1
|
Wang HX, Zhu X, Liu M. Emergent chiral and topological nanoarchitectonics in self-assembled supramolecular systems. Chem Soc Rev 2025. [PMID: 40309872 DOI: 10.1039/d2cs00259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The fabrication of structures with designated topologies at the nanoscale is an intriguing issue, attributed to the possibility of both imparting unique properties to functional materials and unravelling the codes that lie in many natural systems. As a significant bottom-up approach, the self-assembly strategy is potent in formulating various exquisite structures. While the building of common types of miniaturized structures such as tubes, twists and spheres has been investigated in depth to gain insight into the intrinsic principles that dictate their formation and functions, the preparation of peculiar topological nanostructures is still scattered and unsystematic. In parallel, chirality is among the most ubiquitous phenomena of fundamental significance in nature and is in close relationship with the origin of life. Essentially, chirality represents a type of orderliness and thus may interplay with peculiar topologies in an orchestrated and serendipitous way. In this review, we describe the development of constructing emergent chiral and topological nanoarchitectures via the self-assembly method, mainly focusing on structures including toroids, catenanes, Möbius strips, spirals and fractals. In addition, other types involving toruloids/kebabs, trumpets and bamboos, screws, dendritic and lamellar twists are also exemplified. The design of building blocks and various self-assembling strategies towards these target architectures are highlighted in this review, in an effort to provide an overview of the feasible approaches that facilitate the tailored construction of mesoscopic structures.
Collapse
Affiliation(s)
- Han-Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Dutta S, Haridas V. Simple toroids to multi-torus structures from self-assembling peptides. Chem Commun (Camb) 2025; 61:6344-6347. [PMID: 40171581 DOI: 10.1039/d5cc00445d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Urea-cored pseudopeptides exhibit remarkable self-assembly to varying morphologies. Concentration-dependent studies revealed a series of morphological transformations from vesicles to toroids, and honeycomb-like architectures. The morphology dependent autofluorescence is another noteworthy observation.
Collapse
Affiliation(s)
- Souvik Dutta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala-678623, India.
| |
Collapse
|
3
|
Zhang W, Li Y, Zheng T, Xie Y, Dai X, Lee M. Fluorescence-switching 2-D sheet structure formed by self-assembly of cruciform aromatic amphiphiles. SOFT MATTER 2025; 21:1451-1454. [PMID: 39905892 DOI: 10.1039/d4sm01542h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
We report that aromatic amphiphiles based on cruciform aromatic segments self-assemble into 2-D sheet structures in aqueous environments. Notably, the aromatic amphiphile based on a pyrene unit generates fluorescence-switching 2-D sheet structures. In a pH-neutral condition, the sheets show strong excimer emission. However, upon lowering the pH the excimer emission is quenched due to loosely-packed pyrene units. Subsequent return of pH to a neutral condition leads to full recovery of the excimer emission, indicative of fully-reversible fluorescence emission switching.
Collapse
Affiliation(s)
- Wei Zhang
- College of Science, Shenyang University of Chemical Technology, Liaoning 110142, China.
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Yongsheng Li
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Tianyi Zheng
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| | - Ying Xie
- College of Science, Shenyang University of Chemical Technology, Liaoning 110142, China.
| | - Xianyin Dai
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Myongsoo Lee
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Yan J, Ren L, Lu X, Li W, Zhang A. Supramolecular Chiral Assembly of Dendritic Amphiphiles in Aqueous Media. Chemistry 2025; 31:e202403450. [PMID: 39601355 DOI: 10.1002/chem.202403450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
Dendritic amphiphiles are a promising class of topological blocks for self-assembly to construct chiral supramolecular aggregates in aqueous media. Their unique dendritic geometry, structure variability and multivalence can mediate the assemblies with versatile morphologies and functions. The bulky dendritic moieties also enable the appropriate association-repulsion balance to control supramolecular growth, and simultaneously shield the assemblies with enhanced stabilities. Moreover, the crowded packing of dendritic segments facilitates the efficient chirality transfer from molecular level to supramolecular level, to achieve chirality amplification or enhancement. Dendritic moieties also provide chances to stabilize the assemblies in aqueous media through shielding and cooperative effects. The dendritic assemblies can be intriguingly made responsive to external stimuli including temperature, light, solvents or guests to switch their nanostructures or supramolecular chirality. Various dendritic amphiphiles bearing peptide or aromatic motifs have been reported in supramolecular chiral assembly, and their functional applications investigated. This review summarizes the significant progresses with a particular focus on the dendritic structural effects on supramolecular chiral assembly and the stimuli-responsiveness in aqueous media.
Collapse
Affiliation(s)
- Jiatao Yan
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Liangxuan Ren
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, Shangda Rd. 99, Shanghai, 200444, China
| |
Collapse
|
5
|
Mei W, Li W, Zhang A. Supramolecular assembly of dendronized diacetylenes into thermoresponsive chiral fibers and their covalent fixation through topochemical polymerization. J Colloid Interface Sci 2024; 669:314-326. [PMID: 38718585 DOI: 10.1016/j.jcis.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024]
Abstract
By combination of dendritic topological structures with photopolymerizable diacetylene, here we report on supramolecular chiral assembly of the dendronized diacetylenes in water. These dendronized diacetylenes are constituted with three-fold dendritic oligoethylene glycols (OEGs), bridged with a dipeptide from phenylalanine and glycine. These dendronized amphiphiles exhibit intensive propensity to aggregate in water and form helical fibers, which show characteristic thermoresponsive behavior with phase transition temperatures dominated by hydrophilicity of the dendritic OEGs. Topochemical polymerization of these supramolecular fibers through UV irradiation transfers them into the covalent helical dendronized polydiacetylenes. Chirality of these dendronized polydiacetylenes can be mediated through the thermally-induced phase transitions, but is also intriguingly dependent on vortex via stirring. Through stirring the solutions, chiralities of the dendronized polydiacetylenes are inverted, which can be reversibly recovered after keeping still the solution. Hydrogels are formed from these dendronized diacetylenes through concentration-enhanced interactions between the supramolecular fibers. Their mechanical properties can be greatly increased through thermally-enhanced interactions between the fibers with storage moduli increased from 20 Pa to a few hundred Pa. In addition, through photo-polymerization, the supramolecular fibers are transferred into covalent dendronized polydiacetylenes, and the corresponding hydrogels show much improved mechanical properties with storage moduli about 10 kPa.
Collapse
Affiliation(s)
- Wenli Mei
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
6
|
Prajapati D, Clegg JK, Mukherjee PS. Formation of a low-symmetry Pd 8 molecular barrel employing a hetero donor tetradentate ligand, and its use in the binding and extraction of C 70. Chem Sci 2024; 15:12502-12510. [PMID: 39118615 PMCID: PMC11304780 DOI: 10.1039/d4sc01332h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
The majority of reported metallo-supramolecules are highly symmetric homoleptic assemblies of M x L y type, with a few reports on assemblies that are obtained using multicomponent self-assembly or using ambidentate ligands. Herein, we report the use of an unsymmetrical tetratopic ligand (Lun) containing pyridyl and imidazole donor sites in combination with a cis-protected Pd(ii) acceptor for the formation of a low-symmetry M8Lun 4 molecular barrel (UNMB). Four potential orientational isomeric (HHHH, HHHT, HHTT, and HTHT) molecular barrels can be anticipated for the M8Lun 4 type metallo-assemblies. However, the formation of an orientational isomer (HHTT) of the barrel was suggested from single-crystal X-ray diffraction and 1H NMR analysis of UNMB. Two large open apertures at terminals and the hydrophobic confined space surrounded by four aromatic panels of Lun make UNMB a potential host for bigger guests. UNMB encapsulates fullerenes C70 and C60 favoured by non-covalent interactions between the fullerenes and aromatic panels of the ligand molecules. Experimental and theoretical studies revealed that UNMB has the ability to bind C70 more strongly than its lower analogue C60. The stronger affinity of UNMB towards C70 was exploited to separate C70 from an equimolar mixture of C70 and C60. Moreover, C70 can be extracted from the C70⊂UNMB complex by toluene, and therefore, UNMB can be reused as a recyclable separating agent for C70 extraction.
Collapse
Affiliation(s)
- Dharmraj Prajapati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| |
Collapse
|
7
|
Kadamannil NN, Jang D, Lee H, Kim JM, Jelinek R. Macrocyclic Diacetylene / Sulfonate Fluorophore Hierarchical Multifunctional Nanotoroids. SMALL METHODS 2024; 8:e2301286. [PMID: 38323693 DOI: 10.1002/smtd.202301286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Indexed: 02/08/2024]
Abstract
Functional supramolecular materials exhibit important features including structural versatility and versatile applications. Here, this study reports the construction of unique hierarchically organized nanotoroids exhibiting fluorescence, photocatalytic, and sensing properties. The nanotoroids comprise of macrocyclic diacetylenes (MCDA) and 8-anilino-1-naphthalene sulfonate (ANS), a negatively charged aromatic fluorescent dye. This study shows that the hierarchical structure of the nanotoroids consist of MCDA nanofibers formed by stacked diacetylene monomers as the basic units, which are further bent and aligned into toroidal organization by electrostatic and hydrophobic interactions with the ANS molecules. The amine moieties on the nanotoroids surface are employed for deposition of gold nanostructures - Au nanoparticles or Au nanosheets - which constitute effective platforms for photocatalysis and surface enhanced Raman scattering (SERS)-based sensing.
Collapse
Affiliation(s)
- Nila Nandha Kadamannil
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Daewoong Jang
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Haksu Lee
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
8
|
Rucci B, Boyle B, Byrne M. Hollow Polyethyleneimine Nanoparticles with Drug Loaded DNA for Chemotherapeutic Applications. Chempluschem 2024; 89:e202400129. [PMID: 38600036 DOI: 10.1002/cplu.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
The next generation of anticancer agents are emerging from rationally designed nanostructured materials. This work involved the synthesis and characterization of novel hollow DNA-conjugated gold nanoparticles (DNA-AuNPs) for controlled drug delivery. Polyethyleneimine (PEI) was bound to AuNPs, forming polymer-shell nanoparticles. Dissolution of the gold core via iodine formed hollow core polymeric nanoparticles (HCPNPs) and a high density (85 molecules/particle) of DNA intercalated with daunorubicin was conjugated. Particles were spherical with an average diameter of 105.7±17.3 nm and zeta potential of 20.4±3.54 mV. We hypothesize the DNA backbone electrostatically condensed to the primary amines on the surface of the particle toroidally, weaving itself within the polymer shell. During the DNA intercalation process, increasing the ionic concentration and decreasing the amine/phosphate ratio 10-fold increased drug intercalation 64 % and 61 %, respectively, allowing us to determine the optimal method of particle synthesis. As intercalation sites increased with increasing DNA strand length, drug loading increased. An average of 874±40.1 daunorubicin molecules were loaded per HCPNP. HCPNPs with drug intercalated DNA have strong potential to be clinically efficacious drug delivery vehicles due to the versatility of DNA and high drug loading capacities.
Collapse
Affiliation(s)
- Brendan Rucci
- Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Brian Boyle
- Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Mark Byrne
- Department of Biomedical Engineering Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ, 08028, USA
- Department of Chemical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| |
Collapse
|
9
|
Brisson ERL, Worthington MJH, Kerai S, Müllner M. Nanoscale polymer discs, toroids and platelets: a survey of their syntheses and potential applications. Chem Soc Rev 2024; 53:1984-2021. [PMID: 38173417 DOI: 10.1039/d1cs01114f] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polymer self-assembly has become a reliable and versatile workhorse to produce polymeric nanomaterials. With appropriate polymer design and monomer selection, polymers can assemble into shapes and morphologies beyond well-studied spherical and cylindrical micellar structures. Steadfast access to anisotropic polymer nanoparticles has meant that the fabrication and application of 2D soft matter has received increasing attention in recent years. In this review, we focus on nanoscale polymer discs, toroids, and platelets: three morphologies that are often interrelated and made from similar starting materials or common intermediates. For each morphology, we illustrate design rules, and group and discuss commonly used self-assembly strategies. We further highlight polymer compositions, fundamental principles and self-assembly conditions that enable precision in bottom-up fabrication strategies. Finally, we summarise potential applications of such nanomaterials, especially in the context of biomedical research and template chemistry and elaborate on future endeavours in this space.
Collapse
Affiliation(s)
- Emma R L Brisson
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Max J H Worthington
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Simran Kerai
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
| | - Markus Müllner
- Key Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney 2006 NSW, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney 2006 NSW, Australia
| |
Collapse
|
10
|
Takahashi S, Matsumoto T, Hollamby MJ, Miyasaka H, Vacha M, Sotome H, Yagai S. Impact of Ring-Closing on the Photophysical Properties of One-Dimensional π-Conjugated Molecular Aggregate. J Am Chem Soc 2024; 146:2089-2101. [PMID: 38163763 DOI: 10.1021/jacs.3c11407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The self-assembled state of molecules plays a pivotal role in determining how inherent molecular properties transform and give rise to supramolecular functionalities and has long attracted attention. However, understanding the influence of morphologies spanning the nano- to mesoscopic scales of supramolecular assemblies derived from identical intermolecular interactions has been notoriously challenging due to dynamic structural change and monomer exchange of assemblies in solution. In this study, we demonstrate that curved one-dimensional molecular assemblies (supramolecular polymers) of lengths of around 70-200 nm, originating from the same luminescent molecule, exhibit distinct photoluminescent properties when they form closed circular structures (toroids) versus when they possess chain termini in solution (random coils). By exploiting the difference in kinetic stability between the toroids and random coils, we developed a dialysis protocol to selectively purify the former. It was revealed that these terminus-free closed structures manifest higher energy and more efficient luminescence compared with their mixed state with random coils. Time-resolved fluorescence measurements unveiled that random coils, due to their dynamic structural fluctuation in solution, generate local defects throughout the main chain, leading to luminescence from lower energy levels. In mixtures of the two assemblies, luminescence was exclusively observed from such a lower energy level of random coils, a result attributed to energy transfer between the assemblies. This work emphasizes that for identical supramolecular assemblies, only averaged properties have traditionally been considered, but their structures at the nano- to mesoscopic scale are important especially if they have a certain degree of shape persistency even in solution.
Collapse
Affiliation(s)
- Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takuma Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12 Meguro-ku, Tokyo 152-8552, Japan
| | - Martin J Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST55BG, U.K
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Martin Vacha
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12 Meguro-ku, Tokyo 152-8552, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Xu C, Zheng MX, Wei Y, Yuan JY. Liquid Crystalline Nanoparticles via Polymerization-Induced Self-Assembly: Morphology Evolution and Function Regulation. Chemistry 2023:e202303586. [PMID: 38079233 DOI: 10.1002/chem.202303586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 01/16/2024]
Abstract
Liquid crystalline nanoparticles (LC NPs) are a kind of polymer NPs with LC mesogens, which can form special anisotropic morphologies due to the influence of LC ordering. Owing to the stimuli-responsiveness of the LC blocks, LC NPs show abundant morphology evolution behaviors in response to external regulation. LC NPs have great application potential in nano-devices, drug delivery, special fibers and other fields. Polymerization-induced self-assembly (PISA) method can synthesize LC NPs at high solid content, reducing the harsh demand for reaction solvent of the LC polymers, being a better choice for large-scale production. In this review, we introduced recent research progress of PISA-LC NPs by dividing them into several parts according to the LC mesogen, and discussed the improvement of experimental conditions and the potential application of these polymers.
Collapse
Affiliation(s)
- Chang Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming-Xin Zheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Itabashi H, Datta S, Tsukuda R, Hollamby MJ, Yagai S. Fine-tuning of the size of supramolecular nanotoroids suppresses the subsequent catenation of nano-[2]catenane. Chem Sci 2023; 14:3270-3276. [PMID: 36970099 PMCID: PMC10034040 DOI: 10.1039/d2sc07063d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The reduction in the inner diameter of the nanotoroids of a π-conjugated barbiturate monomer results in nano-[2]catenanes in a high yield due to enhanced secondary nucleation and subsequent steric suppression of further catenation.
Collapse
Affiliation(s)
- Hiroki Itabashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sougata Datta
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryohei Tsukuda
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Martin J. Hollamby
- Department of Chemistry, School of Chemical and Physical Sciences, Keele University, Keele, Staffordsgire, ST55BG, UK
| | - Shiki Yagai
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
13
|
Nie J, Huang X, Lu G, Winnik MA, Feng C. Living Crystallization-Driven Self-Assembly of Linear and V-Shaped Oligo( p-phenylene ethynylene)-Containing Block Copolymers: Architecture Effect of π-Conjugated Crystalline Segment. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiucheng Nie
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- School of Physical Science & Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, People’s Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- School of Physical Science & Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, People’s Republic of China
| | - Guolin Lu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Mitchell A. Winnik
- Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
14
|
Fu S, Pang A, Guo X, He Y, Song S, Ge J, Li J, Li W, Xiong Y, Wang L, Wang D, Tang BZ. Bioinspired Supramolecular Nanotoroids with Aggregation-Induced Emission Characteristics. ACS NANO 2022; 16:12720-12726. [PMID: 35959972 DOI: 10.1021/acsnano.2c04480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supramolecular toroids have attracted continuous attention because of their fascinating topological structure and important role in biological systems. However, it still remains a great challenge to construct supramolecular functional toroids and clarify the formation mechanism. Herein, we develop a strategy to prepare supramolecular helical fluorescent nanotoroids by cooperative self-assembly of an amino acid and a dendritic amphiphile (AIE-den-1) with aggregation-induced emission characteristics. Mechanistic investigation on the basis of fluorescence and circular dichroism analyses suggests that the toroid formation can be driven by the interactions of AIE-den-1 with amino acid and goes through a topological morphology transformation from nanofibers to left-handed nanotoroids by means of a twist-fused-loop process.
Collapse
Affiliation(s)
- Shuang Fu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Aimin Pang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Youling He
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanliang Song
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinyin Ge
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiangao Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Li
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Yu Xiong
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| |
Collapse
|
15
|
Bhattacharya D, Kleeblatt DC, Statt A, Reinhart WF. Predicting aggregate morphology of sequence-defined macromolecules with recurrent neural networks. SOFT MATTER 2022; 18:5037-5051. [PMID: 35748651 DOI: 10.1039/d2sm00452f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-assembly of dilute sequence-defined macromolecules is a complex phenomenon in which the local arrangement of chemical moieties can lead to the formation of long-range structure. The dependence of this structure on the sequence necessarily implies that a mapping between the two exists, yet it has been difficult to model so far. Predicting the aggregation behavior of these macromolecules is challenging due to the lack of effective order parameters, a vast design space, inherent variability, and high computational costs associated with currently available simulation techniques. Here, we accurately predict the morphology of aggregates self-assembled from sequence-defined macromolecules using supervised machine learning. We find that regression models with implicit representation learning perform significantly better than those based on engineered features such as k-mer counting, and a recurrent-neural-network-based regressor performs the best out of nine model architectures we tested. Furthermore, we demonstrate the high-throughput screening of monomer sequences using the regression model to identify candidates for self-assembly into selected morphologies. Our strategy is shown to successfully identify multiple suitable sequences in every test we performed, so we hope the insights gained here can be extended to other increasingly complex design scenarios in the future, such as the design of sequences under polydispersity and at varying environmental conditions.
Collapse
Affiliation(s)
- Debjyoti Bhattacharya
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Devon C Kleeblatt
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | - Antonia Statt
- Materials Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Wesley F Reinhart
- Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA.
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Han M, Moe K. Light-Responsive Hexagonal Assemblies of Triangular Azo Dyes. Molecules 2022; 27:4380. [PMID: 35889253 PMCID: PMC9317042 DOI: 10.3390/molecules27144380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022] Open
Abstract
The rational design of small building block molecules and understanding their molecular assemblies are of fundamental importance in creating new stimuli-responsive organic architectures with desired shapes and functions. Based on the experimental results of light-induced conformational changes of four types of triangular azo dyes with different terminal functional groups, as well as absorption and fluorescence characteristics associated with their molecular assemblies, we report that aggregation-active emission enhancement (AIEE)-active compound (1) substituted with sterically crowded tert-butyl (t-Bu) groups showed approximately 35% light-induced molecular switching and had a strong tendency to assemble into highly stable hexagonal structures with AIEE characteristics. Their sizes were regulated from nanometer-scale hexagonal rods to micrometer-scale sticks depending on the concentration. This is in contrast to other triangular compounds with bromo (Br) and triphenylamine (TPA) substituents, which exhibited no photoisomerization and tended to form flexible fibrous structures. Moreover, non-contact exposure of the fluorescent hexagonal nanorods to ultraviolet (UV) light led to a dramatic hexagonal-to-amorphous structure transition. The resulting remarkable variations, such as in the contrast of microscopic images and fluorescence characteristics, were confirmed by various microscopic and spectroscopic measurements.
Collapse
Affiliation(s)
- Mina Han
- Department of Chemistry Education, Kongju National University, Gongju 32588, Korea;
| | | |
Collapse
|
17
|
Zheng M, Ye Q, Chen X, Zeng M, Song G, Zhang J, Yuan J. In situ generation and evolution of polymer toroids by liquid crystallization-assisted seeded dispersion polymerization. Chem Commun (Camb) 2022; 58:6922-6925. [PMID: 35635333 DOI: 10.1039/d1cc06709e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An effective method is presented for preparing high solid content azobenzene-containing triblock copolymer toroidal assemblies by liquid crystallization-assisted seeded dispersion polymerization. Vesicles are prepared via polymerization-induced self-assembly (PISA), and used as seeds for further chain extension. By introducing smectic liquid crystalline (LC) ordering into the core-forming block, toroids are formed in situ during the polymerization. The morphological transformation from toroids to barrels is observed under ultraviolet irradiation due to the photo-isomerization of the azobenzene mesogens. This strategy expands the scope of tunable anisotropic morphologies for potential functional nanomaterials based on a LC copolymer by seeded dispersion polymerization.
Collapse
Affiliation(s)
- Mingxin Zheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Qiquan Ye
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Xi Chen
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, P. R. China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Guangjie Song
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
18
|
Xu G, Zhang J, Qi M, Zhang X, Li W, Zhang A. Thermoresponsive dendritic oligoethylene glycols. Phys Chem Chem Phys 2022; 24:11848-11855. [PMID: 35510425 DOI: 10.1039/d2cp01286c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monodispersed molecules of low molar masses showing thermoresponsiveness are appealing both for mechanism investigation of the thermally-modulated dehydration and aggregation on molecular levels and for designing functional intelligent materials. In the present report, thermoresponsive properties of a homologous series of monodispersed dendritic macromolecules carrying three-, four- or six-fold dendritic oligoethylene glycol (OEG) segments were investigated. These dendritic macromolecules carry either methoxyl or ethoxyl terminals, and have different cores (alcohol, methyl ester or methacryloyl) to exhibit different overall hydrophilicity. They show characteristic thermoresponsive properties with sharp phase transitions when suitable structural units are combined. Three structural factors determine their phase transition temperatures, including the cores, branching density and peripheral terminals. Thermally-induced collapse and aggregation are monitored with temperature-varied NMR spectroscopy at the microscale level and optical microscopy at the macroscale level. At elevated temperature, these dendritic macromolecules undergo fast exchange between the dehydrated and the hydrated states. These dendritic macromolecules afford structure-dependent confinement to guest dyes through their multi-valent interactions.
Collapse
Affiliation(s)
- Gang Xu
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Jiaxing Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Mengyuan Qi
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Wen Li
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic & Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| |
Collapse
|
19
|
Liang C, Bi X, Gan K, Wu J, He G, Xue B, Ye Z, Cao Y, Hu B. Short Peptides Derived from a Block Copolymer-like Barnacle Cement Protein Self-Assembled into Diverse Supramolecular Structures. Biomacromolecules 2022; 23:2019-2030. [PMID: 35482604 DOI: 10.1021/acs.biomac.2c00031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides capable of self-assembling into different supramolecular structures have potential applications in a variety of areas. The biomimetic molecular design offers an important avenue to discover novel self-assembling peptides. Despite this, a lot of biomimetic self-assembling peptides have been reported so far; to continually expand the scope of peptide self-assembly, it is necessary to find out more novel self-assembling peptides. Barnacle cp19k, a key underwater adhesive protein, shows special block copolymer-like characteristics and diversified self-assembly properties, providing an ideal template for biomimetic peptide design. In this study, inspired by Balanus albicostatus cp19k (Balcp19k), we rationally designed nine biomimetic peptides (P1-P9) and systematically studied their self-assembly behaviors for the first time. Combining microscale morphology observations and secondary structure analyses, we found that multiple biomimetic peptides derived from the central region and the C-terminus of Balcp19k form distinct supramolecular structures via different self-assembly mechanisms under acidic conditions. Specifically, P9 self-assembles into typical amyloid fibers. P7, which resembles ionic self-complementary peptides by containing nonstrictly alternating hydrophobic and charged amino acids, self-assembles into uniform, discrete nanofibers. P6 with amphipathic features forms twisted nanoribbons. Most interestingly, P4 self-assembles to form helical nanofibers and novel ring-shaped microstructures, showing unique self-assembly behaviors. Apart from their self-assembly properties, these peptides showed good cytocompatibility and demonstrated promising applications in biomedical areas. Our results expanded the repertoire of self-assembling peptides and provided new insights into the structure-function relationship of barnacle cp19k.
Collapse
Affiliation(s)
- Chao Liang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Xiangyun Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kesheng Gan
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Jizhe Wu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Guangxiao He
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Zonghuang Ye
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210093, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210093, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Biru Hu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
20
|
Cai J, Manners I, Qiu H. "Self-Adaptive" Coassembly of Colloidal "Saturn-like" Host-Guest Complexes Enabled by Toroidal Micellar Rubber Bands. J Am Chem Soc 2022; 144:5734-5738. [PMID: 35324193 DOI: 10.1021/jacs.2c01109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The creation of inclusion complexes with "Saturn-like" geometries has attracted increasing attention for supramolecular systems, but expansion of the concept to nanoscale colloidal systems remains a challenge. Here, we report a strategy to assemble toroidal polyisoprene-b-poly(2-vinylpyridine) (PI-b-P2VP) block copolymer micelles with a PI core and a P2VP corona and inorganic (e.g., silica) nanoparticles of variable shape and dimensions into "Saturn-like" constructs with high fidelity and yield. The precise nesting of the nanoparticles between the toroidal building units is realized by virtue of hydrogen bonding and self-adaptive expansion of the flexible toroidal units enabled by a flexible, low Tg PI core. Once the toroidal units are cross-linked, the self-adaptive feature is lost and coassembly yields instead out-of-cavity bound nanoparticles. "Saturn-like" assemblies can also be formed along silica nanosphere-decorated cylindrical micelles or, alternatively, at the hydroxyl-functionalized termini of cylindrical micelles to yield colloidal [3]rotaxanes.
Collapse
Affiliation(s)
- Jiandong Cai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ian Manners
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Sang Y, Liu M. Hierarchical self-assembly into chiral nanostructures. Chem Sci 2022; 13:633-656. [PMID: 35173928 PMCID: PMC8769063 DOI: 10.1039/d1sc03561d] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
One basic principle regulating self-assembly is associated with the asymmetry of constituent building blocks or packing models. Using asymmetry to manipulate molecular-level devices and hierarchical functional materials is a promising topic in materials sciences and supramolecular chemistry. Here, exemplified by recent major achievements in chiral hierarchical self-assembly, we show how chirality may be utilized in the design, construction and evolution of highly ordered and complex chiral nanostructures. We focus on how unique functions can be developed by the exploitation of chiral nanostructures instead of single basic units. Our perspective on the future prospects of chiral nanostructures via the hierarchical self-assembly strategy is also discussed.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
22
|
Solvent- and Light-Sensitive AIEE-Active Azo Dye: From Spherical to 1D and 2D Assemblies. Int J Mol Sci 2022; 23:ijms23020965. [PMID: 35055154 PMCID: PMC8778914 DOI: 10.3390/ijms23020965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Fluorescent molecular assembly systems provide an exciting platform for creating stimuli-responsive nano- and microstructured materials with optical, electronic, and sensing functions. To understand the relationship between (i) the plausible molecular structures preferentially adopted depending on the solvent polarity (such as N,N-dimethylformamide [DMF], tetrahydrofuran [THF], and toluene), (ii) the resulting spectroscopic features, and (iii) self-assembled nano-, micro-, and macrostructures, we chose a sterically crowded triangular azo dye (3Bu) composed of a polar molecular core and three peripheral biphenyl wings. The chromophore changed the solution color from yellow to pink-red depending on the solvent polarity. In a yellow DMF solution, a considerable amount of the twisted azo form could be kept stable with the help of favorable intermolecular interactions with the solvent molecules. By varying the concentration of the DMF solution, the morphology of self-assembled structures was transformed from nanoparticles to micrometer-sized one-dimensional (1D) structures such as sticks and fibers. In a pink-red toluene solution, the periphery of the central ring became more planar. The resulting significant amount of the keto-hydrazone tautomer grew into micro- and millimeter-sized 1D structures. Interestingly, when THF-H2O (1:1) mixtures were stored at a low temperature, elongated fibers were stacked sideways and eventually developed into anisotropic two-dimensional (2D) sheets. Notably, subsequent exposure of visible-light-irradiated sphere samples to solvent vapor resulted in reversible fluorescence off↔on switching accompanied by morphological restoration. These findings suggest that rational selection of organic dyes, solvents, and light is important for developing reusable fluorescent materials.
Collapse
|
23
|
Fan L, Jiang J, Sun Q, Hong K, Cornel EJ, Zhu Y, Du J. Fluorescent homopolypeptide toroids. Polym Chem 2022. [DOI: 10.1039/d1py01691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Toroids are important ring-like nanostructures in living systems; intrinsically luminogenic toroids are promising in bioimaging but it is challenging to synthesize such nanoparticles. Herein, we report a fluorescent toroid that...
Collapse
|
24
|
Liu Y, Cao Y, Zhang X, Lin Y, Li W, Demir B, Searles DJ, Whittaker AK, Zhang A. Thermoresponsive Supramolecular Assemblies from Dendronized Amphiphiles To Form Fluorescent Spheres with Tunable Chirality. ACS NANO 2021; 15:20067-20078. [PMID: 34866390 DOI: 10.1021/acsnano.1c07764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Balance between self-association of structural units and self-repulsion from crowding-induced steric hindrance accounts for the supramolecular assembly of the amphiphilic entities to form ordered structures, and solvation provides a toolbox to conveniently modulate the assemblies through differential interactions to various structural units. Here we report solvation-modulated supramolecular chiral assembly in aqueous solutions of amphiphilic dendronized tetraphenylethylenes (TPEs) with three-folded dendritic oligoethylene glycols (OEGs) through dipeptide Ala-Gly linkage. These dendronized amphiphiles can form supramolecular spheres with enhanced supramolecular chirality, which is tunable and dependent on solvation. These nanosized spherical aggregates exhibit thermoresponsive behavior, and their cloud point temperatures are dependent on mixed solvent of water and THF. The phase transition temperatures increase with water fractions due to water-driven shifting of OEG moieties from interiors of the aggregates to their peripheries. Furthermore, the thermally induced dehydration and collapse of OEG moieties mediate the reversible aggregation and deaggregation between the spheres, imparting tunable aggregation-induced fluorescent emission (AIE) and supramolecular chirality. Both experimental results and molecular dynamic simulations have highlighted that reversible chirality transformations of the amphiphilic dendronized assemblies mediated by solvation through change solvent quality or thermally dehydration are dependent on the balance between interactions of OEG dendrons with TPE moieties and with the solvent molecules.
Collapse
Affiliation(s)
- Yanjun Liu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Yuexin Cao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Yaodong Lin
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| | - Baris Demir
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Debra J Searles
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Mailbox 152, Shanghai 20444, China
| |
Collapse
|
25
|
Bhandari P, Modak R, Bhattacharyya S, Zangrando E, Mukherjee PS. Self-Assembly of Octanuclear Pt II/Pd II Coordination Barrels and Uncommon Structural Isomerization of a Photochromic Guest in Molecular Space. JACS AU 2021; 1:2242-2248. [PMID: 34977895 PMCID: PMC8715494 DOI: 10.1021/jacsau.1c00361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Indexed: 06/03/2023]
Abstract
Two tetragonal molecular barrels TB1 and TB2 were successfully synthesized by coordination-driven self-assembly of a tetrapyridyl donor (L) of the thiazolo[5,4-d]thiazole backbone with cis-blocked 90° Pd(II) and Pt(II) acceptors, respectively. The single-crystal structure analysis of TB1 revealed the formation of a two-face opened tetragonal Pd8 molecular barrel architecture. In contrast, the isostructural Pt(II) barrel (TB2) is water-soluble. The large confined hydrophobic molecular cavity including wide open windows and good water solubility of the barrel TB2 made it a potential molecular container for the encapsulation of guests with different sizes and properties. This has been exploited to encapsulate and stabilize the open form of a photochromic molecule (G2) in water, while the same photochromic molecule exists exclusively in a cyclic zwitterionic form in aqueous medium in the absence of the barrel TB2. This cyclic form is very stable in water and does not go back to its parent open form under common external stimuli. Surprisingly, reverse switching of the cyclic form to a colored hydrophobic open form was also possible instantly in water upon addition of the solid barrel TB2 into an aqueous solution of G2. Such a fast reverse isomerization of an irreversible process in aqueous medium by utilizing host-guest interaction of the barrel TB2 and the guest G2 is interesting. The barrel TB2 was also capable of encapsulating the water-insoluble radical initiator G1 in aqueous medium.
Collapse
Affiliation(s)
- Pallab Bhandari
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ritwik Modak
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Soumalya Bhattacharyya
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Li R, Gong ZL, Zhu Q, Sun MJ, Che Y, Yao J, Zhong YW. A pre-organized monomer-reservoir strategy to prepare multidimensional phosphorescent organoplatinum nanocrystals and suprastructures. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Samperi M, Bdiri B, Sleet CD, Markus R, Mallia AR, Pérez-García L, Amabilino DB. Light-controlled micron-scale molecular motion. Nat Chem 2021; 13:1200-1206. [PMID: 34635814 DOI: 10.1038/s41557-021-00791-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/19/2021] [Indexed: 11/09/2022]
Abstract
The micron-scale movement of biomolecules along supramolecular pathways, mastered by nature, is a remarkable system requiring strong yet reversible interactions between components under the action of a suitable stimulus. Responsive microscopic systems using a variety of stimuli have demonstrated impressive relative molecular motion. However, locating the position of a movable object that travels along self-assembled fibres under an irresistible force has yet to be achieved. Here, we describe a purely supramolecular system where a molecular 'traveller' moves along a 'path' over several microns when irradiated with visible light. Real-time imaging of the motion in the solvated state using total internal reflection fluorescence microscopy shows that anionic porphyrin molecules move along the fibres of a bis-imidazolium gel upon irradiation. Slight solvent changes mean movement and restructuring of the fibres giving microtoroids, indicating control of motion by fibre mechanics with solvent composition. The insight provided here may lead to the development of artificial travellers that can perform catalytic and other functions.
Collapse
Affiliation(s)
- Mario Samperi
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.,School of Chemistry, GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Nottingham, United Kingdom.,Istituto di Tecnologie Avanzate per l'Energia "Nicola Giordano" - CNR-ITAE, Messina, Italy
| | - Bilel Bdiri
- School of Chemistry, GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte D Sleet
- School of Chemistry, GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Robert Markus
- SLIM Imaging Unit, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ajith R Mallia
- School of Chemistry, GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Lluïsa Pérez-García
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.,Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Barcelona, Spain.,Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, Spain
| | - David B Amabilino
- School of Chemistry, GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
28
|
Abstract
Nanopore structures in nature play a crucial role in performing many sophisticated functions such as signal transduction, mass transport, ion channel, and enzyme reaction. Inspired by pore-forming proteins, considerable effort has been made to design self-assembling molecules that are able to form nanostructures with internal pores in aqueous media. These nanostructures offer ample opportunity for applications because their internal pores are able to perform a number of unique functions required for a confined nanospace. However, unlike nanopore assembly in nature, the synthetic nanopore structures are mostly based on a fixed pore that impedes performing adaptable regulation of properties to environmental change. This limitation can be overcome by integration of hydrophilic oligo(ethylene oxide) dendrons into aromatic building blocks for nanopore self-assembly, because the dendritic chains undergo large conformational changes triggered by environmental change. The transition of the oligoether chains triggers the aromatic nanopore assembly to undergo reversible pore deformation through closing, squeezing, and shape change without structural collapse. These switching properties allow the aromatic nanopore structures to perform adaptable, complex functions which are difficult to achieve using a fixed pore assembly.In this Account, we summarize our recent progress in the development of switchable nanopore structures by self-assembly of rigid aromatic amphiphiles grafted by hydrophilic oligo(ethylene oxide) dendrons in aqueous media. We show that combining oligoether chains into aromatic segments generates switchable aromatic nanopore structures in aqueous media such as hollow tubules, toroidal structures, and 2D porous sheets depending on the shape of the aromatic building block. Next, we discuss the chemical principle behind the switching motion of the aromatic nanopore structures triggered by external stimuli. We show that the internal pores of the aromatic nanostructures are able to undergo reversible switching between open-closed or expanded-contracted states triggered by external stimuli such as temperature, pH, and salts. In the case of toroidal structures, closed ring-like aromatic frameworks can be spirally open triggered by heat treatment, which spontaneously initiate helical polymerization. Additionally, we discuss switchable functions carried out by the aromatic nanopores such as driving helicity inversion of DNA, consecutive enzymatic action, reversible actuation of lipid vesicles, and pumping of captured guests out of internal pores. By understanding the underlying chemical principle required for dynamic mechanical motion, aromatic assembly can be exploited more broadly to create emergent nanopore structures with functions as complex as those of biological systems.
Collapse
Affiliation(s)
- Mo Sun
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Myongsoo Lee
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
29
|
Morphologically Diverse Micro- and Macrostructures Created via Solvent Evaporation-Induced Assembly of Fluorescent Spherical Particles in the Presence of Polyethylene Glycol Derivatives. Molecules 2021; 26:molecules26144294. [PMID: 34299568 PMCID: PMC8304015 DOI: 10.3390/molecules26144294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022] Open
Abstract
The creation of fluorescent micro- and macrostructures with the desired morphologies and sizes is of considerable importance due to their intrinsic functions and performance. However, it is still challenging to modulate the morphology of fluorescent organic materials and to obtain insight into the factors governing the morphological evolution. We present a facile bottom-up approach to constructing diverse micro- and macrostructures by connecting fluorescent spherical particles (SPs), which are generated via the spherical assembly of photoisomerizable azobenzene-based propeller-shaped chromophores, only with the help of commercially available polyethylene glycol (PEG) derivatives. Without any extra additives, solvent evaporation created a slow morphological evolution of the SPs from short linear chains (with a length of a few micrometers) to larger, interconnected networks and sheet structures (ranging from tens to >100 µm) at the air–liquid interface. Their morphologies and sizes were significantly dependent on the fraction and length of the PEG. Our experimental results suggest that noncovalent interactions (such as hydrophobic forces and hydrogen bonding) between the amphiphilic PEG chains and the relatively hydrophobic SPs were weak in aqueous solutions, but play a crucial role in creating the morphologically diverse micro- and macrostructures. Moreover, short-term irradiation with visible light caused fast morphological crumpling and fluorescence switching of the obtained structures.
Collapse
|
30
|
Mechanistic insight into morphological transition of Pluronic aggregates in aqueous solution via tuning hydrogen bonding strength. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Globular Aggregates Stemming from the Self-Assembly of an Amphiphilic N-Annulated Perylene Bisimide in Aqueous Media. NANOMATERIALS 2021; 11:nano11061457. [PMID: 34072824 PMCID: PMC8228590 DOI: 10.3390/nano11061457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
Herein, we describe the synthesis of highly emissive amphiphilic N-annulated PBI 1 decorated with oligo ethylene glycol (OEG) side chains. These polar side chains allow the straightforward solubility of 1 in solvents of different polarity such as water, iPrOH, dioxane, or chloroform. Compound 1 self-assembles in aqueous media by π-stacking of the aromatic units and van der Waals interactions, favored by the hydrophobic effect. The hypo- and hypsochromic effect observed in the UV-Vis spectra of 1 in water in comparison to chloroform is diagnostic of H-type aggregation. Solvent denaturation experiments allow deriving the free Gibbs energy for the self-assembly process in aqueous media and the factor m that is indicative of the influence exerted by a good solvent in the stability of the final aggregates. The ability of compound 1 to self-assemble in water yields globular aggregates that have been visualized by TEM imaging.
Collapse
|
32
|
Bäumer N, Kartha KK, Buss S, Maisuls I, Palakkal JP, Strassert CA, Fernández G. Tuning energy landscapes and metal-metal interactions in supramolecular polymers regulated by coordination geometry. Chem Sci 2021; 12:5236-5245. [PMID: 34168776 PMCID: PMC8179630 DOI: 10.1039/d1sc00416f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herein, we exploit coordination geometry as a new tool to regulate the non-covalent interactions, photophysical properties and energy landscape of supramolecular polymers. To this end, we have designed two self-assembled Pt(ii) complexes 1 and 2 that feature an identical aromatic surface, but differ in the coordination and molecular geometry (linear vs. V-shaped) as a result of judicious ligand choice (monodentate pyridine vs. bidentate bipyridine). Even though both complexes form cooperative supramolecular polymers in methylcyclohexane, their supramolecular and photophysical behaviour differ significantly: while the high preorganization of the bipyridine-based complex 1 enables an H-type 1D stacking with short Pt⋯Pt contacts via a two-step consecutive process, the existence of increased steric effects for the pyridyl-based derivative 2 hinders the formation of metal–metal contacts and induces a single aggregation process into large bundles of fibers. Ultimately, this fine control of Pt⋯Pt distances leads to tuneable luminescence—red for 1vs. blue for 2, which highlights the relevance of coordination geometry for the development of functional supramolecular materials. In this article, we exploit coordination geometry as a new tool to control the energy landscape and photophysical properties (red vs. blue luminescence) of supramolecular polymers.![]()
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Stefan Buss
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Germany
| | - Iván Maisuls
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Germany
| | - Jasnamol P Palakkal
- Technische Universität Darmstadt, Department of Materials and Earth Sciences Alarich-Weiss-Straße 2 64287 Darmstadt Germany
| | - Cristian A Strassert
- CeNTech, CiMIC, SoN, Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
33
|
Orvay F, Cerdá J, Rotger C, Ortí E, Aragó J, Costa A, Soberats B. Influence of the Z/E Isomerism on the Pathway Complexity of a Squaramide-Based Macrocycle. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006133. [PMID: 33448095 DOI: 10.1002/smll.202006133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Indexed: 05/25/2023]
Abstract
The rising interest on pathway complexity in supramolecular polymerization has prompted the finding of novel monomer designs able to stabilize kinetically trapped species and generate supramolecular polymorphs. In the present work, the exploitation of the Z/E (geometrical) isomerism of squaramide (SQ) units to produce various self-assembled isoforms and complex supramolecular polymerization pathways in methylcyclohexane/CHCl3 mixtures is reported for the first time. This is achieved by using a new bissquaramidic macrocycle (MSq) that self-assembles into two markedly different thermodynamic aggregates, AggA (discrete cyclic structures) and AggB (fibrillar structures), depending on the solvent composition and concentration. Remarkably, UV-vis, 1 H NMR, and FT-IR experiments together with quantum-chemical calculations indicate that these two distinct aggregates are formed via two different hydrogen bonding patterns (side-to-side in AggA and head-to-tail in AggB) due to different conformations in the SQ units (Z,E in AggA and Z,Z in AggB). The ability of MSq to supramolecularly polymerize into two distinct aggregates is utilized to induce the kinetic-to-thermodynamic transformation from AggA to AggB, which occurs via an on-pathway mechanism. It is believed that this system provides new insights for the design of potential supramolecular polymorphic materials by using squaramide units.
Collapse
Affiliation(s)
- Francisca Orvay
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Jesús Cerdá
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, 46980, Spain
| | - Carmen Rotger
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Enrique Ortí
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, 46980, Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular, Universidad de Valencia, Paterna, 46980, Spain
| | - Antonio Costa
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122, Spain
| | - Bartolome Soberats
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa, Km. 7.5, Palma de Mallorca, 07122, Spain
| |
Collapse
|
34
|
Yin G, Kandapal S, Liu C, Wang H, Huang J, Jiang S, Ji T, Yan Y, Khalife S, Zhou R, Ye L, Xu B, Yang H, Nieh M, Li X. Metallo‐Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guang‐Qiang Yin
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Sneha Kandapal
- Single Molecule Study Laboratory College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Chung‐Hao Liu
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT 06269 USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Jianxiang Huang
- Institute of Quantitative Biology Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shu‐Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Yu Yan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Sandra Khalife
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Ruhong Zhou
- Institute of Quantitative Biology Zhejiang University Hangzhou Zhejiang 310027 China
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology University of South Florida Tampa FL 33620 USA
| | - Bingqian Xu
- Single Molecule Study Laboratory College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Mu‐Ping Nieh
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Material Science University of Connecticut Storrs CT 06269 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| |
Collapse
|
35
|
CO2 and photo-controlled reversible conversion of supramolecular assemblies based on water soluble pillar[5]arene and coumarin-containing guest. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Abstract
2-D Sheets from macrocycle assembly undergoes reversible lengthwise division in response to temperature change.
Collapse
Affiliation(s)
- Yanqiu Wang
- College of Materials Science and Engineering
- Changchun University of Science and Technology
- Changchun
- China
- Department of Chemistry
| | | | - Myongsoo Lee
- Department of Chemistry
- Fudan University
- Shanghai
- China
| |
Collapse
|
37
|
Yu J, Qi D, Li J. Design, synthesis and applications of responsive macrocycles. Commun Chem 2020; 3:189. [PMID: 36703444 PMCID: PMC9814784 DOI: 10.1038/s42004-020-00438-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023] Open
Abstract
Inspired by the lock and key principle, the development of supramolecular macrocyclic chemistry has promoted the prosperous growth of host-guest chemistry. The updated induced-fit and conformation selection model spurred the emerging research on responsive macrocycles (RMs). This review introduces RMs, covering their design, synthesis and applications. It gives readers insight into the dynamic control of macrocyclic molecules and the exploration of materials with desired functions.
Collapse
Affiliation(s)
- Jingjing Yu
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Dawei Qi
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland
| | - Jianwei Li
- grid.1374.10000 0001 2097 1371MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520 Turku, Finland ,grid.428986.90000 0001 0373 6302Hainan Provincial Key Lab of Fine Chem, Key laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan University, Haikou, 570228 China
| |
Collapse
|
38
|
Jeevan AK, Krishnan SB, Gopidas KR. Structural Deformation to
β
‐Cyclodextrin Due to Strong π‐Stacking in the Self‐Assembly of Inclusion Complex. ChemistrySelect 2020. [DOI: 10.1002/slct.202004488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athira K. Jeevan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| | - Sumesh B. Krishnan
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| | - Karical R. Gopidas
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad - 200 002 India
| |
Collapse
|
39
|
Wang Y, Li Z, Shmidov Y, Carrazzone RJ, Bitton R, Matson JB. Crescent-Shaped Supramolecular Tetrapeptide Nanostructures. J Am Chem Soc 2020; 142:20058-20065. [PMID: 33186019 PMCID: PMC7702297 DOI: 10.1021/jacs.0c09399] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Self-assembly of amphiphilic peptide-based building blocks gives rise to a plethora of interesting nanostructures such as ribbons, fibers, and tubes. However, it remains a great challenge to employ peptide self-assembly to directly produce nanostructures with lower symmetry than these highly symmetric motifs. We report here our discovery that persistent and regular crescent nanostructures with a diameter of 28 ± 3 nm formed from a series of tetrapeptides with the general structure AdKSKSEX (Ad = adamantyl group, KS = lysine residue functionalized with an S-aroylthiooxime (SATO) group, E = glutamic acid residue, and X = variable amino acid residue). In the presence of cysteine, the biological signaling gas hydrogen sulfide (H2S) was released from the SATO units of the crescent nanostructures, termed peptide-H2S donor conjugates (PHDCs), reducing levels of reactive oxygen species (ROS) in macrophage cells. Additional in vitro studies showed that the crescent nanostructures alleviated cytotoxicity induced by phorbol 12-myristate-13-acetate more effectively than common H2S donors and a PHDC of a similar chemical structure, AdKSKSE, that formed short nanoworms instead of nanocrescents. Cell internalization studies indicated that nanocrescent-forming PHDCs were more effective in reducing ROS levels in macrophages because they entered into and remained in cells better than nanoworms, highlighting how nanostructure morphology can affect bioactivity in drug delivery.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zhao Li
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yulia Shmidov
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Ryan J. Carrazzone
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ronit Bitton
- Department of Chemical Engineering and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
40
|
Abstract
Different from molecular level topology, the development of supramolecular topology has been limited due to a lack of reliable synthetic methods. Here we describe a supramolecular strategy of accessing Möbius strip, a fascinating topological object featured with only a single edge and single side. Through bending and cyclization of twisted nanofibers self-assembled from chiral glutamate amphiphiles, supramolecular nano-toroids with various twist numbers were obtained. Electron microscopic techniques could clearly identify the formation of Möbius strips when twist numbers on the toroidal fibers are odd ones. Spectroscopic and morphological analysis indicates that the helicity of the Möbius strips and nano-toroids stems from the molecular chirality of glutamate molecules. Therefore, M- and P-helical Möbius strips could be formed from L- and D-amphiphiles, respectively. Our experimental results and theoretical simulations may advance the prospect of creating chiral topologically complex structures via supramolecular approach.
Collapse
|
41
|
Yin GQ, Kandapal S, Liu CH, Wang H, Huang J, Jiang ST, Ji T, Yan Y, Khalife S, Zhou R, Ye L, Xu B, Yang HB, Nieh MP, Li X. Metallo-Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angew Chem Int Ed Engl 2020; 60:1281-1289. [PMID: 33009693 DOI: 10.1002/anie.202010696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Indexed: 11/08/2022]
Abstract
In this study, we established a feasible strategy to construct a new type of metallo-polymer with helicoidal structure through the combination of covalent polymerization and intramolecular coordination-driven self-assembly. In the design, a tetratopic monomer (M) was prepared with two terminal alkynes in the outer rim for polymerization, and two terpyridines (TPYs) in the inner rim for subsequent folding by selective intramolecular coordination. Then, the linear covalent polymer (P) was synthesized by polymerization of M via Glaser-Hay homocoupling reaction. Finally, intramolecular coordination interactions between TPYs and Zn(II) folded the backbone of P into a right- or left-handed metallo-helicoid (H) with double rims. Owing to multiple positive charges on the inner rim of helicoid, double-stranded DNA molecules (dsDNA) could interact with H through electrostatic interactions. Remarkably, dsDNA allowed exclusive formation of H with right handedness by means of chiral induction.
Collapse
Affiliation(s)
- Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Chung-Hao Liu
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jianxiang Huang
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shu-Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Yu Yan
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Sandra Khalife
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.,Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
42
|
Chakraborty S, Khamrui R, Ghosh S. Redox responsive activity regulation in exceptionally stable supramolecular assembly and co-assembly of a protein. Chem Sci 2020; 12:1101-1108. [PMID: 34163877 PMCID: PMC8179030 DOI: 10.1039/d0sc05312k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/14/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular assembly of biomolecules/macromolecules stems from the desire to mimic complex biological structures and functions of living organisms. While DNA nanotechnology is already in an advanced stage, protein assembly is still in its infancy as it is a significantly difficult task due to their large molecular weight, conformational complexity and structural instability towards variation in temperature, pH or ionic strength. This article reports highly stable redox-responsive supramolecular assembly of a protein Bovine serum albumin (BSA) which is functionalized with a supramolecular structure directing unit (SSDU). The SSDU consists of a benzamide functionalized naphthalene-diimide (NDI) chromophore which is attached with the protein by a bio-reducible disulfide linker. The SSDU attached protein (NDI-BSA) exhibits spontaneous supramolecular assembly in water by off-set π-stacking among the NDI chromophores, leading to the formation of spherical nanoparticles (diameter: 150-200 nm). The same SSDU when connected with a small hydrophilic wedge (NDI-1) instead of the large globular protein, exhibits a different π-stacking mode with relatively less longitudinal displacement which results in a fibrillar network and hydrogelation. Supramolecular co-assembly of NDI-BSA and NDI-1 (3 : 7) produces similar π-stacking and an entangled 1D morphology. Both the spherical assembly of NDI-BSA or the fibrillar co-assembly of NDI-BSA + NDI-1 (3 : 7) provide sufficient thermal stability to the protein as its thermal denaturation could be completely surpassed while the secondary structure remained intact. However, the esterase like activity of the protein reduced significantly as a result of such supramolecular assembly indicating limited access by the substrate to the active site of the enzyme located in the confined environment. In the presence of glutathione (GSH), a biologically important tri-peptide, due to the cleavage of the disulfide bond, the protein became free and was released, resulting in fully regaining its enzymatic activity. Such supramolecular assembly provided excellent protection to the protein against enzymatic hydrolysis as the relative hydrolysis was estimated to be <30% for the co-assembled protein with respect to the free protein under identical conditions. Similar to bioactivity, the enzymatic hydrolysis also became prominent after GSH-treatment, confirming that the lack of hydrolysis in the supramolecularly assembled state is indeed related to the confinement of the protein in the nanostructure assembly.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| |
Collapse
|
43
|
Parshad B, Prasad S, Bhatia S, Mittal A, Pan Y, Mishra PK, Sharma SK, Fruk L. Non-ionic small amphiphile based nanostructures for biomedical applications. RSC Adv 2020; 10:42098-42115. [PMID: 35516774 PMCID: PMC9058284 DOI: 10.1039/d0ra08092f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of non-ionic amphiphilic architectures into nanostructures with defined size, shape and morphology has garnered substantial momentum in the recent years due to their extensive applications in biomedicine. The manifestation of a wide range of morphologies such as micelles, vesicles, fibers, tubes, and toroids is thought to be related to the structure of amphiphilic architectures, in particular, the choice of the hydrophilic and hydrophobic parts. In this review, we look at different types of non-ionic small amphiphilic architectures and the factors that influence their self-assembly into various nanostructures in aqueous medium. In particular, we focus on the explored structural parameters that guide the formation of various nanostructures, and the ways these structures can be used in applications ranging from drug delivery to cell imaging.
Collapse
Affiliation(s)
- Badri Parshad
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge CB3 0AS UK
| | - Suchita Prasad
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Sumati Bhatia
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Ayushi Mittal
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Yuanwei Pan
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | | | - Sunil K Sharma
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge CB3 0AS UK
| |
Collapse
|
44
|
Krishnan SB, Gopidas KR. Generation of Long-Lived Photoinduced Charge Separation in a Supramolecular Toroidal Assembly. J Phys Chem B 2020; 124:9546-9555. [PMID: 32897708 DOI: 10.1021/acs.jpcb.0c05410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Efficiencies of artificial photosynthetic and photocatalytic systems depend on their ability to generate long-lived charge-separated (CS) states in photoinduced electron transfer (PET) reactions. PET, in most cases, is followed by an ultrafast back electron transfer, which severely reduces lifetime and quantum yield of CS states. Generation of a long-lived CS state is an important goal in the study of PET reactions. Herein, we report that this goal is achieved using a hierarchically self-assembled anthracene-methyl viologen donor-acceptor system. Anthracene linked to two β-cyclodextrin molecules (CD-AN-CD) and methyl viologen linked to two adamantane units (AD-MV2+-AD) form an inclusion complex in water, which further self-assembled into well-defined toroidal nanostructures. The fluorescence of anthracene is highly quenched in the self-assembled system because of PET from anthracene to methyl viologen. Irradiation of the aqueous toroidal solution led to formation of a long-lived CS state. Rational mechanisms for the formation of the toroidal nanostructures and long-lived photoinduced charge separation are presented in the paper.
Collapse
Affiliation(s)
- Sumesh B Krishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Karical R Gopidas
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
45
|
Fu S, Su X, Li M, Song S, Wang L, Wang D, Tang BZ. Controllable and Diversiform Topological Morphologies of Self-Assembling Supra-Amphiphiles with Aggregation-Induced Emission Characteristics for Mimicking Light-Harvesting Antenna. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001909. [PMID: 33101876 PMCID: PMC7578885 DOI: 10.1002/advs.202001909] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Indexed: 06/01/2023]
Abstract
Controllable construction of diversiform topological morphologies through supramolecular self-assembly on the basis of single building block is of vital importance, but still remains a big challenge. Herein, a bola-type supra-amphiphile, namely DAdDMA@2β-CD, is rationally designed and successfully prepared by typical host-guest binding β-cyclodextrin units with an aggregation-induced emission (AIE)-active scaffold DAdDMA. Self-assembling investigation reveals that several morphologies of self-assembled DAdDMA@2β-CD including leaf-like lamellar structure, nanoribbons, vesicles, nanofibers, helical nanofibers, and toroids, can be straightforwardly fabricated by simply manipulating the self-assembling solvent proportioning and/or temperature. To the best of knowledge, this presented protocol probably holds the most types of self-assembling morphology alterations using a single entity. Moreover, the developed leaf-like lamellar structure performs well in mimicking the light-harvesting antenna system by incorporating with a Förster resonance energy transfer acceptor, providing up to 94.2% of energy transfer efficiency.
Collapse
Affiliation(s)
- Shuang Fu
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongChina
| | - Xiang Su
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Meng Li
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Shanliang Song
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Lei Wang
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
| | - Dong Wang
- Centre for AIE ResearchShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsCollege of Material Science and EngineeringShenzhen UniversityShenzhen518061P. R. China
| | - Ben Zhong Tang
- Department of ChemistryHong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong KongChina
| |
Collapse
|
46
|
Dünnebacke T, Kartha KK, Wiest JM, Albuquerque RQ, Fernández G. Solvent-controlled E/ Z isomerization vs. [2 + 2] photocycloaddition mediated by supramolecular polymerization. Chem Sci 2020; 11:10405-10413. [PMID: 34094301 PMCID: PMC8162386 DOI: 10.1039/d0sc03442h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 11/21/2022] Open
Abstract
Control over the photochemical outcome of photochromic molecules in solution represents a major challenge, as photoexcitation often leads to multiple competing photochemical and/or supramolecular pathways resulting in complex product mixtures. Herein, we demonstrate precise and efficient control over the photochemical behaviour of cyanostilbenes in solution using a straightforward solvent-controlled approach based on supramolecular polymerization. To this end, we designed a π-extended cyanostilbene bolaamphiphile that exhibits tuneable solvent-dependent photochemical behaviour. Photoirradiation of the system in a monomeric state (in organic solvents) exclusively leads to a highly reversible and efficient E/Z photoisomerization, whereas a nearly quantitative [2 + 2] photocycloaddition into a single cyclobutane (anti head-to-tail) occurs in aqueous solutions. These results can be rationalized by a highly regular and preorganized antiparallel J-type arrangement of the cyanostilbene units that is driven by aqueous supramolecular polymerization. The presented concept demonstrates a novel approach towards solvent-selective and environmentally friendly photochemical transformations, which is expected to broaden the scope of supramolecular polymerization.
Collapse
Affiliation(s)
- Torsten Dünnebacke
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| | - Kalathil K Kartha
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| | - Johannes M Wiest
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| | - Rodrigo Q Albuquerque
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische-Wilhelms Universität Münster Corrensstraße, 40 48149 Münster Germany
| |
Collapse
|
47
|
Sun H, Dong L, Kim Y, Lee M. Supramolecular Tubule from Seesaw Shaped Amphiphile and Its Hierarchical Evolution into Sheet. Chem Asian J 2020; 15:2470-2474. [PMID: 32614501 DOI: 10.1002/asia.202000654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Although supramolecular one-dimensional (1D) and two-dimensional (2D) structures with various unique properties have been extensively studied, the reversible switching between tubules and sheets via lateral association remains challenging. Here, we report the unique structures of a supramolecular tubular bamboo culm in which the hollow-tubular interior is separated, at intervals, by nodes per 1.3 nm. Interestingly, the discrete tubules are able to hierarchically assemble into a flat sheet in response to an aromatic guest. The addition of trans-azobenzene, as a guest, enables the tubules to form a hierarchical sheet assembly via the lateral interaction. The hierarchical sheet structures are disassembled into their constituent tubules upon UV irradiation due to trans-cis isomerization. The recovery from cis-azobenzene to trans-form induces repeatedly the hierarchical sheet assembly, indicative of a reversible switching behavior between tubules and sheets triggered by an external stimulus.
Collapse
Affiliation(s)
- Haonan Sun
- State Key Lab for Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Longlong Dong
- State Key Lab for Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 (Republic of, Korea
| | - Myongsoo Lee
- State Key Lab for Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
48
|
Xu G, Liu K, Xu B, Yao Y, Li W, Yan J, Zhang A. Confined Microenvironments from Thermoresponsive Dendronized Polymers. Macromol Rapid Commun 2020; 41:e2000325. [PMID: 32639094 DOI: 10.1002/marc.202000325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Confined microenvironments in biomacromolecules arising from molecular crowding account for their well-defined biofunctions and bioactivities. To mimick this, synthetic polymers to form confined structures or microenvironments are of key scientific value, which have received significant attention recently. To create synthetic confined microenvironments, molecular crowding effects and topological cooperative effects have been applied successfully, and the key is balance between self-association of structural units and self-repulsion from crowding-induced steric hindrance. In this article, formation of confined microenvironments from stimuli-responsive dendronized polymers carrying densely dendritic oligoethylene glycols (OEGs) moieties in their pendants is presented. These wormlike thick macromolecules exhibit characteristic thermoresponsive properties, which can provide constrained microenvironments to encapsulate effectively guest molecules including dyes, proteins, or nucleic acids to prevent their protonation or biodegradation. This efficient shielding effect can also mediate chemical reactions in aqueous phase, and even enhance chirality transferring efficiency. All of these can be switched off simply through the thermally-induced dehydration and collapse of OEG dendrons due to the amphiphilicity of OEG chains. Furthermore, the switchable encapsulation and release of guests can be greatly enhanced when these dendronized polymers are used as major constituents for fabricating bulk hydrogels or nanogels, which provide a higher-level confinement.
Collapse
Affiliation(s)
- Gang Xu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Kun Liu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Biyi Xu
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yi Yao
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wen Li
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Afang Zhang
- International Joint Laboratory of Smart and Biomimetic Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| |
Collapse
|
49
|
Xu P, Gao L, Cai C, Lin J, Wang L, Tian X. Helical Toroids Self‐Assembled from a Binary System of Polypeptide Homopolymer and its Block Copolymer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Pengfei Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
50
|
Xu P, Gao L, Cai C, Lin J, Wang L, Tian X. Helical Toroids Self‐Assembled from a Binary System of Polypeptide Homopolymer and its Block Copolymer. Angew Chem Int Ed Engl 2020; 59:14281-14285. [DOI: 10.1002/anie.202004102] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Pengfei Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|