1
|
Chang HP, Shah DK. A translational physiologically-based pharmacokinetic model for MMAE-based antibody-drug conjugates. J Pharmacokinet Pharmacodyn 2025; 52:27. [PMID: 40325253 PMCID: PMC12053227 DOI: 10.1007/s10928-025-09978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The objective of this work was to develop a translational physiologically-based pharmacokinetic (PBPK) model for antibody-drug conjugates (ADCs), using monomethyl auristatin E (MMAE)-based ADCs. A previously established dual-structured whole-body PBPK model for MMAE-based ADCs in mice was scaled to higher species (i.e., rats and monkeys) and humans. Species-specific physiological and drug-related parameters for the payload and antibody backbone of ADCs were obtained from literature. Parameters associated with payload release, including the deconjugation rate, were optimized using an allometric scaling approach, and antibody degradation rate was adjusted to account for the enhanced clearance of ADCs due to conjugation across different species. The translational PBPK model predicted the PK profiles for various ADC analytes in rats, monkeys, and humans reasonably well. The optimized PBPK model suggested decreased rate of deconjugation for ADCs in higher species, whereas the effects of payload conjugation on ADC clearance were more pronounced in higher species and humans. The translational PBPK model presented here may enable prediction of different ADC analyte PK at the site-of-action, offering valuable insights for the development of exposure-response relationships for ADCs. The modeling framework presented here can also serve as a platform for the development of PBPK model for other ADCs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
2
|
Ma F, Sanchez AC, Song J, Kofman E, Tomazela D, Fayadat-Dilman L, Hettiarachchi K, Al-Sayah MA. Novel Native Reversed-Phase Liquid Chromatography (nRPLC)/MS for Antibody-Drug Conjugates (ADCs) Characterization and Drug-Antibody Ratio (DAR) Assessment. Anal Chem 2025; 97:7756-7764. [PMID: 40163782 DOI: 10.1021/acs.analchem.4c05885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Characterization of drug-antibody ratio (DAR) species in antibody-drug conjugates (ADCs) is crucial for assessing the developability/manufacturability and downstream development of drug candidates. Although hydrophobic interaction chromatography (HIC) is the gold standard for DAR analysis, elucidating DAR species within each HIC peak has historically been challenging. This is due to the nonvolatility and high ionic strength of conventional buffer systems, which necessitate labor-intensive offline fractionation, followed by MS analysis. To address these challenges, an innovative alternative strategy has been developed that directly couples native reversed-phase liquid chromatography (nRPLC) to high-resolution Orbitrap MS for online native MS analysis (nRPLC-MS). In collaboration with Phenomenex, two types of columns, each with a different hydrophobicity, were developed, allowing for elution with low concentration of MS-friendly salt and organic buffer. LC and MS parameters were optimized to enhance the detection of intact DAR species under high flow rate conditions. To demonstrate the feasibility of the platform for characterizing different types of ADCs, both interchain-linked (heterogeneous DAR of 0 to 8) and site-specific ADCs were evaluated. The method enables the nondenatured separation and simultaneous characterization of different DAR species, and strong correlation was observed between this approach and analysis by HIC. This integrated strategy allows unbiased characterization of DAR species without postcolumn flow splitting or peak fractionation. Furthermore, comparisons with two commonly used methods (native SEC-MS and RPLC-MS) have shown that superior separation in terms of selectivity and resolution is achieved with the nRPLC method. Notably, unconjugated antibody (DAR0) was successfully retained with a low-ionic-strength salt using this method. Moreover, the method facilitated the chromatographic separation of positional isomers of DAR4 species with different conjugation linkages, which was not achievable with traditional HIC. As a result, this method holds great promise for high-throughput screening and characterization of ADCs across conjugation methods and payload classes.
Collapse
Affiliation(s)
- Fengfei Ma
- Analytical Research and Development, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - A Carl Sanchez
- R&D Department, Phenomenex Inc., Torrance, California 90501, United States
| | - James Song
- R&D Department, Phenomenex Inc., Torrance, California 90501, United States
| | - Esther Kofman
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Daniela Tomazela
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Laurence Fayadat-Dilman
- Protein Sciences, Discovery Biologics, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Kanaka Hettiarachchi
- Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Mohammad Ahmed Al-Sayah
- Analytical Research and Development, Merck & Co., Inc., South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Krass M, Kolster M, Valenzuela JI, Moldenhauer L, Kagelmacher M, Niesler N, Weng A, Zerial M, Nagel G, Fuchs H. Recombinant Expression of a Ready-to-Use EGF Variant Equipped With a Single Conjugation Site for Click-Chemistry. Eng Life Sci 2025; 25:e70015. [PMID: 40104837 PMCID: PMC11913717 DOI: 10.1002/elsc.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
The epidermal growth factor (EGF) receptor is commonly targeted in cancer therapy because it is overexpressed in many malignant cells. However, a general problem is to couple the targeting moieties and the drug molecules in a way that results in a homogeneous product. Here, we overcome this issue by engineering a variant of EGF with a single conjugation site for coupling virtually any payload. The recombinant EGF variant K-EGFRR was expressed in E. coli Rosetta with a 4-6 mg/L yield. To confirm the accessibility of the introduced functional group, the ligand was equipped with a sulfo-cyanine dye with a loading of 0.65 dye per ligand, which enables tracking in vitro. The kinetics and affinity of ligand-receptor interaction were evaluated by enzyme-linked immunosorbent assay and surface plasmon resonance. The affinity of K-EGFRR was slightly higher when compared to the wild-type EGF (K D: 5.9 vs. 7.3 nM). Moreover, the ligand-receptor interaction and uptake in a cellular context were evaluated by flow cytometry and quantitative high-content imaging. Importantly, by attaching heterobifunctional polyethylene glycol linkers, we allowed orthogonal click-conjugation of the ligand to any payload of choice, making K-EGFRR an ideal candidate for targeted drug delivery.
Collapse
Affiliation(s)
- Melanie Krass
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| | - Meike Kolster
- Institut für Pharmazie Freie Universität Berlin Berlin Germany
| | | | - Lena Moldenhauer
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| | - Marten Kagelmacher
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
- Institut für Chemie und Biochemie Freie Universität Berlin Berlin Germany
| | - Nicole Niesler
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| | - Alexander Weng
- Institut für Pharmazie Freie Universität Berlin Berlin Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
| | - Gregor Nagel
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| |
Collapse
|
4
|
Hansen AH, Andersen KIH, Xin L, Krigslund O, Behrendt N, Engelholm LH, Bang-Bertelsen CH, Schoffelen S, Qvortrup K. A HER2 Specific Nanobody-Drug Conjugate: Site-Selective Bioconjugation and In Vitro Evaluation in Breast Cancer Models. Molecules 2025; 30:391. [PMID: 39860260 PMCID: PMC11768052 DOI: 10.3390/molecules30020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
A human epidermal growth factor receptor 2 (HER2)-specific nanobody called 2Rs15d, containing a His3LysHis6 segment at the C-terminus, was recombinantly produced. Subsequent site-selective acylation on the C-terminally activated lysine residue allowed installation of the cytotoxin monomethyl auristatin E-functionalized cathepsin B-sensitive payload to provide a highly homogenous nanobody-drug conjugate (NBC), which demonstrated high potency and selectivity for HER2-positive breast cancer models.
Collapse
Affiliation(s)
- Anders H. Hansen
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark;
| | - Kasper I. H. Andersen
- National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark (C.H.B.-B.)
| | - Li Xin
- Department of Health Technology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Oliver Krigslund
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark (N.B.); (L.H.E.)
| | - Niels Behrendt
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark (N.B.); (L.H.E.)
| | - Lars H. Engelholm
- Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark (N.B.); (L.H.E.)
| | - Claus H. Bang-Bertelsen
- National Food Institute, Technical University of Denmark, 2800 Kgs Lyngby, Denmark (C.H.B.-B.)
| | - Sanne Schoffelen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark;
| |
Collapse
|
5
|
Tedeschini T, Campara B, Grigoletto A, Zanotto I, Cannella L, Gabbia D, Matsuno Y, Suzuki A, Yoshioka H, Armirotti A, De Martin S, Pasut G. Optimization of a pendant-shaped PEGylated linker for antibody-drug conjugates. J Control Release 2024; 375:74-89. [PMID: 39216599 DOI: 10.1016/j.jconrel.2024.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In this work, we conceived and developed antibody-drug conjugates (ADCs) that could efficiently release the drug after enzymatic cleavage of the linker moiety by tumoral proteases. The antibody-drug linkers we used are the result of a rational optimization of a previously reported PEGylated linker, PUREBRIGHT® MA-P12-PS, which showed excellent drug loading capacities but lacked an inbuilt drug discharge mechanism, thus limiting the potency of the resulting ADCs. To address this limitation, we chose to incorporate a protease-sensitive trigger into the linker to favor the release of a "PEGless" drug inside the tumor cells and, therefore, obtain potent ADCs. Currently, most marketed ADCs are based on the Val-Cit dipeptide followed by a self-immolative spacer for releasing the drug in its unmodified form. Here, we selected two untraditional peptide sequences, a Phe-Gly dipeptide and a Val-Ala-Gly tripeptide and placed one or the other in between the drug on one side (N-terminus) and the rest of the linker, including the PEG moiety, on the other side (C-terminus), without a self-immolative group. We found that both linkers responded to cathepsin B, a reference lysosomal enzyme, and liberated a PEG-free drug catabolite, as desired. We then used the two linkers to generate ADCs based on trastuzumab (a HER2-targeting antibody) and DM1 (a microtubule-targeted cytotoxic agent) with an average drug-to-antibody ratio (DAR) of 4 or 8. The ADCs showed restored cytotoxicity in vitro, which was proportional to the DM1 loading and generally higher for the ADCs bearing Val-Ala-Gly in their structure. In an ovarian cancer mouse model, the DAR 8 ADC based on Val-Ala-Gly behaved better than Kadcyla® (an approved ADC of DAR 3.5 used as control throughout this study), leading to a higher tumor volume reduction and more prolonged median survival. Taken together, our results depict a successful linker optimization process and encourage the application of the Val-Ala-Gly tripeptide as an alternative to other existing protease-sensitive triggers for ADCs.
Collapse
Affiliation(s)
- T Tedeschini
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy.
| | - B Campara
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - A Grigoletto
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - I Zanotto
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - L Cannella
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - D Gabbia
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - Y Matsuno
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - A Suzuki
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - H Yoshioka
- NOF CORPORATION, Life Science Research Laboratory, 3-3 Chidori-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0865, Japan
| | - A Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - S De Martin
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy
| | - G Pasut
- University of Padova, Dept. Pharmaceutical and Pharmacological Sciences, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
6
|
Moore EJ, Rice M, Roy G, Zhang W, Marelli M. Emerging conjugation strategies and protein engineering technologies aim to improve ADCs in the fight against cancer. Xenobiotica 2024; 54:469-491. [PMID: 39329289 DOI: 10.1080/00498254.2024.2339993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 09/28/2024]
Abstract
Antibody drug conjugates are an exciting therapeutic modality that combines the targeting specificity of antibodies with potent cytotoxins to selectively kill cancer cells. The targeting component improves efficacy and protects non-target cells from the harmful effects of the payload. To date 15 ADCs have been approved by regulatory agencies for commercial use and shown to be valuable tools in the treatment of cancer.The assembly of an ADC requires the chemical ligation of a linker-payload to an antibody. Conventional conjugation methods targeting accessible lysines and cysteines have produced all the ADCs currently on the market. While successful, technologies aiming to improve the homogeneity and stability of ADCs are being developed and tested.Here we provide a review of developing methods for ADC construction. These include enzymatic methods, oligosaccharide remodelling, and technologies using genetic code expansion techniques. The virtues and limitations of each technology are discussed.Emerging conjugation technologies are being applied to produce new formats of ADCs with enhanced functionality including bispecific ADCs, dual-payload ADCs, and nanoparticles for targeted drug delivery. The benefits of these novel formats are highlighted.
Collapse
|
7
|
Chazeau E, Fabre C, Privat M, Godard A, Racoeur C, Bodio E, Busser B, Wegner KD, Sancey L, Paul C, Goze C. Comparison of the In Vitro and In Vivo Behavior of a Series of NIR-II-Emitting Aza-BODIPYs Containing Different Water-Solubilizing Groups and Their Trastuzumab Antibody Conjugates. J Med Chem 2024; 67:3679-3691. [PMID: 38393818 DOI: 10.1021/acs.jmedchem.3c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent.
Collapse
Affiliation(s)
- Elisa Chazeau
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, Paris 75000, France
- LIIC, EA7269, Université de Bourgogne, Dijon 21000, France
| | - Christol Fabre
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble 38000, France
- Grenoble Alpes University Hospital (CHUGA), Grenoble 38043, France
| | - Malorie Privat
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
| | - Amélie Godard
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
| | - Cindy Racoeur
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, Paris 75000, France
- LIIC, EA7269, Université de Bourgogne, Dijon 21000, France
| | - Ewen Bodio
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
| | - Benoit Busser
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble 38000, France
- Grenoble Alpes University Hospital (CHUGA), Grenoble 38043, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - K David Wegner
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Lucie Sancey
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble 38000, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, Paris 75000, France
- LIIC, EA7269, Université de Bourgogne, Dijon 21000, France
| | - Christine Goze
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
| |
Collapse
|
8
|
Fang ZX, Chen WJ, Wu Z, Hou YY, Lan YZ, Wu HT, Liu J. Inflammatory response in gastrointestinal cancers: Overview of six transmembrane epithelial antigens of the prostate in pathophysiology and clinical implications. World J Clin Oncol 2024; 15:9-22. [PMID: 38292664 PMCID: PMC10823946 DOI: 10.5306/wjco.v15.i1.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/24/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Chronic inflammation is known to increase the risk of gastrointestinal cancers (GICs), the common solid tumors worldwide. Precancerous lesions, such as chronic atrophic inflammation and ulcers, are related to inflammatory responses in vivo and likely to occur in hyperplasia and tumorigenesis. Unfortunately, due to the lack of effective therapeutic targets, the prognosis of patients with GICs is still unsatisfactory. Interestingly, it is found that six transmembrane epithelial antigens of the prostate (STEAPs), a group of metal reductases, are significantly associated with the progression of malignancies, playing a crucial role in systemic metabolic homeostasis and inflammatory responses. The structure and functions of STEAPs suggest that they are closely related to intracellular oxidative stress, responding to inflammatory reactions. Under the imbalance status of abnormal oxidative stress, STEAP members are involved in cell transformation and the development of GICs by inhibiting or activating inflammatory process. This review focuses on STEAPs in GICs along with exploring their potential molecular regulatory mechanisms, with an aim to provide a theoretical basis for diagnosis and treatment strategies for patients suffering from these types of cancers.
Collapse
Affiliation(s)
- Ze-Xuan Fang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yang-Zheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
9
|
Chen H, Qiu D, Shi J, Wang N, Li M, Wu Y, Tian Y, Bu X, Liu Q, Jiang Y, Hamilton SE, Han P, Sun S. In-Depth Structure and Function Characterization of Heterogeneous Interchain Cysteine-Conjugated Antibody-Drug Conjugates. ACS Pharmacol Transl Sci 2024; 7:212-221. [PMID: 38230295 PMCID: PMC10789146 DOI: 10.1021/acsptsci.3c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
Antibody-drug conjugates (ADCs), integrating high specificity of antigen-targeting antibodies and high potency of cell-killing chemical drugs, have become one of the most rapidly expanding therapeutic biologics in oncology. Although ADCs were widely studied from multiple aspects, overall structural elucidation with comprehensive understanding of variants is scarcely reported. Here, for the first time, we present a holistic and in-depth characterization of an interchain cysteine-conjugated ADC, focusing on conjugation and charge heterogeneity, and in vitro biological activities. Conjugation mapping utilized a bottom-up approach, unraveled positional isomer composition, provided insights into the conjugation process, and elucidated how conjugation affects the physicochemical and biological properties of an ADC. Charge profiling combined bottom-up and top-down approaches to interrogate the origin of charge heterogeneity, its impact on function, and best practice for characterization. Specifically, we pioneered the utilization of capillary isoelectric focusing-mass spectrometry to decode not only critical post-translational modifications but also drug load and positional isomer distribution. The study design provides general guidance for in-depth characterization of ADCs, and the analytical findings in turn benefit the discovery and development of future ADCs.
Collapse
Affiliation(s)
- Huijie Chen
- Analytical
Sciences, WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Danye Qiu
- Analytical
Sciences, WuXi Biologics, 1150 Lanfeng Road, Fengxian District, Shanghai 201403, China
| | - Jian Shi
- Analytical
Sciences, WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Ningning Wang
- WuXi
Process Development Analytical Science, WuXi Biologics, 200
Meiliang Road, Binhu District, WuXi, Jiangsu 214092, China
| | - Muchen Li
- WuXi
Process Development Analytical Science, WuXi Biologics, 200
Meiliang Road, Binhu District, WuXi, Jiangsu 214092, China
| | - Ying Wu
- Analytical
Sciences, WuXi Biologics, 31 Yiwei Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yu Tian
- Biologics
Innovation & Discovery, WuXi Biologics, 227 Meisheng Road, Waigaoqiao Free
Trade Zone, Shanghai 200131, China
| | - Xiaodong Bu
- Analytical
Research & Development, Merck &
Co., Inc., 126 E. Lincoln
Avenue, Rahway, New Jersey 07065, United States
| | - Qingyuan Liu
- Analytical
Research & Development, Merck &
Co., Inc., 2000 Galloping
Hill Road, Kenilworth, New
Jersey 07033, United States
| | - Yanrui Jiang
- Analytical
Research & Development, MSD, Industrie Nord 1, Schachen (Luzern) CH-6105, Switzerland
| | - Simon E. Hamilton
- Analytical
Research & Development, MSD, 120 Moorgate, London EC2M 6UR, U.K.
| | - Ping Han
- Analytical
Research & Development, Merck &
Co., Inc., 2000 Galloping
Hill Road, Kenilworth, New
Jersey 07033, United States
| | - Shuwen Sun
- Analytical
Research & Development, Merck &
Co., Inc., 126 E. Lincoln
Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
10
|
Batista-Silva J, Gomes D, Barroca-Ferreira J, Gallardo E, Sousa Â, Passarinha LA. Specific Six-Transmembrane Epithelial Antigen of the Prostate 1 Capture with Gellan Gum Microspheres: Design, Optimization and Integration. Int J Mol Sci 2023; 24:ijms24031949. [PMID: 36768273 PMCID: PMC9916199 DOI: 10.3390/ijms24031949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
This work demonstrates the potential of calcium- and nickel-crosslinked Gellan Gum (GG) microspheres to capture the Six-Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) directly from complex Komagataella pastoris mini-bioreactor lysates in a batch method. Calcium-crosslinked microspheres were applied in an ionic exchange strategy, by manipulation of pH and ionic strength, whereas nickel-crosslinked microspheres were applied in an affinity strategy, mirroring a standard immobilized metal affinity chromatography. Both formulations presented small diameters, with appreciable crosslinker content, but calcium-crosslinked microspheres were far smoother. The most promising results were obtained for the ionic strategy, wherein calcium-crosslinked GG microspheres were able to completely bind 0.1% (v/v) DM solubilized STEAP1 in lysate samples (~7 mg/mL). The target protein was eluted in a complexed state at pH 11 with 500 mM NaCl in 10 mM Tris buffer, in a single step with minimal losses. Coupling the batch clarified sample with a co-immunoprecipitation polishing step yields a sample of monomeric STEAP1 with a high degree of purity. For the first time, we demonstrate the potential of a gellan batch method to function as a clarification and primary capture method towards STEAP1, a membrane protein, simplifying and reducing the costs of standard purification workflows.
Collapse
Affiliation(s)
- João Batista-Silva
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Diana Gomes
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Barroca-Ferreira
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Eugénia Gallardo
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia–UBIMedical, University of Beira Interior, 6201-284 Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Luís A. Passarinha
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia–UBIMedical, University of Beira Interior, 6201-284 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-069
| |
Collapse
|
11
|
Kjærsgaard NL, Nielsen TB, Gothelf KV. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. Chembiochem 2022; 23:e202200245. [PMID: 35781760 PMCID: PMC9796363 DOI: 10.1002/cbic.202200245] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Indexed: 01/01/2023]
Abstract
Protein bioconjugates are in high demand for applications in biomedicine, diagnostics, chemical biology and bionanotechnology. Proteins are large and sensitive molecules containing multiple different functional groups and in particular nucleophilic groups. In bioconjugation reactions it can therefore be challenging to obtain a homogeneous product in high yield. Numerous strategies for protein conjugation have been developed, of which a vast majority target lysine, cysteine and to a lesser extend tyrosine. Likewise, several methods that involve recombinantly engineered protein tags have been reported. In recent years a number of methods have emerged for chemical bioconjugation to other amino acids and in this review, we present the progress in this area.
Collapse
Affiliation(s)
- Nanna L. Kjærsgaard
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| | | | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug Design Interdisciplinary Nanoscience CenterAarhus UniversityGustav Wieds Vej 148000Aarhus CDenmark
- Department of ChemistryAarhus UniversityLangelandsgade 1408000Aarhus CDenmark
| |
Collapse
|
12
|
Hansen RA, Märcher A, Gothelf KV. One-Step Conversion of NHS Esters to Reagents for Site-Directed Labeling of IgG Antibodies. Bioconjug Chem 2022; 33:1811-1817. [PMID: 36202104 DOI: 10.1021/acs.bioconjchem.2c00392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibody conjugates are extensively used for diagnostics and therapeutics, and as a tool for molecular biology. To prepare such conjugates N-hydroxysuccinimide (NHS) esters are most often used due to the straightforward experimental procedure and the commercial accessibility of the reagents. Such conjugates are however highly heterogeneous, since only the reactivity of the lysines determines the distribution of labels. This has inspired the development of methods that experimentally are as facile but produce conjugates of higher quality. Herein, we report the development of a reagent that can, in one step, be activated with an NHS ester of choice and subsequently can be directly used for site-directed labeling of antibodies. The reagent can be prepared in three synthetic steps and produces conjugates with similar ease as for NHS esters, however in a site-directed manner. We show that the reagent is quantitatively activated by a variety of NHS esters, and we use these to functionalize IgG1, IgG2, and IgG4 antibodies.
Collapse
Affiliation(s)
- Rikke A Hansen
- Department of Chemistry and Interdisciplinary Nanoscience center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
Damerow H, Cheng X, von Kiedrowski V, Schirrmacher R, Wängler B, Fricker G, Wängler C. Toward Optimized 89Zr-Immuno-PET: Side-by-Side Comparison of [ 89Zr]Zr-DFO-, [ 89Zr]Zr-3,4,3-(LI-1,2-HOPO)- and [ 89Zr]Zr-DFO*-Cetuximab for Tumor Imaging: Which Chelator Is the Most Suitable? Pharmaceutics 2022; 14:pharmaceutics14102114. [PMID: 36297549 PMCID: PMC9611803 DOI: 10.3390/pharmaceutics14102114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022] Open
Abstract
89Zr represents a highly favorable positron emitter for application in immuno-PET (Positron Emission Tomography) imaging. Clinically, the 89Zr4+ ion is introduced into antibodies by complexation with desferrioxamine B. However, producing complexes of limited kinetic inertness. Therefore, several new chelators for 89Zr introduction have been developed over the last years. Of these, the direct comparison of the most relevant ones for clinical translation, DFO* and 3,4,3-(LI-1,2-HOPO), is still missing. Thus, we directly compared DFO with DFO* and 3,4,3-(LI-1,2-HOPO) immunoconjugates to identify the most suitable agent stable 89Zr-complexation. The chelators were introduced into cetuximab, and an optical analysis method was developed, enabling the efficient quantification of derivatization sites per protein. The cetuximab conjugates were efficiently obtained and radiolabeled with 89Zr at 37 °C within 30 min, giving the [89Zr]Zr-cetuximab derivatives in high radiochemical yields and purities of >99% as well as specific activities of 50 MBq/mg. The immunoreactive fraction of all 89Zr-labeled cetuximab derivatives was determined to be in the range of 86.5−88.1%. In vivo PET imaging and ex vivo biodistribution studies in tumor-bearing animals revealed a comparable and significantly higher kinetic inertness for both [89Zr]Zr-3,4,3-(LI-1,2-HOPO)-cetuximab and [89Zr]Zr-DFO*-cetuximab, compared to [89Zr]Zr-DFO-cetuximab. Of these, [89Zr]Zr-DFO*-cetuximab showed a considerably more favorable pharmacokinetic profile with significantly lower liver and spleen retention than [89Zr]Zr-3,4,3-(LI-1,2-HOPO)-cetuximab. Since [89Zr]Zr-DFO* demonstrates a very high kinetic inertness, paired with a highly favorable pharmacokinetic profile of the resulting antibody conjugate, DFO* currently represents the most suitable chelator candidate for stable 89Zr-radiolabeling of antibodies and clinical translation.
Collapse
Affiliation(s)
- Helen Damerow
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Xia Cheng
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Valeska von Kiedrowski
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ralf Schirrmacher
- Division of Oncologic Imaging, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Björn Wängler
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Carmen Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Correspondence:
| |
Collapse
|
14
|
Cahuzac H, Sallustrau A, Malgorn C, Beau F, Barbe P, Babin V, Dubois S, Palazzolo A, Thai R, Correia I, Lee KB, Garcia-Argote S, Lequin O, Keck M, Nozach H, Feuillastre S, Ge X, Pieters G, Audisio D, Devel L. Monitoring In Vivo Performances of Protein-Drug Conjugates Using Site-Selective Dual Radiolabeling and Ex Vivo Digital Imaging. J Med Chem 2022; 65:6953-6968. [PMID: 35500280 PMCID: PMC9833330 DOI: 10.1021/acs.jmedchem.2c00401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In preclinical models, the development and optimization of protein-drug conjugates require accurate determination of the plasma and tissue profiles of both the protein and its conjugated drug. To this aim, we developed a bioanalytical strategy based on dual radiolabeling and ex vivo digital imaging. By combining enzymatic and chemical reactions, we obtained homogeneous dual-labeled anti-MMP-14 Fabs (antigen-binding fragments) conjugated to monomethyl auristatin E where the protein scaffold was labeled with carbon-14 (14C) and the conjugated drug with tritium (3H). These antibody-drug conjugates with either a noncleavable or a cleavable linker were then evaluated in vivo. By combining liquid scintillation counting and ex vivo dual-isotope radio-imaging, it was possible not only to monitor both components simultaneously during their circulation phase but also to quantify accurately their amount accumulated within the different organs.
Collapse
Affiliation(s)
- Héloïse Cahuzac
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Antoine Sallustrau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Victor Babin
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Steven Dubois
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Alberto Palazzolo
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Isabelle Correia
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston 1825 Pressler St, Houston TX 77030
| | - Sébastien Garcia-Argote
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Hervé Nozach
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France)
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston 1825 Pressler St, Houston TX 77030
| | - Gregory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Davide Audisio
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, (France)
| | - Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, (France),
| |
Collapse
|
15
|
Hui X, Yuan C, Cao W, Ge W, Zhang D, Dan M, Zhao Q, Liu B, Yao B. An Innovative Site-Specific Anti-HER2 Antibody-Drug Conjugate with High Homogeneity and Improved Therapeutic Index. Onco Targets Ther 2022; 15:331-343. [PMID: 35422630 PMCID: PMC9005139 DOI: 10.2147/ott.s357326] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Antibody-drug conjugates (ADCs) have emerged as a potent cancer therapeutic option in recent years. DP303c is a HER2-targeting ADC with a cleavable linker-MMAE payload. The current study aimed to evaluate the therapeutic potentials of DP303c in vitro as well as in vivo. Materials and Methods Size exclusion chromatography (SEC), reverse-phase high-performance liquid chromatography (RP-HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to analyze the physicochemical characterization of DP303c. An enzyme-linked immunosorbent assay (ELISA), a cell-based assay, and bio-layer interferometry (BLI) were used to evaluate DP303c’s affinity with HER2 and Fc receptors. A confocal laser scanning microscopy was used to observe the internalization of DP303c. Antibody-dependent cell-mediated cytotoxicity (ADCC) and cytotoxicity assays were used to investigate the activity of DP303c in vitro. The antitumor activity of DP303c was assessed in vivo in the HER2-positive cell-derived xenograft model. Results DP303c was a site-specific anti-HER2 antibody-drug conjugate with a monomethyl auristatin E (MMAE) with an average drug-to-antibody ratio (DAR) of 2.0. DP303c showed a high affinity with HER2 and could be effectively internalized. In vitro and in vivo, DP303c showed stronger antitumor activity as compared to trastuzumab-DM1 (T-DM1) in a series of HER2-positive cancer cells and cell-derived xenograft (CDX) models, especially in the lower HER2-expressing cells. DP303c also exhibited high serum stability and a good PK profile. Conclusion DP303c was a steady and homogenous DAR 2 ADC that was predicted to deliver MMAE inhibitor to tumor cells. DP303c demonstrated remarkable anticancer efficacy against T-DM1 in xenograft models. DP303c was a strong candidate for the treatment of patients with HER2-positive cancer.
Collapse
Affiliation(s)
- Xiwu Hui
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Can Yuan
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Weirong Cao
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Wenli Ge
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Di Zhang
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Mo Dan
- Pharmacology Center, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Qian Zhao
- Pharmacology Center, CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| | - Boning Liu
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
- Correspondence: Boning Liu; Bing Yao, Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., No. 226 Huanghe Street, Shijiazhuang, Hebei, People’s Republic of China, Tel +8613284452520; +8613930148328, Fax +86031169085667, Email ;
| | - Bing Yao
- Institute of Quality Analysis, CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
16
|
Teicher BA, Morris J. Antibody-Drug Conjugate Targets, Drugs and Linkers. Curr Cancer Drug Targets 2022; 22:463-529. [PMID: 35209819 DOI: 10.2174/1568009622666220224110538] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.
Collapse
Affiliation(s)
- Beverly A Teicher
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| | - Joel Morris
- Developmental Therapeutics Program, DCTD, National Cancer Institute, Bethesda, MD 20892,United States
| |
Collapse
|
17
|
Chang HP, Li Z, Shah DK. Development of a Physiologically-Based Pharmacokinetic Model for Whole-Body Disposition of MMAE Containing Antibody-Drug Conjugate in Mice. Pharm Res 2022; 39:1-24. [PMID: 35044590 DOI: 10.1007/s11095-021-03162-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE To quantitate and mathematically characterize the whole-body pharmacokinetics (PK) of different ADC analytes following administration of an MMAE-conjugated ADC in tumor-bearing mice. METHODS The PK of different ADC analytes (total antibody, total drug, unconjugated drug) was measured following administration of an MMAE-conjugated ADC in tumor-bearing mice. The PK of ADC analytes was compared with the whole-body PK of the antibody and drug obtained following administration of these molecules alone. An ADC PBPK model was developed by linking antibody PBPK model with small-molecule PBPK model, where the drug was assumed to deconjugate in DAR-dependent manner. RESULTS Comparison of antibody biodistribution coefficient (ABC) values for total antibody suggests that conjugation of drug did not significantly affect the PK of antibody. Comparison of tissue:plasma AUC ratio (T/P) for the conjugated drug and total antibody suggests that in certain tissues (e.g., spleen) ADC may demonstrate higher deconjugation. It was observed that the tissue distribution profile of the drug can be altered following its conjugation to antibody. For example, MMAE distribution to the liver was found to increase while its distribution to the heart was found to decrease upon conjugation to antibody. MMAE exposure in the tumor was found to increase by ~20-fold following administration as conjugate (i.e., ADC). The PBPK model was able to a priori predict the PK of all three ADC analytes in plasma, tissues, and tumor reasonably well. CONCLUSIONS The ADC PBPK model developed here serves as a platform for translational and clinical investigations of MMAE containing ADCs.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, New York, 14214-8033, USA.
| |
Collapse
|
18
|
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther 2022; 229:107917. [PMID: 34171334 PMCID: PMC8702582 DOI: 10.1016/j.pharmthera.2021.107917] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer therapeutic agents comprised of an antibody, a linker and a small-molecule payload. ADCs use the specificity of the antibody to target the toxic payload to tumor cells. After intravenous administration, ADCs enter circulation, distribute to tumor tissues and bind to the tumor surface antigen. The antigen then undergoes endocytosis to internalize the ADC into tumor cells, where it is transported to lysosomes to release the payload. The released toxic payloads can induce apoptosis through DNA damage or microtubule inhibition and can kill surrounding cancer cells through the bystander effect. The first ADC drug was approved by the United States Food and Drug Administration (FDA) in 2000, but the following decade saw no new approved ADC drugs. From 2011 to 2018, four ADC drugs were approved, while in 2019 and 2020 five more ADCs entered the market. This demonstrates an increasing trend for the clinical development of ADCs. This review summarizes the recent clinical research, with a specific focus on how the in vivo processing of ADCs influences their design. We aim to provide comprehensive information about current ADCs to facilitate future development.
Collapse
Affiliation(s)
- Yiming Jin
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Megan A Schladetsch
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Xueting Huang
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Wiemer
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
19
|
Chen WJ, Wu HT, Li CL, Lin YK, Fang ZX, Lin WT, Liu J. Regulatory Roles of Six-Transmembrane Epithelial Antigen of the Prostate Family Members in the Occurrence and Development of Malignant Tumors. Front Cell Dev Biol 2021; 9:752426. [PMID: 34778263 PMCID: PMC8586211 DOI: 10.3389/fcell.2021.752426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
The human six-transmembrane epithelial antigen of the prostate (STEAP) proteins, which include STEAP1-4 and atypical STEAP1B, contain six transmembrane domains and are located in the cell membrane. STEAPs are considered archaeal metal oxidoreductases, based on their heme groups and F420H2:NADP+ oxidoreductase (FNO)-like structures, and play an important role in cell metal metabolism. Interestingly, STEAPs not only participate in biological processes, such as molecular transport, cell cycling, immune response, and intracellular and extracellular activities, but also are closely related to the occurrence and development of several diseases, especially malignant tumors. Up to now, the expression patterns of STEAPs have been found to be diverse in different types of tumors, with controversial participation in different aspects of malignancy, such as cell proliferation, migration, invasion, apoptosis, and therapeutic resistance. It is clinically important to explore the potential roles of STEAPs as new immunotherapeutic targets for the treatment of different malignant tumors. Therefore, this review focuses on the molecular mechanism and function of STEAPs in the occurrence and development of different cancers in order to understand the role of STEAPs in cancer and provide a new theoretical basis for the treatment of diverse cancers.
Collapse
Affiliation(s)
- Wen-Jia Chen
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Lan Li
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Yi-Ke Lin
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Xuan Fang
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| | - Wen-Ting Lin
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Liu
- Changjiang Scholar’s Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer/Department of Physiology, Shantou University Medical College, Shantou, China
| |
Collapse
|
20
|
Fang X, Gao K, Huang J, Liu K, Chen L, Piao Y, Liu X, Tang J, Shen Y, Zhou Z. Molecular level precision and high molecular weight peptide dendrimers for drug-specific delivery. J Mater Chem B 2021; 9:8594-8603. [PMID: 34705008 DOI: 10.1039/d1tb01157j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peptide dendrimers have a broad application in biomedical science due to their biocompatibility, diversity, and multifunctionality, but the precision synthesis of high-molecule weight peptide dendrimers remains challenging. We here report the facile and liquid-phase synthesis of molecular level precision and amino-acid built-in polylysine (PLL) dendrimers with molecular weights as high as ∼60 kDa. Three types of polyhedral oligosilsesquioxane (POSS)-cored PLL dendrimers with phenylalanine, tyrosine, or histidine as building blocks were synthesized. The precise structures of the dendrimers were confirmed by MALDI-TOF MS, GPC, and 1H NMR spectroscopy. The interior functionalized peptide dendrimers improved the encapsulation capability of SN38 and sustained the release profiles. Enhanced molecular interactions between the peptide dendrimers and drugs were explored by both NMR experiments and computer simulations. The peptide dendrimer/SN38 formulations showed potent antitumor activity against multiple cancer cell lines. We believe that this strategy can be applied to the synthesis of tailor-made functional peptide dendrimers for drug-specific delivery and other diverse biomedical applications.
Collapse
Affiliation(s)
- Xinhao Fang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Kai Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jianxiang Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Kexin Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Linying Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ying Piao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiangrui Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jianbin Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zhuxian Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| |
Collapse
|
21
|
Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release 2021; 340:1-34. [PMID: 34673122 DOI: 10.1016/j.jconrel.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The antibody-drug conjugates (ADCs) are one the fastest growing biotherapeutics in oncology and are still in their infancy in gastrointestinal (GI) cancer for clinical applications to improve patient survival. The ADC based approach is developed with tumor specific antigen, antibody carrying cytotoxic agents to precisely target and deliver chemotherapeutics at the tumor site. To date, 11 ADCs have been approved by US-FDA, and more than 80 are in the clinical development phase for different oncological indications. However, The ADCs based therapies in GI cancers are still far from having high-efficient clinical outcomes. The limited success of these ADCs and lessons learned from the past are now being used to develop a newer generation of ADC against GI cancers. In this review, we did a comprehensive assessment of the key components of ADCs, including tumor marker, antibody, cytotoxic payload, and linkage strategy, with a focus on technical improvement and some future trends in the pipeline for clinical translation. The various preclinical and clinical ADCs used in gastrointestinal malignancies, their target, composition and bioconjugation, along with preclinical and clinical outcomes, are discussed. The emphasis is also given to new generation ADCs employing novel mAb, payload, linker, and bioconjugation methods are also included.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Dheer
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Samykutty
- Stephenson Comprehensive Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Cho N, Ko S, Shokeen M. Tissue biodistribution and tumor targeting of near-infrared labelled anti-CD38 antibody-drug conjugate in preclinical multiple myeloma. Oncotarget 2021; 12:2039-2050. [PMID: 34611478 PMCID: PMC8487729 DOI: 10.18632/oncotarget.28074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Daratumumab (DARA) is an FDA-approved high-affinity monoclonal antibody targeting CD38 that has shown promising therapeutic efficacy in double refractory multiple myeloma (MM) patients. Despite the well-established clinical efficacy of DARA, not all heavily pretreated patients respond to single-agent DARA, and the majority of patients who initially respond eventually progress. Antibody-drug conjugates (ADCs) combine the highly targeted tumor antigen recognition of antibodies with the cell killing properties of chemotherapy for effective internalization and processing of the drug. In this study, we evaluated the anti-tumor efficacy of DARA conjugated to the maytansine derivative, mertansine (DM1), linked via a non-cleavable bifunctional linker. The ADC was labelled with the near-infrared (NIR) fluorophore IRDye800 (DARA-DM1-IR) to evaluate its stability, biodistribution and pharmacokinetics in vitro and in vivo. We demonstrated the conjugation of: 1) DM1 enhanced tumor-killing efficacy of the native DARA and 2) IRDye800 allowed for visualization of uptake and tumor targeting ability of the ADC. With the advent of other classes of immunoconjugates for use in MM, we reasoned that such imaging techniques can be utilized to evaluate other promising conjugates in preclinical MM models on a whole-body and cellular level.
Collapse
Affiliation(s)
- Nicholas Cho
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Sooah Ko
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, USA
| |
Collapse
|
23
|
Märcher A, Nijenhuis MAD, Gothelf KV. A Wireframe DNA Cube: Antibody Conjugate for Targeted Delivery of Multiple Copies of Monomethyl Auristatin E. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Minke A. D. Nijenhuis
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kurt V. Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
24
|
Märcher A, Nijenhuis MAD, Gothelf KV. A Wireframe DNA Cube: Antibody Conjugate for Targeted Delivery of Multiple Copies of Monomethyl Auristatin E. Angew Chem Int Ed Engl 2021; 60:21691-21696. [PMID: 34309988 DOI: 10.1002/anie.202107221] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/18/2021] [Indexed: 11/08/2022]
Abstract
In recent years, several antibody drug conjugates (ADC) have been accepted by the FDA as therapeutics against cancer. It is well-known that control of drug-to-antibody ratio (DAR) is vital for the success of an ADC, which inspires the advancement of better and simpler methods for tight control of DAR. We present the development of an antibody DNA wireframe cube conjugate for precise control of DAR. The DNA wireframe cube consists of four single strands, which when folded present eight single stranded domains. One domain is bound to a monofunctionalized antibody DNA conjugate, and the seven others are attached to DNA functionalized with the potent tubulin inhibitor MMAE, thereby preparing an ADC with a DAR of precisely seven. The formation of the ADC is investigated by gel electrophoresis and atomic force microscopy. Lastly, the developed MMAE loaded ADC was used for targeted drug delivery in vitro.
Collapse
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Minke A D Nijenhuis
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kurt V Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
25
|
Farleigh M, Pham TT, Yu Z, Kim J, Sunassee K, Firth G, Forte N, Chudasama V, Baker JR, Long NJ, Rivas C, Ma MT. New Bifunctional Chelators Incorporating Dibromomaleimide Groups for Radiolabeling of Antibodies with Positron Emission Tomography Imaging Radioisotopes. Bioconjug Chem 2021; 32:1214-1222. [PMID: 33724798 PMCID: PMC8299457 DOI: 10.1021/acs.bioconjchem.0c00710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Indexed: 01/23/2023]
Abstract
Positron Emission Tomography (PET) imaging with antibody-based contrast agents frequently uses the radioisotopes [64Cu]Cu2+ and [89Zr]Zr4+. The macrobicyclic chelator commonly known as sarcophagine (sar) is ideal for labeling receptor-targeted biomolecules with [64Cu]Cu2+. The siderophore chelator, desferrioxamine-B (dfo), has been widely used to incorporate [89Zr]Zr4+ into antibodies. Here, we describe new bifunctional chelators of sar and dfo: these chelators have been functionalized with dibromomaleimides (dbm), that enable site-specific and highly stable attachment of molecular cargoes to reduced, solvent-accessible, interstrand native disulfide groups. The new sar-dbm and dfo-dbm derivatives can be easily conjugated with the IgG antibody trastuzumab via reaction with reduced interstrand disulfide groups to give site-specifically modified dithiomaleamic acid (dtm) conjugates, sar-dtm-trastuzumab and dfo-dtm-trastuzumab, in which interstrand disulfides are rebridged covalently with a small molecule linker. Both sar- and dfo-dtm-trastuzumab conjugates have been radiolabeled with [64Cu]Cu2+ and [89Zr]Zr4+, respectively, in near quantitative radiochemical yield (>99%). Serum stability studies, in vivo PET imaging, and biodistribution analyses using these radiolabeled immunoconjugates demonstrate that both [64Cu]Cu-sar-dtm-trastuzumab and [89Zr]Zr-dfo-dtm-trastuzumab possess high stability in biological milieu. Dibromomaleimide technology can be easily applied to enable stable, site-specific attachment of radiolabeled chelators, such as sar and dfo, to native interstrand disulfide regions of antibodies, enabling tracking of antibodies with PET imaging.
Collapse
Affiliation(s)
- Matthew Farleigh
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Truc Thuy Pham
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Zilin Yu
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Jana Kim
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Kavitha Sunassee
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - George Firth
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Nafsika Forte
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Vijay Chudasama
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - James R. Baker
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, U.K.
| | - Charlotte Rivas
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| | - Michelle T. Ma
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, U.K.
| |
Collapse
|
26
|
Li WQ, Guo HF, Li LY, Zhang YF, Cui JW. The promising role of antibody drug conjugate in cancer therapy: Combining targeting ability with cytotoxicity effectively. Cancer Med 2021; 10:4677-4696. [PMID: 34165267 PMCID: PMC8290258 DOI: 10.1002/cam4.4052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Traditional cancer therapy has many disadvantages such as low selectivity and high toxicity of chemotherapy, as well as insufficient efficacy of targeted therapy. To enhance the cytotoxic effect and targeting ability, while reducing the toxicity of antitumor drugs, an antibody drug conjugate (ADC) was developed to deliver small molecular cytotoxic payloads directly to tumor cells by binding to specific antibodies via linkers. Method By reviewing published literature and the current progress of ADCs, we aimed to summarize the basic characteristics, clinical progress, and challenges of ADCs to provide a reference for clinical practice and further research. Results ADC is a conjugate composed of three fundamental components, including monoclonal antibodies, cytotoxic payloads, and stable linkers. The mechanisms of ADC including the classical internalization pathway, antitumor activity of antibodies, bystander effect, and non‐internalizing mechanism. With the development of new drugs and advances in technology, various ADCs have achieved clinical efficacy. To date, nine ADCs have received US Food and Drug Administration (FDA) approval in the field of hematologic tumors and solid tumors, which have become routine clinical treatments. Conclusion ADC has changed traditional treatment patterns for cancer patients, which enable the same treatment for pancreatic cancer patients and promote individualized precision treatment. Further exploration of indications could focus on early‐stage cancer patients and combined therapy settings. Besides, the mechanisms of drug resistance, manufacturing techniques, optimized treatment regimens, and appropriate patient selection remain the major topics.
Collapse
Affiliation(s)
- Wen-Qian Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Han-Fei Guo
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling-Yu Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Fei Zhang
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiu-Wei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
27
|
You J, Zhang J, Wang J, Jin M. Cysteine-Based Coupling: Challenges and Solutions. Bioconjug Chem 2021; 32:1525-1534. [PMID: 34105345 DOI: 10.1021/acs.bioconjchem.1c00213] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody-drug conjugates (ADCs) have attracted great attention in recent years in the wake of an accelerated FDA approval rate and several large-scale acquisitions. To date, there are ten ADC drugs on the market and more than 70 in various stages of clinical trials. Yet, due to the complicated nature of ADC molecules, considerations need to cover many aspects for the success of ADCs, including target specificity, linker-payload stability, tumor permeability, and clearance rate. This topical review summarizes and discusses current methods used to increase stability and homogeneity of ADCs of cysteine conjugation. We believe that they will lead to improvement of efficacy and pharmacokinetics (PK) of ADC drugs.
Collapse
Affiliation(s)
- Jianwei You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.,WuXi Biologics Co, Ltd., Shanghai 200131, China
| | - Juan Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Wang
- WuXi Biologics Co, Ltd., Shanghai 200131, China
| | - Mingzhi Jin
- WuXi Biologics Co, Ltd., Shanghai 200131, China
| |
Collapse
|
28
|
Clinical Pharmacology of Antibody-Drug Conjugates. Antibodies (Basel) 2021; 10:antib10020020. [PMID: 34063812 PMCID: PMC8161445 DOI: 10.3390/antib10020020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceutical products where a monoclonal antibody is linked to a biologically active drug (a small molecule) forming a conjugate. Since the approval of first ADC (Gemtuzumab ozogamicin (trade name: Mylotarg)) for the treatment of CD33-positive acute myelogenous leukemia, several ADCs have been developed for the treatment of cancer. The goal of an ADC as a cancer agent is to release the cytotoxic drug to kill the tumor cells without harming the normal or healthy cells. With time, it is being realized that ADCS can also be used to manage or cure other diseases such as inflammatory diseases, atherosclerosis, and bacteremia and some research in this direction is ongoing. The focus of this review is on the clinical pharmacology aspects of ADC development. From the selection of an appropriate antibody to the finished product, the entire process of the development of an ADC is a difficult and challenging task. Clinical pharmacology is one of the most important tools of drug development since this tool helps in finding the optimum dose of a product, thus preserving the safety and efficacy of the product in a patient population. Unlike other small or large molecules where only one moiety and/or metabolite(s) is generally measured for the pharmacokinetic profiling, there are several moieties that need to be measured for characterizing the PK profiles of an ADC. Therefore, knowledge and understanding of clinical pharmacology of ADCs is vital for the selection of a safe and efficacious dose in a patient population.
Collapse
|
29
|
Preclinical Characterization of the Distribution, Catabolism, and Elimination of a Polatuzumab Vedotin-Piiq (POLIVY ®) Antibody-Drug Conjugate in Sprague Dawley Rats. J Clin Med 2021; 10:jcm10061323. [PMID: 33806916 PMCID: PMC8004598 DOI: 10.3390/jcm10061323] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Polatuzumab vedotin (or POLIVY®), an antibody–drug conjugate (ADC) composed of a polatuzumab monoclonal antibody conjugated to monomethyl auristatin E (MMAE) via a cleavable dipeptide linker, has been approved by the United States Food and Drug Administration (FDA) for the treatment of diffuse large B-cell lymphoma (DLBCL). To support the clinical development of polatuzumab vedotin, we characterized the distribution, catabolism/metabolism, and elimination properties of polatuzumab vedotin and its unconjugated MMAE payload in Sprague Dawley rats. Several radiolabeled probes were developed to track the fate of different components of the ADC, with 125I and 111In used to label the antibody component and 3H to label the MMAE payload of the ADC. Following a single intravenous administration of the radiolabeled probes into normal or bile-duct cannulated rats, blood, various tissues, and excreta samples were collected over 7–14 days post-dose and analyzed for radioactivity and to characterize the metabolites/catabolites. The plasma radioactivity of polatuzumab vedotin showed a biphasic elimination profile similar to that of unconjugated polatuzumab but different from unconjugated radiolabeled MMAE, which had a fast clearance. The vast majority of the radiolabeled MMAE in plasma remained associated with antibodies, with a minor fraction as free MMAE and MMAE-containing catabolites. Similar to unconjugated mAb, polatuzumab vedotin showed a nonspecific distribution to multiple highly perfused organs, including the lungs, heart, liver, spleen, and kidneys, where the ADC underwent catabolism to release MMAE and other MMAE-containing catabolites. Both polatuzumab vedotin and unconjugated MMAE were mainly eliminated through the biliary fecal route (>90%) and a small fraction (<10%) was eliminated through renal excretion in the form of catabolites/metabolites, among which, MMAE was identified as the major species, along with several other minor species. These studies provided significant insight into ADC’s absorption, distribution, metabolism, and elimination (ADME) properties, which supports the clinical development of POLIVY.
Collapse
|
30
|
Knödler M, Buyel JF. Plant-made immunotoxin building blocks: A roadmap for producing therapeutic antibody-toxin fusions. Biotechnol Adv 2021; 47:107683. [PMID: 33373687 DOI: 10.1016/j.biotechadv.2020.107683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Molecular farming in plants is an emerging platform for the production of pharmaceutical proteins, and host species such as tobacco are now becoming competitive with commercially established production hosts based on bacteria and mammalian cell lines. The range of recombinant therapeutic proteins produced in plants includes replacement enzymes, vaccines and monoclonal antibodies (mAbs). But plants can also be used to manufacture toxins, such as the mistletoe lectin viscumin, providing an opportunity to express active antibody-toxin fusion proteins, so-called recombinant immunotoxins (RITs). Mammalian production systems are currently used to produce antibody-drug conjugates (ADCs), which require the separate expression and purification of each component followed by a complex and hazardous coupling procedure. In contrast, RITs made in plants are expressed in a single step and could therefore reduce production and purification costs. The costs can be reduced further if subcellular compartments that accumulate large quantities of the stable protein are identified and optimal plant growth conditions are selected. In this review, we first provide an overview of the current state of RIT production in plants before discussing the three key components of RITs in detail. The specificity-defining domain (often an antibody) binds cancer cells, including solid tumors and hematological malignancies. The toxin provides the means to kill target cells. Toxins from different species with different modes of action can be used for this purpose. Finally, the linker spaces the two other components to ensure they adopt a stable, functional conformation, and may also promote toxin release inside the cell. Given the diversity of these components, we extract broad principles that can be used as recommendations for the development of effective RITs. Future research should focus on such proteins to exploit the advantages of plants as efficient production platforms for targeted anti-cancer therapeutics.
Collapse
Affiliation(s)
- M Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| | - J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, Aachen 52074, Germany; Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, Aachen 52074, Germany.
| |
Collapse
|
31
|
Märcher A, Palmfeldt J, Nisavic M, Gothelf KV. A Reagent for Amine‐Directed Conjugation to IgG1 Antibodies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine Aarhus University Brendstrupgårdsvej 21A 8200 Aarhus N Denmark
| | - Marija Nisavic
- Department of Chemistry and Department of Clinical Medicine Aarhus University Brendstrupgårdsvej 21A 8200 Aarhus N Denmark
| | - Kurt V. Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
32
|
Märcher A, Palmfeldt J, Nisavic M, Gothelf KV. A Reagent for Amine‐Directed Conjugation to IgG1 Antibodies. Angew Chem Int Ed Engl 2021; 60:6539-6544. [DOI: 10.1002/anie.202013911] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/28/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Anders Märcher
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine Aarhus University Brendstrupgårdsvej 21A 8200 Aarhus N Denmark
| | - Marija Nisavic
- Department of Chemistry and Department of Clinical Medicine Aarhus University Brendstrupgårdsvej 21A 8200 Aarhus N Denmark
| | - Kurt V. Gothelf
- Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
33
|
Abstract
Preparation of antibody-drug conjugates (ADCs) with a highly homogeneous drug loading in general requires site-selective conjugation of a cytotoxic payload. Typically, functionality utilized for attachment of the payload is achieved through engineering of suitable chemical handles or by enzymatic modification of the antibody. Relatively few methods to produce ADCs with homogeneous drug loading via endogenous amino acid conjugation have been developed. Herein we describe a robust method for the conjugation of antibodies using a cysteine rebridging approach to produce ADCs with highly homogeneous drug-to-antibody ratios (DAR) at the native interchain disulfides, called ThioBridge®. The process described relies upon an elegant cascade of addition-elimination reactions carried out under mild aqueous conditions that can be readily applied to wild-type antibodies without the need for prior modification via recombinant or enzymatic means. Using this method, conversions to a conserved DAR ADC are typically in the range of 70-95% and overall process yields of >70% are readily achieved.
Collapse
|
34
|
Cahuzac H, Devel L. Analytical Methods for the Detection and Quantification of ADCs in Biological Matrices. Pharmaceuticals (Basel) 2020; 13:ph13120462. [PMID: 33327644 PMCID: PMC7765153 DOI: 10.3390/ph13120462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Understanding pharmacokinetics and biodistribution of antibody–drug conjugates (ADCs) is a one of the critical steps enabling their successful development and optimization. Their complex structure combining large and small molecule characteristics brought out multiple bioanalytical methods to decipher the behavior and fate of both components in vivo. In this respect, these methods must provide insights into different key elements including half-life and blood stability of the construct, premature release of the drug, whole-body biodistribution, and amount of the drug accumulated within the targeted pathological tissues, all of them being directly related to efficacy and safety of the ADC. In this review, we will focus on the main strategies enabling to quantify and characterize ADCs in biological matrices and discuss their associated technical challenges and current limitations.
Collapse
|
35
|
Yip V, Figueroa I, Latifi B, Masih S, Ng C, Leipold D, Kamath A, Shen BQ. Anti-Lymphocyte Antigen 6 Complex, Locus E- Seco-Cyclopropabenzindol-4-One-Dimer Antibody-Drug Conjugate That Forms Adduct with α1-Microglobulin Demonstrates Slower Systemic Antibody Clearance and Reduced Tumor Distribution in Animals. Drug Metab Dispos 2020; 48:1247-1256. [PMID: 33020064 DOI: 10.1124/dmd.120.000145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 01/18/2023] Open
Abstract
Anti-Ly6E-seco-cyclopropabenzindol-4-one dimer antibody-drug conjugate (ADC) has been reported to form an adduct with α1-microglobulin (A1M) in animal plasma, but with unknown impact on ADC PK and tissue distribution. In this study, we compared the PK and tissue distribution of anti-Ly6E ADC with unconjugated anti-Ly6E mAb in rodents and monkeys. For PK studies, animals received an intravenous administration of anti-Ly6E ADC or unconjugated anti-Ly6E mAb. Plasma samples were analyzed for total antibody (Tab) levels and A1M adduct formation. PK parameters were generated from dose-normalized plasma concentrations. Tissue distribution was determined in tumor-bearing mice after a single intravenous dosing of radiolabeled ADC or mAb. Tissue radioactivity levels were analyzed using a gamma counter. The impact of A1M adduct formation on target cell binding was assessed in an in vitro cell binding assay. The results show that ADC Tab clearance was slower than that of mAb in mice and rats but faster than mAb in monkeys. Correspondingly, the formation of A1M adduct appeared to be faster and higher in mice, followed by rats, and slowest in monkeys. Although ADC tended to show an overall lower distribution to normal tissues, it had a strikingly reduced distribution to tumors compared with mAb, likely due to A1M adduct formation interfering with target binding, as demonstrated by the in vitro cell binding assay. Together, these data 1) demonstrate that anti-Ly6E ADC that forms A1M adduct had slower systemic clearance with strikingly reduced tumor distribution and 2) highlight the importance of selecting an appropriate linker-drug for successful ADC development. SIGNIFICANCE STATEMENT: Anti-lymphocyte antigen 6 complex, locus E, ADC with seco-cyclopropabenzindol-4-one-dimer payload formed adduct with A1M, which led to a decrease in systemic clearance but also attenuated tumor distribution. These findings demonstrate the importance of selecting an appropriate linker-drug for ADC development and also highlight the value of a mechanistic understanding of ADC biotransformation, which could provide insight into ADC molecule design, optimization, and selection.
Collapse
Affiliation(s)
- Victor Yip
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Isabel Figueroa
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Brandon Latifi
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Shab Masih
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Carl Ng
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Doug Leipold
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Amrita Kamath
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics (V.Y., I.F., B.L., S.M., D.L., A.K., B.-Q.S.) and Bio-Analytical Sciences (C.N.), Genentech, South San Francisco, California
| |
Collapse
|
36
|
Swain SS, Paidesetty SK, Padhy RN. Phytochemical conjugation as a potential semisynthetic approach toward reactive and reuse of obsolete sulfonamides against pathogenic bacteria. Drug Dev Res 2020; 82:149-166. [PMID: 33025605 DOI: 10.1002/ddr.21746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
Abstract
The emergence and reemergence of multidrug-resistant (MDR) bacteria and mycobacteria in community and hospital periphery have directly enhanced the hospitalization costs, morbidity and mortality, globally. The appearance of MDR pathogens, the currently used antibiotics, remains insufficient, and the development of potent antibacterial(s) is merely slow. Thus, the development of active antibacterials is the call of the day. The sulfonamides class of antibacterials was the most successful synthesized drug in the 19th century. Mechanically, sulfonamides were targeting bacterial folic acid biosynthesis and today, those are obsolete or clinically inactive. Nevertheless, the magic sulfonamide pharmacophore has been used continuously in several mainstream antibacterial, antidiabetic, antiviral drugs. Concomitantly, thousands of phytochemicals with antimicrobial potencies have been recorded and were commanded as alternate antibacterials toward control of MDR pathogens. However, none/very few isolated phytochemicals have gone up to the pure-drug stage due to the lack of the desired drug-likeness values and the required pharmacokinetic properties. Thus, chemical modification of parent drug remains as the versatile approach in antibacterial drug development. Improvement of clinically inactive sulfa drugs with suitable phytochemicals to develop active, low-toxic drug molecules followed by medicinal chemistry could be prudent. This review highlights such "sulfonamide-phytochemical" hybrid drug development research works for utilizing inactive sulfonamides and phytochemicals; the ingenious cost-effective and resource-saving hybrid drug concept could be a new trend in current antibacterial drug discovery to reactive the obsolete antibacterials.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
37
|
Zuo P. Capturing the Magic Bullet: Pharmacokinetic Principles and Modeling of Antibody-Drug Conjugates. AAPS JOURNAL 2020; 22:105. [PMID: 32767003 DOI: 10.1208/s12248-020-00475-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
Over the past two decades, antibody-drug conjugates (ADCs) have emerged as a promising class of drugs for cancer therapy and have expanded to nononcology fields such as inflammatory diseases, atherosclerosis, and bacteremia. Eight ADCs are currently approved by FDA for clinical applications, with more novel ADCs under clinical development. Compared with traditional chemotherapy, ADCs combine the target specificity of antibodies with chemotherapeutic capabilities of cytotoxic drugs. The benefits include reduced systemic toxicity and enhanced therapeutic index for patients. However, the heterogeneous structures of ADCs and their dynamic changes following administration create challenges in their development. The understanding of ADC pharmacokinetics (PK) is crucial for the optimization of clinical dosing regimens when translating from animal to human. In addition, it contributes to the optimization of dose selection and clinical monitoring with regard to safety and efficacy. This manuscript reviews the PK characteristics of ADCs and summarizes the diverse approaches for PK modeling that can be used to evaluate an ADC at the preclinical and clinical stages to support their successful development. Despite the numerous available options, fit-for-purpose modeling approaches for the PK and PD of ADCs should be critically planned and well-thought-out to adequately support the development of an ADC.
Collapse
Affiliation(s)
- Peiying Zuo
- Pharmacometrics US, Clinical Pharmacology & Exploratory Development, Astellas Pharma, Inc., USA, 1 Astellas Way, Northbrook, Illinois, 60062, USA.
| |
Collapse
|
38
|
Skidmore L, Sakamuri S, Knudsen NA, Hewet AG, Milutinovic S, Barkho W, Biroc SL, Kirtley J, Marsden R, Storey K, Lopez I, Yu W, Fang SY, Yao S, Gu Y, Tian F. ARX788, a Site-specific Anti-HER2 Antibody-Drug Conjugate, Demonstrates Potent and Selective Activity in HER2-low and T-DM1-resistant Breast and Gastric Cancers. Mol Cancer Ther 2020; 19:1833-1843. [PMID: 32669315 DOI: 10.1158/1535-7163.mct-19-1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/16/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022]
Abstract
First-generation antibody-drug conjugates (ADC) are heterogeneous mixtures that have shown clinical benefit, but generally exhibited safety issues and a narrow therapeutic window due, in part, to off-target toxicity caused by ADC instability. ARX788 is a next-generation, site-specific anti-HER2 ADC that utilizes a unique nonnatural amino acid-enabled conjugation technology and a noncleavable Amberstatin (AS269) drug-linker to generate a homogeneous ADC with a drug-to-antibody ratio of 1.9. ARX788 exhibits high serum stability in mice and a relatively long ADC half-life of 12.5 days. When compared in vitro against T-DM1 across a panel of cancer cell lines, ARX788 showed superior activity in the lower HER2-expressing cell lines and no activity in normal cardiomyocyte cells. Similarly, ARX788 significantly inhibited tumor growth, and generally outperformed T-DM1 in HER2-high and HER2-low expression xenograft models. Breast and gastric cancer patient-derived xenograft studies confirmed strong antitumor activity of ARX788 in HER2-positive and HER2-low expression tumors, as well as in a T-DM1-resistant model. The encouraging preclinical data support the further development of ARX788 for treatment of patients with HER2-positive breast and gastric cancer, including those who have developed T-DM1 resistance, and patients with HER2-low expression tumors who are currently ineligible to receive HER2-targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wayne Yu
- Ambrx, Inc, La Jolla, California
| | | | | | - Yi Gu
- Ambrx, Inc, La Jolla, California
| | | |
Collapse
|
39
|
Zhu X, Huo S, Xue C, An B, Qu J. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J Pharm Anal 2020; 10:209-220. [PMID: 32612867 PMCID: PMC7322744 DOI: 10.1016/j.jpha.2020.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/28/2023] Open
Abstract
The past few years have witnessed enormous progresses in the development of antibody-drug conjugates (ADCs). Consequently, comprehensive analysis of ADCs in biological systems is critical in supporting discovery, development and evaluation of these agents. Liquid chromatography-mass spectrometry (LC-MS) has emerged as a promising and versatile tool for ADC analysis across a wide range of scenarios, owing to its multiplexing ability, rapid method development, as well as the capability of analyzing a variety of targets ranging from small-molecule payloads to the intact protein with a high, molecular resolution. However, despite this tremendous potential, challenges persist due to the high complexity in both the ADC molecules and the related biological systems. This review summarizes the up-to-date LC-MS-based strategies in ADC analysis and discusses the challenges and opportunities in this rapidly-evolving field.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Shihan Huo
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Chao Xue
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
- Department of Chemical and Biological Engineering, School of Engineering and Applied Science, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Bo An
- Exploratory Biomarker, In-vitro/In-vivo Translation, R&D Research, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Rd, Collegeville, PA, 19426, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, 14214, USA
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| |
Collapse
|
40
|
Oosterheert W, Gros P. Cryo-electron microscopy structure and potential enzymatic function of human six-transmembrane epithelial antigen of the prostate 1 (STEAP1). J Biol Chem 2020; 295:9502-9512. [PMID: 32409586 PMCID: PMC7363144 DOI: 10.1074/jbc.ra120.013690] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Indexed: 11/28/2022] Open
Abstract
Six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is an integral membrane protein that is highly up-regulated on the cell surface of several human cancers, making it a promising therapeutic target to manage these diseases. It shares sequence homology with three enzymes (STEAP2–STEAP4) that catalyze the NADPH-dependent reduction of iron(III). However, STEAP1 lacks an intracellular NADPH-binding domain and does not exhibit cellular ferric reductase activity. Thus, both the molecular function of STEAP1 and its role in cancer progression remain elusive. Here, we present a ∼3.0-Å cryo-EM structure of trimeric human STEAP1 bound to three antigen-binding fragments (Fabs) of the clinically used antibody mAb120.545. The structure revealed that STEAP1 adopts a reductase-like conformation and interacts with the Fabs through its extracellular helices. Enzymatic assays in human cells revealed that STEAP1 promotes iron(III) reduction when fused to the intracellular NADPH-binding domain of its family member STEAP4, suggesting that STEAP1 functions as a ferric reductase in STEAP heterotrimers. Our work provides a foundation for deciphering the molecular mechanisms of STEAP1 and may be useful in the design of new therapeutic strategies to target STEAP1 in cancer.
Collapse
Affiliation(s)
- Wout Oosterheert
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
41
|
Simmons JK, Burke PJ, Cochran JH, Pittman PG, Lyon RP. Reducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol Appl Pharmacol 2020; 392:114932. [DOI: 10.1016/j.taap.2020.114932] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 11/24/2022]
|
42
|
Gauzy-Lazo L, Sassoon I, Brun MP. Advances in Antibody–Drug Conjugate Design: Current Clinical Landscape and Future Innovations. SLAS DISCOVERY 2020; 25:843-868. [DOI: 10.1177/2472555220912955] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The targeted delivery of potent cytotoxic molecules into cancer cells is considered a promising anticancer strategy. The design of clinically effective antibody–drug conjugates (ADCs), in which biologically active drugs are coupled through chemical linkers to monoclonal antibodies, has presented challenges for pharmaceutical researchers. After 30 years of intensive research and development activities, only seven ADCs have been approved for clinical use; two have received fast-track designation and two breakthrough therapy designation from the Food and Drug Administration. There is continued interest in the field, as documented by the growing number of candidates in clinical development. This review aims to summarize the most recent innovations that have been applied to the design of ADCs undergoing early- and late-stage clinical trials. Discovery and rational optimization of new payloads, chemical linkers, and antibody formats have improved the therapeutic index of next-generation ADCs, ultimately resulting in improved clinical benefit for the patients.
Collapse
Affiliation(s)
| | - Ingrid Sassoon
- Immuno-Oncology Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | | |
Collapse
|
43
|
Abstract
Lysine-conjugated antibody-drug conjugates (ADCs) are formed by attaching cytotoxic drugs to reactive lysine residues of monoclonal antibodies (mAbs) through chemical linkers. During production, the payloads are conjugated nonspecifically to lysine residues in mAbs, resulting in a heterogeneous mixture of ADCs with both different number and conjugation sites of drug payloads per mAb. On account of the drug conjugation sites and levels that both have significant influences on physical and pharmaceutical properties of ADCs, a reliable and straightforward approach for conjugation site analysis for ADCs is highly demanded. Herein, we used a lysine-conjugated ADC, Trastuzumab-MCC-DM1 (T-DM1), as a model ADC, and described an integrative strategy that combines the signature ion fingerprinting method for rapid and reliable filtering of DM1-conjugated peptides, and the normalized area quantitation approach for accurately gauging the conjugation levels for each identified site. This approach is believed to be readily applicable to other maytansinoid derivatives-modified ADCs, and more importantly, universally applicable to lysine-conjugated ADCs for both the recognition of conjugation sites and the measurement of conjugation levels.
Collapse
Affiliation(s)
- Hua Sang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Ning Wan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Gaoyuan Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Tian
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China
| | - Hui Ye
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
44
|
Alteration of Physicochemical Properties for Antibody-Drug Conjugates and Their Impact on Stability. J Pharm Sci 2020; 109:161-168. [DOI: 10.1016/j.xphs.2019.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
|
45
|
Vivier D, Fung K, Rodriguez C, Adumeau P, Ulaner GA, Lewis JS, Sharma SK, Zeglis BM. The Influence of Glycans-Specific Bioconjugation on the FcγRI Binding and In vivo Performance of 89Zr-DFO-Pertuzumab. Am J Cancer Res 2020; 10:1746-1757. [PMID: 32042334 PMCID: PMC6993239 DOI: 10.7150/thno.39089] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Rationale: The overwhelming majority of radioimmunoconjugates are produced via random conjugation methods predicated on attaching bifunctional chelators to the lysines of antibodies. However, this approach inevitably produces poorly defined and heterogeneous immunoconjugates because antibodies have several lysines distributed throughout their structure. To circumvent this issue, we have previously developed a chemoenzymatic bioconjugation strategy that site-specifically appends cargoes to the biantennary heavy chain glycans attached to CH2 domains of the immunoglobulin's Fc region. In the study at hand, we explore the effects of this approach to site-specific bioconjugation on the Fc receptor binding and in vivo behavior of radioimmunoconjugates. Methods: We synthesized three desferrioxamine (DFO)-labeled immunoconjugates based on the HER2-targeting antibody pertuzumab: one using random bioconjugation methods (DFO-nsspertuzumab) and two using variants of our chemoenzymatic protocol (DFO-sspertuzumab-EndoS and DFO-sspertuzumab-βGal). Subsequently, we characterized these constructs and evaluated their ability to bind HER2, human FcγRI (huFcγRI), and mouse FcγRI (muFcγRI). After radiolabeling the immunoconjugates with zirconium-89, we conducted PET imaging and biodistribution studies in two different mouse models of HER2-expressing breast cancer. Results: MALDI-ToF and SDS-PAGE analysis confirmed the site-specific nature of the bioconjugation, and flow cytometry and surface plasmon resonance (SPR) revealed that all three immunoconjugates bind HER2 as effectively as native pertuzumab. Critically, however, SPR experiments also illuminated that DFO-sspertuzumab-EndoS possesses an attenuated binding affinity for huFcγRI (17.4 ± 0.3 nM) compared to native pertuzumab (4.7 ± 0.2 nM), DFO-nsspertuzumab (4.1 ± 0.1 nM), and DFO-sspertuzumab-βGal (4.7 ± 0.2 nM). ImmunoPET and biodistribution experiments in athymic nude mice bearing HER2-expressing BT474 human breast cancer xenografts yielded no significant differences in the in vivo behavior of the radioimmunoconjugates. Yet experiments in tumor-bearing humanized NSG mice revealed that 89Zr-DFO-sspertuzumab-EndoS produces higher activity concentrations in the tumor (111.8 ± 39.9 %ID/g) and lower activity concentrations in the liver and spleen (4.7 ± 0.8 %ID/g and 13.1 ± 4.0 %ID/g, respectively) than its non-site-specifically labeled cousin, a phenomenon we believe stems from the altered binding of the former to huFcγRI. Conclusion: These data underscore that this approach to site-specific bioconjugation not only produces more homogeneous and well-defined radioimmunoconjugates than traditional methods but may also improve their in vivo performance in mouse models by reducing binding to FcγRI.
Collapse
|
46
|
Chen R, Herrera AF, Hou J, Chen L, Wu J, Guo Y, Synold TW, Ngo VN, Puverel S, Mei M, Popplewell L, Yi S, Song JY, Tao S, Wu X, Chan WC, Forman SJ, Kwak LW, Rosen ST, Newman EM. Inhibition of MDR1 Overcomes Resistance to Brentuximab Vedotin in Hodgkin Lymphoma. Clin Cancer Res 2019; 26:1034-1044. [PMID: 31811017 DOI: 10.1158/1078-0432.ccr-19-1768] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/28/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE In classical Hodgkin lymphoma, the malignant Reed-Sternberg cells express the cell surface marker CD30. Brentuximab vedotin is an antibody-drug conjugate (ADC) that selectively delivers a potent cytotoxic agent, monomethyl auristatin E (MMAE), to CD30-positive cells. Although brentuximab vedotin elicits a high response rate (75%) in relapsed/refractory Hodgkin lymphoma, most patients who respond to brentuximab vedotin eventually develop resistance. PATIENTS AND METHODS We developed two brentuximab vedotin-resistant Hodgkin lymphoma cell line models using a pulsatile approach and observed that resistance to brentuximab vedotin is associated with an upregulation of multidrug resistance-1 (MDR1). We then conducted a phase I trial combining brentuximab vedotin and cyclosporine A (CsA) in patients with relapsed/refractory Hodgkin lymphoma. RESULTS Here, we show that competitive inhibition of MDR1 restored sensitivity to brentuximab vedotin in our brentuximab vedotin-resistant cell lines by increasing intracellular MMAE levels, and potentiated brentuximab vedotin activity in brentuximab vedotin-resistant Hodgkin lymphoma tumors in a human xenograft mouse model. In our phase I trial, the combination of brentuximab vedotin and CsA was tolerable and produced an overall and complete response rate of 75% and 42% in a population of patients who were nearly all refractory to brentuximab vedotin. CONCLUSIONS This study may provide a new therapeutic strategy to combat brentuximab vedotin resistance in Hodgkin lymphoma. This is the first study reporting an effect of multidrug resistance modulation on the therapeutic activity of an ADC in humans. The expansion phase of the trial is ongoing and enrolling patients who are refractory to brentuximab vedotin to confirm clinical activity in this population with unmet need.
Collapse
Affiliation(s)
- Robert Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Alex F Herrera
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| | - Jessie Hou
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Lu Chen
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | - Jun Wu
- Center for Comparative Medicine, Beckman Research Institute, City of Hope, Duarte, California
| | - Yuming Guo
- Center for Comparative Medicine, Beckman Research Institute, City of Hope, Duarte, California
| | - Timothy W Synold
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Vu N Ngo
- Department of Systems Biology, City of Hope, Duarte, California
| | - Sandrine Puverel
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Matthew Mei
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Leslie Popplewell
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, California
| | - Shu Tao
- Integrative Genomics Core, City of Hope, Duarte, California
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope, Duarte, California
| | - Wing C Chan
- Department of Pathology, City of Hope, Duarte, California
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Larry W Kwak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Edward M Newman
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| |
Collapse
|
47
|
Hydrophobic interaction chromatography (HIC) method development and characterization of resolved drug-load variants in site-specifically conjugated pyrrolobenzodiazepine dimer-based antibody drug conjugates (PBD-ADCs). J Pharm Biomed Anal 2019; 179:113027. [PMID: 31830625 DOI: 10.1016/j.jpba.2019.113027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 12/29/2022]
Abstract
Antibody drug conjugates (ADCs) are heterogeneous biopharmaceutical products that demand extensive characterization to ensure batch consistency, safety, and efficacy. Hydrophobic interaction chromatography (HIC) is the state-of-the-art analytical tool to monitor conjugation-related critical quality attributes (CQAs) e.g. drug-load distribution and Drug-to-Antibody Ratio (DAR). For the next generation site-specific PBD-ADCs (PBD: pyrrolobenzodiazepine dimer), denaturing RP-HPLC (reverse-phase high-performance chromatography) is the current method to determine average DAR. In this manuscript, we have utilized native HIC for the first time to understand conjugation related CQAs in PBD-ADCs. In terms of the method development, the type of stationary phase and salt, coupled with reduction of the reactive imine in the PBD drug-linker to an amine form in the sample preparation, have played a key role in achieving the best HIC resolution for the drug-load variants. The established HIC conditions resolved DAR 0, DAR 1, and two DAR 2 peaks for PBD-ADCs. Extended characterization of the DAR 2 peaks confirmed that they have retained characteristically distinct antibody Fc N-glycan distributions (Fc = Fragment crystallization region). Therefore, the results support that the HIC conditions established for PBD-ADCs is valuable in not only determining DAR values but also other important attributes including native drug-load distribution and unique DAR 2 conformations existed as a result of the N-glycan heterogeneity.
Collapse
|
48
|
Boswell CA, Yadav DB, Mundo EE, Yu SF, Lacap JA, Fourie-O'Donohue A, Kozak KR, Ferl GZ, Zhang C, Ho J, Ulufatu S, Khawli LA, Lin K. Biodistribution and efficacy of an anti-TENB2 antibody-drug conjugate in a patient-derived model of prostate cancer. Oncotarget 2019; 10:6234-6244. [PMID: 31692898 PMCID: PMC6817444 DOI: 10.18632/oncotarget.27263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
TENB2, a transmembrane proteoglycan protein, is a promising target for antibody drug conjugate (ADC) therapy due to overexpression in human prostate tumors and rapid internalization. We previously characterized how predosing with parental anti-TENB2 monoclonal antibody (mAb) at 1 mg/kg in a patient-derived LuCap77 explant model with high (3+) TENB2 expression could (i) block target-mediated intestinal uptake of tracer (& 0.1 mg/kg) levels of radiolabeled anti-TENB2-monomethyl auristatin E ADC while preserving tumor uptake, and (ii) maintain efficacy relative to ADC alone. Here, we systematically revisit this strategy to evaluate the effects of predosing on tumor uptake and efficacy in LuCap96.1, a low TENB2-expressing (1+) patient-derived model that is more responsive to ADC therapy than LuCap77. Importantly, rather than using tracer (& 0.1 mg/kg) levels, radiolabeled ADC tumor uptake was assessed at 1 mg/kg – one of the doses evaluated in the tumor growth inhibition study – in an effort to bridge tissue distribution (PK) with efficacy (PD). Predosing with mAb up to 1 mg/kg had no effect on efficacy. These findings warrant further investigations to determine whether predosing prior to ADC therapy might improve therapeutic index by preventing ADC disposition and possible toxicological liabilities in antigen-expressing healthy tissues.
Collapse
Affiliation(s)
- C Andrew Boswell
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA
| | | | - Eduardo E Mundo
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA.,Present address: Department of Safety Assessment, Nektar Therapeutics, San Francisco, 94158 CA, USA
| | - Shang-Fan Yu
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA
| | - Jennifer Arca Lacap
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA
| | | | - Katherine R Kozak
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA
| | - Gregory Z Ferl
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA
| | - Crystal Zhang
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA
| | - Jason Ho
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA
| | - Sheila Ulufatu
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA
| | - Leslie A Khawli
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA.,Present address: Department of Pathology and Laboratory Medicine, Keck School of Medicine of USC, Los Angeles, 90033 CA, USA
| | - Kedan Lin
- Genentech Research and Early Development, South San Francisco, 94080 CA, USA.,Present address: Clinical Development and US Operation, Innovent Biologics, South San Francisco, 94080 CA, USA
| |
Collapse
|
49
|
Peltek OO, Muslimov AR, Zyuzin MV, Timin AS. Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. J Nanobiotechnology 2019; 17:90. [PMID: 31434562 PMCID: PMC6704557 DOI: 10.1186/s12951-019-0524-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
Radiopharmaceuticals have proven to be effective agents, since they can be successfully applied for both diagnostics and therapy. Effective application of relevant radionuclides in pre-clinical and clinical studies depends on the choice of a sufficient delivery platform. Herein, we provide a comprehensive review on the most relevant aspects in radionuclide delivery using the most employed carrier systems, including, (i) monoclonal antibodies and their fragments, (ii) organic and (iii) inorganic nanoparticles, and (iv) microspheres. This review offers an extensive analysis of radionuclide delivery systems, the approaches of their modification and radiolabeling strategies with the further prospects of their implementation in multimodal imaging and disease curing. Finally, the comparative outlook on the carriers and radionuclide choice, as well as on the targeting efficiency of the developed systems is discussed.
Collapse
Affiliation(s)
- Oleksii O Peltek
- Russian Research Center of Radiology and Surgical Technologies (RRCRST) of Ministry of Public Health, Leningradskaya Street 70 Pesochny, Saint-Petersburg, 197758, Russian Federation
| | - Albert R Muslimov
- Russian Research Center of Radiology and Surgical Technologies (RRCRST) of Ministry of Public Health, Leningradskaya Street 70 Pesochny, Saint-Petersburg, 197758, Russian Federation
| | - Mikhail V Zyuzin
- Faculty of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Alexander S Timin
- Russian Research Center of Radiology and Surgical Technologies (RRCRST) of Ministry of Public Health, Leningradskaya Street 70 Pesochny, Saint-Petersburg, 197758, Russian Federation.
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russia.
| |
Collapse
|
50
|
Incorporation of a Hydrophilic Spacer Reduces Hepatic Uptake of HER2-Targeting Affibody-DM1 Drug Conjugates. Cancers (Basel) 2019; 11:cancers11081168. [PMID: 31416167 PMCID: PMC6721809 DOI: 10.3390/cancers11081168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
Affibody molecules are small affinity-engineered scaffold proteins which can be engineered to bind to desired targets. The therapeutic potential of using an affibody molecule targeting HER2, fused to an albumin-binding domain (ABD) and conjugated with the cytotoxic maytansine derivate MC-DM1 (AffiDC), has been validated. Biodistribution studies in mice revealed an elevated hepatic uptake of the AffiDC, but histopathological examination of livers showed no major signs of toxicity. However, previous clinical experience with antibody drug conjugates have revealed a moderate- to high-grade hepatotoxicity in treated patients, which merits efforts to also minimize hepatic uptake of the AffiDCs. In this study, the aim was to reduce the hepatic uptake of AffiDCs and optimize their in vivo targeting properties. We have investigated if incorporation of hydrophilic glutamate-based spacers adjacent to MC-DM1 in the AffiDC, (ZHER2:2891)2-ABD-MC-DM1, would counteract the hydrophobic nature of MC-DM1 and, hence, reduce hepatic uptake. Two new AffiDCs including either a triglutamate-spacer-, (ZHER2:2891)2-ABD-E3-MC-DM1, or a hexaglutamate-spacer-, (ZHER2:2891)2-ABD-E6-MC-DM1 next to the site of MC-DM1 conjugation were designed. We radiolabeled the hydrophilized AffiDCs and compared them, both in vitro and in vivo, with the previously investigated (ZHER2:2891)2-ABD-MC-DM1 drug conjugate containing no glutamate spacer. All three AffiDCs demonstrated specific binding to HER2 and comparable in vitro cytotoxicity. A comparative biodistribution study of the three radiolabeled AffiDCs showed that the addition of glutamates reduced drug accumulation in the liver while preserving the tumor uptake. These results confirmed the relation between DM1 hydrophobicity and liver accumulation. We believe that the drug development approach described here may also be useful for other affinity protein-based drug conjugates to further improve their in vivo properties and facilitate their clinical translatability.
Collapse
|