinching" the tunnel, thereby revealing processes that synchronize the transfer of NH3 from the glutaminase domain to the synthase domain. V60F had a slightly reduced coupling efficiency at maximal glutaminase activity that was ameliorated by slowing down the glutamine hydrolysis reaction, consistent with a "bottleneck" effect. The inability of V60F to use exogenous NH3 was overcome in the presence of GTP, and more so if CTPS was covalently modified by 6-diazo-5-oxo-l-norleucine. Use of NH2OH by V60F as an alternative bulkier substrate occurred most efficiently when it was concomitant with the glutaminase reaction. Thus, the glutaminase activity and GTP-dependent activation act in concert to open the NH3 gate of CTPS to mediate inter-domain NH3 transport.
Collapse
Affiliation(s)
- Gregory D McCluskey
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
36
|
Bugada LF, Smith MR, Wen F. Engineering Spatially Organized Multienzyme Assemblies for Complex Chemical Transformation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01883] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Luke F. Bugada
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mason R. Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Kaushik S, Marques SM, Khirsariya P, Paruch K, Libichova L, Brezovsky J, Prokop Z, Chaloupkova R, Damborsky J. Impact of the access tunnel engineering on catalysis is strictly ligand‐specific. FEBS J 2018; 285:1456-1476. [DOI: 10.1111/febs.14418] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Shubhangi Kaushik
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
| | - Sérgio M. Marques
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Prashant Khirsariya
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
- Department of Chemistry CZ‐OPENSCREEN Faculty of Science Masaryk University Brno Czech Republic
| | - Kamil Paruch
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
- Department of Chemistry CZ‐OPENSCREEN Faculty of Science Masaryk University Brno Czech Republic
| | - Lenka Libichova
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX) Faculty of Science Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| |
Collapse
|
38
|
Kalms J, Schmidt A, Frielingsdorf S, Utesch T, Gotthard G, von Stetten D, van der Linden P, Royant A, Mroginski MA, Carpentier P, Lenz O, Scheerer P. Tracking the route of molecular oxygen in O 2-tolerant membrane-bound [NiFe] hydrogenase. Proc Natl Acad Sci U S A 2018; 115:E2229-E2237. [PMID: 29463722 PMCID: PMC5877991 DOI: 10.1073/pnas.1712267115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[NiFe] hydrogenases catalyze the reversible splitting of H2 into protons and electrons at a deeply buried active site. The catalytic center can be accessed by gas molecules through a hydrophobic tunnel network. While most [NiFe] hydrogenases are inactivated by O2, a small subgroup, including the membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha, is able to overcome aerobic inactivation by catalytic reduction of O2 to water. This O2 tolerance relies on a special [4Fe3S] cluster that is capable of releasing two electrons upon O2 attack. Here, the O2 accessibility of the MBH gas tunnel network has been probed experimentally using a "soak-and-freeze" derivatization method, accompanied by protein X-ray crystallography and computational studies. This combined approach revealed several sites of O2 molecules within a hydrophobic tunnel network leading, via two tunnel entrances, to the catalytic center of MBH. The corresponding site occupancies were related to the O2 concentrations used for MBH crystal derivatization. The examination of the O2-derivatized data furthermore uncovered two unexpected structural alterations at the [4Fe3S] cluster, which might be related to the O2 tolerance of the enzyme.
Collapse
Affiliation(s)
- Jacqueline Kalms
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany
| | | | - Tillmann Utesch
- Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | | | | | - Peter van der Linden
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
- Partnership for Soft Condensed Matter (PSCM), F-38043 Grenoble, France
| | - Antoine Royant
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | | | - Philippe Carpentier
- European Synchrotron Radiation Facility, F-38043 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biosciences et Biotechnologies de Grenoble (BIG)-Laboratoire Chimie et Biologie des Métaux (LCBM), F-38000 Grenoble, France
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, D-10117 Berlin, Germany;
| |
Collapse
|
39
|
Rabe KS, Müller J, Skoupi M, Niemeyer CM. Cascades in Compartments: En Route to Machine-Assisted Biotechnology. Angew Chem Int Ed Engl 2017; 56:13574-13589. [DOI: 10.1002/anie.201703806] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Kersten S. Rabe
- Chair of Chemical Biology; Karlsruher Institut für Technologie, KIT, Institut für Biologsiche Grenzflächen 1, IBG-I; Herrmann-von-Helmholtz Platz 1, Campus Nord Eggenstein-Leopoldshafen 76344 Germany
| | - Joachim Müller
- Chair of Chemical Biology; Karlsruher Institut für Technologie, KIT, Institut für Biologsiche Grenzflächen 1, IBG-I; Herrmann-von-Helmholtz Platz 1, Campus Nord Eggenstein-Leopoldshafen 76344 Germany
| | - Marc Skoupi
- Chair of Chemical Biology; Karlsruher Institut für Technologie, KIT, Institut für Biologsiche Grenzflächen 1, IBG-I; Herrmann-von-Helmholtz Platz 1, Campus Nord Eggenstein-Leopoldshafen 76344 Germany
| | - Christof M. Niemeyer
- Chair of Chemical Biology; Karlsruher Institut für Technologie, KIT, Institut für Biologsiche Grenzflächen 1, IBG-I; Herrmann-von-Helmholtz Platz 1, Campus Nord Eggenstein-Leopoldshafen 76344 Germany
| |
Collapse
|
40
|
Rabe KS, Müller J, Skoupi M, Niemeyer CM. Kaskaden in Kompartimenten: auf dem Weg zu maschinengestützter Biotechnologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703806] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kersten S. Rabe
- Chair of Chemical Biology; Karlsruher Institut für Technologie, KIT, Institut für Biologische Grenzflächen 1, IBG-I; Herrmann-von-Helmholtz Platz 1, Campus Nord Eggenstein-Leopoldshafen 76344 Deutschland
| | - Joachim Müller
- Chair of Chemical Biology; Karlsruher Institut für Technologie, KIT, Institut für Biologische Grenzflächen 1, IBG-I; Herrmann-von-Helmholtz Platz 1, Campus Nord Eggenstein-Leopoldshafen 76344 Deutschland
| | - Marc Skoupi
- Chair of Chemical Biology; Karlsruher Institut für Technologie, KIT, Institut für Biologische Grenzflächen 1, IBG-I; Herrmann-von-Helmholtz Platz 1, Campus Nord Eggenstein-Leopoldshafen 76344 Deutschland
| | - Christof M. Niemeyer
- Chair of Chemical Biology; Karlsruher Institut für Technologie, KIT, Institut für Biologische Grenzflächen 1, IBG-I; Herrmann-von-Helmholtz Platz 1, Campus Nord Eggenstein-Leopoldshafen 76344 Deutschland
| |
Collapse
|
41
|
Yang L, Dolan EM, Tan SK, Lin T, Sontag ED, Khare SD. Computation‐Guided Design of a Stimulus‐Responsive Multienzyme Supramolecular Assembly. Chembiochem 2017; 18:2000-2006. [DOI: 10.1002/cbic.201700425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Lu Yang
- Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Elliott M. Dolan
- Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Sophia K. Tan
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Tianyun Lin
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Eduardo D. Sontag
- Institute for Quantitative Biomedicine Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Department of Mathematics Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Sagar D. Khare
- Department of Chemistry and Chemical Biology Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Computational Biology & Molecular Biophysics Program Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Institute for Quantitative Biomedicine Rutgers The State University of New Jersey Piscataway NJ 08854 USA
- Center for Integrative Proteomics Research Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| |
Collapse
|
42
|
Lynch EM, Hicks DR, Shepherd M, Endrizzi JA, Maker A, Hansen JM, Barry RM, Gitai Z, Baldwin EP, Kollman JM. Human CTP synthase filament structure reveals the active enzyme conformation. Nat Struct Mol Biol 2017; 24:507-514. [PMID: 28459447 PMCID: PMC5472220 DOI: 10.1038/nsmb.3407] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
The universally conserved enzyme CTP synthase (CTPS) forms filaments in bacteria and eukaryotes. In bacteria, polymerization inhibits CTPS activity and is required for nucleotide homeostasis. Here we show that for human CTPS, polymerization increases catalytic activity. The cryo-EM structures of bacterial and human CTPS filaments differ considerably in overall architecture and in the conformation of the CTPS protomer, explaining the divergent consequences of polymerization on activity. The structure of human CTPS filament, the first structure of the full-length human enzyme, reveals a novel active conformation. The filament structures elucidate allosteric mechanisms of assembly and regulation that rely on a conserved conformational equilibrium. The findings may provide a mechanism for increasing human CTPS activity in response to metabolic state and challenge the assumption that metabolic filaments are generally storage forms of inactive enzymes. Allosteric regulation of CTPS polymerization by ligands likely represents a fundamental mechanism underlying assembly of other metabolic filaments.
Collapse
Affiliation(s)
- Eric M Lynch
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Derrick R Hicks
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Matthew Shepherd
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - James A Endrizzi
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Allison Maker
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jesse M Hansen
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, Washington, USA
| | - Rachael M Barry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Enoch P Baldwin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, USA
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Li G, Yao P, Gong R, Li J, Liu P, Lonsdale R, Wu Q, Lin J, Zhu D, Reetz MT. Simultaneous engineering of an enzyme's entrance tunnel and active site: the case of monoamine oxidase MAO-N. Chem Sci 2017; 8:4093-4099. [PMID: 30155214 PMCID: PMC6099926 DOI: 10.1039/c6sc05381e] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/30/2017] [Indexed: 12/19/2022] Open
Abstract
A new directed evolution approach is presented to enhance the activity of an enzyme and to manipulate stereoselectivity by focusing iterative saturation mutagenesis (ISM) simultaneously on residues lining the entrance tunnel and the binding pocket. This combined mutagenesis strategy was applied successfully to the monoamine oxidase from Aspergillus niger (MAO-N) in the reaction of sterically demanding substrates which are of interest in the synthesis of chiral pharmaceuticals based on the benzo-piperidine scaffold. Reversal of enantioselectivity of Turner-type deracemization was achieved in the synthesis of (S)-1,2,3,4-tetrahydro-1-methyl-isoquinoline, (S)-1,2,3,4-tetrahydro-1-ethylisoquinoline and (S)-1,2,3,4-tetrahydro-1-isopropylisoquinoline. Extensive molecular dynamics simulations indicate that the altered catalytic profile is due to increased hydrophobicity of the entrance tunnel acting in concert with the altered shape of the binding pocket.
Collapse
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 , Mülheim an der Ruhr , Germany .
- Fachbereich Chemie , Philipps-Universität , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - Peiyuan Yao
- National Engineering Laboratory for Industrial Enzymes , Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , People's Republic of China . ;
| | - Rui Gong
- National Engineering Laboratory for Industrial Enzymes , Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , People's Republic of China . ;
| | - Jinlong Li
- National Engineering Laboratory for Industrial Enzymes , Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , People's Republic of China . ;
| | - Pi Liu
- National Engineering Laboratory for Industrial Enzymes , Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , People's Republic of China . ;
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 , Mülheim an der Ruhr , Germany .
- Fachbereich Chemie , Philipps-Universität , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes , Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , People's Republic of China . ;
| | - Jianping Lin
- National Engineering Laboratory for Industrial Enzymes , Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , People's Republic of China . ;
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes , Tianjin Engineering Center for Biocatalytic Technology , Tianjin Institute of Industrial Biotechnology , Chinese Academy of Sciences , 32 Xi Qi Dao, Tianjin Airport Economic Area , Tianjin 300308 , People's Republic of China . ;
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 , Mülheim an der Ruhr , Germany .
- Fachbereich Chemie , Philipps-Universität , Hans-Meerwein-Strasse , 35032 Marburg , Germany
| |
Collapse
|
44
|
Rydzewski J, Nowak W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys Life Rev 2017; 22-23:58-74. [PMID: 28410930 DOI: 10.1016/j.plrev.2017.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
45
|
Rodrigues MJ, Windeisen V, Zhang Y, Guédez G, Weber S, Strohmeier M, Hanes JW, Royant A, Evans G, Sinning I, Ealick SE, Begley TP, Tews I. Lysine relay mechanism coordinates intermediate transfer in vitamin B6 biosynthesis. Nat Chem Biol 2017; 13:290-294. [PMID: 28092359 PMCID: PMC6078385 DOI: 10.1038/nchembio.2273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/11/2016] [Indexed: 11/08/2022]
Abstract
Substrate channeling has emerged as a common mechanism for enzymatic intermediate transfer. A conspicuous gap in knowledge concerns the use of covalent lysine imines in the transfer of carbonyl-group-containing intermediates, despite their wideuse in enzymatic catalysis. Here we show how imine chemistry operates in the transfer of covalent intermediates in pyridoxal 5'-phosphate biosynthesis by the Arabidopsis thaliana enzyme Pdx1. An initial ribose 5-phosphate lysine imine is converted to the chromophoric I320 intermediate, simultaneously bound to two lysine residues and partially vacating the active site, which creates space for glyceraldehyde 3-phosphate to bind. Crystal structures show how substrate binding, catalysis and shuttling are coupled to conformational changes around strand β6 of the Pdx1 (βα)8-barrel. The dual-specificity active site and imine relay mechanism for migration of carbonyl intermediates provide elegant solutions to the challenge of coordinating a complex sequence of reactions that follow a path of over 20 Å between substrate- and product-binding sites.
Collapse
Affiliation(s)
- Matthew J Rodrigues
- Biological Sciences, University of Southampton, Southampton, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Volker Windeisen
- Biological Sciences, University of Southampton, Southampton, UK
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Yang Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Gabriela Guédez
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Stefan Weber
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Marco Strohmeier
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Jeremiah W Hanes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
- Pacific Biosciences, Menlo Park, California, USA
| | - Antoine Royant
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
- European Synchrotron Radiation Facility, Grenoble, France
| | - Gwyndaf Evans
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Ivo Tews
- Biological Sciences, University of Southampton, Southampton, UK
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
46
|
Kalms J, Banthiya S, Galemou Yoga E, Hamberg M, Holzhutter HG, Kuhn H, Scheerer P. The crystal structure of Pseudomonas aeruginosa lipoxygenase Ala420Gly mutant explains the improved oxygen affinity and the altered reaction specificity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:463-473. [PMID: 28093240 DOI: 10.1016/j.bbalip.2017.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/03/2017] [Accepted: 01/12/2017] [Indexed: 12/30/2022]
Abstract
Secreted LOX from Pseudomonas aeruginosa (PA-LOX) has previously been identified as arachidonic acid 15S-lipoxygenating enzyme. Here we report that the substitution of Ala420Gly in PA-LOX leads to an enzyme variant with pronounced dual specificity favoring arachidonic acid 11R-oxygenation. When compared with other LOX-isoforms the molecular oxygen affinity of wild-type PA-LOX is 1-2 orders of magnitude lower (Km O2 of 0.4mM) but Ala420Gly exchange improved the molecular oxygen affinity (Km O2 of 0.2mM). Experiments with stereo-specifically deuterated linoleic acid indicated that the formation of both 13S- and 9R-HpODE involves abstraction of the proS-hydrogen from C11 of the fatty acid backbone. To explore the structural basis for the observed functional changes (altered specificity, improved molecular oxygen affinity) we solved the crystal structure of the Ala420Gly mutant of PA-LOX at 1.8Å resolution and compared it with the wild-type enzyme. Modeling of fatty acid alignment at the catalytic center suggested that in the wild-type enzyme dioxygen is directed to C15 of arachidonic acid by a protein tunnel, which interconnects the catalytic center with the protein surface. Ala420Gly exchange redirects intra-enzyme O2 diffusion by bifurcating this tunnel so that C11 of arachidonic acid also becomes accessible for O2 insertion.
Collapse
Affiliation(s)
- Jacqueline Kalms
- Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Swathi Banthiya
- Institute for Biochemistry (CC2), Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Etienne Galemou Yoga
- Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mats Hamberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hermann-Georg Holzhutter
- Institute for Biochemistry (CC2), Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hartmut Kuhn
- Institute for Biochemistry (CC2), Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CC2), Group Protein X-ray Crystallography and Signal Transduction, Charité - University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
47
|
Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Med Res Rev 2016; 37:1095-1139. [PMID: 27957758 DOI: 10.1002/med.21430] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 11/07/2016] [Indexed: 12/28/2022]
Abstract
Many enzymes contain tunnels and gates that are essential to their function. Gates reversibly switch between open and closed conformations and thereby control the traffic of small molecules-substrates, products, ions, and solvent molecules-into and out of the enzyme's structure via molecular tunnels. Many transient tunnels and gates undoubtedly remain to be identified, and their functional roles and utility as potential drug targets have received comparatively little attention. Here, we describe a set of general concepts relating to the structural properties, function, and classification of these interesting structural features. In addition, we highlight the potential of enzyme tunnels and gates as targets for the binding of small molecules. The different types of binding that are possible and the potential pharmacological benefits of such targeting are discussed. Twelve examples of ligands bound to the tunnels and/or gates of clinically relevant enzymes are used to illustrate the different binding modes and to explain some new strategies for drug design. Such strategies could potentially help to overcome some of the problems facing medicinal chemists and lead to the discovery of more effective drugs.
Collapse
Affiliation(s)
- Sergio M Marques
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Tomas Buryska
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Faculty of Science, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, RECETOX, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| |
Collapse
|
48
|
Kaushik S, Prokop Z, Damborsky J, Chaloupkova R. Kinetics of binding of fluorescent ligands to enzymes with engineered access tunnels. FEBS J 2016; 284:134-148. [DOI: 10.1111/febs.13957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/30/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Shubhangi Kaushik
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| |
Collapse
|
49
|
CO synthesized from the central one-carbon pool as source for the iron carbonyl in O2-tolerant [NiFe]-hydrogenase. Proc Natl Acad Sci U S A 2016; 113:14722-14726. [PMID: 27930319 DOI: 10.1073/pnas.1614656113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrogenases are nature's key catalysts involved in both microbial consumption and production of molecular hydrogen. H2 exhibits a strongly bonded, almost inert electron pair and requires transition metals for activation. Consequently, all hydrogenases are metalloenzymes that contain at least one iron atom in the catalytic center. For appropriate interaction with H2, the iron moiety demands for a sophisticated coordination environment that cannot be provided just by standard amino acids. This dilemma has been overcome by the introduction of unprecedented chemistry-that is, by ligating the iron with carbon monoxide (CO) and cyanide (or equivalent) groups. These ligands are both unprecedented in microbial metabolism and, in their free form, highly toxic to living organisms. Therefore, the formation of the diatomic ligands relies on dedicated biosynthesis pathways. So far, biosynthesis of the CO ligand in [NiFe]-hydrogenases was unknown. Here we show that the aerobic H2 oxidizer Ralstonia eutropha, which produces active [NiFe]-hydrogenases in the presence of O2, employs the auxiliary protein HypX (hydrogenase pleiotropic maturation X) for CO ligand formation. Using genetic engineering and isotope labeling experiments in combination with infrared spectroscopic investigations, we demonstrate that the α-carbon of glycine ends up in the CO ligand of [NiFe]-hydrogenase. The α-carbon of glycine is a building block of the central one-carbon metabolism intermediate, N10-formyl-tetrahydrofolate (N10-CHO-THF). Evidence is presented that the multidomain protein, HypX, converts the formyl group of N10-CHO-THF into water and CO, thereby providing the carbonyl ligand for hydrogenase. This study contributes insights into microbial biosynthesis of metal carbonyls involving toxic intermediates.
Collapse
|
50
|
Bulutoglu B, Garcia KE, Wu F, Minteer SD, Banta S. Direct Evidence for Metabolon Formation and Substrate Channeling in Recombinant TCA Cycle Enzymes. ACS Chem Biol 2016; 11:2847-2853. [PMID: 27556423 DOI: 10.1021/acschembio.6b00523] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supramolecular assembly of enzymes into metabolon structures is thought to enable efficient transport of reactants between active sites via substrate channeling. Recombinant versions of porcine citrate synthase (CS), mitochondrial malate dehydrogenase (mMDH), and aconitase (Aco) were found to adopt a homogeneous native-like metabolon structure in vitro. Site-directed mutagenesis performed on highly conserved arginine residues located in the positively charged channel connecting mMDH and CS active sites led to the identification of CS(R65A) which retained high catalytic efficiency. Substrate channeling between the CS mutant and mMDH was severely impaired and the overall channeling probability decreased from 0.99 to 0.023. This work provides direct mechanistic evidence for the channeling of reaction intermediates, and disruption of this interaction would have important implications on the control of flux in central carbon metabolism.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Kristen E. Garcia
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Fei Wu
- Department of Chemistry, The University of Utah, Salt Lake
City, Utah 84112, United States
- Institute of Chemistry, Chinese Academy of Science, Beijing, China
| | - Shelley D. Minteer
- Department of Chemistry, The University of Utah, Salt Lake
City, Utah 84112, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|